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Abstract001

Large language models (LLMs) have002
shown strong results on a range of appli-003
cations, including regression and scor-004
ing tasks. Typically, one obtains outputs005
from an LLM via autoregressive sam-006
pling from the model’s output distribu-007
tion. We show that this inference strat-008
egy can be sub-optimal for common re-009
gression and scoring evaluation metrics.010
As a remedy, we build on prior work011
on Minimum Bayes Risk decoding, and012
propose alternate inference strategies013
for regression and scoring that estimate014
the Bayes-optimal solution for the given015
metric in closed-form from sampled re-016
sponses. We show that our proposal017
yields significant improvements over018
baselines across datasets and models.019

1 Introduction020

Large language models (LLMs) are currently021
the most capable models across many NLP022
tasks (OpenAI et al., 2023; Google and et al.,023
2023; Touvron et al., 2023; Gemini Team and024
et al., 2023). Owing to their remarkable few-025
and zero-shot abilities (Wei et al., 2022; Kojima026
et al., 2023), pre-trained LLMs are often applied027
without any additional training on in-domain028
datasets: instead, one may query the LLM with029
a suitably crafted input prompt.030

More recently, LLMs have been successfuly031
applied to regression and scoring tasks. For ex-032
ample, Gruver et al. (2023) explored zero-shot033
learning for time series prediction; Vacareanu034
et al. (2024) showed how LLMs are remarkably035
strong at in-context learning for regression tasks;036
Liu and Low (2023); Yang et al. (2023) consid-037
ered the autoregressive finetuning over numeri-038
cal targets applied to arithmetic tasks; and Qin039
et al. (2023) applied LLMs for listwise ranking.040

The quality of an LLM is often assessed using041
an application-specific evaluation metric. One042

popular metric is the exact match (EM), which 043
penalises any response not exactly equal to the 044
one in the dataset annotation. This is an ana- 045
logue of the conventional classification accuracy. 046
While EM is an intuitive metric, there are many 047
applications where it is not suitable. This is 048
particularly true with tasks such relevance scor- 049
ing (Cer et al., 2017) and sentiment analysis 050
(Fathony et al., 2017), where the outputs are nu- 051
merical or ordinal categories. In these cases, one 052
instead prefers metrics such as the squared error, 053
mean absolute error or ranking scores that take 054
the ordinal nature of the outputs into account. 055

Despite the wide variety of evaluation met- 056
rics, LLM inference is typically performed in the 057
same manner for every task: namely, one per- 058
forms auto-regressive sampling from the LLM’s 059
underlying distribution (see §2). While intuitive, 060
such inference does not explicitly consider the 061
downstream evaluation metric of interest. This 062
raises a natural question: is there value in adapt- 063
ing the inference procedure to the evaluation 064
metric at hand for regression and scoring tasks? 065

A prominent line of work takes a decision- 066
theoretic approach to the above problem. 067
Dubbed as Minimum Bayes Risk (MBR) decod- 068
ing, this approach seeks to optimize at inference 069
time the metric of choice under the model’s dis- 070
tribution (Bickel and Doksum, 1977; Kumar and 071
Byrne, 2004; Eikema and Aziz, 2020; Bertsch 072
et al., 2023). Much of the work on MBR is fo- 073
cused on evaluation metrics for machine transla- 074
tion and text generation tasks, such as the BLEU 075
score. Of particular interest in this literature are 076
self-consistency based decoding strategies that 077
take a (weighted) majority vote of sampled re- 078
sponses (Wang et al., 2023a), which have shown 079
to provide quality gains in arithmetic and reason- 080
ing problems. 081

In this paper, we build on the existing litera- 082
ture on MBR to design metric-aware inference 083
strategies for general regression and scoring 084
tasks. We first observe that choosing the most 085
likely target for an input corresponds to inher- 086
ently optimizing for the EM metric, and is conse- 087
quently not optimal when EM is not the metric 088
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Figure 1: Illustration of the metric-aware LLM
inference for regression and scoring tasks. An
input x is passed to the LLM, and samples are
drawn from the distribution over targets y condi-
tioned on x. These are then used to find the target
optimizing a metric m through a closed-form de-
cision rule Φ (e.g., mean or median); Table 1
presents specific solutions across metrics.

of choice. As a remedy, we propose estimating089
the Bayes-optimal output for a metric under the090
model’s distribution; we show that this admits a091
closed-form solution for common regression and092
ranking metrics, and only requires estimating a093
simple statistic from the sampled responses. In094
contrast, prior MBR methods for translation and095
summarization often require heuristically solv-096
ing an intractable maximization problem (Ehling097
et al., 2007; Bertsch et al., 2023). We show098
across datasets and models how our approach099
yields gains over choosing the most likely target,100
and over self-consistency based approaches.101

2 When (naïve) LLM inference102

fails on regression tasks103

We begin with the problem setting. For a fi-104
nite vocabulary V of tokens (e.g., words in En-105
glish), let D denote a distribution over inputs106
x ∈ X ⊆ V ∗ comprising of strings of tokens107
and targets y ∈ Y . Let p(y |x) denote the108
conditional distribution over targets given an109
input. We consider a special case of this set-110
ting where Y ⊂ R corresponds to numeric tar-111
gets. Here, we assume that each y ∈ Y has112
a unique string representation str(y) ∈ V ∗;113
for example, the integer 1 has the string encod-114
ing "1". In a slight abuse of notation, we use115

p(y |x)
·
= p(str(y) |x) to denote the condi-116

tional probability of output y given input x.117

A language model (LM) takes a string x as118
input and predicts an output ŷ ∈ Y . Typically,119
the LM first produces a distribution p̂(· |x) over120

targets, from which a prediction is derived via a 121
suitable inference (or decoding) procedure. Per- 122
haps the most common inference strategy is to 123
choose the mode of p̂(y |x): 124

ŷ(x) := argmax
y∈Y

p̂(y |x). (1) 125

In practice, one may approximate the mode by 126
employing greedy decoding or beam search, or 127
sampling multiple candidates and picking the 128
among them the one with the highest likelihood 129
score (Naseh et al., 2023). 130

The quality of an LM’s prediction is measured 131
by some evaluation metricm(y, ŷ), where we as- 132
sume that higher values are better. While the ex- 133
act match (EM), given by m(y, ŷ) = 1(y = ŷ), 134
is a commonly used evaluation metric, there are 135
a range of other metrics popularly used to evalu- 136
ate LMs. These include the (negative) squared 137
error m(y, ŷ) = −(y − ŷ)2 or absolute error 138
m(y, ŷ) = −|y − ŷ| for regression tasks. A nat- 139
ural goal is to then choose the inference strategy 140
ŷ(x) to maximize the metric m of interest, i.e., 141
to maximize the expected utility: 142

E(x,y)∼D [m(y, ŷ(x))] . (2) 143

For many choices of metric m(y, ŷ(x)), picking 144
the mode of the predicted distribution (1) can be 145
sub-optimal for (2). 146

As an example, consider the task of predicting 147
the star rating (on the scale 1–5) associated with 148
a review text. Suppose m(y, ŷ) is the negative 149
absolute error between the true and predicted 150
ratings. Given the review text “This keybord 151
is suitable for fast typers”, suppose the 152
responses and the associated probabilities from 153
an LM are {“1”: 0.3, “2”: 0.0, “3”: 0.3, “4”: 154
0.0, “5”: 0.4}. The mode of the predicted prob- 155
abilities is “5”. In contrast, the maximizer of (2) 156
is the median rating “3”. We provide examples 157
for Amazon reviews with the learned probability 158
distributions in Figure 2 (Appendix). 159

3 Metric-aware LLM inference 160

3.1 Minimum Bayes risk decoding 161

We seek to design decoding strategies that max- 162
imize the expected utility in (2). Ideally, if we 163
had access to the true conditional probabilities 164
p(· |x), the maximizer of (2) is given by: 165

ŷ∗(x) ∈ argmax
y′∈Y

Ey∼p(· | x) [m(y, y′)] . (3) 166

When m is the EM metric, the optimal inference 167
strategy is ŷ∗(x) ∈ argmaxy∈Y p(y |x), which 168
is what common approaches such as greedy de- 169
coding seek to approximate. 170
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Problem Labels Y Predictions Metric Optimal decision rule

Classification 1, . . . ,K 1, . . . ,K 1(y = ŷ) ŷ(x) := argmaxy p(y |x)

Regression R R −(y − ŷ)2 ŷ(x) := Ey∼p(· | x)[y]

Ordinal regression 1, . . . ,K 1, . . . ,K −|y − ŷ| ŷ(x) := median[p(· |x)]

Bi-partite ranking ±1 R AUC with cy,y′ = 1 ŷ(x) := p(y = +1|x)

Multi-partite ranking 1, . . . ,K R AUC with cy,y′ = |y − y′| ŷ(x) := Ey∼p(· | x)[y]

Table 1: Optimal decision rule for different evaluation metrics. See (6) for definition of AUC.

In general, however, the optimal decoding171
strategy can have a very different form, and the172
mode of p(·|x) has been shown to be suboptimal173
on generation tasks (Eikema and Aziz, 2020).174
For example, as shown in Table 1, for evalua-175
tion metrics over numerical targets such as the176
squared error or the absolute error, the optimal177
inference strategy is to simply take the mean or178
median of p(·|x) (Bishop, 2006).179

3.2 Closed-form optimal solution180

In practice, we mimic the Bayes-optimal solu-181
tion in (3) with two approximations. First, we182
replace the true conditional distribution p(· |x)183
with the LM’s predicted distribution p̂(· |x).184
This is a reasonable approximation when the185
LM is pre-trained with next-token prediction ob-186
jective based on the softmax cross-entropy loss;187
the latter is a strictly proper loss, whose mini-188
mizer under an unrestricted hypothesis class is189
the true conditional distribution p(y |x) (Gneit-190
ing and Raftery, 2007). Second, we estimate the191
expectation in (3) by sampling K outputs from192
p̂(· |x), and then computing:193

ŷ(x) ∈ argmax
y′∈Y

K∑
i=1

m(yi, y
′). (4)194

Even with these approximations, maximizing (4)195
over all outputs Y is intractable in general.196

Prior literature on MBR for metrics like197
BLEU heuristically perform this maximization198
over a small set of candidates (Ehling et al., 2007;199
Bertsch et al., 2023). In this paper, we consider200
regression and scoring metrics, for which the201
above maximization can be computed in closed-202
form. As shown in Table 1, these solutions can203
be estimated by computing simple statistics from204
the sampled responses, such as the sample mean205

ŷ(x) = 1
K

∑K
i=1 yi for the squared error. We re-206

fer to this approach as Regression (and scoring)207
Aware Inference with LLMs (RAIL).208

3.3 Post-hoc temperature scaling209

When sampling from p̂(· |x), it often helps to210
apply a temperature scaling to the LM logits to211
control the diversity of the sampled outputs. This212

is particularly important in our procedure where 213
we wish to approximate expectations over p̂(·|x) 214
using a few samples. 215

In practice, one may sample from p̂(· |x) with 216
temperature T = 1, and apply temperature 217
scaling in a post-hoc manner by employing a 218
weighted version of the objective in (4): 219

ŷ(x) ∈ argmax
y′∈Y

K∑
i=1

(p̂(yi|x))
α ·m(yi, y

′), (5) 220

where α can be seen as the temperature scaling 221
parameter. The above summation is a (scaled) 222
estimate of Ey∼p̂(· | x) [p̂(y |x)α ·m(y, y′)]. For 223
probabilities p̂(yi |x) ∝ exp(f(x, yi)) defined 224
by logits f(x, yi), this is equivalent to comput- 225
ing the expectation under the temperature-scaled 226
distribution p̂α(y |x) ∝ exp((1 + α) · f(x, y)), 227
albeit a normalization factor. We consider an 228
analogous weighting scheme for the plug-in esti- 229
mators of the closed-form solutions in Table 1. 230

3.4 Extension to multi-partite ranking 231

Our metric-aware decoding proposal also applies 232
to scoring tasks, where the label space Y is dis- 233
crete, e.g. {1, . . . ,K}, but we require the LLM 234
to predict a real-valued score ŷ(x) ∈ R for each 235
prompt x such that prompts with higher labels re- 236
ceive a higher score. One typically measures the 237
performance of the predicted scores ŷ(x) using 238
a pairwise ranking metric such as AUC: 239

AUC(ŷ) = 1 − 240

E
[
cy,y′ · 1(ŷ(x) < ŷ(x′))

∣∣∣ y > y′
]
, (6) 241

which penalizes the scorer ŷ with a penalty cy,y′ 242
whenever it mis-ranks a pair (x, x′) with y > y′. 243

Despite AUC being non-decomposable (not 244
a summation of per-example results), Uematsu 245
and Lee (2015) show that when the costs are 246
the difference between the labels, i.e., cy,y′ = 247
|y− y′|, the optimal scorer admits a closed-form 248
solution, and is given by the expected label under 249
distribution p(·|x): ŷ∗(x) = Ey∼p(·|x) [y]. One 250
can thus readily apply our RAIL approach to 251
estimate this solution from sampled responses. 252
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model
size

greedy
decode

RAIL
argmax mean

STSB
(RMSE↓)

XXS 1.078 1.448 1.028
S 0.685 1.019 0.649
L 0.628 0.989 0.610

argmax mean

STSB
(AUC↑)

XXS 0.797 0.632 0.889
S 0.895 0.820 0.953
L 0.905 0.827 0.961

argmax median

Amazon
reviews
(MAE↓)

XXS 0.495 0.826 0.474
S 0.301 0.444 0.285
L 0.294 0.541 0.291

Table 2: Comparison of inference strategies on
PaLM-2 models for different datasets and met-
rics. We draw 16 samples with an effective tem-
perature of T = 1

4 (via post-hoc scaling).

model greedy enumeration sampling

FLAN-T5 S 4.419 2.407 2.275
FLAN-T5 L 0.455 0.410 0.373
FLAN-T5 XL 0.508 0.549 0.457

Table 3: Comparison of squared error (SE) on
STSB with FLAN-T5 models. The sampling
approach uses a temperature of 0.5.

4 Experiments and Discussion253

We experimentally evaluate our proposed on254
NLP tasks with different evaluation metrics.255

Datasets. We use two datasets. (i) Semantic256
Textual Similarity Benchmark (STSB) (Cer et al.,257
2017), which comprises of sentence pairs human-258
annotated with a similarity score from 0 to 5;259
since this is a regression task, we evaluate with260
the root mean squared error. (ii) US Amazon261
reviews, where we aim to predict the 5-star rat-262
ing for a product review (Ni et al., 2019); since263
the task is in the form of ordinal regression, we264
use mean absolute error as the evaluation metric265
(Fathony et al., 2017). We list the prompts used266
in Table 6 (Appendix). In each case, we evaluate267
on samples of 1500 examples.268

Models. We consider two instruction-tuned269
model families: PaLM-2 (Google and et al.,270
2023) and FLAN-T5 (Chung et al., 2022). We271
report results across different model sizes and272
temperatures. Unless otherwise stated, we fix273
the number of samples to K = 16, and the top-k274
parameter in decoding to 40 (Fan et al., 2018).275276

Methods. We evaluate the following methods:277
(i) greedy decoding, (ii) a baseline inspired from278
the self-consistency decoding of sampling K279

candidates and picking the one with the maxi- 280
mum likelihood (argmax) (Wang et al., 2023a), 281
(iii) the proposed RAIL approach on the same K 282
samples, and (iv) the temperature scaled variant 283
of RAIL in §3.3 (denoted by a ‘*’). For (iv), we 284
choose α so that the effective temperature is 1

4 . 285

Metric-aware inference helps. In Table 2, we 286
report results across datasets and model sizes. 287
We notice that RAIL improves over baselines 288
across all model sizes on STSB and Amazon re- 289
views (with the exception of model size S, where 290
we see that median performs very similarly to 291
the most likely generated sample). 292

Sampling versus enumeration. So far, when 293
estimating the prediction maximizing the (2), we 294
have used sampling from the LM distribution 295
(see §3.2). Alternatively, if the targets are from 296
a narrow interval (e.g., on the STSB dataset, the 297
values are in the interval [0, 5]), one can score 298
the model for targets enumerated at fixed inter- 299
vals (e.g. 0, 0.5, 1.0, . . . , 5.0), and compute esti- 300
mates for solutions in Table 1. In Table 3, we re- 301
port results from FLAN-T5 on the STSB dataset 302
for RAIL with both sampling and enumeration 303
based estimates, where the latter is based on 11 304
equally spaced targets. We find that both sam- 305
pling and enumeration lead to RAIL improving 306
over choosing the most likely target. Further, we 307
note that sampling is a more effective strategy 308
than enumeration of equally spaced targets. 309

Role of model size. We find that the benefit from 310
our technique reduces as the models increase in 311
size. This sometimes coincides with a lower- 312
ing entropy in predictions with increasing model 313
size (see, e.g., results on Amazon in Table 7 314
in Appendix). We note this is consistent with 315
prior works on MBR, which observed that as 316
the model gets better, the optimal decision rule 317
for EM (approximated by greedy decoding) per- 318
forms comparable to the that for other metrics 319
(Schluter et al., 2012). We stress that the gains 320
we get with small and medium-sized models are 321
still of large practical importance, especially in 322
applications where deploying very large models 323
is prohibitively expensive. 324

5 Conclusions 325

We have shown how regression and scoring- 326
aware inference strategies can yield notable ben- 327
efits for small and medium-sized LLMs. In the 328
future, we wish to extend our approach to other 329
less-explored evaluation metrics in the MBR lit- 330
erature; e.g., in Appendix B, we propose an F1- 331
score aware inference strategy and showcase its 332
efficacy on TriviaQA (Joshi et al., 2017). 333
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6 Limitations334

There are multiple limitations of our work. First,335
we evaluate our proposed methods on multiple336
text datasets with numerical and text targets,337
however, many more types of outputs can be con-338
sidered, including the time series targets. Next,339
it would be interesting to more systematically an-340
alyze how to efficiently solve the objective from341
(5) over many samples for text outputs for met-342
rics like F1 or BLEU, e.g. by means of dynamic343
programming. We also note that the datasets con-344
sidered in this work are restricted to English. It345
would be interesting to expand the explorations346
to datasets in other languages.347

7 Ethics Statement348

All datasets used in this work are publicly avail-349
able. No additional user data was collected or350
released as part of this work. All models used are351
publicly available and already pretrained, and no352
finetuning was conducted for any experiments.353
Instead, all experiments relied on running infer-354
ence experiments with the models over several355
thousands of examples. Thus, the CO-2 footprint356
of this paper is minimal. We do not foresee any357
significant risks associated with this paper other358
than improving performance on tasks which are359
harmful.360
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A Further related work 570

Minimum Bayes risk decoding. As noted in 571
the introduction, prior work on MBR have con- 572
sidered optimizing for common metrics in the 573
machine translation and text generation litera- 574
ture. The closest to our paper is the work of 575
(Wang et al., 2023a), who considered sampling 576
from the model distribution when applied with 577
chain of thought prompting, and showed how 578
majority vote improves over the baseline under 579
different arithmetic and reasoning tasks. Other 580
works explored different aspects of MBR, in- 581
cluding: the role of the sampling algorithms 582
(Freitag et al., 2023; Cheng and Vlachos, 2023), 583
how label smoothing interacts with MBR (Yan 584
et al., 2022), and how it generalizes other tech- 585
niques (Suzgun et al., 2022; Bertsch et al., 2023). 586
(Finkelstein and Freitag, 2024) recently con- 587
sidered distillation of MBR solution from the 588
teacher to a student model so as to avoid the 589
overhead induced by MBR at inference time. 590

Finetuning approaches for target task align- 591
ment. Previous works considered approaches 592
for aligning the models for target datasets. For 593
example, soft prompts were finetuning on target 594
datasets without loosing generalization to other 595
tasks (Wang et al., 2023b), and general finetun- 596
ing was conducted on carefully tailored datasets 597
for improved model robustness (Li et al., 2023). 598
In our work, we focus on zero-shot setting where 599
no fine-tuning is conducted. 600

Finetuning approaches for numerical tasks. 601
Autoregressive finetuning of LLMs on numeri- 602
cal tasks with CoT has been found effective (Liu 603
and Low, 2023). One line of work for model- 604
ing predictive tasks with pre-trained Transformer 605
based models is to add a regression head on top 606
of the transformed/pooled encoded input tokens 607
and finetune the resulting model on numerical 608
targets using a regression loss. This is an ap- 609
proach which has been for encoder based models 610
(e.g. Bert), and has also been applied to encoder- 611
decoder (e.g. T5) models (Liu et al., 2022), and 612
these approaches could be extended to decoder 613
models too. In a similar line of work, an em- 614
bedding can be extracted from a decoder model 615
finetuned on modified attention mask and addi- 616
tional tasks (BehnamGhader et al., 2024). In this 617
work, we focus on the zero shot approaches, and 618
so we leave training approaches for future work. 619

B Additional results on F1 620

maximization on Trivia QA 621

We extend our approach to the F1 score eval- 622
uation metric. Consider a reading comprehen- 623
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model
size

greedy
decode

T=0.25 T=0.5 T=1.0
argmax mean w-mean argmax mean w-mean argmax mean w-mean

STSB
XXS 1.078 1.126 1.043 1.028 1.241 1.021 0.992 1.448 1.007 0.978
S 0.685 0.787 0.643 0.649 0.908 0.636 0.642 1.019 0.641 0.641
L 0.628 0.729 0.592 0.610 0.852 0.582 0.586 0.989 0.580 0.580

T=0.25 T=0.5 T=1.0
argmax median w-median argmax median w-median argmax median w-median

Amazon
reviews

XXS 0.495 0.509 0.484 0.474 0.624 0.485 0.487 0.826 0.493 0.493
S 0.301 0.290 0.297 0.285 0.329 0.300 0.297 0.444 0.299 0.299
L 0.294 0.318 0.293 0.291 0.380 0.294 0.293 0.541 0.298 0.295

T=0.25 T=0.5 T=1.0
argmax F1 w-F1 argmax F1 w-F1 argmax F1 w-F1

Trivia-QA
XXS 0.314 0.300 0.319 0.318 0.255 0.323 0.326 0.178 0.307 0.304
S 0.620 0.656 0.626 0.678 0.658 0.641 0.662 0.636 0.650 0.650
L 0.886 0.888 0.886 0.888 0.888 0.883 0.887 0.887 0.880 0.885

Table 4: Root mean squared error (RMSE) on STSB dataset (the lower the better), Mean absolute
error (MAE) on Amazon reviews dataset (the lower the better), and F1 metrics on Trivia-QA dataset
(the higher the better) from PaLM-2 models of varying size. We report different methods of inference
across different temperatures. For the weighted approaches, we fix the sampling temperature to
T = 1 and accordingly vary the α in (5) so as to arrive at the effective temperature equal to the value
reported.

model w/ pairs w/o pairs

PaLM-2 XXS 0.302 0.295

PaLM-2 XS 0.678 0.670

PaLM-2 L 0.886 0.887

Table 5: Performance of RAIL (as evaluated by
F1) on TriviaQA with and without the inclusion
of concatenated pairs in the candidate set.

sion task, where the F1 score is the evaluation624
metric m(y, ŷ), defined by the harmonic mean625

of recall(y, ŷ) = |y∩ŷ|
|y| and precision(y, ŷ) =626

|y∩ŷ|
|ŷ| . To illustrate the task, suppose for the627

question “What is the hottest month in628
the year”, the responses and associated prob-629
ability from an LM are {“July”: 0.25, “July630
2023”: 0.23, “Month of July”: 0.24, “May”:631
0.28}. The mode of this distribution is “May”;632
whereas the maximizer of (2) is “July”.633

To optimize the F1 metric, we solve (7) over a634
candidate set C, which we choose to contain the635
K samples and additional targets derived from636
them.637

ŷ(x) ∈ argmax
y′∈C

K∑
i=1

m(yi, y
′). (7)638

While the F1 score does not admit a closed-form639
solution, as is the case for the metrics listed in640
Table 1, we make an observation that its formu-641
lation allows for introducing a different form of642
efficiency. In particular, we notice that due to643

the trade-off between precision and recall in the 644
F1 score formulation, the following candidate 645
set construction can lead to increasing recall at 646
the expense of precision, thus providing a way 647
to cheaply enumerate additional reasonable can- 648
didates. 649

Candidate set construction. One simple choice 650
for the candidate set C could be take the K sam- 651
pled outputs, i.e., C = {y1, . . . , yK}. One may 652
additionally include in this set transformations 653
on each yi or new candidates formed from com- 654
bining two or more of the samples. 655

For reading comprehension or question- 656
answering applications, where the output is a 657
list of keywords that constitute an answer to a 658
question, one may additionally include samples 659
formed by concatenating pairs of sampled out- 660
puts, i.e., concat(yi, delim, yj),∀i 6= j. These 661
concatenated answers have the effect of increas- 662
ing recall, at the cost of lower precision. We 663
follow that procedure for the Trivia-QA experi- 664
ments. 665

In Table 4, we provide results on Trivia-QA 666
reading comprehension task (Joshi et al., 2017) 667
with the proposed F1-aware inference strategy. 668

To additionally analyze the effectiveness of 669
the candidate set augmentation, in Table 5 we 670
compare the performance of RAIL (specifically 671
the temperature scaled variant) with and without 672
the inclusion of concatenated pairs in the candi- 673
date set. For both the XXS and S models, the 674
inclusion of concatenated pairs is seen to yield a 675
significant improvement in F1-score. 676
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Dataset Prompt
STSB What is the sentence similarity between the following two sentences measured on a scale of 0 to 5: {Sentence

#1}, {Sentence #2}. The similarity measured on a scale of 0 to 5 with 0 being unrelated and 5 being related
is equal to

Amazon reviews What is the rating corresponding to the following review in the scale of 1 to 5, where 1 means negative, and
5 means positive? Only give a number from 1 to 5 with no text. Review: {Review} Rating:

Trivia-QA Answer the following question without any additional text. Question: {Question}. Answer:

Table 6: Prompts used for different datasets. Curly braces denote inputs specific to an input example.

C Additional details677

In Table 6 we report the prompts we used in our678
experiments for zero-shot inference.679

For all datasets, we use validation splits, and680
where not available, we use the first 1500 exam-681
ples from the train split.682

The datasets are publicly available, for exam-683
ple from the tensorflow.org platform:684

• https://www.tensorflow.org/685
datasets/catalog/glue#gluestsb,686

• https://www.tensorflow.org/687
datasets/catalog/amazon_us_688
reviews,689

• https://www.tensorflow.org/690
datasets/catalog/trivia_qa.691

D Additional experiments692

In Table 7 we report empirical entropy estimates693
as measured based on the 16 samples generated694
from the model. We find that entropy decreases695
as model size increases. We observe a particu-696
larly sharp decrease in entropy for the Amazon697
reviews and Trivia-QA datasets, where for larger698
model sizes we don’t find improvements from699
RAIL approaches.700

In Table 4 we report RMSE on STSB dataset,701
MAE on Amazon reviews dataset, and F1 met-702
rics on Trivia-QA dataset from PaLM-2 models703
of varying size across multiple temperature val-704
ues. We find improvements over baselines on705
STSB and Amazon reviews datasets for most706
temperatures. For Trivia-QA, we find improve-707
ments for XXS and S models for some tempera-708
tures, and for L, we don’t find a difference from709
our methods due to low entropy in the responses710
(see Table 7). In Table 10 we additionally report711
Pearson correlation metrics on STSB, confirm-712
ing the results of RAIL improving over autore-713
gressive inference. Lastly, in Table 9 we report714
cost weighted multi-class AUC with costs corre-715
sponding to the difference between the annotated716
labels: |y1 − y2|. We find on both STSB and717
Amazon reviews datasets that the optimal deci-718

model STSB Amazon Trivia-QA

PaLM-2 XXS 1.141 1.064 1.328

PaLM-2 XS 1.055 0.753 0.475

PaLM-2 L 0.976 0.361 0.186

Table 7: Empirical entropy across model sizes
and datasets.

samples XXS S L

(Greedy Decode) 1.078 0.685 0.628

2 1.044 0.679 0.624
4 1.036 0.669 0.613
6 1.031 0.664 0.607
8 1.028 0.660 0.603

10 1.025 0.657 0.601
12 1.024 0.655 0.600
14 1.022 0.653 0.599
16 1.021 0.652 0.598

Table 8: RMSE as a function of the number
of samples on STSB across PaLM-2 models of
varying size. Results for temperature T = 0.25.

sion rule (mean over the distribution) improves 719
over the baselines. 720

In Table 8, we report the impact of the number 721
of samples on the results. We note that there is 722
an improvement in the results with the increase 723
in the number of samples, however beyond 8 724
samples there is a diminishing improvement in 725
practice. On STSB with temperature 1

4 , even 726
with as few as two samples, our method starts to 727
show improvements over greedy decoding. 728

In Figure 2 we report examples from the Ama- 729
zon dataset and the corresponding: human an- 730
notations and samples from the model. Notice 731
how samples cover significant proportions of the 732
ratings. We find that the samples end up in the 733
vicinity of the human annotation, and thus in 734
many cases taking a mean over samples helps 735
improve the prediction over the mode. 736
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model
size

greedy
decode

T=0.25 T=0.5 T=1.0
argmax mean argmax mean argmax mean

STSB
XXS 0.797 0.755 0.882 0.714 0.890 0.632 0.889

XS 0.895 0.870 0.950 0.843 0.954 0.820 0.953

L 0.905 0.885 0.948 0.859 0.959 0.827 0.961

Amazon
reviews

XXS 0.87 0.894 0.925 0.866 0.94 0.788 0.942

XS 0.9 0.91 0.925 0.914 0.941 0.9 0.958

L 0.925 0.922 0.951 0.906 0.962 0.837 0.964

Table 9: Cost-weighted multi-partite AUC metrics on STSB and Amazon datasets (the higher the
better). RAIL methods improve over the baselines. See §3.4 for the definition of AUC we use. We
assume costs to correspond to the difference between the annotated labels: |y1 − y2|.

model greedy
decode

T=0.25 T=0.5 T=1.0
argmax mean argmax mean argmax mean

PaLM-2 XXS 0.767 0.738 0.790 0.670 0.790 0.544 0.786

PaLM-2 XS 0.898 0.878 0.915 0.852 0.913 0.821 0.910

PaLM-2 L 0.909 0.893 0.920 0.881 0.922 0.860 0.923

Table 10: Pearson correlation metrics on STSB. RAIL methods improve over the baselines.

(a) It is a nice color of black and
my husband likes how it feels in
his hand.

(b) This item is a good idea. How-
ever, Unless the ear canal is rea-
sonably deep (...) it’s of no use.
The plastic hooks that come with
it are hard and too small (...).
Might be good for children.

(c) One of the sides is made for
apple products, the other is just
standard usb. Both will work with
apple products, just one side (the
A side) charges faster. Other than
that, it’s fantastic. :D

Figure 2: Examples from the Amazon dataset and the corresponding: human annotations and samples
from the model. We find that in many cases, taking into account the model distribution (i.e. a mean
of the distribution) allows for a prediction closer to the annotation than simply taking the mode of the
distribution.
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