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ABSTRACT

Graph Contrastive Learning (GCL), which aims to capture representations from
unlabeled graphs, has made significant progress in recent years. In GCL,
InfoNCE-based loss functions play a crucial role by ensuring that positive node
pairs—those that are similar—are drawn closer together in the representational
space, while negative pairs, which are dissimilar, are pushed apart. The primary
focus of recent research has been on refining the contrastive loss function, partic-
ularly by adjusting the weighting of negative nodes. This is achieved by changing
the weight between negative node pairs, or by using node similarity to select the
positive node associated with the anchor node. Despite the substantial success
of these GCL techniques, there remains a belief that the nodes identified as pos-
itive or negative may not accurately reflect the true positives and negatives. To
tackle this challenge, we introduce an innovative method known as Positive Min-
ing Graph Contrastive Learning (PMGCL). This method consists in calculating
the probability of positive samples between the anchor node and other nodes us-
ing a mixture model, thereby identifying nodes that have a higher likelihood of
being true positives in relation to the anchor node. We have conducted a com-
prehensive evaluation of PMGCL on a range of real-world graph datasets. The
experimental findings indicate that PMGCL significantly outperforms traditional
GCL methods. Our method not only achieves state-of-the-art results in unsuper-
vised learning benchmarks but also exceeds the performance of supervised learn-
ing benchmarks in certain scenarios.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Manessi et al., 2020)
have emerged as a powerful class of models for learning representations from graph-structured data.
GNNs often demonstrate remarkable performance across various domains by aggregating neighbor-
hood information multiple times, including node classification, link prediction, and graph classifi-
cation tasks. Traditional GNNs are primarily built upon supervised or semi-supervised approaches,
inherently relying on large amounts of high-quality labeled data. However, in practical applications,
acquiring an abundance of graph labels requires considerable resources and time (Dai et al., 2022;
Shi et al., 2024; Xia et al., 2022; 2021b; Zheng et al., 2022). Consequently, unsupervised learning
remains a challenging endeavor.

Contrastive learning (CL) has emerged as a powerful paradigm for unsupervised representation
learning. Unlike traditional supervised learning methods that rely on labeled data, contrastive learn-
ing leverages the inherent structure and relationships within the data to learn meaningful represen-
tations without the need for explicit labels. It has gained a lot of attention and achieved impressive
results in various fields, including Computer Vision (CV) (Zhu et al., 2020), Natural Language
Processing (NLP) (Aberdam et al., 2021), and more recently Graph Contrastive Learning (GCL)
(Hassani & Khasahmadi, 2020; You et al., 2021; Zhu et al., 2020; You et al., 2020), which combines
CL with GNN to learn rich information from unlabeled graph data.

A similar process is adopted in existing GCL methods. First, different graph augmentation meth-
ods are used to generate various views, such as node dropping (You et al., 2020), edge perturbation
(Veličković et al., 2018), attribute masking (Zhu et al., 2021), subgraph sampling (Yang et al., 2022)
and graph noise injection (Hassani & Khasahmadi, 2020). Then use the same GNN encoder or a
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Figure 1: In different node-node contrastive loss positive and negative pairs are selected differ-
ently.In (a) and (b), it is shown that InfoNCE and NT-Xent have only one positive pair and multiple
negative pairs, while (c) represents the loss function of NCLA, and (d) our proposed PMGCL, both
have multiple positive pairs. The red nodes in view1 represent anchors and the entire black line rep-
resents the original edge in the network. The dashed lines of different colored arrows represent the
positive and negative pairs corresponding to the anchors, and the nodes of different colors represent
the probabilities of the positive samples corresponding to the anchors.

different GNN encoder (Yang et al., 2022) to learn the embedding representation for different aug-
mentation views, and finally apply various contrastive loss functions such as InfoNCE (Oord et al.,
2018; Zhu et al., 2020), normalized temperature-scaled cross-entropy loss (NT-Xent) (Zhu et al.,
2020), extract core information between different augmentation view embedded representations ac-
cording to InfoMax (Linsker, 1988) principles. Although GCL has made significant achievements,
it still has some shortcomings in the selection of contrastive objectives.

Most of the existing GCL methods directly apply the contrastive loss function proposed in CV to
graph data (You et al., 2020; Zhu et al., 2020), ignoring the intrinsic differences between images
and graphs. In negative mining techniques such as InfoNCE and NT-Xent loss functions. As shown
in Figure 1(a) and 1(b), by creating different augmentation views, each anchor forms a positive
pair, InfoNCE treats all other distinct nodes of different views as negative pairs, while NT-Xent
treats all distinct nodes in the same and different views as negative pairs. Based on this, many GCL
methods produce different loss functions by adjusting the weights between negative pairs. This
causes nodes belonging to the same classes to be pushed away from the anchor. However, according
to Contrastive Learning theory and empirical analysis, samples of the same class should be close
to each other, not pushed apart (Tian et al., 2020). As shown in Figure 1(c), NCLA (Shen et al.,
2023) solves this problem to some extent. According to the homogeneity hypothesis (McPherson
et al., 2001), interconnected nodes usually belong to the same class. Therefore, NCLA takes the
neighbor nodes of the anchor as positive samples. In fact, there are many false positives in the
neighbor nodes, which will push the positives away inappropriately. Choosing more and the right
negatives remains a challenge. To remedy the aforementioned limitations, we propose a new GCL
method, called PMGCL, which we believe can distinguish between true and false positives by fitting
a two-component (true-false positives) beta mixing model (BMM) (Gupta & Nadarajah, 2004; Ji
et al., 2005). With BMM, we can obtain more suitable positives according to the probability of true
positives of the anchor, and the loss function is different from the contrast loss function originally
proposed by CV (such as InfoNCE and NT-Xent), which only takes one positive pair. We allow
multiple positive pairs obtained from BMM. As shown in Figure 1(d), node color represents the
probability of being directly associated with the anchor, with red representing the highest probability
and blue the lowest probability. The difference from Figure 1(c) is that in our method, neighbor
nodes can be negative and non-neighbor nodes can be positive. Our contributions can be summarized
as follows:

1) We propose that using BMM to estimate the probability of other nodes being true positive
to the anchor is a more suitable method for selecting positive pairs.
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2) Instead of applying the contrastive loss in CV to the graph data, we use the new contrastive
loss that allows multiple positive pairs per anchor.

3) Our approach provides a significant improvement over GCL’s approach. On the node clas-
sification task, PMGCL consistently outperforms the state-of-the-art results on multiple
unsupervised datasets and even surpass the performance of supervised benchmarks, and
we have also achieve promising results on the node clustering task.

2 RELATED WORK

2.1 GRAPH CONTRASTIVE LEARNING (GCL)

Contrastive learning, as an effective unsupervised learning paradigm, can get rid of the constraints
of artificial labels (Hendrycks et al., 2019; Tan et al., 2021) (Xia et al., 2021a). Initially, DGI
(Veličković et al., 2018) applies the idea of Deep InfoMax (DIM) to the graph, encoding the lo-
cal neighborhood of each node and encoding the global graph to learn the representation of nodes.
Inspired by DGI, InfoGraph (Sun et al., 2019) uses information sharing between local features of
nodes and the global structure of graphs to improve node representation learning. Similarly, GMI
(Peng et al., 2020) works by maximizing mutual information between input and output graphs. MV-
GRL (Hassani & Khasahmadi, 2020) proposes to learn node-level and graph-level representations by
node diffusion and comparing nodes with representations of augmentation graphs. Later, GraphCL
(You et al., 2020) proposed different combinations of graph augmentations, including random node
drop, feature masking, edge perturbation, subgraph sampling and graph noise injection. To make
GraphCL more flexible, JOAO (You et al., 2021) automatically selects combinations of different
random graphs for augmentation. Recently, GCL has focused on fully parametric graph augmenta-
tion, with AutoGCL (Yin et al., 2022) building a learnable graph generator that learns a probability
distribution to help adaptive drop nodes and mask features. SimGRACE (Xia et al., 2021a) even
simplifies GCL by removing data augmentations. In this paper, we consider how to select positives
to further improve the effectiveness of positive selection in node-level contrastive learning.

2.2 CONTRASTIVE OBJECTIVE

Common contrast modes in GCL are graph-graph, graph-node, node-node (Liu et al., 2022). In the
node-node GCL method, the positives are close to each other and the negatives are far away from
each other. For example, DGI (Veličković et al., 2018) and GMI (Peng et al., 2020) contrasts the
neighborhood characteristics and hidden representations of each node. Recently, proposed ProGCL
(Xia et al., 2021b), the weight of negative samples is reassigned by mining hard negatives. However,
we believe that these methods are all similar to InfoNCE and NT-Xent, taking only one positive and
the rest of the nodes are negative, and then pushing it away from the anchor. However, this is not
desirable in terms of graph domain, as it may push nodes of the same label away as well. In a recent
study, NCLA (Shen et al., 2023) and gCool (Li et al., 2022) considered different approaches to
defining positives. NCLA considers all of the anchor’s neighbors as positives, and gCool considers
all of the nodes in the same community as positives which is not quite appropriate in the real graph
data. There are still a large number of negative nodes in the neighborhood or community nodes,
resulting in mistakenly pulling the negative nodes closer to the anchor. In this paper, we calculate
the probability that nodes and anchors are positives to obtain more reasonable positives and increase
the number of positive pairs.

3 METHOD

3.1 PRELIMINARY

Let G = (V,E) to be a graph, with its node set V = {ν1, ν2, . . . νn} and edge set E ⊆ V × V . Ad-
ditionally, X ∈ RN×F and A ∈ {0, 1}N×N are the feature matrix and the adjacency matrix, where
xi ∈ RF is the feature vector of vi and Aij = 1 if (vi, vj) ∈ E. pi = {vj | j ̸= i} represents the

positives selected according to probability. We learn a GNN encoder f(X,A) ∈ RN×F
′

, F
′
<< F

to embedding nodes representation without label information into a low-dimensional space, and then

3
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Figure 2: Blue is positive, green is negative. (a) shows the number of neighbors that are actually
positives or negatives with the anchor in the NCLA method and (b) show the same number of nodes
selected in our method as the neighbors. The number of nodes that are positives or negatives with
anchors.

apply the low-dimensional embedding representation to downstream tasks including node classifi-
cation. And we sample two augmentation functions t1 ∼ T and t2 ∼ T from the set of all augmen-
tation functions T. Then we get two augmentation views from G, G̃1 = t1(G) and G̃2 = t2(G).
Given G̃1 = (X̃1, Ã1) and G̃2 = (X̃2, Ã2), we employs the GNN encoder to learn the embeddings
H(1) = f(X̃1, Ã1) ∈ RN×F

′

, H(2) = f(X̃2, Ã2) ∈ RN×F
′

. For any node νi, its embedding in
one view hk

i is regarded as the anchor.

3.2 POSITIVE MINING
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Figure 3: The proportion of true positive nodes over all sampled nodes when different numbers of
positive nodes are sampled using different mixture models.

Graph Contrastive learning (GCL) effectively learns the representation of nodes by pulling pairs of
positive nodes (or similar nodes) closer together in the representation space while separating pairs
of negative nodes (or dissimilar nodes). However, many methods only pay attention to mining neg-
ative pairs, but ignore the role of positive pairs. We aim to select the positive nodes that are more
reliably associated with anchors. In a recent study, NCLA (Shen et al., 2023) proposed that neigh-
bor nodes be considered as positives for the anchor and the remaining nodes be the negatives of
anchors. However, according to our experiments, as shown in Figure 2(a), there is still a large num-
ber of negatives in the neighbor nodes, which causes the negatives to be mistakenly pulled closer
to the anchor. Actually, the negatives should be away from the anchor. In order to select more
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correct positives, we believe that a mixture model (Lindsay, 1995) can be employed to estimate the
probability of other nodes being positive with the anchor. We used three different Mixture models
for experiments, Gaussian Mixture Model (GMM) (Reynolds et al., 2009) , Beta Mixture Model
(BMM) (Gupta & Nadarajah, 2004; Ji et al., 2005; Antoniak, 1974) and Dirichlet Mixture Model
(DMM) (Minka, 2000; Pitman & Yor, 1997). We also experiment that the Gaussian mixture model
and Dirichlet mixture model have lower accuracy than BMM while obtaining the same number of
positives. As shown in Figure 3 , an increase in the number of nodes correlates with a decline
in the accuracy of correctly identifying positive nodes across all three mixture models. Notably,
GMM shows higher accuracy than DMM on CiteSeer, while DMM outperforms GMM on Amazon-
Photo dataset. However, the accuracy of Bayesian mixture model (BMM) is significantly better
than that of Gaussian Mixture model (GMM) and Dirichlet mixture model (DMM) on CiteSeer and
Amazon-Photo datasets. Therefore, we use the beta distribution, which can obtain more accurate
positive nodes. Additionally, as shown in Figure 2 (b), by calculating the probability between pos-
itive samples and anchors by BMM, our method can obtain more accurate true positive samples of
anchors. Also, we compare the performance of BMM, GMM and DMM in Table 3 and find that
BMM consistently outperforms GMM and DMM. We adopt a C-component, C=2, BMM to model
the distribution of true positives and false positives. The probability density function (pdf) of the
beta distribution is:

p(s | α, β) = Γ(α+ β)

Γ(α)Γ(β)
sα−1(1− s)β−1 (1)

The pdf of the s (Min-Max normalized cosine similarity of the two-component beta mixture model
in the node normalized embeddings) can be defined as:

p(s) =

2∑
i=1

λip(s | αi, βi) (2)

Where λi is the mixture coefficients. Then we fit a two component BMM to model the distribution
of true and false positives and we utilize Expectation Maximization (EM) algorithm to fit BMM.

In E-step, we fix the parameters of BMM (λi,αi,βi) and update p(c | s) with Bayes rule,

p(c | s) = λcp(s | αc, βc)∑C
i=1 λip(s | αi, βi)

, c = 1, · · · , C (3)

However, Fitting the Beta Mixture Model (BMM) with all similarity measures, especially on large
datasets, can incur high computational costs. Therefore, we fit the BMM using random partial
sampling and similarity assessments to reduce computational expenses. Then we get the weight
average s̄c and variance ν2c in sampling M similarities,

s̄c =

∑M
i=1 p(c | si)si∑M
i=1 p(c | si)

, ν2c =

∑M
i=1 p(c | si)(si − s̄c)∑M

i=1 p(c | si)
(4)

In M-step, the parameter λi, αi and βi of the model are estimated by the method of moments of
statistics,

αi = si(
si(1− si)

ν2i
− 1) (5)

βi =
αi (1− si)

si
(6)

λi =
1

M

M∑
j=1

p(i | sj) (7)

The training of the BMM occurs independently during one of the epochs in the model training
process, rather than following the training of the entire model. Finally,we can decide whether two
nodes are positive or not based on s (the similarity between them), the probability function is

p(c | s) = λcp(s | αc, βc)

p(s)
(8)

By using the posterior probability calculated by the EM algorithm, more accurate positives of anchor
points can be obtained, and then contrastive learning can be performed.
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Figure 4: The model architecture of PMGCL. It generates two views and trains the BMM with the
similarity of the two views after encoding by the GNN encoder to generate a probability matrix. The
probability of its own node is removed from the probability matrix, since different view embedding
representations of the same node must serve as positive pairs. Then the k nodes with the highest
probability are sampled from the probability matrix as positives.

3.3 MULTIPLE POSITIVE CONTRASTIVE LEARNING

GCL maximizes Mutual Information (MI) by contrasting positive and negative pairs. InfoNCE and
NT-Xent are widely used in node-node contrastive learning (Wan et al., 2021a;b; Xia et al., 2022).
However, this approach only one positive pair per anchor exists, where node embeddings in different
views are defined as positive pairs, will cause other positive pairs to move undesirably away from
the anchor. To solve this problem, as shown in Figure 4, we use BMM to estimate the probability
of other nodes being positive with the anchor, from this, the k nodes with the highest probability
are obtained as the positive pairs for the anchor. Let h(1)

i and h
(2)
i denote the embeddings of vi

learned by view1 and view2 respectively. Selecting h
(1)
i as the anchor, the positives come from

three sources: 1) inter-view same node, such as the embedding of the same node in different view
h
(2)
i . 2) intra-view nodes selected by BMM and 3) inter-view nodes selected by BMM. Therefore,

the number of positive pairs of anchors is 2k+1, where k is the number of positive pairs obtained by
BMM. The contrastive loss function of the anchor h(2)

i is expressed as:

ℓ(h
(1)
i ) = − log

(eθ(h
(1)
i ,h

(2)
i )/τ +

∑k
j=1(e

θ(h
(1)
i ,h

(1)
j )/τ + eθ(h

(1)
i ,h

(2)
j )/τ ))/(2k + 1)

(eθ(h
(1)
i ,h

(2)
i )/τ +

∑
j ̸=i(e

θ(h
(1)
i ,h

(1)
j )/τ + eθ(h

(1)
i ,h

(2)
j )/τ ))

(9)

where τ is a temperature parameter, and θ(x, y) is the similarity between x and y. Decompose Eq(9)
the last two terms: ∑

e
θ(h

(1)
i ,h

(1)
j )/τ

j ̸=i =
∑

e
θ(h

(1)
i ,h

(1)
j )/τ

νi∈K︸ ︷︷ ︸
intra−νiew pos

+
∑

e
θ(h

(1)
i ,h

(1)
j )/τ

νi /∈K︸ ︷︷ ︸
intra−νiew neg

(10)

∑
e
θ(h

(1)
i ,h

(2)
j )/τ

j ̸=i =
∑

e
θ(h

(1)
i ,h

(2)
j )/τ

νi∈K︸ ︷︷ ︸
inter−νiew pos

+
∑

e
θ(h

(1)
i ,h

(2)
j )/τ

νi /∈K︸ ︷︷ ︸
inter−νiew neg

(11)

Where K is the set of k positive nodes obtained from BMM. Minimizing Eq(9) will maximize the
MI between positive pairs and minimize the MI between negative pairs. This loss function is an
evolved version of the NT-Xent loss, where only one positive pair exists. Since the two views are
symmetric, the loss function ℓ(h2

i ) can be similarly defined as Eq(9) for the embedded h
(2)
i of view

2 of a given νi as an anchor. Finally the combination of view 1 and the view 2 loss is defined as:

L(H(1), H(2)) =
1

2N

N∑
i=1

[ℓ(H(1)) + ℓ(H(2))] (12)

Since both inter-view and intra-view contain all negative pairs, we only need to fit the BMM with
similarity from a single view. In our experiments, we only use the similarity of the interview per-
spective to fit the BMM. Algorithm 1 summarizes the training algorithm of PMGCL for the node
classification task, please refer to appendix C for details.
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3.4 TIME COMPLEXITY ANALYSIS

In the training process, using BMM to estimate the probability takes a slight time, but we only
need to fit the BMM once in the whole training process, instead of fitting each epoch once, and
we obtain M

(
M << N2

)
similarities to fit the BMM by random sampling method. Therefore, the

time complexity of fitting BMM by EM algorithm is O(IM). I is the number of iterations that fit
the BMM. The time complexity of neighbor contrastive learning is O(N2F ′) where N is the number
of nodes. F is the number of input features and F ′ is the embedding dimension. Thus, the total time
complexity is O(IM +N2F ′).

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets. We evaluate our method using seven widely used datasets, Cora, Citeseer, and PubMed
from the Plantoid (Kipf & Welling, 2016), Photo and Computers from the Amazon (McAuley
et al., 2015), a co-authorship network Coauthor-CS (Shchur et al., 2018), a reference network from
Wikipedia WikiCS (Mernyei & Cangea, 2007). More details are in the appendix A.

Baselines. We primarily compare our PMGCL with classical GSSL algorithms: DeepWalk (Perozzi
et al., 2014) and Node2vec (Grover & Leskovec, 2016). Additionally, we also consider other recent
GSSL baselines: BGRL (Thakoor et al., 2021), GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021),
MVGRL (Hassani & Khasahmadi, 2020), DGI (Veličković et al., 2018), GBT (Bielak et al., 2022),
ProGCL (Xia et al., 2021b) and PiGCL (He et al., 2024). We also compare PMGCL with super-
vised counterparts including GCN (Kipf & Welling, 2016) and Graph Attention Networks (GAT)
(Veličković et al., 2017).

Detailed Setup. Based on previous work (Veličković et al., 2018), we trained the model in an
unsupervised manner. We test our PMGCL on classification and clustering tasks. For classification
task, we adopt a two-layer GCN (Kipf & Welling, 2016) as transduction study of encoder. We follow
the GRACE test (Zhu et al., 2020). Specifically, we use 10% of the data to train the downstream
classifier and the remaining 90% for testing. We run it 20 times and then report the average accuracy.
For the clustering task, we directly feed the obtained representation into a randomly initialized K-
Means (Macqueen, 1967) predictor. We run 10 times and report the average NMI and ARI.

4.2 PERFORMANCE ANALYSIS

Table 1: Accuracy(± std) on the node classification task. The best and second best results are
highlighted in boldface and underlined, respectively.
Method Cora CiteSeer PubMed CS Photo Computers WikiCS

Rf 64.80 64.60 84.80 90.37 79.53 73.81 71.98
N2v 74.80 52.30 80.30 85.08 89.67 84.39 71.79
DW 75.70 50.50 80.50 84.61 89.44 85.68 74.35

DW+F 73.10 47.60 83.70 87.70 90.05 86.28 77.21

BGRL 81.30 ± 0.31 70.57 ± 0.98 85.86 ± 0.15 92.37 ± 0.22 92.36 ± 0.09 87.28 ± 0.34 78.41 ± 0.09
GRACE 83.30 ± 0.40 71.65 ± 1.03 85.69 ± 0.20 92.06 ± 0.18 92.13 ± 0.20 87.13 ± 0.37 77.97 ± 0.63

GCA 83.42 ± 0.78 70.79 ± 1.32 86.12 ± 0.22 93.01 ± 0.21 92.15 ± 0.26 88.04 ± 0.34 77.94 ± 0.67
MVGRL 84.32 ± 0.94 72.29 ± 0.75 85.33 ± 0.25 92.28 ± 0.19 92.07 ± 0.26 87.68 ± 0.31 77.52 ± 0.08

DGI 83.24 ± 0.73 71.91 ± 0.85 85.67 ± 0.28 92.86 ± 0.15 92.56 ± 0.41 86.93 ± 0.25 75.35 ± 0.14
GBT 83.50 ± 1.05 69.12 ± 1.39 85.29 ± 0.34 92.63 ± 0.14 92.52 ± 0.34 87.13 ± 0.37 76.65 ± 0.62

ProGCL 83.12 ± 0.78 72.85 ± 0.92 85.60 ± 0.15 93.24 ± 0.20 93.03 ± 0.13 87.65 ± 0.21 78.51 ± 0.12
PiGCL 84.62 ± 0.62 72.86 ± 0.46 86.68 ± 0.06 93.21 ± 0.09 93.01 ± 0.08 88.81 ± 0.27 78.34 ± 0.26

PMGCL 86.60 ± 0.13 73.82 ± 0.18 86.95 ± 0.05 93.33 ± 0.13 93.27 ± 0.11 89.51 ± 0.14 79.64 ± 0.04
GCN 82.80 72.00 84.80 93.03 92.42 86.51 77.19
GAT 83.00 72.50 79.00 92.31 92.56 86.93 77.65
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Table 2: Performance on node clustering.
BGRL DGI GRACE GBT GCA ProGCL PiGCL PMGCL

Cora NMI 0.4211 0.5370 0.4758 0.4562 0.4510 0.5131 0.5275 0.5447
ARI 0.2905 0.4469 0.3633 0.3683 0.3104 0.3434 0.4604 0.4970

CiteSeer NMI 0.3748 0.4185 0.3960 0.3414 0.3737 0.4115 0.4515 0.4501
ARI 0.3855 0.4140 0.3977 0.3193 0.3675 0.4219 0.4611 0.4679

PubMed NMI 0.3149 0.3188 0.3508 0.2992 0.3307 0.3595 0.3542 0.3625
ARI 0.2928 0.3165 0.3286 0.2942 0.2919 0.3264 0.4055 0.3319

Photo NMI 0.6189 0.3764 0.5346 0.5847 0.6147 0.6122 0.5409 0.6443
ARI 0.4754 0.2643 0.4247 0.4702 0.4943 0.4653 0.4524 0.5262

Classification. For the classification task, as shown in Table 1, on the seven data sets, our pro-
posed PMGCL consistently performs optimal results for both unsupervised and supervised base-
lines, which verifies the superiority of our PMGCL. Our observations are as follows: First, tradi-
tional methods node2vec(for short ”N2v”) and DeepWalk(for short ”DW”) which solely rely on ad-
jacency matrices, outperform basic logistic regression classifiers that utilize raw features (”raw fea-
tures” for short ”Rf”) across the Cora, Citeseer and Amazon datasets. However, the latter performs
better on the other three datasets. Combing the both (”DeepWalk + features” for short ”DW+F”)
can bring significant improvements. Compared with the model using a single positive pair, our
PMGCL obtains more reasonable positive nodes as the positive nodes of the anchor. This enables
the propagation of scarce label information by utilizing appropriate positive and negative samples in
the absence of labels, thereby effectively enhancing node classification performance.

Clustering. In the clustering task, we evaluated PMGCL on the Cora, CiteSeer, Amazon-Photo and
PubMed datasets, and we clustered the learned embeddings using the K-means algorithm. As shown
in Table 2, our PMGCL again exhibits excellent performance. Compared to the case where there is
only one positive pair, we increase the number of positive pairs by obtaining suitable positive pairs,
which pulls the positives closer to the anchor and helps the clustering task. It shows that PMGCL’s
strategy of obtaining positive pairs is successful.

4.3 PARAMETERS ANALYSIS
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Figure 5: Sensitivity analysis of the hyperparameter k on PMGCL.

We experiment the model performance on CiteSeer and Photo datasets under different hyperparame-
ter settings for the number of positive nodes, denoted as k. As shown in Figure 5, when k is within a
certain range, the accuracy is greater than that when k=0. This indicates that appropriately increasing
the number of positives can improve the performance of the model, and the model overall exhibits
a unimodal pattern. With the increase of k, the model obtains more positives. However, when k is
too large, as shown in Figure 3, the proportion of true positives decreases, the benefit brought by
the positives becomes limited, and the number of false positives increases, leading to a decrease in
model performance, even lower than when k=0. Therefore, to maximize the model performance, the
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number of obtained positives should be at a suitable intermediate value. In the appendix B we show
more parametric analysis.

4.4 ABLATION STUDY

In this section, we replace or remove various parts of PMGCL, studying the impact of each compo-
nent.

Table 3: Comparison of BMM, GMM, and DMM.
Photo Computers Coauthor-CS

GMM 92.94 88.85 93.02
BMM 92.33 89.47 92.88
DMM 93.37 89.54 93.33

As shown in Table 3, we replaced BMM with GMM and DMM, respectively, and compared the
performance on Photo, Computers and Coauthor-CS datasets. Combined with Figure 5, is able to
select more accurate positive samples and demonstrates better performance.

Table 4: Comparison of different contrastive loss functions.
Photo Computers Coauthor-CS

InfoNCE 93.05 89.21 93.02
NT-Xent 92.88 89.17 93.05
PMGCL 93.37 89.54 93.33

Next, we replaced the contrastive loss of multi-positive nodes with the single positive pair pattern
used in InfoNCE and NT-Xent. As shown in Table 4, the proposed neighbor contrastive loss consis-
tently achieves the highest accuracy across all loss variants for the three datasets. This indicates the
effectiveness of the positive nodes we selected.

5 CONCLUSIONS

To address the challenges of difficult positive selection in GCL and the insufficiency of positives
in contrastive loss, PMGCL has been proposed. On one hand, PMGCL can more accurately select
positive nodes by fitting the BMM. On the other hand, instead of directly adopting the contrastive
loss from computer vision, PMGCL improves upon it by transitioning from a single positive to
multiple positives. Consequently, PMGCL significantly enhances the utilization of positive nodes.
Extensive experiments in node classification and clustering demonstrate that the PMGCL method
can identify a greater number of more accurate positive nodes and can achieve superior performance
across multiple tasks.
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A DATASETS

Table 5: Statistics of datasets used in experiments.
Datasets Nodes Edges Features Labels

Cora 2708 10556 1433 7
CiteSeer 3327 9228 3703 6
PubMed 19717 88651 500 3

Amazon-Photo 7650 238162 745 8
Amazon-Computers 13752 245861 767 10

Coauthor-CS 18333 163788 6805 15
Wiki-CS 11701 216123 300 10

We introduce the dataset used for our experiments as follows:

• Cora (Kipf & Welling, 2016) is a scientific literature network dataset where nodes represent
scientific papers and edges represent citation relationships between papers.Each node has
a set of features, usually a bag-of-words representation, and a category label.

• CiteSeer (Kipf & Welling, 2016) Like Cora, the CiteSeer dataset also contains a network
of scientific literature, where the nodes are papers and the edges are citation relationships.
The feature of a paper can be a vector representation of keywords, abstract or full text.

• PubMed (Kipf & Welling, 2016) is a large citation network dataset of biomedical literature.
It contains paper nodes and citation edges, as well as the title, abstract, and keywords of
the paper.

• Amazon-computer and Amazon-Photo (McAuley et al., 2015) are from the Amazon
product co-occurrence network, where nodes represent products and edges represent co-
occurrence relationships between products. Each node has a sparse bag-of-words feature
that encodes a product review and is labeled with its category.

• Coauthor-CS (Shchur et al., 2018) is based on collaborations between researchers in the
field of computer science, where nodes are researchers and edges represent collaborations
between two researchers. Each node has a bag-of-words feature based on the keywords of
the author’s paper. The tagging of authors is their most active research area.

• WikiCS (Mernyei & Cangea, 2007) contains a network of computer science-related pages
on Wikipedia, where nodes are pages and edges are links between pages. The nodes are
divided into ten classes, each representing a branch of the field.
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B HYPER-PARAMETERS ANALYSIS

In Figure 6, we further investigate the impact of the number of iterations I and the number of samples
M of the EM algorithm. As shown in Figure 6(a), when the number of iterations of our EM algorithm
increases, we can observe that the accuracy is flat or there is a small improvement. However, this
would introduce more computational overhead; therefore, we set I = 10 in our experiments. As
shown in Figure 6(b), more similarities are sampled by fitting BMM. With the increase of the number
of samples, the accuracy is maintained within a certain range, and the improvement effect is not
obvious. However, it incurs more computational overhead. Therefore, in our experiments, we only
sample = 100 samples for each anchor.
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Figure 6: Accuracy when varying I and M ′(M = NM ′).

C PSEUDO CODES OF PMGCL

Algorithm 1 PMGCL
Input: T,G,f,N,normalized cosine similarity s, epoch for fitting BMM E, selective positive number

k.
1: for epoch = 0,1,2... do
2: Generate two augmented functions t1 ∼ T , t2 ∼ T
3: G̃1 = t1(G), G̃2 = t2(G);

4: H(1) = f(X̃1, Ã1), H
(2) = f(X̃2, Ã2);

5: for h
(1)
i ∈ H(1) and h

(2)
i ∈ H(2) do

6: sij = s(h
(1)
i , h

(2)
i )

7: if epoch=E then
8: Compute p(c | sij) with Eq(1) to Eq(8).
9: end if

10: end for
11: if Epoch ≥ E then
12: Select k positive subsets.
13: Compute contrastive loss L with Eq(12)
14: Update the parameters of ƒ with L
15: else
16: Compute contrastive loss L with InfoNCE
17: Update the parameters of ƒ with L
18: end if
19: end for
20:
Output: f
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