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ABSTRACT

Finetuning large language models on instruction data is an important step in
enriching the knowledge learned during pre-training and improving instruction-
following capabilities. As the number of instruction datasets continues to grow,
selecting the right data to achieve optimal results becomes increasingly important.
In this work, we ask a prominent question: How can we determine the optimal
subset of data for effective training? While much of the existing research primarily
emphasizes local criteria, such as instance quality, for subset selection, we argue
that a global approach focused on data diversity is more critical. Our approach
utilizes k-means clustering to ensure that the selected subset effectively represents
the full dataset. We propose an iterative refinement method inspired by active
learning techniques to resample instances from clusters, with the importance and
sampling weight of each cluster being reassessed in every training iteration. This
method allows us to reduce the effect of outliers and automatically filter out
clusters containing low-quality data. Through extensive evaluation across natural
language reasoning, general world knowledge, code and math reasoning tasks, and
by fine-tuning models from various families, we observe consistent improvements,
achieving a 7% increase over the random selection and a 3.8% improvement
over state-of-the-art sampling methods. Our work highlights the significance of
diversity-first sampling when finetuning LLMs to enhance performance across a
broad array of evaluation tasks. Our code is submitted as supplementary materials.

1 INTRODUCTION

Large language models are trained on vast amounts of data scraped from the internet, containing
a wide range of content qualities. (Penedo et al., 2023; Chen et al., 2023; Laurenccon et al., 2023;
Marion et al., 2023). Models develop a broad understanding of language and acquire general
knowledge from the unstructured data in this pretraining phase (Da et al., 2021; Chang et al., 2024)
and align with user intent in the finetuned stage using instruction datasets which consists of a more
structured format of question and response pairs (Chung et al., 2022; Taori et al., 2023; Li et al., 2023;
Üstün et al., 2024). Recent years have seen substantial efforts to create datasets using various manual
(Conover et al., 2023; Köpf et al., 2024; Singh et al., 2024) and synthetic (Taori et al., 2023; Wang
et al., 2022; Shimabucoro et al., 2024) methods, making it increasingly challenging to determine
which dataset is best suited for downstream tasks. A crucial question regarding the scalability of
finetuning LLMs is: “what is the optimum subset of data that allows for efficient training and captures
aspects of the data relevant to downstream tasks?”

Instances in a dataset contribute to a model’s learning process with varying degrees of impact,
affecting the model’s performance and generalization (Sorscher et al., 2022; Chen et al., 2022).
While recent research has predominantly emphasized local features, such as the quality of individual
instances for subset selection, we argue that prioritizing a global feature —diversity—yields greater
benefits. When selecting a subset of instances, we manage computational complexity while balancing
the trade-off between diversity and representativeness (Zhou et al., 2023), ensuring that the subset
captures the underlying data distribution (Ivison et al., 2023; Wang et al., 2024b). Preserving a
high level of sample diversity during finetuning is crucial for improving generalization capabilities
(Zhang et al., 2024; Yue et al., 2024). Wang et al. (2024b) revealed that using a range of instruction
datasets can boost downstream tasks. Wang et al. (2024a) provided a theoretical analysis using
determinantal point processes to underscore the significance of diversity in the selection of subsets.
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However, ensuring diversity during sampling is difficult, and current methodologies fall short of fully
addressing this challenge. Most scoring-based subset selection methods prioritize sample quality and
characteristics and subsequently apply a diversity filter (Liu et al., 2023; Xia et al., 2024). Still, since
diversity is inherently a global property, addressing it only in the second step limits its effectiveness
because it lacks a comprehensive view of the entire collection. This limitation often arises because
assessing the data collection globally is computationally expensive (Bukharin & Zhao, 2023).

In this work, we propose a scalable iterative sampling and refinement method to efficiently select a
subset of instruction data and maximize the diversity of samples. We iteratively refine the sample
selection using early training signals from the fine-tuning model and proceed with continued fine-
tuning. With the same training budget, we achieve substantial improvements over fixed sampling
approaches and previous state-of-the-art data selection methods. We evaluate the finetuned models on
a wide range of tasks, including question answering, math, reasoning, and code, and show consistent
improvements over baselines. Overall, our experiments and analyses demonstrate that by sampling a
small subset of data, we achieve performance improvements of up to 7% over random selection and
3.8% over the previous sampling methods on a wide variety of tasks. In summary, our contributions
are as follows:

• We systematically analyze various clustering and sampling methods and demonstrate that
k-means clustering is particularly effective for selecting an optimal, diverse subset of
instruction data, especially when paired with a quality sampling step.

• Our simplest variant, which involves efficiently clustering data points and randomly sampling
from each cluster, already achieves performance on par with advanced state-of-the-art
sampling techniques, without the need for costly LLM scoring. This supports our hypothesis
on the importance of diversity and the representativeness of the sampling process.

• We further propose an iterative clustering algorithm that simultaneously combines the
learning feedback from the training model and optimizes for diversity based on data distri-
bution for effective instruction tuning. This method outperforms previous approaches on all
downstream tasks.

We release the code and the data artifacts used in our experiments to facilitate reproducibility and
future research.

2 METHODOLOGY

2.1 STATIC DATA SELECTION

Given a large and diverse set of instruct data D = {x1, x2, . . . , xn}, we select a subset D′ with
budget b ∈ N+, where b = |D′| ≪ |D| and finetune a language model and evaluate a selection of
downstream tasks. This subset should be a representative sample of the training data, maintaining
high quality and offering a diverse range of examples. We propose to define the problem of sample
selection for training data of a language model as a clustering problem with clustering objectives
where we want to group similar samples together and separate dissimilar samples into different
clusters. We explore various sampling methods to ensure the inclusion of optimal samples from
different clusters.

For clustering purposes, we consider two main clustering objectives: k-center and k-means. Both
of these two objectives are metric clustering where we are given a set of points D with distance
metric d : D × D → R≥0 and the goal is to pick a set of centers C = {c1, . . . , ck} ⊆ D of size at
most k. For k-center, we want to pick C such that the maximum distance of data points to centers is
minimized. More precisely, in k-center, we want to minimize

max
xi∈D

d(xi, C) (1)

where d(xi, C) = mincj∈Cd(xi, cj) is the distance of point i to the closest center in C. The k-means
objective is similar to k-center objective but instead of looking at the l∞ norm of the vector that
defines the distance of points to C, we look at the l2 norm of this vector. More precisely, in k-means,
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Figure 1: Our proposed clustering (kMQ) and two sampling methods: We visualize our static
data selection with kMQ, as proposed Section 2.1 and the iterative data selection pipeline where we
refine the selection criteria and resample new instances in each iteration, as proposed in Section 2.2.

we want to minimize ∑
xi∈D

d2(xi, C)

Based on this objective and given the set of centers C = c1, . . . , ck, we define Dj as the subset of
data points in D that are closest to center cj and belong to the jth cluster:

Dj = {xi ∈ D | d(xi, cj) ≤ d(xi, cl) for all l ̸= j, l = 1, . . . , k} (2)

where d(xi, cj) is the distance between data point xi and center cj .

Beyond the clustering, the next step concerns how to sample data from the clusters with a fixed budget
of m. We investigate both random sampling and a more informed, quality-based sampling approach.
For the quality-based sampling, inspired by the previous approaches (Liu et al., 2023; Bukharin &
Zhao, 2023), we propose k-means-quality (kMQ), where we first perform the traditional k-means by
clustering the instruction data into k centroids, in which k ≪ b, and sample data from each cluster
to form D′. Note that we assign each cluster a budget proportional to its size (bj =

|Xj |
|X| · b) and

draw samples within each cluster based on the probability weighted by the quality score. We use
the same scoring method introduced by Liu et al. (2023) to obtain quality scores, enabling a fair
comparison of the hypotheses regarding the importance of diversity-first versus quality-first sampling.
More concretely, we sample:

{x1, x2, . . . , xbj} ∼ Multinomial(Dj , {p(x | q)}x∈Dj
) (3)

where {x1, x2, . . . , xbj} is the data sampled from cluster Dj with replacement, bj is the budget
assigning to the jth cluster and p(x | q) is the probability of picking x, weighted by its quality q.

Additionally, we take a systematic approach to studying the role of diversity and show the importance
of the choice of k in affecting downstream performance, which has been overlooked in previous
works (see analysis in Section 4.3).

2.2 ITERATIVE DATA SELECTION

3
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Algorithm 1 Iterative Data Selection Pipeline

Require: Dataset D, Budget b, Iteration N , base model F , Scorer S
1: D′ = {} ▷ Selected Data Subset
2: w0 = {w0

0, w
0
1, . . . , w

0
k} = { 1

k ,
1
k , . . . ,

1
k}︸ ︷︷ ︸

k

▷ the weights (wj) of each of k clusters

3: for it = 1 to N do
4: bit =

b
N ▷ Compute iteration budget

5: D′ = D′ ∪ Pick bit from D\D′ with wit−1 ▷ Select new subset with budget bit
6: Fn = Finetune(F ,D′) ▷ Finetune the model for epochs
7: {(xi, ygen, ygold)}n = Inference(F i,D′) ▷ Generation J it based on the eval instruct
8: s = {s1, s2, · · · , sk} ▷ Normalized score for each cluster (Eq. 5)
9: wit = {wit

1 , w
it
2 , · · · , wit

k } ▷ Adjust selection weight (Eq. 6)
10: end for
11: return D′,Fn ▷ Return the optimal subset D′ and finetuned model Fn

In the previous section, we introduced a two-step approach: sampling a fixed subset of data first and
finetuning a model on it. The sampling and finetuning steps are performed independently without
any information exchange between the two steps. However, the initial stages of finetuning can offer
insights into how individual data points influence the learning process (Anthony et al., 2017; Muldrew
et al., 2024). Here, we investigate whether we can improve our sampling method by incorporating
early training feedback into the selection process. We accomplish this by periodically increasing the
weight of clusters from which the model learns well while decreasing the weight of clusters that the
model finds difficult to generalize.

The motivation is twofold: (1) Not all data clusters possess the same level of quality and impact. We
further analyze the distribution and quality scores across clusters, revealing significant disparities
(see analysis in §4.4). This indicates that some clusters are notably better quality, while others
predominantly consist of low-quality data. (2) From a curriculum learning perspective, models can
develop different skills and knowledge at varying rates (Xu et al., 2020; Xu & Tewari, 2021; Feng
et al., 2023). Increasing the selection from challenging clusters for models to learn can enhance their
generalization capability.

Our iterative approach is:

1. Initialization Given a fixed training budget of b, we use kMQ as described in the previous
section to cluster and sample an initial set of instances of the size b

N . Next, we finetune the base
model for one epoch by going over the sampled data once, using this checkpoint to guide the iterative
selection.

2. Estimation of Sample Difficulty Using the latest checkpoint, we perform one round of inference
on the prompts on which the model is trained. Specifically, given the prompt xi from the initial
sampled set, we generate a new completion yi from the original seed data, forming the tuple
(xi, ygen, ygold) ∈ J i. We then evaluate the quality difference between ygen and ygold using a scorer S .
We compute the score for each instance by the following:

S(xi, ygen, ygold) = score(xi ⊕ ygold)− score(xi ⊕ ygen) (4)

where ⊕ is the concatenation operator. We explore the effectiveness of different scoring methods in
section 4.2.

3. Resampling By aggregating and normalizing the scores of samples within each cluster, we
modify the sampling weight of each cluster in the next iteration. The goal is to assign a higher weight
to the clusters containing higher-quality data while reducing the number of instances selected from
lower-quality clusters. We define the score and weight of the jth cluster as follows:

4
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sj =
1

|Dj |

|Dj |∑
i=1

S(xi, ygen, ygold) (5)

wit
j =

sj∑k
c=1 sc

wit−1
j (6)

where sj is the score of the jth cluster, wit
j is the weight of the jth cluster at iteration it. it is the

iteration number, where it ∈ {0, 1, . . . ,N}. N is the maximum number of iterations and k is the
total number of clusters.

We adjust the cluster weights and select b
N new candidates based on these updated weights. We then

train the model and return to step 2. This process continues until the entire training budget is utilized.
The pseudocode summarizing our iterative data selection method is shown in Algorithm 1.

3 EXPERIMENTS

3.1 TRAINING SETUP

Source Datasets We focus on two large and widely used instruction datasets that include prompts
on a diverse set of topics: Alpaca (Taori et al., 2023) and WizardLM (Xu et al., 2023). The Alpaca
dataset includes 52K prompts and uses the self-instruct framework to evolve seed human instruction
datasets and generate a large collection. WizardLM includes 196K prompts where they used Evol-
Instruct to automatically augment instruction tuning datasets (Alpaca, ShareGPT) to make their
instructions more complex (in-depth evolution) and more diverse (in-breadth evolution).

Evalset Metric # shots

MMLU acc 5
GSM8k acc 5
HellaSwag acc-norm 10
ARC acc-norm 25
TruthfulQA acc 0
HumanEval pass@10 0

Table 1: Detailed information of our evalu-
ation settings. For each evaluation dataset,
we present the number of few-shot examples
and metric adopted for evaluation.

Encoding data points We use Cohere English em-
bedding (embed-english-v3.0) to embed the
instruction datasets. Note that we encode both
the prompts and completions. To study the im-
pact of the embedding model, in Section 4.3 we
experiment with other models to encode instances
in our training pool, namely OpenAI embedding
(text-embedding-3-large) and Llama-2-7B
model (using the last hidden state of the last token).

Training Recipes For all experiments, we finetune
the llama-2-7B base model (Touvron et al., 2023).
We train for 3 epochs to achieve convergence and
optimal instruction-following performance. We use
an AdamW optimizer (Loshchilov & Hutter, 2017),
with a learning rate of 1e-5 and 1,000 warming-up steps. The maximum token size is 2048, and the
effective batch size is 64. Additionally, in section 4.5 we study the transferability of our findings
to other base models and experiment with fine-tuning Mistral (Jiang et al., 2023) and Llama-3-8B
(Dubey et al., 2024).

3.2 EVALUATION SETUP

To present a comprehensive overview of the performance of our method, we conduct a comprehensive
evaluation of our approaches and the established baselines across a range of LLM benchmarks.

Natural Language Reasoning We use HellaSwag (Zellers et al., 2019), and TruthfulQA (Lin et al.,
2022). HellaSwag is a test of commonsense inference. TruthfulQA measures a model’s propensity to
reproduce falsehoods.

World Knowledge We evaluate on MMLU (Hendrycks et al., 2021) and ARC (Clark et al., 2018).
MMLU consists of a range of multiple-choice academic questions. ARC is a set of grade-school
science questions.

5
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Code Generation We use the extensively utilized HumanEval (Chen et al., 2021) benchmark
consisting of 164 coding problems to evaluate LLMs’ code-writing capabilities at the function level
by reporting the pass@10 metric.

Math Reasoning We use GSM8k (Cobbe et al., 2021) to evaluate the mathematical abilities of
models; GSM8k contains 1319 grade school math test data. We adopt 8-shot testing and report the
exact matching.

3.3 BASELINES

We implement two strong data selection methods, Deita (Liu et al., 2023) and QDIT (Bukharin
& Zhao, 2023) and compare our methods against them. Additionally, we explore other clustering
and sampling methods: k-center clustering (k-Center), where k equals the number of data points,
k-means-closest (kM-Closest), which selects samples based on the closest distance, and k-means-
random (kM-Random), which selects randomly from each cluster, both with the same budget as our
proposed approach kMQ. We also compare our methods to the random selection of data points.

MMLU GSM8K HellaSwag ARC TruthfulQA HumanEval Avg.

Random 42.4 13.3 79.9 53.6 44.8 28.5 43.8
Deita (Liu et al., 2023) 44.1 15.6 80.1 54.3 44.9 30.8 45.0
QDIT (Bukharin & Zhao, 2023) 43.3 14.5 81.1 54.4 45.2 32.7 45.2

k-Center 41.5 11.8 79.2 51.7 43.5 28.4 42.7
kM-Closest 42.1 14.2 80.4 54.9 44.6 31.2 44.6
kM-Random 43.2 15.4 81.0 55.5 44.8 31.2 45.2
kMQ 45.9 16.2 81.2 55.3 45.5 33.0 46.2
Iterative kMQ 46.1 18.4 80.1 56.0 46.3 34.3 46.9

Table 2: Data selection performance of kMQ and baseline methods. All methods sample 10K
(5%) from the full WizardLM (196k) dataset. kMQ-k denotes k-means-quality with k clustering
centroids. For both kM-Closest and kM-Random, we show the results of the optimal k.

4 RESULTS AND DISCUSSION

4.1 MAIN FINDINGS

Table 2 presents the performance of the proposed methods for instruction data selection compared
to several baselines across various tasks. Our first observation is that by clustering data points
using the k-means method and randomly sampling instances (kM-Random sampling) we already
outperform random sampling and achieve comparable results to strong baselines: Deita and QDIT.
This is significant because this sampling method is significantly more efficient than both Deita and
QDIT and does not depend on costly LLMs for scoring. The success of this simple and efficient
method highlights the impact of prioritizing diversity in sampling.

Next, we observe that by replacing the random selection step with the quality-based approach (kMQ)
we can improve model performance on all downstream tasks. kMQ outperforms strong sampling
approaches, Deita (Liu et al., 2023) and QDIT (Bukharin & Zhao, 2023), on all tasks. Next, we
observe that the iterative sampling approach (Iterative kMQ), which leverages early training signals
to refine the selected subset, outperforms all previous baselines on most tasks. This suggests that the
iterative process of resampling and finetuning based on cluster performance can effectively identify
and prioritize high-quality instruction data, leading to better task performance.

Overall, our findings highlight the impact of a diversity-focused sampling approach, which selects
a compact yet representative subset of the data through clustering and weighted sampling from the
clusters. We find that it is also crucial to consider a feedback loop from the finetuning model and
understand how it perceives and learns from the data. By incorporating this feedback we ensure that
the sampling process aligns with the model’s learning behavior for optimal results.
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Figure 2: Comparison of iterative selection approach using different sample-scoring methods:
perplexity, GPT-4, reward model. Note that both random and kMQ selection methods use 10% of
data and train for three epochs. The iterative feedback runs are performed with the same budget at
iteration 3, ensuring a fair comparison. Iterative sampling using a reward model achieves the best
performance.

4.2 COMPARING DIFFERENT SCORING METHODS IN ITERATIVE FEEDBACK

To study the impact of how we score samples during training in our iterative selection approach,
we compare three methods: calculating the perplexity score of generations, using GPT-4 to obtain
a quality score, and using a reward model’s1 output. In Figure 2 we observe that all three variants
effectively improve the average performance over random selection. It is important to note that
during the first and second iterations, the iterative methods have been exposed to fewer data points
compared to the random and kMQ baselines. It is only at the third iteration that all methods have had
the opportunity to process an equal amount of data. While both perplexity-based and GPT-4-based
scoring achieve similar performance to kMQ and improve over random sampling, the reward model
variant largely outperforms a single-run kMQ. For this experiment, we arbitrarily selected an iteration
value of 3, which can be modified in future experiments.

4.3 IMPACT OF NUMBER OF CLUSTERS

In k-means data selection, an important question is how to choose the appropriate value for the
parameter k (the number of clusters). Increasing the value of k results in more fine-grained clusters
and by ensuring that we sample from each cluster, we can increase the diversity of the selected subset.
However, overly large values of k would also inevitably create outlier clusters that consist entirely
of low-quality, noisy data. Since we ensure each cluster is represented in the final selection, this
results in noise being included. There is no one-size-fits-all answer, as the optimal k depends on
the characteristics of the pool of data. Exploring the optimal parameter value is costly, as it must
be conducted with each new dataset. Here we use established heuristics in the clustering literature
to guide this decision and study the correlation of these metrics with downstream performance of
language models. Namely we investigate two methods:

Elbow method is a popular approach (Ahmed et al., 2020), where the objective value is plotted
against different values of k. The goal is to identify the elbow point, where increasing k yields
diminishing returns in the performance.

Silhouette Score (Vardakas et al., 2024) provides another perspective by evaluating how well each
data point fits within its assigned cluster (cohesion) compared to other clusters (separation), ranging
from -1 (poor fit) to 1 (excellent fit). A high score indicates the object is similar to others in its cluster
and dissimilar to those in neighboring clusters.

1We use FsfairX-LLaMA3-RM-v0.1 (Xiong et al., 2024).

7
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Figure 3: Average performance on downstream tasks (bar plots) for different number of clusters
k. There is a correlation between downstream performance and both Silhouette and Elbow scores.
The silhouette score is an efficient and effective proxy to estimate the number of clusters eliminating
the need to explore the hyperparameter space.

Although both approaches for identifying the ideal number of clusters are frequently employed, the
Silhouette score is generally preferred to the Elbow method in k-means clustering due to its clear
interpretability, robustness to noise and outliers, and suitability for high-dimensional data. More
importantly, the Elbow method is a post-hoc evaluation metric after the instruction tuning is done and
is more expensive; while Silhouette score can be computed prior to any sampling and training and is
very cheap.

We study how the choice of k affects performance on downstream tasks and if we can identify an
optimal k based on the dataset’s properties. To investigate this, we first fix our training pool (using
WizardLM) and run a series of experiments with different numbers of clusters k. For each value k,
we cluster the training candidates and sample from the clusters to create subsets of instruction data.
We then finetune a model on each of these subsets. A full evaluation is conducted for every finetuned
model (see detailed results in Appendix B).
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Figure 4: The percentage of clusters with an aggre-
gated quality score below the threshold of 0.3.

Figure 3 provides a summary of the results,
we reported the average performance over all
tasks and observe that the average performance
changes dramatically when we change the num-
ber of clusters. This is expected since we rely on
the clustering step to group data points that are
similar and distinct from other clusters. Remark-
ably, we observe a correlation between perfor-
mance on downstream tasks and the Silhouette
score. We find that the Silhouette score can
be used to estimate the number of clusters re-
quired before performing the expensive pipeline
of clustering, sampling, finetuning, and evalua-
tion. This estimation step enables us to adapt our approach efficiently to new datasets and collections,
ensuring optimal performance and reducing computational costs associated with trial-and-error
methods to find the best hyperparameters.

4.4 ANALYZING CLUSTER QUALITY

In our approaches, we rely on k-means clustering to ensure high diversity, but there is a risk that some
clusters may consist solely of noise. To understand how this varies with different values of k, we use
a reward model to evaluate the quality of each cluster with a score between 0 and 1. Figure 4 shows
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the number of clusters with average quality scores below a certain threshold (0.3) for different values
of k. We observe that by increasing the number of clusters, the percentage of the clusters dominated
by low-quality data also increases. This increases the likelihood of sampling low-quality data when
attempting to ensure that every cluster is represented in the final selection. In our iterative sampling
approach, we adjust cluster weights during each training iteration and prevent noisy clusters from
being over-represented in the sampled data.

MMLU GSM8K HellaSwag ARC TruthfulQA HumanEval Avg.

Mistral-7B

Random 58.2 26.2 82.4 60.1 60.5 26.3 52.3

kMQ 59.1 31.0 83.3 60.2 64.7 28.4 54.5
Iterative kMQ 59.6 32.2 83.5 60.1 66.8 29.7 55.3

Llama-3-8B

Random 65.1 38.4 83.3 60.6 55.1 56.7 59.9

kMQ 67.2 40.1 83.5 61.3 57.3 57.6 61.2
Iterative kMQ 66.0 36.7 83.3 61.0 56.4 54.2 59.6

Table 3: Performance of our best sampling methods on downstream tasks for two base mod-
els: Llama-3-8B and Mistral-7B. We sample 10K (5%) from WizardLM (196k). The selection is
performed with Llama-2.

4.5 TRANSFERABILITY OF RESULTS

We conduct experiments with two additional base models, Mistral-7B and Llama-3 8B (Jiang et al.,
2023; Dubey et al., 2024), to assess whether our findings generalize to other model families and more
powerful models. Our results in Table 3 demonstrate that the effectiveness of iterative refinement
remains valid for the Mistral-7B model, which exhibits more robust performance. However, the
evaluation results for Llama-3 are mixed across different benchmarks. We observe improvements on
average with kMQ sampling and a slight decrease in performance with iterative sampling especially
in reasoning tasks. We hypothesize that Llama-2 differs from Mistral in its training data, model
parameters, and training strategies. Consequently, using Llama-2 as a scorer reveals novel data points
from which Mistral can benefit. However, Llama-3, a more advanced model than its predecessors
with extended training as one of the primary distinctions, uncovers fewer new, valuable data points for
further learning. This highlights that the quality scorer’s effectiveness can vary, sometimes proving
more beneficial and other times less so, depending on the base model for which we are sampling.

While the iterative refinement pipeline can select a dataset restricted to certain models, we do not
view this as a limitation. The primary contribution of this work is to propose a function that takes a
fixed dataset and model as input and outputs the most valuable subset for learning. This approach
aligns with similar works (Ilyas et al., 2022; Thrush et al., 2024). Specifically, the task is to extract
a subset of data that leverages early reward signals to enhance the targeted model’s post-training
performance.

5 RELATED WORK

Data selection for LLMs. Previous works on data selection can be broadly categorized into two
key approaches: (1) removing undesirable examples, for instance, low-quality (Raffel et al., 2023;
Marion et al., 2023), toxic (Raffel et al., 2023), or duplicated instances (Zhang et al., 2022; Abbas
et al., 2023). (2) identifying the most optimal subset of data. While the definition of an optimal
subset varies across different works, the shared goal is to use a small portion of the data while still
maintaining strong performance. This subset selection approach has often been done by aiming
for selecting high-quality instances through a proxy: manual curation (Zhou et al., 2023), selecting
instances from human-authored datasets (Wang et al., 2024b), or hand-selecting datasets encouraging
complexity and diversity (Ivison et al., 2023). More recently, a line of work has used language models
to assess the quality of each data point and select the best ones. Xia et al. (2024) estimates data
influence and performs a low-rank gradient similarity search using a gradient datastore. Liu et al.
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(2023) scores instances using a combination of complexity and quality scores using an LLM and
selects the final subset using diversity-based filtering. While individual sample quality is a crucial
factor, prioritizing this local criterion can limit the diversity of the final selection. However, diversity
in instances and tasks is essential for training high-performant models (Wei et al., 2021; Gudibande
et al., 2023). Our work differs from these studies by examining what constitutes an optimal subset
from a global perspective and by prioritizing representativeness. Closest to our work, Bukharin &
Zhao (2023) emphasized quality by encoding all data points in the selection pool using an embedding
model and selecting the final subset based on pairwise cosine similarity and a quality score from
an LLM. In contrast, our approach offers a significantly more efficient method for subset selection,
while also achieving improved performance. Our experiment covers multiple dimensions, including
various base models, different encoding and scoring methods, and extensive ablation studies with
recommendations for efficient parameter selection.

Active learning and language models. Active learning is based on the fundamental premise that
“not all data is equal”. This approach aims to identify the most informative data for pretraining or
adapting language models for specific tasks or capabilities, as well as pinpointing the most valuable
data for learning. Margatina et al. (2023) explored active learning for selecting in-context examples
in few-shot learning, demonstrating that similar examples outperform uncertain or diverse in-context
examples. Muldrew et al. (2024) proposed active preference learning, combining iterative data
acquisition with a DPO (Direct Preference Optimization) loop to reduce the frequency of querying
human annotators (Oracle). Their acquisition method relies on the model’s entropy during generation.
Our approach generalizes active instruction tuning (Kung et al., 2023) to instance-level data selection,
allowing for the co-evolution of the LLMs and instruction data using an external reward signal.

6 CONCLUSION

In this paper, we present a novel approach to selecting a subset of data and optimizing the fine-tuning
of language models. Our method involved a scalable sampling technique that maximizes diversity and
efficiency in subset selection. Through our proposed k-means-quality (kMQ) algorithm and iterative
selection process, we demonstrated significant performance improvements over strong baselines while
maintaining a limited training budget. Our contributions include an efficient instruction selection
algorithm, the release of our encoded instruction dataset, and a systematic analysis of our method’s
effectiveness across a range of tasks. Our method outperforms existing baselines, achieving up to 7%
improvement in a wide range of evaluation tasks.

By addressing the challenge of optimal instruct data selection, our work paves the way for more
efficient and effective finetuning of language models, making them more accessible and affordable for
deployment, especially in resource-constrained settings. We believe that our findings will contribute
significantly to the ongoing research in language model optimization and their real-world applications.

7 LIMITATIONS AND FUTURE WORK

While our proposed method has shown promising results, there are a few limitations to consider.
Our evaluation focused on a specific set of tasks, and future work can aim to validate our method’s
effectiveness across a broader range of language models and tasks, including data selection in the
pre-training stage and alignment (Yu et al., 2024; Muldrew et al., 2024). Furthermore, our iterative
selection process relies on early training signals, and we only presented this as a pilot study to
encourage further research. Future work could explore alternative model feedback mechanisms to
refine the selected instruction data subsets, especially in mitigating the potential for reward hacking
in the iterative refinement process (Pan et al., 2024).

Finally, while we considered diversity and difficulty crucial factors, other characteristics of instruction
data could be explored to enhance the finetuning process further. Addressing these limitations and
extending this research will contribute to more robust and adaptable language models, capable of
excelling in a wide range of real-world applications.
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APPENDIX

A TRAINING DETAILS

A.1 HYPERPARAMETERS

For supervised fine-tuning, our training hyperparameters are presented in table 4.

Parameter Value

Precision BFloat16
Epochs 3
Selected Portion 10%
Gradient Accumulation Step 8
Batch Size 64
Max Seq. Length 4096
K-means Random Seed 42

Table 4: Our training hyperparameters.

A.2 COMPUTATIONAL COST

We also utilised Deepspeed-Zero3 (Rasley et al., 2020) for better efficiency training. Models
are finetuned with combination of TPU and GPU. For TPU, we used the code provided by
young-geng/EasyLM2 and done with TPUv3-32 nodes. For GPU, 2 A100-80GB are used
across the fine-tuning.

B IMPACT OF NUMBER OF CLUSTERS

Method MMLU GSM8K HellaSwag ARC TruthfulQA HumanEval Avg. Silhouette Score

kMQ-64 43.1 13.9 80.2 54.3 44.8 29.5 44.3 17.4
kMQ-128 43.4 12.8 79.9 54.1 45.0 28.4 43.9 15.6
kMQ-256 42.3 13.1 80.0 53.2 44.3 28.1 43.5 14.1
kMQ-512 46.4 17.0 81.2 55.3 45.5 33.0 46.4 16.8
kMQ-1024 45.6 17.8 81.6 55.5 44.9 34.1 46.6 18.2
kMQ-2048 46.0 20.2 82.1 55.5 45.0 37.2 47.7 20.3
kMQ-4096 44.2 15.2 79.1 54.3 42.0 33.2 44.7 20.0
kMQ-8192 44.1 13.6 78.9 54.2 41.6 31.8 43.0 18.7

Table 5: Performance of models trained on different number of data clusters k. We sample 10K (5%)
for each experiment. Silhouette score correlates with downstream tasks and is an efficient proxy for
estimating the number of clusters before sampling.

C SCORER DETAILS

For perplexity, we pass the xi ⊕ ygen and xi ⊕ ygold to the model to compute the perplexity scores.
The scorer with Perplexity is as follows:

S(xi, ygen, ygold) = − log(
PPL(xi ⊕ ygen)

PPL(xi ⊕ ygold)
) (7)

For GPT-4 direct scoring, we give the two completions to GPT-4 and ask it to give a rating between 1
and 5. We use the template as shown in Figure 5 to prompt GPT-4 for being the LLM-as-a-judge and

2young-geng/EasyLM

15

https://github.com/young-geng/EasyLM/tree/main


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

MMLU GSM8K HellaSwag ARC TruthfulQA HumanEval Avg.

Random 38.2 9.1 79.1 51.3 41.1 20.5 39.9
Deita 39.4 10.7 79.4 51.2 41.7 22.9 40.9
QDIT 38.7 11.3 79.8 51.6 42.6 25.6 41.6

k-Center 37.3 8.1 79.0 50.7 41.0 12.8 38.2
kM-Closest 40.1 10.3 79.3 51.2 42.5 24.3 41.3
kM-Random 39.6 11.4 79.1 51.2 42.8 25.1 41.5
kMQ-64 41.3 12.6 79.7 51.1 43.4 25.3 42.2
kMQ-256 39.5 12.3 79.1 51.0 42.7 26.0 41.8
kMQ-1024 37.3 11.2 78.6 51.2 41.5 22.3 40.4

Table 6: Additional experiments on Alpaca dataset (52k). We sample 5K (10%) for each experiment.
kMQ-k denotes k-means-quality with k clustering centroids. For both kM-Closest and kM-Random,
we show the results of the optimal k among all choices of k.

Size MMLU GSM8K HellaSwag ARC TruthfulQA HumanEval Avg.

Random 10k 42.4 13.3 79.9 53.6 44.8 28.5 43.8
Iter-1 3.3k 44.3 14.5 79.7 54.5 44.7 26.1 44.0

PPL Iter-2 6.7K 41.8 13.4 80.1 52.4 44.2 27.8 43.4
PPL Iter-3 10K 43.9 15.6 79.9 55.1 45.6 30.4 44.9

GPT Iter-2 6.7K 44.6 14.8 79.6 54.2 45.8 32.1 45.2
GPT Iter-3 10K 45.4 16.9 80.2 55.0 45.7 34.5 46.1

RM Iter-2 6.7K 44.7 15.8 80.1 54.7 45.2 30.8 45.2
RM Iter-3 10K 46.1 18.4 80.1 56.0 46.3 34.3 47.0

Table 7: Performance of our best iterative sampling method (using a reward model) on different test
sets. The training pool is WizardLM (196k). We plot the results in Figure 2. Best scores are bold.
Second bests are underlined.

by replacing the reward scoring (R) by the GPT score in Equation (4). The template is inspired by
Zheng et al. (2023). For the reward model, we use an off-the-shelf model based on Llama-33.

Prompt Template for Judgment Annotation

Please act as an impartial judge and evaluate the quality of the response provided by an AI
assistant to the user question displayed below. Your evaluation should consider factors such
as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response.
Begin your evaluation by providing a short explanation. Be as objective as possible. After
providing your explanation, please rate the response on a scale of 1 to 10 by strictly following
this format: “[[rating]]”, for example: “Rating: [[5]]”.

[[Instruction]]
${instruction}

[[Response]]
${response}

Figure 5: Prompt template for requesting a response evaluation from GPT-4-turbo, where variables
${instruction} and ${response} are replaced with examples in our dataset.

3FsfairX-LLaMA3-RM-v0.1
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