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Abstract

Large language models (LLMs) have
shown strong results on a range of appli-
cations, including regression and scor-
ing tasks. Typically, one obtains outputs
from an LLLM via autoregressive sam-
pling from the model’s output distribu-
tion. We show that this inference strat-
egy can be sub-optimal for common re-
gression and scoring evaluation metrics.
As a remedy, we build on prior work
on Minimum Bayes Risk decoding, and
propose alternate inference strategies
for regression and scoring that estimate
the Bayes-optimal solution for the given
metric in closed-form from sampled re-
sponses. We show that our proposal
yields significant improvements over
baselines across datasets and models.

1 Introduction

Large language models (LLMs) are currently
the most capable models across many NLP
tasks (OpenAl et al., 2023; Google and et al.,
2023; Touvron et al., 2023; Gemini Team and
et al., 2023). Owing to their remarkable few-
and zero-shot abilities (Wei et al., 2022; Kojima
et al., 2023), pre-trained LLMs are often applied
without any additional training on in-domain
datasets: instead, one may query the LLM with
a suitably crafted input prompt.

More recently, LLMs have been successfuly
applied to regression and scoring tasks. For ex-
ample, Gruver et al. (2023) explored zero-shot
learning for time series prediction; Vacareanu
et al. (2024) showed how LLMs are remarkably
strong at in-context learning for regression tasks;
Liu and Low (2023); Yang et al. (2023) consid-
ered the autoregressive finetuning over numeri-
cal targets applied to arithmetic tasks; and Qin
et al. (2023) applied LLMs for listwise ranking.

The quality of an LLM is often assessed using
an application-specific evaluation metric. One

popular metric is the exact match (EM), which
penalises any response not exactly equal to the
one in the dataset annotation. This is an ana-
logue of the conventional classification accuracy.
While EM is an intuitive metric, there are many
applications where it is not suitable. This is
particularly true with tasks such relevance scor-
ing (Cer et al., 2017) and sentiment analysis
(Fathony et al., 2017), where the outputs are nu-
merical or ordinal categories. In these cases, one
instead prefers metrics such as the squared error,
mean absolute error or ranking scores that take
the ordinal nature of the outputs into account.

Despite the wide variety of evaluation met-
rics, LLM inference is typically performed in the
same manner for every task: namely, one per-
forms auto-regressive sampling from the LLM’s
underlying distribution (see §2). While intuitive,
such inference does not explicitly consider the
downstream evaluation metric of interest. This
raises a natural question: is there value in adapt-
ing the inference procedure to the evaluation
metric at hand for regression and scoring tasks?

A prominent line of work takes a decision-
theoretic approach to the above problem.
Dubbed as Minimum Bayes Risk (MBR) decod-
ing, this approach seeks to optimize at inference
time the metric of choice under the model’s dis-
tribution (Bickel and Doksum, 1977; Kumar and
Byrne, 2004; Eikema and Aziz, 2020; Bertsch
et al., 2023). Much of the work on MBR is fo-
cused on evaluation metrics for machine transla-
tion and text generation tasks, such as the BLEU
score. Of particular interest in this literature are
self-consistency based decoding strategies that
take a (weighted) majority vote of sampled re-
sponses (Wang et al., 2023a), which have shown
to provide quality gains in arithmetic and reason-
ing problems.

In this paper, we build on the existing litera-
ture on MBR to design metric-aware inference
strategies for general regression and scoring
tasks. We first observe that choosing the most
likely target for an input corresponds to inher-
ently optimizing for the EM metric, and is conse-
quently not optimal when EM is not the metric
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Figure 1: Illustration of the metric-aware LLM
inference for regression and scoring tasks. An
input z is passed to the LLM, and samples are
drawn from the distribution over targets y condi-
tioned on x. These are then used to find the target
optimizing a metric m through a closed-form de-
cision rule ¢ (e.g., mean or median); Table 1
presents specific solutions across metrics.

of choice. As a remedy, we propose estimating
the Bayes-optimal output for a metric under the
model’s distribution; we show that this admits a
closed-form solution for common regression and
ranking metrics, and only requires estimating a
simple statistic from the sampled responses. In
contrast, prior MBR methods for translation and
summarization often require heuristically solv-
ing an intractable maximization problem (Ehling
et al., 2007; Bertsch et al., 2023). We show
across datasets and models how our approach
yields gains over choosing the most likely target,
and over self-consistency based approaches.

2 When (naive) LLM inference
fails on regression tasks

We begin with the problem setting. For a fi-
nite vocabulary V' of rokens (e.g., words in En-
glish), let D denote a distribution over inputs
xz € X C V* comprising of strings of tokens
and targets y € Y. Let p(y|z) denote the
conditional distribution over targets given an
input. We consider a special case of this set-
ting where Y C R corresponds to numeric tar-
gets. Here, we assume that each y € Y has
a unique string representation str(y) € V*;
for example, the integer 1 has the string encod-
ing "1". In a slight abuse of notation, we use

p(y|z) = p(str(y)|x) to denote the condi-
tional probability of output y given input x.

A language model (LM) takes a string = as
input and predicts an output §j € Y. Typically,
the LM first produces a distribution p(- | ) over

targets, from which a prediction is derived via a
suitable inference (or decoding) procedure. Per-
haps the most common inference strategy is to
choose the mode of p(y | z):

9(x) := argmax p(y | z). (D
yey

In practice, one may approximate the mode by
employing greedy decoding or beam search, or
sampling multiple candidates and picking the
among them the one with the highest likelihood
score (Naseh et al., 2023).

The quality of an LM’s prediction is measured
by some evaluation metric m(y, ), where we as-
sume that higher values are better. While the ex-
act match (EM), given by m(y,9) = 1(y = 9),
is a commonly used evaluation metric, there are
a range of other metrics popularly used to evalu-
ate LMs. These include the (negative) squared
error m(y,9) = —(y — §)? or absolute error
m(y, §) = —|y — g| for regression tasks. A nat-
ural goal is to then choose the inference strategy
§(x) to maximize the metric m of interest, i.e.,
to maximize the expected utility:

E(zy)~p [Mm(y, ()] . 2)

For many choices of metric m(y, §(x)), picking
the mode of the predicted distribution (1) can be
sub-optimal for (2).

As an example, consider the task of predicting
the star rating (on the scale 1-5) associated with
a review text. Suppose m(y, §) is the negative
absolute error between the true and predicted
ratings. Given the review text “This keybord
is suitable for fast typers”, suppose the
responses and the associated probabilities from
an LM are {“17: 0.3, “2”: 0.0, “3”: 0.3, “4”:
0.0, “5”: 0.4}. The mode of the predicted prob-
abilities is “5”. In contrast, the maximizer of (2)
is the median rating “3”. We provide examples
for Amazon reviews with the learned probability
distributions in Figure 2 (Appendix).

3 Metric-aware LLM inference

3.1 Minimum Bayes risk decoding

We seek to design decoding strategies that max-
imize the expected utility in (2). Ideally, if we
had access to the true conditional probabilities
p(- | z), the maximizer of (2) is given by:

?)* (.13) € argmax Ey~p(~ | ) [m(ya Z//)] . 3
y' ey

When m is the EM metric, the optimal inference
strategy is §* (v) € argmax,cy p(y|z), which
is what common approaches such as greedy de-
coding seek to approximate.



Problem Labels Y Predictions Metric Optimal decision rule

Classification 1,....Kk 1,...,K 1(y=19) g(z) := argmax, p(y|z)

Regression R R —(y—19)? G(x) = Eyop( | )W)

Ordinal regression 1,...,Kk 1,....K —ly =9 §(x) := median[p(- | z)]

Bi-partite ranking +1 AUC with ¢,y =1 9(z) :==p(y = +1|x)
(z):

R
Multi-partite ranking 1,..., K R

AUCwith ¢y, = |y — o] 9(x) :=Eyp(. | o)yl

Table 1: Optimal decision rule for different evaluation metrics. See (6) for definition of AUC.

In general, however, the optimal decoding
strategy can have a very different form, and the
mode of p(-|x) has been shown to be suboptimal
on generation tasks (Eikema and Aziz, 2020).
For example, as shown in Table 1, for evalua-
tion metrics over numerical targets such as the
squared error or the absolute error, the optimal
inference strategy is to simply take the mean or
median of p(-|z) (Bishop, 2006).

3.2 Closed-form optimal solution

In practice, we mimic the Bayes-optimal solu-
tion in (3) with two approximations. First, we
replace the true conditional distribution p(- | x)
with the LM’s predicted distribution p(-|z).
This is a reasonable approximation when the
LM is pre-trained with next-token prediction ob-
jective based on the softmax cross-entropy loss;
the latter is a strictly proper loss, whose mini-
mizer under an unrestricted hypothesis class is
the true conditional distribution p(y | ) (Gneit-
ing and Raftery, 2007). Second, we estimate the
expectation in (3) by sampling K outputs from
p(- | x), and then computing:

K
§(x) € argmax y m(yi,y).  (4)
y'ey 4

Even with these approximations, maximizing (4)
over all outputs Y is intractable in general.

Prior literature on MBR for metrics like
BLEU heuristically perform this maximization
over a small set of candidates (Ehling et al., 2007;
Bertsch et al., 2023). In this paper, we consider
regression and scoring metrics, for which the
above maximization can be computed in closed-
form. As shown in Table 1, these solutions can
be estimated by computing simple statistics from
the sampled responses, such as the sample mean
g(z) = & ZZK: 1 yi for the squared error. We re-
fer to this approach as Regression (and scoring)
Aware Inference with LLMs (RAIL).

3.3 Post-hoc temperature scaling

When sampling from p(- | x), it often helps to
apply a temperature scaling to the LM logits to
control the diversity of the sampled outputs. This

is particularly important in our procedure where
we wish to approximate expectations over p(+|z)
using a few samples.

In practice, one may sample from p(- | z) with
temperature 7' = 1, and apply temperature
scaling in a post-hoc manner by employing a
weighted version of the objective in (4):

i(r) € argmax 3 (3(0Jo)" - m(it)). (5)

where a can be seen as the temperature scaling
parameter. The above summation is a (scaled)
estimate of Ey5.|2) [P(y | 2)* - m(y, y')]. For
probabilities p(y; | z) o exp(f(x,y;)) defined
by logits f(x,y;), this is equivalent to comput-
ing the expectation under the temperature-scaled
distribution P, (y | ) < exp((1 + «) - f(x,v)),
albeit a normalization factor. We consider an
analogous weighting scheme for the plug-in esti-
mators of the closed-form solutions in Table 1.

3.4 Extension to multi-partite ranking

Our metric-aware decoding proposal also applies
to scoring tasks, where the label space Y is dis-
crete, e.g. {1,..., K}, but we require the LLM
to predict a real-valued score §j(x) € R for each
prompt x such that prompts with higher labels re-
ceive a higher score. One typically measures the
performance of the predicted scores ¢(x) using
a pairwise ranking metric such as AUC:

AUC(j) =1 —
E[ey - 103() < 3@ |y > v'], ©

which penalizes the scorer 4 with a penalty ¢,/
whenever it mis-ranks a pair (z, 2") withy > y'.

Despite AUC being non-decomposable (not
a summation of per-example results), Uematsu
and Lee (2015) show that when the costs are
the difference between the labels, i.e., ¢y, =
|y — 9’|, the optimal scorer admits a closed-form
solution, and is given by the expected label under
distribution p(-|x): §*(z) = Ey~p(.|2) [y]. One
can thus readily apply our RAIL approach to
estimate this solution from sampled responses.



model greedy RAIL

size  decode argmax mean

XXS 1.078 1.448  1.028
(Rﬁggi) S 0.685 1.019  0.649
L 0.628 0.989 0.610

argmax mean

XXS  0.797 0.632  0.889

(zgscl% S 0.895 0.820  0.953
L 0.905 0.827  0.961

argmax median

Amazon XXS  0.495 0.826 0.474
reviews S 0.301 0.444  0.285
(MAE]) L 0294 0541 0.291

Table 2: Comparison of inference strategies on
PalLM-2 models for different datasets and met-
rics. We draw 16 samples with an effective tem-
perature of T' = i (via post-hoc scaling).

model greedy enumeration sampling
FLAN-T5 S 4.419 2.407 2.275
FLAN-T5 L 0.455 0.410 0.373
FLAN-TS XL  0.508 0.549 0.457

Table 3: Comparison of squared error (SE) on
STSB with FLAN-TS models. The sampling
approach uses a temperature of 0.5.

4 Experiments and Discussion

We experimentally evaluate our proposed on
NLP tasks with different evaluation metrics.

Datasets. We use two datasets. (i) Semantic
Textual Similarity Benchmark (S7SB) (Cer et al.,
2017), which comprises of sentence pairs human-
annotated with a similarity score from O to 5;
since this is a regression task, we evaluate with
the root mean squared error. (ii) US Amazon
reviews, where we aim to predict the 5-star rat-
ing for a product review (Ni et al., 2019); since
the task is in the form of ordinal regression, we
use mean absolute error as the evaluation metric
(Fathony et al., 2017). We list the prompts used
in Table 6 (Appendix). In each case, we evaluate
on samples of 1500 examples.

Models. We consider two instruction-tuned
model families: PaLM-2 (Google and et al.,
2023) and FLAN-T5 (Chung et al., 2022). We
report results across different model sizes and
temperatures. Unless otherwise stated, we fix
the number of samples to K = 16, and the top-k
parameter in decoding to 40 (Fan et al., 2018).

Methods. We evaluate the following methods:
(i) greedy decoding, (ii) a baseline inspired from
the self-consistency decoding of sampling K

candidates and picking the one with the maxi-
mum likelihood (argmax) (Wang et al., 2023a),
(iii) the proposed RAIL approach on the same K
samples, and (iv) the temperature scaled variant
of RAIL in §3.3 (denoted by a “*’). For (iv), we
choose a so that the effective temperature is 3.
Metric-aware inference helps. In Table 2, we
report results across datasets and model sizes.
We notice that RAIL improves over baselines
across all model sizes on STSB and Amazon re-
views (with the exception of model size S, where
we see that median performs very similarly to
the most likely generated sample).

Sampling versus enumeration. So far, when
estimating the prediction maximizing the (2), we
have used sampling from the LM distribution
(see §3.2). Alternatively, if the targets are from
a narrow interval (e.g., on the STSB dataset, the
values are in the interval [0, 5]), one can score
the model for targets enumerated at fixed inter-
vals (e.g. 0,0.5,1.0,...,5.0), and compute esti-
mates for solutions in Table 1. In Table 3, we re-
port results from FLAN-TS5 on the STSB dataset
for RAIL with both sampling and enumeration
based estimates, where the latter is based on 11
equally spaced targets. We find that both sam-
pling and enumeration lead to RAIL improving
over choosing the most likely target. Further, we
note that sampling is a more effective strategy
than enumeration of equally spaced targets.

Role of model size. We find that the benefit from
our technique reduces as the models increase in
size. This sometimes coincides with a lower-
ing entropy in predictions with increasing model
size (see, e.g., results on Amazon in Table 7
in Appendix). We note this is consistent with
prior works on MBR, which observed that as
the model gets better, the optimal decision rule
for EM (approximated by greedy decoding) per-
forms comparable to the that for other metrics
(Schluter et al., 2012). We stress that the gains
we get with small and medium-sized models are
still of large practical importance, especially in
applications where deploying very large models
is prohibitively expensive.

5 Conclusions

We have shown how regression and scoring-
aware inference strategies can yield notable ben-
efits for small and medium-sized LLMs. In the
future, we wish to extend our approach to other
less-explored evaluation metrics in the MBR lit-
erature; e.g., in Appendix B, we propose an F} -
score aware inference strategy and showcase its
efficacy on TriviaQA (Joshi et al., 2017).



6 Limitations

There are multiple limitations of our work. First,
we evaluate our proposed methods on multiple
text datasets with numerical and text targets,
however, many more types of outputs can be con-
sidered, including the time series targets. Next,
it would be interesting to more systematically an-
alyze how to efficiently solve the objective from
(5) over many samples for text outputs for met-
rics like F; or BLEU, e.g. by means of dynamic
programming. We also note that the datasets con-
sidered in this work are restricted to English. It
would be interesting to expand the explorations
to datasets in other languages.

7 Ethics Statement

All datasets used in this work are publicly avail-
able. No additional user data was collected or
released as part of this work. All models used are
publicly available and already pretrained, and no
finetuning was conducted for any experiments.
Instead, all experiments relied on running infer-
ence experiments with the models over several
thousands of examples. Thus, the CO-2 footprint
of this paper is minimal. We do not foresee any
significant risks associated with this paper other
than improving performance on tasks which are
harmful.
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A Further related work

Minimum Bayes risk decoding. As noted in
the introduction, prior work on MBR have con-
sidered optimizing for common metrics in the
machine translation and text generation litera-
ture. The closest to our paper is the work of
(Wang et al., 2023a), who considered sampling
from the model distribution when applied with
chain of thought prompting, and showed how
majority vote improves over the baseline under
different arithmetic and reasoning tasks. Other
works explored different aspects of MBR, in-
cluding: the role of the sampling algorithms
(Freitag et al., 2023; Cheng and Vlachos, 2023),
how label smoothing interacts with MBR (Yan
et al., 2022), and how it generalizes other tech-
niques (Suzgun et al., 2022; Bertsch et al., 2023).
(Finkelstein and Freitag, 2024) recently con-
sidered distillation of MBR solution from the
teacher to a student model so as to avoid the
overhead induced by MBR at inference time.

Finetuning approaches for target task align-
ment. Previous works considered approaches
for aligning the models for target datasets. For
example, soft prompts were finetuning on target
datasets without loosing generalization to other
tasks (Wang et al., 2023b), and general finetun-
ing was conducted on carefully tailored datasets
for improved model robustness (Li et al., 2023).
In our work, we focus on zero-shot setting where
no fine-tuning is conducted.

Finetuning approaches for numerical tasks.
Autoregressive finetuning of LLMs on numeri-
cal tasks with CoT has been found effective (Liu
and Low, 2023). One line of work for model-
ing predictive tasks with pre-trained Transformer
based models is to add a regression head on top
of the transformed/pooled encoded input tokens
and finetune the resulting model on numerical
targets using a regression loss. This is an ap-
proach which has been for encoder based models
(e.g. Bert), and has also been applied to encoder-
decoder (e.g. T5) models (Liu et al., 2022), and
these approaches could be extended to decoder
models too. In a similar line of work, an em-
bedding can be extracted from a decoder model
finetuned on modified attention mask and addi-
tional tasks (BehnamGhader et al., 2024). In this
work, we focus on the zero shot approaches, and
so we leave training approaches for future work.

B Additional results on F;
maximization on Trivia QA

We extend our approach to the F) score eval-
uation metric. Consider a reading comprehen-
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model  greedy T=0.25 T=0.5 T=1.0
size decode  argmax mean  w-mean argmax mean  Ww-mean argmax mean  Ww-mean
XXS 1.078 1.126  1.043 1.028 1.241 1.021 0.992 1.448  1.007 0.978
STSB S 0.685 0.787  0.643 0.649 0.908  0.636 0.642 1.019  0.641 0.641
L 0.628 0.729  0.592 0.610 0.852  0.582 0.586 0.989  0.580 0.580
T=0.25 T=0.5 T=1.0
argmax median w-median  argmax median w-median  argmax median w-median
Amazon XXS 0.495 0.509 0.484 0.474 0.624  0.485 0.487 0.826  0.493 0.493
reviews 0.301 0.290  0.297 0.285 0.329  0.300 0.297 0.444  0.299 0.299
0.294 0318 0293 0.291 0.380 0.294 0.293 0.541 0.298 0.295
T=0.25 T=0.5 T=1.0
argmax  Fi w-Fy argmax [y w-F argmax [y w-F
XXS 0.314 0.300 0.319 0.318 0.255 0.323 0.326 0.178  0.307 0.304
Trivia-QA S 0.620 0.656  0.626 0.678 0.658  0.641 0.662 0.636  0.650 0.650
L 0.886 0.888 0.886 0.888 0.888 0.883 0.887 0.887  0.880 0.885

Table 4: Root mean squared error (RMSE) on STSB dataset (the lower the better), Mean absolute
error (MAE) on Amazon reviews dataset (the lower the better), and F'; metrics on Trivia-QA dataset
(the higher the better) from PaLM-2 models of varying size. We report different methods of inference
across different temperatures. For the weighted approaches, we fix the sampling temperature to
T =1 and accordingly vary the a in (5) so as to arrive at the effective temperature equal to the value

reported.
model w/ pairs  w/o pairs
PaLM-2 XXS  0.302 0.295
PaLM-2 XS 0.678 0.670
PaLM-2 L 0.886 0.887

Table 5: Performance of RAIL (as evaluated by
F1) on TriviaQA with and without the inclusion
of concatenated pairs in the candidate set.

sion task, where the I score is the evaluation
metric m(y, §), defined by the harmonic mean

of recall(y,§) = % and precision(y, §) =
lylzlyl To illustrate the task, suppose for the

question “What is the hottest month in
the year?”, the responses and associated prob-
ability from an LM are {“July”: 0.25, “July
2023”: 0.23, “Month of July”: 0.24, “May”:
0.28}. The mode of this distribution is “May”;
whereas the maximizer of (2) is “July”.

To optimize the £} metric, we solve (7) over a
candidate set C', which we choose to contain the
K samples and additional targets derived from
them.

g(x) € argmax Zm(yi,y'). 7)

While the F score does not admit a closed-form
solution, as is the case for the metrics listed in
Table 1, we make an observation that its formu-
lation allows for introducing a different form of
efficiency. In particular, we notice that due to

the trade-off between precision and recall in the
F1 score formulation, the following candidate
set construction can lead to increasing recall at
the expense of precision, thus providing a way
to cheaply enumerate additional reasonable can-
didates.

Candidate set construction. One simple choice
for the candidate set C could be take the K sam-
pled outputs, i.e., C = {y1,...,yx }. One may
additionally include in this set transformations
on each y; or new candidates formed from com-
bining two or more of the samples.

For reading comprehension or question-
answering applications, where the output is a
list of keywords that constitute an answer to a
question, one may additionally include samples
formed by concatenating pairs of sampled out-
puts, i.e., concat(y;,delim, y;), Vi # j. These
concatenated answers have the effect of increas-
ing recall, at the cost of lower precision. We
follow that procedure for the Trivia-QA experi-
ments.

In Table 4, we provide results on Trivia-QA
reading comprehension task (Joshi et al., 2017)
with the proposed F'-aware inference strategy.

To additionally analyze the effectiveness of
the candidate set augmentation, in Table 5 we
compare the performance of RAIL (specifically
the temperature scaled variant) with and without
the inclusion of concatenated pairs in the candi-
date set. For both the XXS and S models, the
inclusion of concatenated pairs is seen to yield a
significant improvement in F -score.



Dataset Prompt

STSB

What is the sentence similarity between the following two sentences measured on a scale of 0 to 5: {Sentence

#1}, {Sentence #2}. The similarity measured on a scale of 0 to 5 with 0 being unrelated and 5 being related

is equal to

Amazon reviews

What is the rating corresponding to the following review in the scale of 1 to 5, where 1 means negative, and

5 means positive? Only give a number from 1 to 5 with no text. Review: {Review} Rating:

Trivia-QA

Answer the following question without any additional text. Question: {Question}. Answer:

Table 6: Prompts used for different datasets. Curly braces denote inputs specific to an input example.

C Additional details

In Table 6 we report the prompts we used in our
experiments for zero-shot inference.

For all datasets, we use validation splits, and
where not available, we use the first 1500 exam-
ples from the train split.

The datasets are publicly available, for exam-
ple from the tensorflow.org platform:

* https://www.tensorflow.org/
datasets/catalog/glue#gluestsb,

* https://www.tensorflow.org/
datasets/catalog/amazon_us_
reviews,

* https://www.tensorflow.org/
datasets/catalog/trivia_ga.

D Additional experiments

In Table 7 we report empirical entropy estimates
as measured based on the 16 samples generated
from the model. We find that entropy decreases
as model size increases. We observe a particu-
larly sharp decrease in entropy for the Amazon
reviews and Trivia-QA datasets, where for larger
model sizes we don’t find improvements from
RAIL approaches.

In Table 4 we report RMSE on STSB dataset,
MAE on Amazon reviews dataset, and F' met-
rics on Trivia-QA dataset from PaLM-2 models
of varying size across multiple temperature val-
ues. We find improvements over baselines on
STSB and Amazon reviews datasets for most
temperatures. For Trivia-QA, we find improve-
ments for XXS and S models for some tempera-
tures, and for L, we don’t find a difference from
our methods due to low entropy in the responses
(see Table 7). In Table 10 we additionally report
Pearson correlation metrics on STSB, confirm-
ing the results of RAIL improving over autore-
gressive inference. Lastly, in Table 9 we report
cost weighted multi-class AUC with costs corre-
sponding to the difference between the annotated
labels: |y; — y2|. We find on both STSB and
Amazon reviews datasets that the optimal deci-

model STSB  Amazon Trivia-QA
PalLM-2 XXS 1.141 1.064 1.328
PaLM-2 XS 1.055 0.753 0.475
PaLM-2 L 0.976 0.361 0.186

Table 7: Empirical entropy across model sizes
and datasets.

samples XXS S L

(Greedy Decode) 1.078 0.685 0.628
2 1.044 0.679 0.624

4 1.036 0.669 0.613

6 1.031 0.664 0.607

8 1.028 0.660 0.603

10 1.025 0.657 0.601

12 1.024 0.655 0.600

14 1.022 0.653 0.599

16 1.021 0.652 0.598

Table 8: RMSE as a function of the number
of samples on STSB across PaLM-2 models of
varying size. Results for temperature 7' = 0.25.

sion rule (mean over the distribution) improves
over the baselines.

In Table 8, we report the impact of the number
of samples on the results. We note that there is
an improvement in the results with the increase
in the number of samples, however beyond 8
samples there is a diminishing improvement in
practice. On STSB with temperature i, even
with as few as two samples, our method starts to
show improvements over greedy decoding.

In Figure 2 we report examples from the Ama-
zon dataset and the corresponding: human an-
notations and samples from the model. Notice
how samples cover significant proportions of the
ratings. We find that the samples end up in the
vicinity of the human annotation, and thus in
many cases taking a mean over samples helps
improve the prediction over the mode.
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model  greedy T=0.25 T=0.5 T=1.0

size decode  argmax mean argmax ~mean argmax mean

XXS 0.797 0.755 0.882 0.714 0.890 0.632 0.889
STSB XS 0.895 0.870 0.950 0.843 0.954 0.820 0.953

L 0.905 0.885 0.948 0.859 0.959 0.827 0.961

XXS 0.87 0.894 0.925 0.866 0.94 0.788 0.942
Amazon y 0.9 091 0925 0914 0941 09  0.958
reviews : : : : : ) )

L 0.925 0.922 0.951 0.906 0.962 0.837 0.964

Table 9: Cost-weighted multi-partite AUC metrics on STSB and Amazon datasets (the higher the
better). RAIL methods improve over the baselines. See §3.4 for the definition of AUC we use. We
assume costs to correspond to the difference between the annotated labels: |y; — ya|.

model greedy T=0.25 T=0.5 T=1.0
decode  argmax  mean argmax  mean argmax  mean
PaLM-2 XXS  0.767 0.738  0.790 0.670  0.790 0.544 0.786
PalLM-2 XS 0.898 0.878 0.915 0.852 0.913 0.821 0.910
PalLM-2 L 0.909 0.893 0.920 0.881 0.922 0.860  0.923

Table 10: Pearson correlation metrics on STSB. RAIL methods improve over the baselines.

model samples
m human rating

model samples
= human rating

model samples
mm human rating

Frequency
Frequency
Frequency

1 2 Ra;ng 4 5
(a) It is a nice color of black and
my husband likes how it feels in

his hand.

1 2 4 5

Rating
(b) This item is a good idea. How-
ever, Unless the ear canal is rea-
sonably deep (...) it’s of no use.
The plastic hooks that come with
it are hard and too small (...).
Might be good for children.

' ’ Ra;ng ‘ i
(c) One of the sides is made for
apple products, the other is just
standard usb. Both will work with
apple products, just one side (the
A side) charges faster. Other than
that, it’s fantastic. :D

Figure 2: Examples from the Amazon dataset and the corresponding: human annotations and samples
from the model. We find that in many cases, taking into account the model distribution (i.e. a mean
of the distribution) allows for a prediction closer to the annotation than simply taking the mode of the
distribution.
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