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ABSTRACT
Medical claims data comprise the financial details, including the
expenses and billing information, as well as the clinical informa-
tion, such as the diagnoses and treatments, of patients visiting
medical facilities. Recently, it has been acknowledged that large
databases can be constructed from medical claims data for medical
research purposes. However, the clinical information within these
datasets is often medically unstructured, limiting its application
in comprehensive analyses. This study enhances predictive model
performance for major adverse cardiovascular events (MACE), a
leading cause of death worldwide. Models that predict MACE are
crucial to clinical practice guidelines. We utilize a cross-attention
mechanism to develop a method that effectively weights the re-
lationships between diagnoses and treatments. Effectively repre-
senting the clinical information contained in medical claims data,
this approach generates more representative features for predicting
MACE. The ROC-AUC score of our proposed cross-attention-based
model was 0.7720, higher than other benchmark models including
the conventional atherosclerotic cardiovascular disease model, the
light gradient boosting machine, and a self-attention-based model.
These results indicate that integrating the clinical structure of med-
ical claims data using a cross-attention mechanism significantly
enhances the performance of predictive models.

CCS CONCEPTS
• Applied computing → Health informatics; • Computing
methodologies→ Machine learning approaches.

∗Both authors contributed equally to the paper
†Also with Human Health Sciences, Kyoto University Graduate School of Medicine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AIDSH-KDD ’24, August, 26, 2024, Barcelona, Spain
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
medical claims data, deep learning, cross-attention, major adverse
cardiovascular events, healthcare

ACM Reference Format:
Yuhei Fujioka, Daitaro Misawa, Tatsuyoshi Ikenoue, and Shingo Fukuma.
2024. In Medical Claims Data, Enhancing Predictive Performance for Major
Adverse Cardiovascular Events Using Cross Attention. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
email (AIDSH-KDD ’24). ACM, New York, NY, USA, 13 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
1.1 Background
In recent years, the use of medical claims data and electronic health
records (EHR) has been increasingly recognized as crucial in de-
veloping disease prediction models [23, 29]. These datasets com-
prehensively record medical actions for each patient, including
diagnoses, medical procedures, and prescriptions. Since this infor-
mation provides a comprehensive view of patients’ health statuses,
it is expected that interrelating diagnoses and treatments (defined
as medical procedures and prescriptions in this study) will enhance
disease prediction performance. However, only a few researchers
are effectively utilizing this information to develop disease predic-
tion models. For example, while Rupp et al. [24] linked diagnoses
and treatments in a simple and arbitrary manner, the relationship
between them was not adequately considered, only correlating
treatments to a diagnosis (many-to-one relationship). This is im-
portant as the relationships between diagnoses and treatments can
often be many-to-many. For instance, for the diagnoses of hyper-
tension and chronic heart failure, the treatments could be Captopril
for the former or Sacubitril-Valsartan for both. While it is conceiv-
able to manually link diagnoses and treatments, this approach is
limited by the availability and accuracy of domain knowledge, it
introduces the risk of subjectivity due to human judgment, and is
time-consuming and inefficient. When predicting major adverse
cardiovascular events (MACE), health checkup data, including lab-
oratory and self-reported data, are used extensively [4, 5, 16, 25].
MACE include hospitalizations or deaths that occur due to major
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cardiovascular diseases such as acute myocardial infarction, cere-
brovascular disease, heart failure, and peripheral arterial disease.
MACE are not only a leading cause of death worldwide [15, 19] but
also pose a high risk of disability and premature death [26, 30], and
create a significant social burden. Therefore, preventing MACE is
an urgent issue. Identifying high-risk individuals and appropriately
managing their risk factors is considered one of the effective ap-
proaches to its prevention [16]. In their clinical practice guidelines,
various countries have adopted statistical models to predict MACE
[4, 5, 16, 25], calculate the risks, and implement interventions based
on the risk levels. However, these models do not fully utilize the
clinical information available in medical claims data.

1.2 Task Definition
This study focuses on the prediction of MACE. The input data for
our models include health checkup data and medical claims data. A
model’s output indicates the probability of a patient experiencing
hospitalization or death (i.e., the event) due to MACE, which are
defined as any of the diseases listed in Table 1. The diseases are
identified with the International Classification of Diseases 10th
Revision (ICD-10) codes [17], which are used for generating and
analyzing statistics related to causes of death and diseases. Since
the incidence of MACE is very low (Table 2), our classification task
is challenging.

Table 1: ICD-10 codes for cardiovascular diseases

Disease ICD-10

AMI I20 – I25
CEREBRO I60 – I69
HF I50
PAD I70

The expanded forms of the diseases listed in the table are acute
myocardial infarction (AMI), cerebrovascular disease (CEREBRO),
heart failure (HF), and peripheral arterial disease (PAD)

1.3 Challenges
Linking diagnoses to treatments is crucial as it can provide a deeper
understanding of the clinical information contained within medical
claims data. However, despite being based on a series of actions
performed on each patient, these data lack a clear medical structure.
In many countries, linking diagnoses to their treatments in medi-
cal claims data is difficult [12], primarily because medical claims
data are designed for healthcare provider reimbursement. To ad-
dress this issue, our study utilizes the cross-attention mechanism
to complementarily weight the relationship between diagnoses and
treatments, allowing for appropriate matching between them, even
when their relationship is many-to-many. Thus, we enhance the
model’s performance in predicting MACE by effectively utilizing
the clinical information contained in medical claims data.

1.4 Contributions
In this study, we develop a deep learning model that includes a
cross-attention mechanism as a crucial part of the transformer ar-
chitecture. The objective is to predict MACE by integrating health

checkup data and medical claims data. Our findings highlight that
the model’s performance is significantly improved by the combi-
nation of these two data types and the cross-attention mechanism,
compared to using only health checkup data. We particularly em-
phasize that, unlike models in recent studies that rely solely on
the self-attention mechanism and learn from a many-to-one re-
lationship between diagnosis and treatment (not considering a
many-to-many relationship), our proposed model leverages the
cross-attention mechanism to enable learning from a many-to-
many relationship. We also show that our approach of integrating
a cross-attention mechanism with medical claims data effectively
enhances the performance of MACE prediction.

2 RELATEDWORK
2.1 MACE Prediction Models
Pooled Cohort Equations [4] were developed using health checkup
data (including laboratory and self-reported data) from African
American and white individuals aged 40–79 to predict the 10-year
risk of atherosclerotic cardiovascular disease (ASCVD). These equa-
tions have been adopted in American clinical guidelines [4] and
are widely cited [6, 8, 25]. In contrast, the Suita score model, based
on data from Japanese urban residents aged 30–79, estimates the
10-year risk of coronary heart disease and is included in the Japan
Atherosclerosis Society’s clinical guidelines.

2.2 Disease Prediction Utilizing Health
Checkup Data and Clinical Information

High prediction performance for both the onset and progression
of disease has been achieved using the health checkup data and
clinical information contained in medical claims data and EHR
[9, 27]. Importantly, these studies did not use all the diagnosis and
prescribed medication codes recorded in the EHR, only employing
the clinical information related to the specific outcomes they aimed
to predict. However, they reported significant improvements in the
model’s ROC-AUC.

2.3 Self-Attention in Clinical Information
Medical claims data and EHR provide a wealth of information re-
lated to medical care, and numerous studies on predicting various
diseases using these data are being conducted. Among these, models
that utilize EHR data and incorporate a self-attention mechanism
have achieved positive results and have garnered much attention
[13, 21, 22, 24]. Including both diagnosis and treatment in a patient’s
sequence improves disease prediction performance of a model based
on a self-attention mechanism [21]. However, as the length of a pa-
tient’s sequence increases, the computational resources required for
machine learning also increase. As a result, the number of patients
that can be applied to training using the self-attention mechanism
becomes limited. To address this, ExBEHRT [24] links each treat-
ment to a diagnosis, thereby improving prediction performance
and reducing hardware requirements. However, this approach over-
looks the many-to-many relationship between diagnoses and treat-
ments, which is a scenario that has not been addressed. Manually
linking diagnoses and treatments presents a challenge since their
correlation in medical claims data and EHR is not always clear,
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making accurate determination of the relationships difficult and
time-consuming. Furthermore, researchers could introduce bias in
the linking process through their subjectivity

2.4 Examples of the Application of
Cross-Attention Mechanisms

Cross-attention is one of the mechanisms used in the decoder of
the transformer architecture. Unlike self-attention, cross-attention
processes two distinct inputs and calculates the relevance of each
element from one input to all elements from the other input. Using
this calculation, it determines which elements are most closely re-
lated and aggregates the calculated relevance (i.e., it weights the
relationship). This technique has achieved positive results in super-
vised learning. For instance, in the field of drug discovery, the accu-
rate prediction of which proteins interact with which compounds
has led to the development of new medications. The correlation
between the amino acids that make up proteins and the elements
that make up compounds is also a many-to-many relationship, and
handling this relationship with deep learning models has been a
challenge. Addressing this issue, studies utilizing cross-attention to
learn the relationships between proteins and compounds as inputs
have shown superior predictive outcomes [11, 18].

3 METHOD
3.1 Model
3.1.1 Our Proposed Model (Our CA). This chapter first outlines the
general structure of the model architecture we propose. To clarify
the complex process, we provide a detailed explanation of how the
input features were handled within the embedding block. Lastly,
we elaborate on the processing of the cross-attention mechanism,
which is a key component of our proposed model.

Figure 1: Proposedmodel architecture. The “sum” reduces the
length dimension. See Figure A.3 for detailed information.

• Model Architecture: Our proposed model architecture is de-
picted in Figure 1, and the detailed architecture of each specific
block is shown in Figure A.3. Two types of input were used for this

model: 1) tabular data pertaining to health checkups; and 2) multi-
list data obtained from one year of medical claims data, including
diagnoses, medical procedures, and prescriptions, organized into
12 monthly lists. The tabular data were first transformed using
a feed-forward network (FFN) block, after which the multi-list
data were processed through an embedding block that integrated
the medical procedures and prescriptions into the treatment data.
Following this, the diagnoses and treatments were separately
transformed for each month using their respective transformer
encoders [28]. This was followed by the cross-attention block
to create a vector that represents monthly clinical information,
integrating the diagnoses and treatments by considering their
interrelations (this process is explained further in Cross-Attention
Block on page 3). Each month’s data were then combined into a
single tensor. By concatenating the tensors of each month, we
represented 12 months of medical claims data as a tensor with
a length of 12. The transformed results for both the tabular and
medical claims data were then concatenated and passed through
a classification head at the top of the architecture, which outputs
the probabilities. The FFN block comprised a linear layer, batch
normalization, a ReLU activation function, and dropout, while the
embedding block consisted of an embedding layer, a sum layer,
and a concat layer. Lastly, the classification head comprised a
linear layer, L2 normalization, and a scale layer [20].

• Embedding Block: The multi-list data input was derived by
breaking down the monthly medical claims data into tokens:
the diagnoses, medical procedures, and prescriptions. To obtain
more meaningful medical information for the predictions, these
tokens were further broken down into sub-tokens, converting
each diagnosis token into five hierarchical sub-tokens accord-
ing to the World Health Organization ICD-10 Instruction Man-
ual (§2.4.2–2.4.6). In addition, the prescriptions (prescribed medi-
cations) were divided according to their effects, administration
routes and ingredients, and medication shape. Diagnosis sub-
tokens were embedded and summed to create a unified diagnosis
vector. Similarly, the vectors that represented medication effects,
administration routes and ingredients, andmedication shape were
embedded, summed, and consolidated into a single prescription
vector. By passing these three medical vectors through the sum
layer, they were concatenated in the concat layer and employed
as the output of the embedding block (refer to Figure A.4).

• Cross-AttentionBlock: Our proposedmodel uses cross-attention
to complementarily weight both diagnoses and treatments, ef-
fectively establishing a strong connection between treatments
closely related to the diagnosis. As shown in Figure 2, we provide
a detailed explanation of how the model handles the relationship
between diagnoses and treatments using cross-attention. The
steps can be summarized as follows.

• Step 1: Calculate attention weights using the diagnosis and treat-
ment data.

• Step 2: Apply attention weights to the treatments to generate a
weighted treatment approach.

• Step 3: Enrich the diagnosis vector by integrating this weighted
treatment approach to provide an output that contains more in-
formation about the treatments in relation to the diagnoses.

• Step 4: Apply layer normalization and input the results into an
FFN, then reduce the length dimension with "sum".
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Details of the parameters are presented in Table B.4.

3.1.2 Benchmark Models.

• Pooled Cohort Equations: The ASCVD model is a Cox pro-
portional hazards model designed to estimate the 10-year risk of
ASCVD events [4]. Following the guidelines [4], we applied the
model developed for the white population to our dataset primarily
composed of Japanese individuals.

• Light Gradient Boosting Machine: The light gradient boosting
machine (LGBM) [10] is a well-known gradient boosting frame-
work appreciated for its ability to learn from large-scale datasets
quickly and efficiently.

• Self-Attention Based Model (Our SA): Many recent studies
have achieved excellent results with deep learning models that
use the self-attention mechanism. To verify whether our proposed
model, which leverages the cross-attention mechanism, can per-
form well compared to these advanced models, we developed a
model that uses the self-attention mechanism for comparison.

The models mentioned in [13, 21, 22, 24] rely on detailed tempo-
ral information on diagnoses and treatments. Our medical claims
data records diagnosis and treatment information on a monthly
basis, lacking the detailed temporal information necessary to train
the models in these previous studies. Therefore, it was difficult to
apply these models to our dataset, and we did not adopt them as
benchmarks in our study.

Figure 2: Cross-attention block: In this approach, “diagnoses”
serve as the query, while “treatments” are designated as both
the key and the value for executing cross-attention. The ap-
plication of attention weights integrates the weighted treat-
ments into the vector of diagnoses and treatments. Following
a process similar to the steps in a transformer encoder, layer
normalization and feed-forward networks are utilized.

3.2 Input Feature
Our models utilized two types of data as input features: 1) tabular
health checkup data obtained from health checkup records; and
2) a list of claims data obtained from medical claims records. In
addition, we prepared the input features specifically for the LGBM.
Medical claims data were transformed into tabular format, which
are referred to as tabular claims data. The LGBM used tabular health
checkup data and tabular claims data as input features. This section
describes the methods used to create these features.

3.2.1 Tabular Health Checkup data. To create the tabular data, we
extracted eight features from the health checkup data (see Table
C.5). These features were then used as inputs in the ASCVD model
developed by the American Heart Association and the American
College of Cardiology.

3.2.2 Multi-List Claims data. Monthly medical claims data were
formatted as a list, including the codes for both the diagnoses and
treatments. The treatment codes comprised both the medical proce-
dure and prescription codes. To prevent data redundancy, duplicated
codes were removed. For example, if the same medication was pre-
scribed multiple times within a month, the redundant codes were
removed. This decreased the size of the list and reduced the training
time for the model. We also transformed the diagnosis, medical
procedure, and prescription codes into sub-tokens using a more
comprehensive medical classification (see Table D.6). For instance,
the ICD-10 code “E112” can be converted into a list representing
five medical categories: 1) E, referring to “endocrine, nutritional,
and metabolic diseases”; 2) E10–E14, denoting “diabetes mellitus”;
3) E11, indicating “type 2 diabetes mellitus”; 4) E112, referring to
“type 2 diabetes mellitus with renal complications”; and 5) <PAD>,
denoting “not applicable”. Thus, the medical codes used in monthly
claims data can be organized into a set of list. These diagnosis,
medical procedure, and prescription codes contained in monthly
medical claims data are included in list format, but we broke down
the these medical codes into meaningful sub-tokens and used them
as input features. For instance, the diagnosis data for a given month
in medical claims data were represented as a set of list, as follows:

List
[ 5∏
i=1

ICD-10i
]
=

{
[𝐴1, . . . , 𝐴𝑛] | 𝐴𝑛 ∈

5∏
i=1

ICD-10i
}

where
5∏
i=1

ICD-10i = {(𝑎𝑖 , 𝑎2, 𝑎3, 𝑎4, 𝑎5) | 𝑎𝑖 ∈ ICD-10i}

ICD-10i : ith category of ICD-10 code

The lists of diagnosis, medical procedure, and prescription codes
from the monthly medical claims data were then processed and
combined to create a comprehensive list spanning 12 months. This
became the multi-list claims data, which served as the input for the
self and cross-attention mechanism-based models.

3.2.3 Tabular Claims data. Tabular claims data were generated
using the diagnosis, medical procedure, and prescription codes
included in the 12 months of medical claims data. This dataset
consisted of nearly 7,000 different codes divided into columns, with
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each code assigned a value that indicated whether it was present
in (1) or absent from (0) the medical claims data.

3.3 Training
The AdamW optimizer [14] was used to train our models. To ad-
dress the imbalance between the positive and negative examples
in the task labels, class-balanced focal loss [3] was employed as
the loss function. Optuna [1] was employed to tune the LGBM
hyperparameters. All training was carried out with 9-fold cross
validation.

4 EXPERIMENTS
4.1 Experimental Setting
To evaluate the effectiveness of our MACE predictive model, Our
(CA), a comparative analysis was conducted with the three bench-
mark models: ASCVD, LGBM, and Our (SA). ASCVD is an existing
MACE prediction model that relies solely on health checkup data,
while our models and the LGBM make predictions according to
both health checkup data and medical claims data. When using
only health checkup data, our model generates predictions directly
through the FFN block to the classification head. Our (SA) was
developed by us based on self-attention mechanisms with refer-
ence to previous studies [13, 21, 22, 24]. In the experiments, the
data were divided into a ratio of 8:1:1 for the training, validation,
and test sets, using Stratified K-Fold for the splitting. The aver-
age score was evaluated for nine models trained using data from
9-fold cross-validation (the metrics are described in Section 4.3).
Furthermore, the Wilcoxon rank-sum test was conducted on our
proposed model and the best-performing model among the others,
verifying that the superior performance of our proposed model is
statistically significant. The DeLong test [7] was also performed on
the ensemble of prediction results from the nine models, and the
details are presented in Appendix H.

4.2 Datasets
4.2.1 Data Source. Three types of data were obtained from the
Health Insurance Association for Architecture and Civil Engineer-
ing Companies in Japan: 1) health checkup data for the 2014 fiscal
year comprising data from 166,030 individuals; 2) medical claims
data from May 2014–April 2022 covering 714,710 individuals; and 3)
updated insurance qualification data as of April 2022 for 1,484,255
individuals. Table E.7 provides an overview of the data sources.

4.2.2 Creation of the Dataset. To include individuals with suffi-
cient MACE observation periods and those whose MACE could be
predicted using both benchmark models and our proposed model,
we selected 51,367 experimental subjects according to the flow chart
shown in Figure G.5. The prediction task, referring to the occur-
rence of MACE, was created using the medical information in the
claims data spanning April 2015–March 2022. Table F.8 provides
an overview of the final dataset. The group of 51,367 experimental
subjects was divided for the training and evaluation processes, des-
ignating 41,094 to training, 5,136 to validation, and 5,137 to testing.
The incidence of hospitalization or death due to MACE among the
experimental subjects is detailed in Table 2. The input features were

created from the health checkup data and claims data for the period
April 2014–March 2015.

Table 2: Incidence of MACE and its components (n=51,367)

MACE AMI CEREBRO HF PAD

1,223 (2.38%) 669 (1.30%) 486 (0.95%) 93 (0.18%) 20 (0.04%)

The expanded forms of the diseases comprising MACE, as listed in the table,
are acute myocardial infarction (AMI), cerebrovascular disease (CEREBRO),
heart failure (HF), and peripheral arterial disease (PAD).

4.3 Metrics
The performance of the MACE prediction models was evaluated
using ROC-AUC and the Matthews correlation coefficient (MCC)
[2]. The MCC was calculated at the 0.5 threshold, defining the
occurrence of MACE.

5 RESULTS
5.1 Experiment Results
The models that utilized both health checkup data and medical
claims data outperformed the ASCVD model that only used health
checkup data (Table 3). Furthermore, when we adopted a cross-
attention mechanism in our model, it outperformed the others,
giving the highest scores, with an ROC-AUC of 0.7720 and an MCC
of 0.1525. For the two best-performing models, we conducted the
Wilcoxon rank-sum test using the 9 ROC-AUC values and 9 MCC
values measured. This test confirmed statistical significance (p-
values = 0.0039, 0.0039). We also conducted the DeLong test for
these models, with the results in Table H.9.

Table 3: Results of MACE prediction (Mean and Std)

Model Input1 Metrics

ROC-AUC MCC2

Our (FFN) HC 0.7412 (0.0086) 0.1167 (0.0044)
Our (SA3) HC+MC 0.7586 (0.0062) 0.1253 (0.0069)
Our (CA4) HC+MC 0.7720 (0.0059) 0.1525 (0.0089)

ASCVD HC 0.7521 0.0891

LGBM HC 0.7374 (0.0134) 0.1202 (0.0076)
HC+MC 0.7559 (0.0147) 0.1256 (0.0060)

The ASCVD model, already trained, was directly applied to the test data.
Our (SA)3 model does not utilize the cross-attention block applied in our
proposed model architecture (See Figure 1).
1. HC means health checkup data and MC means medical claims data.
2. MCC is evaluated at the 0.5 threshold.
3. SA means self-attention mechanism.
4. CA means cross-attention mechanism.

6 DISCUSSION & CONCLUSION
MACE prediction performance was enhanced by applying a cross-
attention mechanism to clinically unstructured medical claims data.
Our proposed method effectively weights and learns the many-to-
many relationships between diagnoses and treatments, effectively
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utilizing large-scale and clinically unstructured data. Applying our
proposed model to identify individuals at high-risk of MACE has
the potential to improve public health services in Japan (details
described in Appendix I). In the future, we plan to use the cross-
attention mechanism for pre-training on a large volume of medical
claims data, aiming to develop pre-training models that are more
effective for the prediction of various diseases (downstream tasks).

7 LIMITATIONS
This study has excluded data that may lead to improved prediction
performance, including that from duplicated medical codes and
time-series information from medical claims data. Additionally, the
findings of this study should not be extrapolated to populations
with a very high number of medical codes recorded in a single
month, as they have been excluded from the experimental dataset.
Further details regarding the study limitations are presented in
Appendix J.
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APPENDIX

A MODEL ARCHITECTURE SUPPLEMENT

Figure A.3: Blocks in our models. Additional details on the
embedding block are provided in Figure A.4, while further
explanations on the cross-attention block can be found in
Figure 2. The cross-attention block is adopted in the pro-
posed model, not in our model based on the self-attention
mechanism (Our SA).

Figure A.4: Flow diagram illustrating the embedding block.
During the diagnostic process, sub-tokens are initially trans-
formed into vectors, which are then aggregated to generate a
singular “diagnosis” vector. Similarly, sub-tokens related to
medical procedures and prescriptions undergo embedding
into vectors and, following aggregation, form “medical pro-
cedure” and “prescription” vectors, respectively. These two
vectors are subsequently concatenated to represent treatment
information. It is essential to note that when dealing with a
month’s worth of medical claims data, encompassing numer-
ous diagnoses, medical procedures, and prescriptions, both
diagnostic and treatment information is presented as ten-
sors. These tensors possess dimensions of batch size, length,
embedding size, with the length typically spanning several
dozen.
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B HYPERPARAMETER SUPPLEMENT

Table B.4: Hyperparameters of our proposed model

Category Parameter Value

Batch batch_size 2,048
Embedding block num_embeddings 20,000

embedding_dim 128
dropout 0.01

Transformer encoder d_model 128
nheads 4
dim_feedforward 64
dropout 0.01
num_layers 3

Cross-Attention d_model 128
nheads 4
dim_feedforward 64
dropout 0.01
num_layers 2

FFN block in_features 8
out_features 128
dropout 0.01

Classification head in_features 256
out_features 2

Loss function name Class balanced focal loss
beta 0.99999
gamma 2.0

Optimizer name AdamW
lr 5e-04
beta1 0.9
beta2 0.999
eps 1e-08
weight_decay 1e-04

C HEALTH CHECKUP DATA SUPPLEMENT

Table C.5: Definition of input data from health checkup data.

Features Definition Used columns

Male Male: 1, female: 0 Sex
Age Age as of March 31, 2015, based on date of birth. Date of birth
Systolic blood pressure Last measurements are used. Systolic blood pressure measurement 1st,

2nd, and 3rd
Total cholesterol Calculated using Friedewald’s formula when triglyceride < 400 mg/dL. Triglyceride, HDL cholesterol, LDL cholesterol

If triglyceride ≧ 400 mg/dL, we treat total cholesterol as a missing value.
HDL cholesterol HDL cholesterol value HDL cholesterol
Diabetes Diabetes is defined when any of the following conditions are met: Diabetes medication, HbA1c, fasting glucose,

• HbA1c ≧ 6.5% causal glucose
• Fasting glucose ≧ 126mg/dL
• Causal glucose ≧ 200mg/dL
• Diabetes medication
Exceptionally, we treat the variable diabetes as a missing value.
• Diabetes medication are not self-reported.
• Any HbA1c and blood glucose were not measured.

Antihypertensive medication Taking: 1; not taking: 0 Antihypertensive medication
Smoking Smoking: 1, not smoking: 0 Smoking

We processed the values stored in the columns of health checkup data to create features based on the definitions provided.
However, for male, antihypertensive medication, and smoking, we used the values stored in the health checkup data directly as features.
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D CONVERSION METHOD FOR MEDICAL
CODE SUPPLEMENT

Table D.6: Method of converting from medical codes to sub-tokens.

Medical code Conversion Method

Diagnosis code

We referred to the five categories detailed in the WHO ICD-10 Code Instruction Manual (2.4.2 - 2.4.6),
namely: Chapters, Blocks of Categories, Three-Character Categories, Four-Character Subcategories, and
Supplementary Subdivisions for Use at the Fifth or Subsequent Character Level. We have developed a
method to convert each diagnosis code (ICD-10 code) recorded in medical claims data into a list of sub-
tokens corresponding to these five categories.

Medical procedure code

Medical procedure code recorded in medical claims data are composed of five categories (chapter, section,
division, branch, item) and are represented as a ten-digit number. For example, the medical procedure
code for HbA1c test (numbered as 2030050900) is composed of the following five categories: 2 (specific
medical service fee) for the chapter, 03 (test) for the section, 005 (test of hematology) for the division, 09
(Hemoglobin A1c) for the branch , 00 (not applicable) for the item.
We have developed a method to combine these five categories into a list of sub-tokens, each containing
five elements. The elements of this sub-token list sequentially represent the chapter alone, from chapter
to section, from chapter to division, from chapter to branch, and from chapter to item (equivalent to the
medical procedure code). Therefore, the medical procedure code for "HbA1c test" can be converted into the
following sub-token list: [2, 203, 203005, 20300509, 2030050900].
As higher order categories in the medical procedure code provide more significant medical information, we
created a sub-token list combining these categories. For example, the medical significance of the division
code "001" varies depending on its higher order categories, such as chapter and section. If the combined
chapter and section number is "201", followed by the division number "001", the code relates to the medical
supervision of a specific disease. However, if the combined chapter and section number is "203", with the
same division number "001", the code then pertains to a urinary test.

Prescription code

Prescription (prescribed medication) code recorded in medical claims data are composed of three categories
(medication effect, administration routes and ingredients, and medication shape) and are represented as an
8-digit alphanumeric code.
For example, the prescription code for Metformin Hydrochloride, an antidiabetic medicine, is 3962002F.
This code comprises the following three categories: 3962 (medication effect), 002 (administration routes
and ingredients), and F (medication shape). Similar to the medical procedure codes, we combined these
categories to create a list of sub-tokens consisting of three elements. Therefore, the prescription code
for Metformin Hydrochloride "3962002F" is converted into the following sub-token list: [3962, 3962002,
3962002F].
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E SUMMARY OF DATASOURCE SUPPLEMENT

Table E.7: Summary of datasource

Health checkup data Medical claims data1 Qualification of insurance data2

Number of records 179,309 20,317,245 1,487,419
Number of individuals 166,030 714,710 1,484,255
Period 2014/4 – 2015/3 2011/5 – 2022/3 1943/4 – 2022/4
Coverage rate of prefectures with medical institutions - 100% -

1. Medical claims data reviewed from May 2014 to April 2022 are used. Due to delays in the review of medical claims data, these data include medical services
conducted before April 2014.

2. These data include people who have lost their insurance. The number of insured individuals was 398,239 as of 31 March 2022.

F SUMMARY OF DATASET SUPPLEMENT

Table F.8: Summary of dataset

Datasource Value

Variables (unit) Health checkup data Medical claims data Mean1 STD2

Age3 (years) ✓ 47.8 6.3
Male (binary) ✓ 73.1 -
Systolic blood pressure (mmHg) ✓ 122.9 16.2
Total cholesterol (mg/dL) ✓ 212.7 35.4
HDL cholesterol (mg/dL) ✓ 62.5 16.9
Diabetes (binary) ✓ 7.1 -
Antihypertensive medication (binary) ✓ 14.0 -
Smoking (binary) ✓ 28.3 -

The number of invoiced months in medical claims data ✓ 4.9 3.6per individual (months)
The number of unique medical tokens per individuals (token counts) ✓ 32.4 21.9

The dataset includes 7,031 unique medical tokens and 12,068 unique medical sub-tokens extracted from medical claims data.
1. The unit for mean of binary variables is percentage, while the unit for mean of the other variables corresponds to the unit of the variable itself.
2. The standard deviation (STD) was calculated for all variables excluding binary variables.
3. Age was calculated as of 31 March 2015.
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G SELECTION PROCESS SUPPLEMENT

Figure G.5: Selection process for experimental subjects.
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H ADDITIONAL EXPERIMENTAL RESULTS
SUPPLEMENT

The prediction results of nine models created using nine-fold cross-
validation were averaged to construct an ensemble model. The ROC-
AUC scores for the ensemble models of the two best-performing
models were 0.7791 and 0.7653 for Our (CA) and Our (SA), respec-
tively. The MCC scores were 0.1571 and 0.1368 for Our (CA) and
Our (SA), respectively. The prediction performance of Our (CA)
was superior to that of Our (SA). Additionally, a significance test for
the ROC-AUC (Delong test) yielded a p-value of 0.0159, indicating
statistical significance.

Table H.9: Results of MACE prediction by ensemble models

Model Input1 Metrics

ROC-AUC MCC2

Our (SA3) HC+MC 0.7653 0.1368
Our (CA4) HC+MC 0.7791 0.1571

1. HC means health checkup data and MC means medical claims data.
2. MCC is evaluated at the 0.5 threshold.
3. SA means self-attention mechanism.
4. CA means cross-attention mechanism.

I USE CASES SUPPLEMENT
Our proposed model for identifying high-risk individuals for MACE
can be effectively applied in the medical and community health
fields in Japan. By adjusting the threshold of the prediction proba-
bilities, the model can be tailored to specific interventions such as
those targeting many people with moderate or higher risk, those for
a small group with high risk, and those conducted in order of high-
est risk according to available resources. We developed this model
to improve the public health services in Japan. Identifying high-risk
individuals for MACE and providing appropriate interventions is an
important public health strategy in Japan, where a national screen-
ing program has been in place since 2008. However, existing models
that rely solely on health checkup results have been inadequate
in capturing many risk factors. The proposed model, which uti-
lizes medical claims data and employs cross-attention mechanism,
enables more accurate identification of high-risk individuals.

J LIMITATION SUPPLEMENT
In this study, due to computational resource limitations, we trained
using input features with duplicates removed from the monthly
diagnosis and treatment history, an approach also adopted in a
previous study [24]. However, repeated diagnoses and treatments
can be a significant source of information. Thus, future research
will consider ways to incorporate duplicate information without
compromising computational efficiency.

We have established exclusion criteria when selecting the sub-
jects for our experiments. For example, individuals with numer-
ous medical codes even after removing duplicates were excluded.
Building a highly general model suitable for such special cases is
somewhat challenging. Therefore, we initially proceeded with ex-
periments on general cases. However, models applicable to special
cases are important, and we plan to address this as a future research
task.

We did not use monthly information in our proposed model be-
cause our experiments using positional encoding of monthly data
did not result in performance improvements. However, time-series
information is important, and we believe that its effective use could
enhance performance.
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