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Abstract001

Finetuning large language models with a vari-002
ety of instruction-response pairs has enhanced003
their capability to understand and follow in-004
structions. Current instruction tuning primar-005
ily relies on teacher models or human inter-006
vention to generate and refine the instructions007
and responses for training, which are costly,008
non-sustainable, and may lack diversity. In009
this paper, we introduce Mosaic Instruction010
Tuning (Mosaic-IT), a human/model-free com-011
positional data synthesis method that can effi-012
ciently create rich and diverse augmentations013
from existing instruction tuning data to en-014
hance the LLMs. Mosaic-IT randomly con-015
catenates multiple instruction data into one and016
trains the model to produce the correspond-017
ing responses with predefined higher-level018
meta-instructions to strengthen its multi-step019
instruction-following and format-following020
skills. Our extensive evaluations demonstrate021
a superior performance and training efficiency022
of Mosaic-IT, which achieves consistent perfor-023
mance improvements over various benchmarks024
and a 80% reduction in training costs compared025
with original instruction tuning. Our codes026
and data are available at https://anonymous.027
4open.science/status/mosaic-0554.028

1 Introduction029

The emergence of Large Language Models030

(LLMs) (Scao et al., 2022; OpenAI, 2023; Touvron031

et al., 2023a) along with their remarkable perfor-032

mance in down-stream tasks (Zhao et al., 2023; Xu033

et al., 2024a), has revolutionized the domains of034

Artificial Intelligence and Natural Language Pro-035

cessing. A key component of the recipe to unlock036

the exceptional ability of LLMs in understanding037

and following instructions is the technique of In-038

struction Tuning (IT) (Mishra et al., 2021; Wei039

et al., 2022; Chung et al., 2022), which involves040

the fine-tuning of LLMs on datasets comprising041

corresponding instruction-response pairs.042

Figure 1: The brief illustration of our Mosaic-IT with
different strategies. Given the original dataset, our
method randomly samples and concatenates them to-
gether into more complex samples, simulating the multi-
instruction-following scenarios in a cost-free manner.

To ensure the quality of instruction tuning data, 043

earlier efforts (Brown et al., 2020; OpenAI, 2023; 044

Touvron et al., 2023a; Jiang et al., 2023) carefully 045

curate extensive, diverse, and high-quality datasets 046

manually. Although these datasets encompass a 047

wide range of instructions to improve instruction 048

tuning, they require the responses to be meticu- 049

lously curated by human experts (Khashabi et al., 050

2020; Ye et al., 2021; Wei et al., 2022; Wang 051

et al., 2022; Du et al., 2022). Alternatively, some 052

approaches (Wang et al., 2023b; Taori et al., 2023; 053

Xu et al., 2023; Li et al., 2023a) leverage more 054

capable teacher LLMs to reduce the labor-intensive 055

process of data generation. For example, the Al- 056

paca (Taori et al., 2023) utilizes self-instruct (Wang 057

et al., 2023b) to automatically generate diverse 058

instruction tuning datasets. Building on this trend 059

and the widely acknowledged notion that more 060

complicated instructions are more beneficial for 061

LLMs’ instruction-following ability (Xu et al., 062

2023; Zhao et al., 2024), numerous strategies (Zhao 063

et al., 2024; Wu et al., 2024; Ding et al., 2023; Li 064

et al., 2023a; Liu et al., 2023a; Li et al., 2024c,b; 065
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Guo et al., 2024; Xu et al., 2024a) have been066

proposed to further diversify and complexify the067

instruction-response pairs, utilizing teacher models068

like ChatGPT-3.5 and GPT-4 (OpenAI, 2023).069

Despite the enhanced performance in instruction-070

following ability offered by these existing methods,071

they face Two major issues: (1) They heavily rely072

on teacher models or human annotators to rewrite073

instruction-response pairs, which highlights the074

resource-intensive nature and their constraints on075

scalability; (2) They only increase the complexity076

within the scope of a single instruction, which lim-077

its the potential improvement in LLMs’ instruction-078

following capabilities. Motivated by the Dense and079

Aligned Captions (Doveh et al., 2023) proposed for080

vision language (VL) models and the mosaic data081

augmentation proposed in Yolov4 (Bochkovskiy082

et al., 2020), we hypothesize that denser instruc-083

tions benefit the LLM alignment, i.e. the process of084

instruction tuning should not be constrained by one085

single instruction but be extended to follow several086

instructions at a time, which represents a higher087

level of instruction-following ability that is ben-088

eficial to the training process. A similar concept089

during the inference phase is proposed by batch090

prompting (Cheng et al., 2023; Lin et al., 2024),091

where multiple samples are grouped in one batch al-092

lowing LLMs to generate multiple responses at one093

inference, while its performances are sub-optimal.094

As orthogonal to the existing instruction tuning095

methods, we introduce Mosaic Instruction Tuning096

(Mosaic-IT), an innovative and model/human-free097

compositional approach that augments existing098

instruction tuning datasets, which concurrently099

improves the LLM performances and lowers the100

training expenses. As shown in Figure 1, in our101

method, multiple instructions and corresponding re-102

sponses from the original dataset are concatenated103

into a single sample for fine-tuning, simulating the104

multi-instruction-following scenarios at no cost.105

Without applying any additional strategies, we106

term this simple process as the Primary Mosaic107

Strategy. We posit that this mosaic strategy108

process significantly improves the complexity and109

density of the original instructions, learning from110

which directly benefits LLMs in their instruction-111

following ability. Additionally, this method offers112

the advantage of directly reducing the total count of113

instruction-response pairs, thereby cutting down on114

training iterations, and accelerating the training pro-115

cess significantly by approximately 80% reduction.116

Though effective, the Primary Mosaic strategy117

constrains LLMs in responding to the instructions 118

in the original order and format, potentially lim- 119

iting its further potential. Thus we further intro- 120

duce three Advanced Mosaic Strategies aimed at 121

enhancing the diversity and complexity of the mo- 122

saicked instruction-response pairs: Format, Per- 123

mute, and Maskout, in which an additional meta- 124

instruction is provided as a higher-level guideline 125

for LLMs to follow the given instructions. Illustra- 126

tive examples are presented in Figure 2. Specifi- 127

cally, in the Format strategy, some arbitrary pars- 128

ing formats will be defined in the meta-instruction 129

thus forcing LLMs to follow these formats, which 130

notably enhances the LLMs’ capacity to follow 131

formats. In the Permutation strategy, an arbitrary 132

permuted order is defined thus forcing LLMs to 133

respond in a desired order. In the Maskout strat- 134

egy, some arbitrary instructions are sampled which 135

meta-instruction forces LLMs to ignore. Moreover, 136

the use of these Advanced strategies not only boosts 137

the performance in several evaluation metrics but 138

also keeps our method free of additional costs. 139

In summary, our primary contributions can be 140

illustrated as follows: 141

• We propose the first cost-free data Synthesis 142

method, Mosaic-IT, which extends existing in- 143

struction tuning from handling one single instruc- 144

tion at a time to following multiple instructions 145

in diverse forms. This approach significantly en- 146

hances the potential utilization of existing high- 147

quality datasets. 148

• Mosaic-IT improves the instruction-following 149

abilities of LLMs compared to training on origi- 150

nal data, as evidenced by consistent performance 151

gains across a wide range of benchmarks, model 152

families, and datasets, demonstrating strong gen- 153

eralization capabilities. 154

• Mosaic-IT substantially increases training effi- 155

ciency by reducing the required number of train- 156

ing iterations, resulting in an approximate 80% 157

reduction in training time, as confirmed by ex- 158

perimental results. 159

2 Methodology 160

2.1 Preliminaries 161

The instruction tuning dataset, defined as D, 162

consists of n data samples, each represented by 163

a triplet (Instruction, Input,Response). For sim- 164

plicity, we define x = map(Instruction, Input) as 165

the unified instruction, and y as the corresponding 166
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Figure 2: Illustrative examples of Mosaic-IT. Given 3 simple data instances, our method concatenates them into
data samples with diverse forms. Texts in red represent the meta-instructions that define the formats or orders
for LLMs to respond. Texts in yellow are major response differences of each strategy. The Primary Strategy only
concatenates data. The Format Strategy requires LLMs to respond in predefined formats. The Permute Strategy
requires LLMs to respond in specific orders and the Maskout Strategy requires LLMs to ignore some instructions.

response. Therefore, D can be represented as167

(x1, y1), (x2, y2), . . . , (xn, yn), denoting a set of168

n instruction-response pairs. Let pθ(·) denote169

the LLMs to be trained, with parameters θ. In170

the instruction tuning setting, pθ is typically171

fine-tuned by maximizing the following objective172

on each data (xi, yi), yi,j represents the jth token173

of response yi, yi,<j represents the tokens prior to174

yi,j , and li represents the token length of yi,j :175

max
θ

li∑
j=1

log pθ (yi,j |xi, yi,<j) , (1)176

177 2.2 Mosaic-IT178

Motivated by the success of the existing data-179

centric instruction tuning methods, a line of180

approaches is proposed to further enhance the181

instruction-response pairs utilizing extra teacher182

LLMs (Xu et al., 2024a). Though effective, all ex-183

isting methods for instruction tuning restrict train-184

ing samples to just one instruction, which severely185

limits the potential of the existing high-quality data186

and the instruction-following ability of the mod-187

els to be trained. Motivated by the Dense and188

Aligned Captions (Doveh et al., 2023) for VL,189

we hypothesize that denser instructions benefit the190

LLM alignment, thus the process of instruction 191

tuning should not be constrained by one single in- 192

struction but be extended to follow several instruc- 193

tions at a time, which represents a higher level of 194

instruction-following ability that is beneficial to the 195

training process. Thus, we propose the cost-free 196

data synthesis method, Mosaic Instruction Tuning 197

(Mosaic-IT) as shown in Figure 1. 198

2.2.1 Primary Mosaic strategy 199

Exploring the concept of concatenating random 200

instruction-response pairs into a unified instruction- 201

response pair for training remains largely unex- 202

plored. The primary challenge lies in crafting a 203

coherent overall instruction and obtaining its cor- 204

responding response. Most existing methods uti- 205

lize a strong teacher model to rewrite the instruc- 206

tions with prompting techniques and generate cor- 207

responding responses, introducing more cost by 208

actually re-generating new data samples. To har- 209

ness the full potential of existing data rather than 210

directly discarding them, we introduce a simple 211

cost-free compositional approach as shown in Fig- 212

ure 2, in which instructions are randomly concate- 213

nated with serial digits to form an overall instruc- 214
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tion. The concatenated overall instruction is de-215

noted as [x1, ..., xk], with the corresponding over-216

all response concatenated as [y1, ..., yk]. Here, k217

denotes the number of original data samples inte-218

grated into each overall sample.219

In this framework, the fundamental instruction-220

following capability is triggered by the existing221

instruction-response pairs, and the mosaic strategy222

extends this capability to a higher level in which223

LLMs are forced to follow multiple instructions. It224

represents a much more complicated scenario that225

benefits LLMs compared with traditional single-226

task instructions. Consequently, the objective func-227

tion for each concatenated overall data sample can228

be formulated as follows:229

max
θ

l∑
j=1

log pθ ([y1, ..., yk]j |[x1, ..., xk], [y1, ..., yk]<j) ,

(2)

230

231 Here, [y1, ..., yk]j denotes the jth token of the232

overall response, [y1, ..., yk]<j denotes the tokens233

prior to jth token, and l represents the length of234

overall response. This formulation encapsulates235

the essence of our approach, optimizing the model236

parameters θ to maximize the likelihood of generat-237

ing the correct sequence of responses for the given238

overall instruction.239

2.2.2 Advanced Mosaic Strategies240

Though effective, this primary mosaic strategy con-241

strains LLMs in responding to the instructions242

with the original order and format, potentially lim-243

iting its generalization and practical usage. In244

our method, the instructions and corresponding re-245

sponses from the original dataset can be viewed as246

atomic components and our method randomly com-247

bines these elements together to form new instruc-248

tions and responses. This nature allows us to further249

complicate this process with fancier strategies thus250

forcing LLMs to follow more complicated overall251

instructions. Hence, we propose three Advanced252

Mosaic Strategies to complicate and diversify the253

mosaicked samples as shown in Figure 2, includ-254

ing Format, Permute, and Maskout, with meta-255

instructions guiding them. These strategies are256

still purely rule-based (Li et al., 2024a) and do not257

incorporate the additional human/LLM generation.258

Format In the Format strategy, some arbitrary259

formats are defined in the meta-instruction to force260

LLMs to follow these formats in the response. The261

formats mainly contain two categories: 1) Serial262

Digit Format and (2) Response Parsing Format.263

The serial digits establish the initial instruction264

order that guides LLMs to follow sequentially. 265

We manually define 10 types of serial digit for- 266

mat, which will be randomly sampled during each 267

mosaic process. For response parsing, we sim- 268

ulate the scenario where the users try to extract 269

specific information from the responses. We de- 270

fine 27 types of parsing brackets and 17 types of 271

parsing text pairs, which will be randomly sam- 272

pled and assembled during each mosaic process. 273

Examples can be found in Appendix G, which 274

can be easily extended for customized training 275

settings. We denote responses with specific for- 276

mats as y′i = wrap(yi, sformat), and l as the token 277

length of the overall response. An additional meta- 278

instruction sformat specifying the required format 279

will be included in the overall instruction. Thus, 280

the objective function for each mosaic data point: 281

max
θ

l∑
j=1

log pθ
(
[y′

1, ..., y
′
k]j

∣∣∣[x1, (3) 282

x2, ..., xk, sformat], [y
′
1, ..., y

′
k]<j

)
283

Permute and Maskout Building upon the For- 284

mat strategy, we further introduce two strategies 285

for our Mosaic-IT, Permutation and Maskout. 286

In the Permute strategy, an arbitrary permuted 287

order is defined in the meta-instructions, forcing 288

LLMs to follow. Moreover, several high-level rules 289

are defined to ensure the complexity and diver- 290

sity of meta-instructions, e.g., forcing LLMs to 291

respond to each instruction in the randomly gen- 292

erated permutation list, forcing LLMs to respond 293

in the alphabetical order of each instruction, forc- 294

ing LLMs to respond according to the length of 295

instructions, etc. The detailed rule types and de- 296

scriptions are depicted in Appendix G. These vari- 297

ous meta-instructions not only provide higher-level 298

guidelines for LLMs to follow multiple instruc- 299

tions but also inherently enhance the instruction 300

perception ability of LLMs. In our settings, LLMs 301

are required to generate responses selectively con- 302

ditioned on some critical parts of the overall in- 303

struction, forcing them to first understand the for- 304

mats and other requirements, indicating a more 305

comprehensive understanding of the context given. 306

The meta-instruction is denoted as spermute and 307

is included in the overall instruction. The per- 308

muted response list is denoted as [y′1′ , ..., y
′
k′ ] = 309

Permute([y′1, ..., y
′
k], spermute). Thus the objec- 310

tive function can be formulated as below: 311
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max
θ

l∑
j=1

log pθ
(
[y′

1′ , ..., y
′
k′ ]j

∣∣∣[x1, (4)312

x2, ..., xk, sformat, spermute], [y
′
1′ , ..., y

′
k′ ]<j

)
313

In the Maskout strategy, some arbitrary instruc-314

tions are selected in the meta-instructions forcing315

LLMs to ignore them. Several high-level rules are316

also defined similarly to the permute strategy, in-317

cluding forcing LLMs to ignore the instructions318

with given random digits, forcing LLMs to ig-319

nore the longest one/several instructions, forcing320

LLMs to ignore odd-numbered instructions, etc.321

The details are provided in Appendix G. Simi-322

larly, the meta-instruction is denoted as smaskout323

and the response list is denoted as [y′1, ..., y
′
m] =324

Maskout([y′1, ..., y
′
k], smaskout), where m is the325

count of responses after masking out. Thus the326

objective function can be formulated as below:327

max
θ

l∑
j=1

log pθ
(
[y′

1, ..., y
′
m]j

∣∣∣[x1, (5)328

x2, ..., xk, sformat, smaskout], [y
′
1, ..., y

′
m]<j

)
329

It’s important to note that our mosaic strategies330

entail no supervision cost, and the predefined rules331

are flexible and have the potential for further exten-332

sion. We utilize the version with three Advanced333

strategies as our default Mosaic-IT.334

How to decide the Number of Instructions k:335

Number of Instructions denotes the number of orig-336

inal data samples that are integrated into an overall337

sample. In addition to the detailed mosaic strategies338

being used, this count also dramatically affects the339

effect of Mosaic-IT. Our experiments reveal that340

larger and more diverse numbers of instructions341

will benefit LLM training. By default, we set the342

maximum number of instructions as kmax = 10,343

and randomly sample an integer that is smaller or344

equal to kmax under a uniform distribution. If the345

number causes the data sample to be longer than346

the max length, it will be automatically reduced to347

the max number which remains the sample length348

within the limits.349

3 Experimental Results350

3.1 Main Results351

In this section, we present the evaluation results352

comparing our methods with the baseline meth-353

ods on 6 baseline models (Mistral-7B (Jiang et al.,354

2023), Llama2-7B (Touvron et al., 2023b), Llama2- 355

13B, Llama-3-8B (Dubey et al., 2024), Phi-3 (Ab- 356

din et al., 2024), Gemma2-2B (Team et al., 2024)) 357

and 4 instruction tuning datasets (Alpaca-GPT4 358

(Peng et al., 2023), Alpaca (Taori et al., 2023), 359

WizardLM-70k (Xu et al., 2023)), Magpie (Xu 360

et al., 2024b), on 5 commonly used evaluation met- 361

rics and additional Human Evaluation. Detailed 362

experimental setup and descriptions of evaluation 363

metrics can be found in Appendix B. 364

Table 1 shows the results on 2 general evaluation 365

settings (Pair-Wise Comparison and Open LLM 366

leaderboard). Pair-wise Winning Score indicates 367

the result directly comparing our models with the 368

corresponding baseline models, which is calculated 369

as (Num(Win)−Num(Lose))/Num(All) +1. These 370

values that are greater than 1.0 represent better 371

responses generated by our models. The perfor- 372

mances on the Huggingface Open LLM Leader- 373

board are also presented, and we bold the greater 374

average values for each comparison. The consistent 375

outperforming results on different base models and 376

datasets represent the effectiveness and robustness 377

of our methods. Results on more advanced 378

baseline models and datasets can be found in Table 379

2. Our method shows consistent improvements 380

compared with baseline models. The performance 381

gains in pair-wise comparison indicate our method 382

helps LLMs generate more detailed and accurate 383

responses, and the performance gains in the open 384

leaderboard indicate our method helps alleviate 385

harm to the intrinsic capabilities of base LLMs. 386

To better understand how our method improves 387

the instruction-following abilities of LLMs, we 388

further compare the performance on the other 3 389

benchmarks for fine-grained analysis as shown in 390

Table 2. On the Alpaca Eval 2 benchmark, our 391

method has a consistent improvement with or with- 392

out the Length Control (LC), indicating that the im- 393

provement of response qualities does not directly 394

originate from the length of responses. On the MT- 395

Bench, the 1-round scores of our method are con- 396

sistently higher, while the 2-round scores slightly 397

fluctuate, indicating that our method mainly im- 398

proves the response quality for single-round con- 399

versations since our meta instructions only focus 400

on single-round scenarios in this version. On the 401

IF Eval benchmark, our method consistently im- 402

proves the performances on different settings, both 403

Prompt-level and Instruction-level. Compared with 404

the previous benchmarks, IF Eval mainly focuses 405

on the constraint-following ability of LLMs. The 406
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Model Dataset Method Pair-wise ↑ Huggingface Open LLM Leaderboard ↑
Winning Score Average ARC HellaSwag MMLU TruthfulQA

Mistral-7B

Alpaca-GPT4 Baseline 1.000 59.70 55.03 78.87 56.01 48.88
Mosaic-IT 1.349 63.65 59.04 81.85 60.09 53.62

Alpaca Baseline 1.000 55.15 51.96 74.61 52.85 41.20
Mosaic-IT 1.390 58.86 56.23 79.57 57.06 42.58

Wizard-70k Baseline 1.000 57.86 51.88 77.93 53.76 47.89
Mosaic-IT 1.161 61.11 57.85 82.13 57.42 47.08

Llama2-7B

Alpaca-GPT4 Baseline 1.000 58.71 54.69 80.05 47.89 52.21
Mosaic-IT 1.073 58.84 54.18 80.54 47.92 52.70

Alpaca Baseline 1.000 55.25 54.35 78.65 47.02 40.98
Mosaic-IT 1.096 55.32 53.75 78.65 46.88 41.98

Wizard-70k Baseline 1.000 57.09 54.18 79.25 46.93 48.02
Mosaic-IT 1.197 57.41 54.69 79.69 48.11 47.13

Llama2-13B

Alpaca-GPT4 Baseline 1.000 61.47 58.70 83.12 54.13 49.92
Mosaic-IT 1.110 63.26 58.87 83.54 55.75 54.87

Alpaca Baseline 1.000 57.63 57.25 81.23 54.13 37.91
Mosaic-IT 1.046 58.80 56.57 81.79 54.28 52.55

Wizard-70k Baseline 1.000 61.24 57.04 83.39 55.76 48.78
Mosaic-IT 1.078 61.50 58.70 83.69 56.44 47.18

Table 1: The performance comparison on the Pair-wise Comparison Winning Score and the Open LLM Leaderboard,
on 3 different base models and 3 different instruction tuning datasets.

Model Dataset Method Pair-wise ↑ Open LLM ↑ Alpaca Eval 2 ↑ MT-Bench ↑ IF Eval ↑
Score Average Rate (LC) Rate 1-round 2-round P(L) I(L)

Llama-3-8B Magpie Baseline 1.000 56.15 9.22 13.74 8.10 7.08 35.67 47.72
Mosaic-IT 1.133 60.13 12.23 16.05 8.36 7.49 40.67 52.76

Phi-3 Magpie Baseline 1.000 62.90 13.82 17.68 7.78 6.42 44.36 55.52
Mosaic-IT 1.014 63.54 14.04 17.67 7.89 6.16 50.83 62.35

Gemma2-2B Magpie Baseline 1.000 46.37 5.35 7.77 4.57 3.23 21.81 32.49
Mosaic-IT 1.032 48.36 5.66 8.54 5.16 3.96 22.18 34.77

Mistral 7B
Alpaca-GPT4 Baseline 1.000 59.70 3.98 7.28 6.44 5.26 35.86 45.92

Mosaic-IT 1.349 63.65 5.00 7.81 7.11 4.69 38.08 50.23

Wizard-70k Baseline 1.000 57.86 4.13 6.46 6.21 4.70 41.96 53.00
Mosaic-IT 1.161 61.11 4.44 7.56 6.95 4.32 45.47 56.47

Table 2: The performance comparison across multiple model families and datasets on five evaluation metrics.
Rate(LC) in Alpaca Eval represents length-controlled win rates. In IF Eval, P(L) and I(L) represent Prompt-level
and Instruction-level accuracy in the Loose setting.

consistent improvement in this benchmark repre-407

sents that our method not only improves the re-408

sponse qualities of the LLMs but also improves409

their controllability regarding formats.410

Further Human Evaluations are conducted on411

Mistral-7B with Alpaca-GPT4 and WizardLM412

dataset. For the comparison on (1) Alpaca-GPT4:413

the model using Mosaic-IT wins on 68 out of 100414

instruction, ties on 3, and losses on 29 instructions;415

on (2) WizardLM: the model using Mosaic-IT wins416

on 63 out of 100 instruction, ties on 6, and losses417

on 31 instructions. This human evaluation also418

further verifies the effectiveness of our Mosaic-IT.419

To conclude, our Mosaic-IT shows consistent im-420

provement in instruction-following and constrain-421

following ability and response quality with a reduc-422

tion of approximately 80% of the training time cost. 423

Given that our method is a cost-free data synthesis 424

technique that does not rely on any additional hu- 425

man/LLM generation, the observed improvements 426

are remarkable. 427

3.2 Ablation Studies 428

Detailed ablations are in Appendix C. 429

Ablation on Mosaic Strategies investigates 430

how different mosaic strategies affect LLM perfor- 431

mances. We find out that further implementing Ad- 432

vanced Strategies, (Format, Permute, Maskout), im- 433

proves LLM performance as they largely diversify 434

and complicate the instructions only implementing 435

Primary Strategy. Ablation on the Max Number 436

of Instructions investigates the trend between the 437

number of instructions that are concatenated to- 438
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gether and the LLMs’ performances. We find out439

that in the uniform distribution setting, more of440

the instructions are concatenated together, as this441

process makes the concatenated instruction com-442

plex. Ablation on the Distribution of Number443

of Instructions investigates how different distribu-444

tions affect the LLMs’ performance. It is revealed445

that except for the maximum number of instruc-446

tions concatenated together, the distribution is also447

important. Ablation on Semantic Grouping inves-448

tigates how semantic grouping, i.e., group instruc-449

tions with similar semantic meaning rather than450

pure random grouping, affects performance. We451

show that semantic grouping has its own benefits452

while random selection is much more convenient.453

4 Further Discussion454

4.1 Improving Efficiency455

One of the benefits of our method is the efficiency456

of the training process. Given an existing dataset,457

our mosaic processes largely decrease the number458

of total overall instructions and the total number459

of gradient descents, leading to a reduction in the460

training process. The detailed comparison is shown461

in Table 3, which is based on the Mistral-7B model462

on the Alpaca-GPT4 dataset. The time is calculated463

based on four NVIDIA A100 Graphic Cards. As464

shown, our method greatly decreases the training465

time to approximately 16% to 25% while achieving466

better performances, especially when there are mo-467

saic samples with larger permutation counts. Please468

note that the time reduction is ratio-based, when469

larger datasets or models are trained, the absolute470

time reduction gap between baseline methods and471

our methods will be much more obvious1.472

4.2 Alleviating Memorizing473

In the original instruction tuning process, each474

data sample will be trained several times for475

LLMs without changes to the instructions and476

responses. This training process poses risks to the477

potential memorizing effects on training samples,478

which can be partially indicated by the “stair-like”479

training loss curves as shown in Figure 3. In480

the figure, all the training settings are kept the481

same between the baseline models and Mosaic-IT482

models, including the Learning Rate, Warm-up483

Ratio, Learning Rate Schedule (Cosine), Batch484

Size, etc. For the baseline methods, the training485

1For example, fine-tuning Llama-3-8B on 1 million data
for 2 epochs requires approximately 140 hours, while our
method can reduce the time to approximately 20 hours.

loss hardly decreases within each epoch of training 486

but drops dramatically when the LLMs meet the 487

same training samples again, which indicates a 488

potential memorizing effect of training samples 489

and potential overfitting. However, when utilizing 490

our method, the random mosaics of original 491

instructions with diverse and complex meta- 492

instructions largely diversify the overall training 493

instructions. Although each original data sample 494

will still be seen by LLMs several times during 495

training, the overall context varies dramatically 496

as each original sample is only an atomic element 497

of the overall mosaic sample, indicating that there 498

will be no identical overall instructions during the 499

whole training process. Thus this augmentation 500

largely alleviates the potential memorizing and 501

overfitting problems as shown in the figure, where 502

the training loss decreases smoothly, representing 503

the gradual learning process. 504

4.3 Why It Works 505

Detailed analysis are in Appendix A. 506

4.3.1 Quantitive Analysis 507

Compared with the original instruction tuning, our 508

Mosaic-IT largely increases the complexity and 509

difficulty of the original instructions. InsTag (Lu 510

et al., 2023) proposes a ChatGPT-based method 511

(Number of InsTag), while Cherry (Li et al., 512

2024e) proposes a perplexity-based Instrutcion- 513

Following Difficulty (IFD) score. To quantita- 514

tively evaluate the difficulty and complexity of 515

instruction-tuning data, we compute these two met- 516

rics on the Alpaca and WizardLM70k datasets to 517

verify the effectiveness of our method in improving 518

the difficulty/complexity as shown in Table 5, the 519

large increase of our method on Number of In- 520

sTag (2.62 to 10.93) and IFD scores (0.60 to 0.76) 521

verifies our assumption that Mosaic-IT benefits 522

LLMs by diversify and complicate the original 523

instructions. This is a widely accepted manner for 524

data synthesis (Zhao et al., 2024; Wu et al., 2024; 525

Ding et al., 2023; Li et al., 2023a; Liu et al., 2023a; 526

Li et al., 2024c; Guo et al., 2024), while our method 527

accomplishes it in a cost-free manner. 528

4.3.2 Qualitative Analysis 529

Generally, following multiple instructions at the 530

same time is difficult for most of the existing LLMs, 531

especially when more constraints are required like 532

specific formats or orders. As shown in Table 4, 533

even the powerful GPT4 model does not do well 534
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Settings Baseline Fix Exponential Pareto Log-normal Logistic Uni-2 Uni-4 Uni-6 Uni-8 Uni-10 Uni-12

Time (min) 827 121 129 133 133 143 716 426 305 245 202 173
Time Ratio 100.0% 14.6% 15.6% 16.1% 16.1% 17.3% 86.6% 51.5% 36.9% 29.6% 24.4% 20.9%

Winning Score 1.000 0.982 0.995 1.417 1.431 1.417 0.989 1.142 1.303 1.294 1.349 1.376

Table 3: The training time comparison of different settings, and the pair-wise winning scores are also provided for
better illustration. “Uni-2” represents uniform distribution with max count as 2. Mosaic-IT reduces the training
time to 16%− 25% while achieving better performance.

Figure 3: The training loss curve comparisons between the original instruction tuning process and our Mosaic-IT
with w datasets on (a) Mistral-7B, (b) Llama2-7B, and (c) Llama2-13B. The “stair-like” loss curves for the
original training process indicate potential memorizing effects, while our loss curves are smoother. All the
training settings are kept the same between the baseline models and Mosaic-IT models, including the Learning Rate,
Warm-up Ratio, Learning Rate Schedule (Cosine), Batch Size, etc.

in this condition. Thus we regard the capability to535

follow multiple instructions at the same time as a536

higher level of instruction-following capabilities.537

Previous methods train LLMs to produce a re-538

sponse for a single instruction or query. Instead,539

our method produces compositional data synthe-540

sis to train LLMs to generate multiple responses541

for multiple instructions in diverse forms (e.g.,542

order, mask, format) specified by different meta-543

instructions. It also enforces LLMs to partition544

the input context correctly and manage the in-545

terference and dependencies among multiple in-546

structions. These are critical to developing and547

improving the compositional reasoning capabilities548

of LLMs, which have not been covered by main-549

stream instruction-tuning frameworks.550

4.3.3 Qualitative Examples551

To better understand the differences between the552

responses generated by the baseline model and the553

Mosaic-IT model, a pair of qualitative examples are554

presented in Figure 4 (baseline model) and Figure555

5 (Mosaic-IT model). The example instruction556

is selected from the WizardLM test sets and the557

models are Mistral-7B trained on Alpaca-GPT4558

with or without our method.559

Some of the real-world instructions can be com-560

plex and hard to answer all at once but require561

LLMs to “decompose” the original overall instruc-562

tion into pieces to respond. Due to the lack of this 563

kind of difficult data in the training set, the capa- 564

bility of most LLMs is largely restricted as shown 565

in Figure 4. The baseline LLM directly ignores 566

the “sub-query” of explaining “protocols and stan- 567

dards such as TCP/IP, HTTP, FTP, DNS, DHCP, 568

and ARP”. On the contrary, as a cost-free data syn- 569

thesis method, Mosaic-IT simulates this kind of 570

instruction by using original easy instructions, thus 571

equipping LLMs with the capability to respond to 572

these difficult instructions without ignoring some 573

parts of it, as shown in Figure 5. 574

5 Conclusion 575

We introduce Mosaic Instruction Tuning (Mosaic- 576

IT), a novel, human/model-free method to en- 577

hance instruction tuning for LLMs. By concate- 578

nating multiple instruction-response samples and 579

using higher-level meta-instructions, Mosaic-IT im- 580

proves multi-step and format-following capabilities. 581

Our evaluations show superior performance and 582

an 80% reduction in training costs compared to 583

the original methods. Mosaic-IT’s simplicity and 584

efficiency make it a scalable solution for improv- 585

ing LLMs without extensive human intervention 586

or resource-intensive teacher models. Our results 587

highlight the potential of innovative data synthesis 588

techniques in advancing LLM capabilities. 589
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Limitations590

The potential limitations of our work: (1) Cur-591

rently, three Advanced Mosaic Strategies with592

corresponding high-level rules are proposed and593

utilized in our method, however, we believe594

more strategies and predefined rules can be595

further introduced. (2) The optimal distribution596

of the number of instructions for the mosaic597

process still needs further justification in future598

studies. (3) It is unknown whether the inclusion599

of extra models or careful curation/selection of600

instructions for concatenation will further improve601

the performance of Mosaic-IT largely.602
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A Why It Works1251

A.1 Preliminary Experiments: Performance1252

Degradation1253

The motivation of our Mosaic-IT is also rooted1254

in the observation that when handling multiple1255

instructions simultaneously, a performance1256

degradation will incurred for even strong LLMs1257

like GPT-4-turbo. While LLMs generally perform1258

well when responding to single instructions,1259

their capability to follow multiple instructions at1260

once tends to decline noticeably. BatchPrompt1261

has shown the uncertainty when LLMs are1262

requested to answer multiple formatted questions1263

at one time. Moreover, in some cases, e.g for1264

general open-domain instructions, LLMs might1265

directly ignore some of the instructions, especially1266

when the LLMs are required to respond to the1267

instructions in a random pre-defined order, which1268

is exactly simulating our Permute strategy.1269

To quantitatively analyze this phenomenon, ex-1270

periments using GPT-3.5-turbo and GPT-4-turbo1271

are conducted on the WizardLM test set. Specifi-1272

cally, we compare the models’ performance when1273

responding to multiple instructions concurrently1274

versus responding to a single instruction at each1275

time, by utilizing LLM-based Pair-Wise compari-1276

son, as shown in Table 4. All the win rates are lower1277

than 1.0, demonstrating a clear and significant re-1278

duction in response quality when these models are1279

required to respond to multiple instructions at one1280

time. Moreover, the possibility of missing instruc-1281

tions (Miss Rate) increases further when they are1282

required to respond to the instructions in a prede-1283

fined random order rather than a sequential order.1284

These results clearly demonstrate the difficulties1285

of following several instructions at a time and why1286

it can be regarded as a higher level of instruction-1287

following capability.1288

A.2 Why It Works1289

Mosaic-IT trains LLMs to follow meta-
instructions for compositional reasoning.

1290

Previous methods train LLMs to produce a re-1291

sponse for a single instruction or query. Instead,1292

our method produces a compositional data syn-1293

thesis method to train LLMs to generate multiple1294

responses for multiple instructions in diverse forms1295

(e.g., order, mask, format) specified by different1296

meta-instructions. It also enforces LLMs to par-1297

tition the input context correctly and manage the1298

interference and dependencies among multiple in- 1299

structions. These are critical to developing and 1300

improving the compositional reasoning capabilities 1301

of LLMs, which have not been covered by main- 1302

stream instruction-tuning frameworks. 1303

Mosaic-IT creates more challenging and com-
plex instructions to further improve LLMs’
instruction-following capabilities.

1304

Mosaic-IT’s composition of multiple instruc- 1305

tions and the diverse meta-instructions create more 1306

challenging and complex instruction-tuning data 1307

for LLMs. Moreover, since we do not rely on 1308

data synthesis using LLMs but solely apply some 1309

rules to existing data, the correctness and quality 1310

of the augmented data are guaranteed. As shown 1311

in Table 4, even powerful LLMs like GPT4 can not 1312

follow concatenated instructions. Besides, it has 1313

been widely accepted that such challenging and 1314

complex instructions improve LLMs’ instruction- 1315

following capability (Zhao et al., 2024; Wu et al., 1316

2024; Ding et al., 2023; Li et al., 2023a; Liu et al., 1317

2023a; Li et al., 2024c,b; Guo et al., 2024). Mosaic- 1318

IT follows this intuition by making the instruction 1319

more challenging and complex in order to improve 1320

LLMs. Different from previous methods relying 1321

on humans or stronger teacher LLMs to create the 1322

challenging samples, Mosaic-IT does not require 1323

any humans/models to create the augmentations. 1324

To quantitatively evaluate the difficulty and com- 1325

plexity of instruction-tuning data, InsTag (Lu et al., 1326

2023) proposes a ChatGPT-based method (Number 1327

of InsTag), while Cherry (Li et al., 2024e) proposes 1328

a perplexity-based Instrutcion-Following Difficulty 1329

(IFD) score. We compute these two metrics on 1330

the Alpaca and WizardLM70k datasets to verify 1331

the effectiveness of our method in improving the 1332

difficulty/complexity: 1333

Number of InsTag: The number of InsTag is 1334

used to measure the complexity of the instructions. 1335

A larger value of the Number of InsTag indicates 1336

the intentions of the instruction are complex and 1337

benefit the LLM instruction tuning process. For 1338

the experiments below, we prompt GPT4o with the 1339

exact prompt provided in the paper to generate the 1340

Instags. As shown in Table 5, Mosaic-IT largely 1341

increases the average number of InsTag, indicating 1342

a large increase in instruction intention complexity, 1343

further leading to better performance. 1344

IFD score: IFD score is a perplexity-based met- 1345

ric used to evaluate the instruction-following diffi- 1346
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Pair-Wise (Multi vs. Single) 3 Instructions 5 Instructions 7 Instructions
Win Rate ↑ Miss Rate ↓ Win Rate ↑ Miss Rate ↓ Win Rate ↑ Miss Rate ↓

GPT-3.5-turbo (Sequential) 0.357 0.014 0.336 0.055 0.303 0.064
GPT-3.5-turbo (Random) 0.315 0.124 0.330 0.156 0.198 0.312

GPT-4-turbo (Sequential) 0.176 0.000 0.137 0.000 0.140 0.000
GPT-4-turbo (Random) 0.139 0.000 0.153 0.014 0.101 0.005

Table 4: Pair-wise win rate of performances when responding to multiple instructions concurrently versus
responding to a single instruction each time, and miss rate when responding to multiple instructions concurrently. “3
Instructions” represents the setting where 3 random instructions are concatenated together for inference. “Sequential”
and “Random” represents the setting where the models are asked to respond to each instruction sequentially, or in a
random pre-defined order.

culty of a given instruction-response pair. A higher1347

IFD score indicates that it is hard for the current1348

model to build a connection between the instruction1349

and the corresponding response, so it can be used1350

to select training data beneficial for LLM instruc-1351

tion tuning. For the experiments below, we utilized1352

the IFD score computed on GPT2. As shown in Ta-1353

ble 5, Mosaic-IT increases IFD scores, indicating1354

an increase in the instruction-following difficulty,1355

which leads to an improvement in performance.1356

Method Ins Tag IFD

Alpaca Wizard-70k Alpaca Wizard-70k

Original 2.62 4.20 0.60 0.67
Mosaic-IT 9.75 10.93 0.76 0.79

Table 5: The comparison between the original dataset
and Mosaic-IT enhanced dataset with respect to the
Number of InsTag and the IFD score.

A.3 Qualitative Example1357

To better understand the differences between the1358

responses generated by the baseline model and the1359

Mosaic-IT model, a pair of qualitative examples are1360

presented in Figure 4 (baseline model) and Figure1361

5 (Mosaic-IT model). The example instruction1362

is selected from the WizardLM test sets and the1363

models are Mistral-7B trained on Alpaca-GPT41364

with or without our method.1365

Some of the real-world instructions can be com-1366

plex and hard to answer all at once but require1367

LLMs to “decompose” the original overall instruc-1368

tion into pieces to respond. Due to the lack of this1369

kind of difficult data in the training set, the capa-1370

bility of most LLMs is largely restricted as shown1371

in Figure 4. The baseline LLM directly ignores1372

the “sub-query” of explaining “protocols and stan-1373

dards such as TCP/IP, HTTP, FTP, DNS, DHCP,1374

and ARP”. On the contrary, as a cost-free data syn-1375

thesis method, Mosaic-IT simulates this kind of1376

instruction by using original easy instructions, thus 1377

equipping LLMs with the capability to respond to 1378

these difficult instructions without ignoring some 1379

parts of it, as shown in Figure 5. 1380

The consistent better performances on Alpaca 1381

Eval 2 with length controls show that the perfor- 1382

mance gains of Mosaic-IT do not purely originate 1383

from longer responses. On the contrary, Mosaic-IT 1384

actually makes the lengths of training data more 1385

diverse compared with the original data, e.g. some 1386

of the samples are the concatenation of only 1 origi- 1387

nal sample and some of them are the concatenation 1388

of 10 original samples. This ensures diverse gen- 1389

eration lengths according to the given instructions 1390

rather than dominated by the original length distri- 1391

bution. 1392
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Identify some of the main components of a computer network such as hosts, routers, switches, hubs,
links, and interfaces. Explain how they communicate and coordinate with each other using protocols
and standards such as TCP/IP, HTTP, FTP, DNS, DHCP, and ARP. Describe how data is transmitted and
received over a network using concepts such as packets, frames, headers, addresses, ports, sockets, and
checksums.

A computer network is composed of several components that work together to facilitate communication
and data transfer between devices. These components include:
1. Hosts: A host is a device that is connected to the network, such as a computer, smartphone, or printer.
Each host has a unique IP address, which is used to identify it on the network.
2. Routers: A router is a device that connects multiple networks together and directs traffic between them.
It uses protocols such as IP to route data packets to their destination.
3. Switches: A switch is a device that connects multiple devices together on a single network. It uses
MAC addresses to direct data packets to their destination.
4. Hubs: A hub is a device that connects multiple devices together on a single network. It broadcasts data
packets to all connected devices, which allows them to communicate with each other.
5. Links: A link is the physical connection between two devices on a network. It can be a cable, a wireless
connection, or a combination of both.
6. Interfaces: An interface is the part of a device that connects it to the network. It can be a network card,
a USB port, or a wireless card.

All of these components communicate and coordinate with each other using protocols and standards
such as TCP/IP, HTTP, FTP, DNS, DHCP, and ARP. These protocols define how data is transmitted and
received over a network, how devices are addressed, and how traffic is routed.
Data is transmitted over a network in packets or frames. Each packet or frame contains a header,
which includes information such as the destination IP address, the source IP address, and the type
of data being transmitted. The data is then transmitted over the network, and the receiving device
uses the information in the header to identify the data and direct it to the appropriate application or program.

In summary, a computer network is composed of several components that work together to facilitate
communication and data transfer. These components communicate and coordinate with each other using
protocols and standards, and data is transmitted over the network in packets or frames, using headers to
identify the destination, source, and type of data.

Figure 4: An example from the WizardLM test set with the response generated by the Baseline model.
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A computer network is made up of several components that work together to facilitate communication
and data transfer between devices. Some of the main components include:
1. Hosts: These are the devices that are connected to the network and use its resources, such as computers,
printers, and servers.
2. Routers: Routers are devices that direct traffic between networks, and are used to connect multiple
networks together.
3. Switches: Switches are used to direct traffic within a network, and are used to connect multiple devices
together on a single network.
4. Hubs: Hubs are devices that connect multiple devices together on a single network, and are used to
distribute data to multiple devices at once.
5. Links: Links are the physical connections between devices on a network, such as Ethernet cables or
wireless connections.
6. Interfaces: Interfaces are the points of connection between the network and the devices on it, such as
network cards or wireless adapters.

For these components to communicate and coordinate with each other, they use a variety of protocols and
standards. Protocols are sets of rules that dictate how data is transmitted and received, while standards are
agreed-upon methods or formats that allow for interoperability between different systems. Some common
protocols and standards used in computer networking include:
- TCP/IP: This is a suite of protocols that is used to communicate between devices on a network. It
includes protocols for addressing, routing, and transporting data.
- HTTP: This is a protocol used for accessing and transferring data over the web. It is used to communicate
between web servers and clients.
- FTP: This is a protocol used for transferring files over a network. It is used to communicate between
FTP servers and clients.
- DNS: This is a protocol used for translating domain names to IP addresses. It is used to coordinate
communication between devices on a network.
- DHCP: This is a protocol used for assigning IP addresses to devices on a network. It is used to coordinate
communication between devices on a network.
- ARP: This is a protocol used for finding the MAC address of a device on a network. It is used to
coordinate communication between devices on a network.

When data is transmitted over a network, it is broken down into small packets, each of which contains
information about where it needs to go and what it contains. These packets are sent over the network,
hopping from one device to the next until they reach their destination. At each hop, the device examines
the packet’s header to see where it needs to go next, and then forwards it along the appropriate link.
Once the packet reaches its destination, the receiving device examines the header to see if it is the intended
recipient. If it is, the device will extract the data from the packet and use it, otherwise, the packet will be
discarded.
To ensure that the data in the packets is not corrupted during transmission, checksums are used. A
checksum is a mathematical calculation performed on the data in the packet, which produces a value that
can be used to verify that the data has not been altered during transmission. If the checksum of the data
in a packet is incorrect when it arrives at its destination, it is discarded, and the sender is notified of the error.

In summary, data is transmitted over a network by being broken down into small packets, each of which
contains information about where it needs to go and what it contains. These packets are sent hopping
from one device to the next, using a variety of protocols and standards to coordinate their transmission
and reception. Checksums are used to ensure that the data in the packets has not been corrupted during
transmission, and any errors are detected and corrected.

Figure 5: An example from the WizardLM test set with the response generated by the Mosaic-IT model.
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B Experimental Setup1393

B.1 Implementation Details1394

For the three base pre-trained models, Llama2-7B,1395

Llama2-13B (Touvron et al., 2023b), and Mistral-1396

7B (Jiang et al., 2023), we utilize the prompt and1397

code base from Vicuna (Chiang et al., 2023) and1398

flash attention (Dao et al., 2022). The overall train-1399

ing arguments are aligned with the common train-1400

ing configuration. The Adam optimizer (Kingma1401

and Ba, 2017) is utilized with the batch size of 1281402

and with the max token length of 2048. When train-1403

ing the baseline models Llama2-7B and Llama2-1404

13B, the maximum learning rate is set to 2× 10−51405

with the warmup rate as 0.03 for 3 epochs. When1406

training the baseline models on Mistral-7B, the1407

maximum learning rate is set to 1× 10−5 with the1408

warmup rate as 0.1 for 3 epochs. For the three mod-1409

els, Llama-3-8B (Dubey et al., 2024), Phi-3 (Abdin1410

et al., 2024), and Gemma2-2B (Team et al., 2024),1411

we utilize the code base from LLaMA-Factory1412

(Zheng et al., 2024b). The max token length is1413

set with 4096 following the modern settings and1414

we train the model for 2 epochs. Other parameters1415

are kept the same as the above.1416

When training with Mosaic-IT, we run the mo-1417

saic process n times for each experiment to simu-1418

late n epochs of training, n represents the number1419

of epochs trained on baseline models, to ensure1420

the alignment of overall data sample counts. Then1421

these augmented data are mixed together and used1422

for training 1 epoch while all other configurations1423

are kept the same as baselines.1424

B.2 Training Dataset1425

The Alpaca dataset (Taori et al., 2023) comprises1426

52, 000 instruction-following samples and is con-1427

structed utilizing the self-instruct paradigm (Wang1428

et al., 2023b). This dataset was produced by em-1429

ploying OpenAI’s text-davinci-003 model. Charac-1430

terized as a classical dataset with moderate quality1431

attributes, the Alpaca dataset serves as an initial1432

platform to validate our methodology. To further1433

substantiate our approach using a dataset of inher-1434

ently high quality, we also applied our method to1435

the Alpaca-GPT4 dataset (Peng et al., 2023), which1436

features responses generated by GPT4. The Wiz-1437

ardLM dataset (Xu et al., 2023) is also utilized in1438

our method, which contains 70, 000 samples cre-1439

ated by the evolution algorithm proposed by them.1440

With ChatGPT-3.5 utilized, the data quality on1441

WizardLM is largely guaranteed. The Vicuna 1M1442

dataset (Zheng et al., 2024a) is a large-scale dataset 1443

containing one million real-world conversations 1444

with 25 state-of-the-art LLMs, due to the computa- 1445

tion budget, 300k instances are randomly sampled 1446

for our experiments. Magpie dataset (Xu et al., 1447

2024b) is a most recent SOTA synthetic dataset 1448

with 300k samples. 1449

B.3 Evaluation Metrics 1450

Pair-wise Comparison by using powerful LLMs 1451

like GPT-4 is recently widely accepted and becom- 1452

ing a common practice (Touvron et al., 2023b; Chi- 1453

ang et al., 2023; Dettmers et al., 2023; Liu et al., 1454

2023b; Chiang and Lee, 2023). The evaluation of 1455

responses from LLMs, especially in open-domain 1456

contexts where definitive ground truth is hard to es- 1457

tablish, continues to be an intricate and evolving re- 1458

search domain. Recent studies, however, have indi- 1459

cated a notable alignment between GPT-4’s perfor- 1460

mance evaluations and human assessments (Zheng 1461

et al., 2023; Li et al., 2023c; Sottana et al., 2023), 1462

thereby establishing a credible foundation for this 1463

evaluative methodology. We adopted test instruc- 1464

tion sets from WizardLM (Xu et al., 2023), com- 1465

prising 218 diverse, human-curated instructions for 1466

pair-wise comparison. We directly follow the eval- 1467

uation framework proposed by (Chen et al., 2023; 1468

Li et al., 2024e), which evaluates responses on a 1469

scale spanning from 1 to 10 across multiple dimen- 1470

sions. To further address positional bias, as dis- 1471

cussed by (Ko et al., 2020; Wang et al., 2023a), the 1472

comparison is conducted in two distinct sequences, 1473

LLM1’s response first and then LLM2’s response 1474

first, ensuring a fair assessment of model perfor- 1475

mance. Evaluation outcomes are categorized into 1476

’win-tie-loss’ for each instruction. The detailed 1477

evaluation prompt is provided in Appendix H. 1478

Open LLM Leaderboard, employing the eval- 1479

uation framework from Eval Harness (Gao et al., 1480

2021), offers a detailed and systematic approach 1481

to assessing the capabilities of generative lan- 1482

guage models through a set of diverse evaluation 1483

tasks. This methodology zeroes in on four piv- 1484

otal benchmarks: ARC (Clark et al., 2018), Hel- 1485

laSwag (Zellers et al., 2019), MMLU (Hendrycks 1486

et al., 2021), and TruthfulQA (Lin et al., 2022). 1487

These benchmarks collectively provide a compre- 1488

hensive evaluation of the models’ reasoning abili- 1489

ties, their grasp of common-sense knowledge, and 1490

their accuracy in presenting factual information. 1491

Consequently, the leaderboard presents valuable 1492

insights. 1493
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Alpaca-Eval Leaderboard, leveraging the Al-1494

pacaFarm evaluation dataset, presents a depend-1495

able and efficient automated evaluation tool for1496

LLMs (Li et al., 2023c; Dubois et al., 2023). This1497

tool benchmarks the responses generated by LLMs1498

against those from Davinci003, focusing on the1499

models’ ability to adhere to generic user instruc-1500

tions.1501

MT-Bench (Multi-turn Benchmark) (Zheng1502

et al., 2023) is a benchmark tool designed for au-1503

tomated evaluating LLMs in multi-turn dialogue1504

settings. It focuses on analyzing conversation flow1505

and the model’s ability to follow instructions with1506

80 high-quality, multi-turn questions.1507

IFEval (Instruction-Following Eval) (Zeng et al.,1508

2024) is a straightforward and easy-to-produce1509

evaluation benchmark focusing on a set of “verifi-1510

able instructions”. It contains 25 types of verifiable1511

instructions and 541 prompts, with each prompt1512

containing one or multiple verifiable instructions.1513

Human Evaluation is further implemented to1514

substantiate the superiority of our approach based1515

on the WizardLM test set. The test set contains1516

100 samples randomly sampled from the original1517

WizardLM test set. Three human evaluators were1518

tasked with comparing the outputs generated by1519

the models under consideration, using the same1520

criteria as in the previous pairwise evaluation.1521

Each evaluator was presented with three response1522

options: Win, Tie, and Loss. The final outcomes1523

were determined by a majority vote.1524
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C Detailed Ablation Studies1525

In this section, extensive ablation experiments are1526

conducted on Mistral-7B using with the Alpaca-1527

GPT4 dataset to verify our method. We utilize1528

Pair-wise comparison for evaluation.1529

C.1 Ablation on Mosaic Strategies1530

Ablation on Mosaic Strategies is presented in Table1531

6a. “Primary” represents the Primary Mosaic1532

Strategy. The winning score of this setting is1533

greater than 1.0, indicating a better performance1534

compared with the baseline method. This compari-1535

son directly verifies the effectiveness of the idea of1536

introducing multiple instructions during training,1537

which complicates the instructions at no cost1538

and improves the instruction-following ability of1539

LLMs. “Format” represents the Format Strategy.1540

Although the winning score is only slightly1541

greater than the naive version, this version makes1542

it possible for LLMs to follow the customized1543

user-defined formats, indicating great potential for1544

the controllability of LLMs. Moreover, the format1545

version can be easily used with other types of meta1546

instructions, showing great extensibility. “Permute”1547

represents the Permute Strategy that builds on the1548

Format Strategy with a probability of 1/2, similar1549

to “Maskout”. “Permute/Maskout” represents1550

our default setting, where the Permute or Maskout1551

Strategies are utilized together with the Format1552

Strategie with a probability of 1/3. All these 31553

settings show higher performance than the format1554

version, indicating the effectiveness of Advanced1555

Mosaic Strategies which define more complicated1556

meta instructions.1557

C.2 Ablation on the Max Number of1558

Instructions1559

Ablation on the Max Number of Instructions is1560

presented in Table 6b, including the pair-wise1561

comparison values. As shown in the table,1562

when the max number is set as 2, i.e. at most 21563

instructions/responses are concatenated together,1564

the performance is almost the same as the baseline,1565

indicating the ineffectiveness. However, when the1566

max number grows, the corresponding winning1567

scores also grow consistently. This trend shows1568

that the more instructions concatenated together,1569

the better the instruction-following ability. We1570

hypothesize that, with the growth of the number1571

of instructions, the overall instruction becomes1572

much harder to follow, especially for the permute1573

Winning Score Win Tie Lose

Primary 1.261 110 55 53
Format 1.284 109 62 47

Permute 1.334 118 55 45
Maskout 1.376 121 58 39
Permute/Maskout 1.349 123 48 47

(a) Ablation on Mosaic-IT strategies.
Winning Score Win Tie Lose

Max Count = 2 0.989 70 75 73
Max Count = 4 1.142 92 65 61
Max Count = 6 1.303 111 62 45
Max Count = 8 1.294 112 58 48
Max Count = 10 1.349 123 48 47
Max Count = 12 1.376 124 52 42

(b) Ablation on the Max Number of Instructions.

Table 6: Ablation on (a) Mosaic-IT strategies and (b)
Max Number of Instructions.

and maskout strategies, which benefits LLMs’ 1574

instruction-following capability. 1575

Winning Score Win Tie Lose Mix ≤ 5

Fix 0.982 90 34 94 2.39%
Exponential 0.995 94 29 95 2.58%

Pareto 1.417 129 51 38 8.94%
Log-normal 1.431 136 40 42 6.83%
Logistic 1.417 123 49 46 15.84%

Uniform 1.349 123 48 47 51.45%

Table 7: Ablation on the Distribution of Number of
Instructions. The distribution formula and data counts
for different settings are shown in Appendix E. “Mix
≤ 5” represents the percentage of samples with the
number of instructions less or equal to 5.

Figure 6: Ablation on the Distribution of Number of
Instructions, the visualization of distributions.

C.3 Ablation on the Distribution of Number 1576

of Instructions 1577

Ablation on the Distribution of Number of 1578

Instructions is presented, including the pair-wise 1579

comparison values in Table 7 and detailed number 1580

distribution comparisons in Figure 6, which aims 1581

at identifying how this count distribution affects 1582

the performance of our method. The detailed 1583
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distribution formula and data counts are provided1584

in the Appendix E. “Fix” represents the setting1585

where all the overall instructions are concatenated1586

with a fixed number of instructions, which we set1587

as 10 unless the overall instructions exceed the1588

max length limit. “Exponential” represents the1589

setting where the number of instructions is sampled1590

following the exponential distribution. Under1591

these two settings, less than 3% of the overall1592

instructions are concatenated by less or equal to1593

5 original instructions. The lack of few-instruction1594

concatenated samples negatively affects the LLMs’1595

ability to follow the single instruction, which is1596

employed by most of the existing evaluation meth-1597

ods, leading to worse performances. “Pareto”,1598

“Log-normal”, and “Logistic” represents the1599

corresponding distribution that are utilized for1600

sampling. Different from the above two settings,1601

approximately 10% of the overall instructions1602

are composed of fewer original instructions, thus1603

ensuring the LLMs are trained with samples with1604

sufficiently diverse lengths, resulting in optimal1605

performances. “Uniform” is our default setting,1606

representing using the uniform distribution where1607

different numbers are sampled evenly. In this1608

situation, the LLMs are trained with samples with1609

the most diverse lengths, thus avoiding the LLMs1610

overfit to simple lengthy responses.1611

C.4 Ablation on Semantic Grouping1612

To demonstrate that including other concatenation1613

methods could further strengthen our argument,1614

we further conduct experiments using a seman-1615

tic grouping approach based on the Alpaca-GPT41616

dataset to fine-tune Mistral.1617

Specifically, we utilize a sentence transformer1618

model all-mpnet-base-v22 to obtain the semantic1619

embedding for each sample in the dataset, and then1620

we applied the K-means algorithm to group these1621

data samples into multiple clusters. To ensure1622

enough samples per cluster, we set K=52 as the1623

dataset contains 52k samples in total. Given the1624

clusters, each concatenated sample is composed of1625

multiple samples randomly drawn from the same1626

cluster. We keep using the same training hyperpa-1627

rameters as in our main experiments. As shown1628

in Table 8 we report the performance on two eval-1629

uation metrics: pair-wise comparison and Alpaca1630

Eval.1631

2https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

The semantic concatenation can still outperform 1632

the non-mosaic baseline by a large margin, indicat- 1633

ing the effectiveness and potential of our Mosaic-IT 1634

augmentations and tasks. The semantic concate- 1635

nation method has a slightly lower performance 1636

than the pure-random concatenation method, on 1637

pair-wise comparison and Alpaca Eval 2 scores. 1638

However, it achieves a much higher Alpaca Eval 2 1639

(LC) score. This result suggests that the response 1640

quality of the model trained with semantic concate- 1641

nation is on par with pure-random but the response 1642

length is shorter and more condensed. We found 1643

that semantic grouping leads to clusters with highly 1644

different average lengths of samples: The largest 1645

average length is 316.7 tokens while the smallest 1646

is 31.4 tokens. This discrepancy makes the lengths 1647

of Mosaic-IT concatenated samples more diverse, 1648

resulting in a better trade-off between the quality 1649

and length of the responses. 1650
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Method Alpaca Eval 2 (LC) Alpaca Eval 2 Pair-wise Compare (with non-mosaic) Pair-wise Compare (with pure-random)

Pure-random Concatenation 5.00 7.81 1.349 1.000
Concatenation with Semantic Groups 7.80 6.51 1.275 0.936

Table 8: Comparison with Semantic grouping
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D Multi-Instruction Evaluation1651

To verify our trained models’ capability to follow1652

the multiple instructions and meta-instructions in1653

one inference, we create a test set of compositional1654

instructions from WizardLM test sets using Mosaic-1655

IT. For simplicity, we name this new test setting as1656

Mosaic Task, which evaluates LLMs’ capability to1657

follow multiple instructions with additional diverse1658

constraints (meta-instructions). One example of1659

Mosaic Task is shown as follows.1660

Example of Mosaic Task

System Prompt
You are a helpful and precise assistant for provid-
ing the answer.

User Prompt
Respond to each of the following instructions in
reverse of the original order.
[Ins1]
[Ins2]
[Ins3]

Figure 7: The prompt we used to request GPT4-Turbo
to evaluate the responses.

We use the success rate(%) to evaluate the perfor-1661

mance of models on the Mosaic task. A response is1662

successful if it follows the meta-instruction and no1663

instruction is ignored (unless the meta-instruction1664

masks it). In the table below, we report the success1665

rate (%) of LLMs following three meta-instruction1666

strategies, i.e., Format, Permute, and Maskout, on1667

compositional augmentations of different numbers1668

of instructions (i.e., 3, 5, 7 instructions). We report1669

the success rates of GPT4o, two base models, and1670

their Mosaic-IT finetuned versions, as shown in1671

Table 9.1672

The results expose the weaknesses of existing1673

LLMs on Mosaic-IT tasks and show that training1674

on Mosaic-IT augmentations can significantly im-1675

prove performance. Specifically, Existing LLMs,1676

even GPT4o, can not perfectly follow multiple in-1677

structions with diverse constraints, not to mention1678

other open-source models like Llama3 finetuned1679

on datasets such as Magpie. These results fur-1680

ther demonstrate the difficulty and complexity of1681

Mosaic-IT tasks for existing LLMs, indicating the1682

novelty of our method. The compositional reason-1683

ing capability required by Mosaic-IT tasks cannot1684

be covered by the capabilities of base LLMs and 1685

existing instruction-tuning datasets. For example, 1686

the success rates of Mistral + Alpaca-GPT4 (base- 1687

line) and Llama3 + Magepie (baseline) are similar, 1688

although Llama3 + Magepie has relatively better 1689

general instruction-following capabilities among 1690

them. 1691

Our method can bridge the significant gap and 1692

enhance LLMs’ capability to follow multiple in- 1693

structions with diverse constraints. Moreover, our 1694

data augmentation is cost-free and does not take 1695

any effort from humans or models. 1696

24



Model 3 Instructions 5 Instructions 7 Instructions
Format Permute Maskout Format Permute Maskout Format Permute Maskout

GPT4o 59.17 55.05 41.46 56.88 51.38 26.13 29.82 37.16 24.27

Mistral + Alpaca-GPT4 (baseline) 20.18 3.67 3.25 10.09 2.75 5.41 7.34 0.92 0.97
Mistral + Alpaca-GPT4 (mosaic) 98.32 66.51 69.11 95.87 60.55 67.57 97.25 64.68 66.02

Llama3 + Magepie (baseline) 16.06 8.26 7.32 9.63 1.38 5.41 5.50 2.75 3.88
Llama3 + Magepie (mosaic) 97.71 79.82 84.55 94.95 72.94 77.48 76.61 61.01 85.44

Table 9: Performance comparison across multiple instructions settings.
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E Detailed Distribution for Ablation on1697

Mixture Distribution1698

E.1 Distribution description1699

The detailed distribution descriptions and formulas1700

are provided below.1701

Exponential Distribution3: The exponential1702
distribution is a continuous probability distribution1703
used to model the time or space between events in1704
a Poisson process. The probability density function1705
(PDF) of the exponential distribution is:1706

f(x;λ) = λe−λx for x ≥ 0,1707

where λ = 1 by default in our setting. We will1708

resample with this distribution if the sampled value1709

xsample is greater than kmax.1710

Log-normal Distribution4: The log-normal dis-1711
tribution is a continuous probability distribution1712
of a random variable whose logarithm is normally1713
distributed. It is often used to model variables1714
that are positively skewed, such as income, stock1715
prices, and other financial data. The probability1716
density function (PDF) for a log-normal distribu-1717
tion is given by:1718

f(x;µ, σ) =
1

xσ
√
2π

exp

(
− (lnx− µ)2

2σ2

)
for x > 01719

where µ = 0 and σ = 0 by default in our set-1720

ting. We will resample with this distribution if the1721

sampled value xsample is greater than kmax.1722

Logistic Distribution5: The logistic distribution1723
is a continuous probability distribution used in var-1724
ious fields, including logistic regression, modeling1725
growth, and in some cases as an alternative to the1726
normal distribution due to its heavier tails. The1727
probability density function (PDF) for the logistic1728
distribution is given by:1729

f(x;µ, s) =
e−(x−µ)/s

s (1 + e−(x−µ)/s)
21730

where µ = 0 and s = 2 by default in our set-1731

ting. We will resample with this distribution if the1732

sampled value xsample is greater than kmax.1733

Pareto Distribution6: The Pareto II or Lomax1734
distribution is a shifted Pareto distribution. It can be1735
considered a simplified version of the Generalized1736
Pareto distribution, with the scale set to one and1737
the location set to zero. The probability density1738
function (PDF) for the Pareto distribution is:1739

f(x;α) =
αmα

xα+1
for x ≥ m,1740

3https://numpy.org/doc/stable/reference/
random/generated/numpy.random.exponential.html

4https://numpy.org/doc/stable/reference/
random/generated/numpy.random.lognormal.html

5https://numpy.org/doc/stable/reference/
random/generated/numpy.random.logistic.html

6https://numpy.org/doc/stable/reference/
random/generated/numpy.random.pareto.html

where m = 1 and α = 1 by default in our set- 1741

ting. We will resample with this distribution if the 1742

sampled value xsample − 1 is greater than kmax. 1743

After getting xsample, a floor function will be uti- 1744

lized to get the corresponding integer and the final 1745

concatenation count k = kmax − floor(xsample). 1746

E.2 Distribution visualization 1747

The detailed data counts for different distributions 1748

are provided in Figure 8. 1749
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(a) Fix Max Number (b) Exponential Distribution

(c) Log-normal Distribution (d) Logistic Distribution

(e) Pareto Distribution (f) Uniform Distribution

Figure 8: Bar plots of detailed data counts for different distributions in the Ablation on the Numbers of Instructions:
(a) Fix Max Number, (b) Exponential Distribution, (c) Log-normal Distribution, (d) Logistic Distribution, (e) Pareto
Distribution, (f) Uniform Distribution.
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F Related Work1750

Earlier research in instruction tuning primarily1751

centered on constructing expansive, high-quality1752

datasets through intensive curation by human ex-1753

perts, a process both time-consuming and labor-1754

intensive (Khashabi et al., 2020; Ye et al., 2021;1755

Wei et al., 2022; Wang et al., 2022; Du et al.,1756

2022). Motivated by the success of Alpaca (Taori1757

et al., 2023), recent studies have explored au-1758

tomated approaches for developing instruction-1759

tuning datasets.1760

Instruction Data Improvement: WizardLM1761

(Xu et al., 2023) first proposes an Evol Algorithm1762

to complicate the existing data and reach supreme1763

performance. LaMini-LM (Wu et al., 2024) inno-1764

vatively generates "Topic-Guided" instructions uti-1765

lizing Wiki data. Tree-Instruct (Zhao et al., 2024)1766

preliminarily explores the relationship between in-1767

struction complexity and Alignment and proposes1768

adding nodes to complicate the instruction. Ul-1769

traChat (Ding et al., 2023) establishes broad the-1770

matic scopes, systematically generating numerous1771

instructions within each. Reflection-Tuning (Li1772

et al., 2023a) sequentially refines both instructions1773

and responses by focusing on specific evaluative1774

criteria. DEITA (Liu et al., 2023a) utilizes Chat-1775

GPT to diversify and then select the data. Selec-1776

tive Reflection-Tuning (Li et al., 2024c) proposes a1777

teacher-student collaborative pipeline to improve1778

and select the data. Instruction Fusion (Guo et al.,1779

2024) proposes to utilize ChatGPT4 to merge two1780

distinct instructions for further complexity enhance-1781

ment. These advancements showcase a shift to-1782

wards automating the generation and refinement of1783

datasets, reducing reliance on human labor.1784

Instruction Data Selection: It is widely ac-1785

cepted that "quality is all you need" (Touvron1786

et al., 2023b; Zhou et al., 2023) for instruction1787

tuning. LIMA (Zhou et al., 2023) demonstrates1788

that merely 1,000 human-carefully-curated, high-1789

quality training instances can substantially enhance1790

the instruction-following performance. InsTag (Lu1791

et al., 2023) employs the proprietary model, Chat-1792

GPT, to tag instruction data and select data with1793

complex tags. Alpagasus (Chen et al., 2023) uti-1794

lizes proprietary LLMs chatGPT and Claude2 to1795

directly assess the quality of instruction tuning1796

data. Cherry LLM (Li et al., 2024e) proposes the1797

Instruction-Following Difficulty (IFD) scores to as-1798

sess the difficulty of the instructions, which is a1799

self-guided method in which no extra LLMs are1800

utilized. Motivated by Humpback (Li et al., 2023b), 1801

Selective Reflection-Tuning (Li et al., 2024c) ex- 1802

tends the IFD score to a reverse version, focus- 1803

ing on the feasibility of responses. (Du et al., 1804

2023) and (Bukharin and Zhao, 2023) utilize re- 1805

ward models as the base scores for measuring data 1806

quality. DEITA (Liu et al., 2023a) experiments on 1807

several different data selection metrics and builds a 1808

dataset with high quality. Superfiltering (Li et al., 1809

2024d) reveals the consistency between weak and 1810

strong language models in perceiving instruction 1811

difficulty, making the filtering process much more 1812

efficient. All these works are devoted to distin- 1813

guishing and selecting good data samples from bad 1814

ones for instruction tuning. 1815
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G Predefined Rules1816

Examples of predefined formats can be found in1817

Table 10 and detailed predefined rule descriptions1818

can be found in Table 11.1819
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Serial Digit Parsing Bracket Parsing Text Assembled Examples

i (text) BEGIN, END 1. (BEGIN)response(END)
(i) [text] START, END (1). [START]response[END]
[i] ⟨text⟩ RESPONSE, END [1]. ⟨RESPONSE⟩response⟨END⟩
⟨i⟩ ≪text≫ RESPONSE, END OF RESPONSE ⟨1⟩. ≪RESPONSE≫response≪END OF RESPONSE≫

≪i≫ |text| OPEN, CLOSE ≪1≫. |OPEN|response|CLOSE|
###i [|text|] OPEN RESPONSE, CLOSE ###1. [|OPEN RESPONSE|]response[|CLOSE|]
##i ⟨|text⟩ INITIATE, TERMINATE ##1. ⟨|INITIATE|⟩response⟨|TERMINATE|⟩

##i## #text# START POINT, END POINT ##1##. #START POINT#response#END POINT#
|i| *text* RES_START, RES_END |1|. *RES_START*response*RES_END*
||i|| @text@ RES, /RES ||1||. @RES@response@/RES@

Table 10: Examples of predefined formats, including the Serial Digit formats and Response Parsing formats. “i”
represents the real number serial number, “text” represents the replaceable parsing text, and “response” represents
the real response of the concatenated overall instructions/responses. The response parsing formats are composed of
the parsing bracket and text. In each mosaic process, random formats will be sampled simulating the real-world
user-defined formats. The last column represents the assembled examples using the formats in the same row.

Strategy Rule Name Rule Description

Permute FIX Respond in the order of a provided list.
Permute REVERSE Respond in reverse of the original order.
Permute ALPHA Respond in the alphabetical order of the first letter of tasks.
Permute REVERSE_ALPHA Respond in the reverse alphabetical order of the first letter of tasks.
Permute LENGTH_WORD Respond according to the length (words) of tasks, respond to short ones first.
Permute REVERSE_LENGTH_WORD Respond according to the length (words) of tasks, respond to long ones first.
Permute LENGTH_CHAR Respond according to the length (characters) of tasks, respond to short ones first.
Permute REVERSE_CHAR_WORD Respond according to the length (characters) of tasks, respond to long ones first.
Permute ODD_EVEN First respond to the odd-numbered tasks, then the even-numbered ones.
Permute EVEN_ODD First respond to the even-numbered tasks, then the odd-numbered ones.

Maskout FIX Ignore the tasks provided in the list.
Maskout WORD_LONG Ignore the longest one/several task(s) according to the word count.
Maskout WORD_SHORT Ignore the shortest one/several task(s) according to the word count.
Maskout ODD Ignore the odd-numbered tasks.
Maskout EVEN Ignore the even-numbered tasks.

Table 11: Predefined rules for the Permute and Maskout strategy. A random rule will be sampled for each mosaic
process, which largely complicates and diversifies the mosaicked instructions.
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H Prompt for Evaluation1820

The detailed pair-wise comparison prompt for the1821

pair-wise comparison is in Figure 9.1822

Prompt for Performance Evaluation

System Prompt
You are a helpful and precise assistant for checking
the quality of the answer.

User Prompt
[Question]
Question
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]
[The Start of Assistant 2’s Answer]
Answer 2
[The End of Assistant 2’s Answer]

We would like to request your feedback on the per-
formance of two AI assistants in response to the
user question displayed above.
Please rate the helpfulness, relevance, accuracy,
level of details of their responses. Each assistant re-
ceives an overall score on a scale of 1 to 10, where
a higher score indicates better overall performance.
Please first output a single line containing only two
values indicating the scores for Assistant 1 and
2, respectively. The two scores are separated by
a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that the
order in which the responses were presented does
not affect your judgment.

Figure 9: The prompt we used to request GPT4-Turbo
to evaluate the responses.
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I Detailed Performance Scores on1823

Llama3, Phi3 and Gemma21824

The detailed performance scores on the Open LLM1825

Leaderboard and IFEval, for Llama-3-8B, Phi-3,1826

and Gemma2-2B.1827
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Model Dataset Method Open LLM Leaderboard ↑ IF Eval ↑
Average ARC HellaSwag MMLU TruthfulQA Prompt (S) Inst (S) Prompt (L) Inst (L)

Llama-3-8B
Vicuna Baseline 52.51 44.54 70.66 49.68 45.18 19.04 30.70 21.26 33.45

Mosaic-IT 55.62 47.78 73.77 56.11 44.83 29.76 43.17 31.42 45.56

Magpie Baseline 56.15 50.09 71.29 54.40 48.84 29.39 40.76 35.67 47.72
Mosaic-IT 60.13 53.58 76.62 60.82 49.52 38.08 49.64 40.67 52.76

Phi-3
Vicuna Baseline 62.06 58.96 76.48 64.89 47.89 28.47 40.29 30.50 43.17

Mosaic-IT 62.30 58.45 77.66 65.24 47.87 30.13 39.57 32.35 41.85

Magpie Baseline 62.90 59.30 75.07 65.89 51.35 39.56 50.84 44.36 55.25
Mosaic-IT 63.54 60.23 76.30 66.14 51.50 42.33 53.60 50.83 62.35

Gemma2-2B
Vicuna Baseline 48.90 43.43 64.20 41.50 46.46 20.51 32.61 23.66 35.61

Mosaic-IT 51.31 46.33 69.32 44.29 45.31 21.44 33.57 24.03 36.93

Magpie Baseline 46.37 39.59 60.71 35.46 49.75 19.78 29.74 21.81 32.49
Mosaic-IT 48.36 39.33 64.10 39.87 50.16 19.78 31.65 22.18 34.77

Table 12: The performance comparison on more model families and datasets on all five automatic evaluation metrics.
In IF Eval, P and I represent Prompt-level and Instruction-level accuracy.
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