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Abstract
Environmental and public health remain under served by the recent data revolution that enabled

major AI advances in drug discovery. Existing toxicity datasets are biased toward drug-like molecules and
are fragmented across repositories, limiting their use for machine learning and cross-species translation.
We propose PUBHOMICS, a scalable, openly shareable dataset capturing transcriptional responses to
environmentally relevant chemical perturbations across cell types, organs, and species. PUBHOMICS
will expand chemical coverage to classes absent from existing resources, enable AI models to predict
transcriptomic responses to novel exposures, and support mechanism-based toxicity prediction with
cross-species translation for regulatory decision-making. By advancing exposomics toward causation and
providing a foundation for New Approach Methodologies (NAMs), PUBHOMICS aims to accelerate
regulatory adoption and enable “benign-by-design” strategies that bridge exposure science with systems
biology.

1 Introduction & Motivation
In the life sciences, well-annotated, open datasets have driven advances in drug discovery enabling AI
to predict ligand–receptor binding, design new compounds, and optimize therapeutics. These gains were
possible because biological data was standardized, accessible, and interoperable (Liu et al., 2024). However,
environmental and public health remain underserved by this data revolution. Despite the vast burden of
environmental exposures, most of the tens of thousands of chemicals in use today especially Persistent Organic
Pollutants (POPs), heavy metals, plasticizers, flame retardants, and agricultural chemicals remain untested
for safety (CDC, 2024; Judson et al., 2009). Existing large toxicity datasets, largely from pharma, are biased
toward small, drug-like molecules (Kretschmer et al., 2025; Seal et al., 2025). However, the data that does
exist, although very limited (von Borries et al., 2023), is fragmented across different databases and is not
structured for machine learning (Ajisafe et al., 2025; HESI, 2025). Beyond the paucity of the data, the lack
of a unified framework for collecting and harmonizing toxicity data, particularly for cross-species, mechanistic
datasets that capture gene–environment interactions, has become a critical bottleneck (Motsinger-Reif et al.,
2024; Sekatcheff et al., 2024). With NIH and global regulators pushing to replace animal testing with New
Approach Methodologies (NAMs) (FDA, 2025; NIH, 2025), the absence of foundational, ML-ready datasets
threatens progress in AI-enabled chemical risk assessment for public and environmental health protection
(FDA, 2025; Fortin et al., 2023).

2 Goal of the Proposal
We propose PUBHOMICS, a scalable, openly shareable dataset capturing transcriptional responses to
environmental and public health–relevant chemical perturbations across cell types, organs, and species for
developing AI tools for chemical hazard assessment. This dataset will include transcriptomics profiles and
rich metadata on exposure duration, timing, and conditions for chemicals spanning real-world chemical and
biological space relevant to protect public health.

2.1 Why This Dataset Matters
Recent AI foundation models like scGPT and Geneformer are advancing genomic analysis. In environmental
health, generative models such as AnimalGAN and TransOrGAN demonstrate strong performance in AI-driven
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chemical hazard assessment (Chen et al., 2023; Li et al., 2023). However, these models rely predominantly
on baseline expression, pharmaceutical, or oncology datasets or less diverse cell lines (Chen & Zou, 2023;
Sheinin et al., 2025), limiting their depth and coverage for public health applications due to data constraints.
PUBHOMICS will fill this gap by delivering the first large-scale, harmonized transcriptomics resource capturing
biological responses to environmentally relevant chemicals across species. It will expand chemical coverage
to include classes of toxicants absent from existing datasets, enable AI models to predict transcriptomic
responses to novel exposures, and support mechanism-based toxicity prediction with cross-species translation
for regulatory decision-making. By mapping environmental exposures to disease pathways such as cancer,
autoimmune disorders, and developmental diseases, PUBHOMICS will advance exposomics research beyond
correlation toward causation, offering enhanced opportunities to explore environmental exposure–disease
relationships (Sarigiannis et al., 2025; Sillé, 2020; Wan et al., 2025). It will also provide a critical foundation
for scaling and validating New Approach Methodologies (NAMs), accelerating development of other data
layers and regulatory adoption (Sillé et al., 2020, 2025), and empower the chemical industry to implement
“benign-by-design” strategies that bridge exposure science with systems biology (Maertens, 2022; Nielsen &
Moon, 2013).

3 Data-Creation Pathway
Phase 1 – Integration & Harmonization (3–7 Months). We will curate millions of transcriptomic
profiles for ~2000 environmentally relevant chemicals, currently fragmented across databases such as GEO,
ToxCast, and CTD, as well as published literature. Automated pipelines will be employed to extract and
harmonize data into common gene identifiers and units, perform quality control to mitigate batch effects and
exclude low-quality samples, and annotate chemicals using standardized ontologies.
Phase 2 – Targeted Data Generation (6–18 Months). We will generate transcriptomics profiles
for 1,250 compounds (50 per class across 25 major classes) using an in-house clustering approach ensuring
chemical diversity coverage. Primary zebrafish screening with dose–response testing will be integrated with
human cell validation for priority hits using PLATE-seq transcriptomics.

4 Cost & Scalability Strategy
Phase 1 – Data Integration ($25,000; 3–7 months). Covers cost for bioinformatics/data science effort,
cloud computing, data collection and access fees, quality control/validation, and data housing.
Phase 2 – New Data Generation ($977,500; 18 months–2 years). Includes PLATE-Seq experiments
for 12,500 samples ($625,000–$937,500 at $50–$75/sample), zebrafish procurement and facility costs ($40,000),
human cell line validation assays for priority compounds, and personnel/overhead. This budget prioritizes
high-throughput, cost-efficient transcriptomics profiling using PLATE-Seq’s low per-sample cost compared to
traditional RNA-seq (85–90% cost savings) while ensuring a robust experimental design.
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