
Under review as a conference paper at ICLR 2023

TINY ADAPTERS FOR VISION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision Transformers (ViTs) have become one of the dominant architectures in
computer vision and pretrained ViT models are commonly adapted to new tasks
via fine-tuning of its parameters. Recent works in NLP proposed a variety of
parameter-efficient transfer learning methods such as adapters to avoid the pro-
hibitive storage cost of fine-tuning.
In this work, we start from the observation that adapters perform poorly when the
dimension of adapters is small and we propose a training algorithm that addresses
this issue. We start from large adapters which can be trained easily and iteratively
reduce the size of every adapter. We introduce a scoring function that can compare
neuron importance across layers and consequently allow automatic estimation of
the hidden dimension of every adapter. Our method outperforms existing PET
methods in terms of the trade-off between accuracy and trained parameters across
two benchmarks. We will release our code publicly upon acceptance.

1 INTRODUCTION

Transformers for vision problems have recently attracted growing attention due to their remarkable
performance Liu et al. (2021b); Touvron et al. (2021); Dosovitskiy et al. (2020). In particular, the
image representation learned with large-scale pretrained Vision Transformers (ViTs) has shown a
promising ability for learning new tasks Dosovitskiy et al. (2020). The commonly adopted strategy
to learn new tasks consists in fully or partially fine-tuning a pretrained network. However, in the
case of multiple tasks, this approach requires training numerous separate instances of the models
and induces significant storage costs.
Parameter-Efficient Training (PET) approaches have recently been developed in order to adapt large-
pretrained models to new tasks with less training power Hu et al. (2021); He et al. (2021). Among
these, adapters Houlsby et al. (2019) and their variants Mahabadi et al. (2021); He et al. (2021);
Karimi Mahabadi et al. (2021) are frequently utilized and adapted to many architectures for Natural
Language Processing (NLP) tasks. In a nutshell, adapters are tiny modules injected into transformer
blocks, which enable efficient adaption of the data representation to the downstream task. Adapters
offer similar performance to full fine-tuning (i.e. updating all parameters) while requiring a very
limited number of trainable parameters Houlsby et al. (2019); Pfeiffer et al. (2021).
When it comes to vision tasks, PET approaches are mostly explored for convolutional neural net-
works Berriel et al. (2019); Rebuffi et al. (2018; 2017); Mallya et al. (2018). On the contrary,
several PET approaches have been proposed in the context of NLP tasks. In this case, adapters are
commonly implemented with Multi-Layer-Perceptron (MLP) layers equipped with residual connec-
tions Houlsby et al. (2019). Multi-layer adapters offer sufficient representation power to adapt to the
new tasks but require a significant number of trainable parameters subject to their bottleneck dimen-
sion, which provides a simple trade-off between performance and parameter efficiency Houlsby et al.
(2019). Nevertheless, they suffer from two main weaknesses. First, the performance drops when
the size of the multi-layer adapters is too small (as also confirmed by our experiments). Therefore,
these adapters cannot be employed in scenarios where the available storage is limited. Second, the
hyper-parametrization of adapters is complex, since the hidden layer dimensions must be specified
for every adapters in every layer. As well, the hidden dimension depends on the downstream task.
In this work, we propose a training scheme named TINA (Fig. 1), that addresses these two limitations
of adapters. Our strategy allows a more efficient parameter allocation since additional parameters
are predominantly allocated to layers really requiring adaptation to the new task. More specifically,
we start from adapters with hidden spaces of high dimension and we iteratively reduce the dimen-
sion by identifying the neurons that can be dropped in every adapter. To identify in which layer

1

Under review as a conference paper at ICLR 2023

Adaptation to New
Domains

Initial adaptersViT

Layer 1

Layer N-1

Layer N

X

Frozen
Updated

Layer 1

Layer N-1

Layer N

X Removed

ViT Learned adapters
with variable sizes

TINA
Training Process

Figure 1: TINy adapters (TINA) are layer-wise small blocks injected into ViTs to efficiently adapt
to new domains by estimating the best rank for each adapter weights. TINA reduces the number of
parameters and removes completely injected adapters for some layers if necessary.

adaptation must be primarily performed, we introduce a novel scoring criterion that allows compar-
ison of neuron importance across different adapters. In short, the contributions of this work are:
• We propose a novel iterative training scheme for learning tiny adapters in the case of ViTs.
• We propose a novel scoring function to compare neuron importance across adapters, which can be
included in various magnitude pruning methods. This allows us to automatically estimate the hidden
dimension of adapters for ViTs, leading to more efficient parameter allocation.
• Finally, we compare the proposed approach with multiple PET methods designed for NLP using
a total of 10 datasets. From these experiments, we draw several conclusions: (i) we observe a dis-
crepancy between the rankings obtained in vision and NLP benchmarks; (ii) we demonstrate that
our approach obtains the best performance in terms of accuracy among methods with similar num-
bers of parameters; (iii) our ablation study validates the positive impact of our adaptive strategy to
automatically estimate the hidden dimension of adapters.

2 RELATED WORK

Vision Transformers. Initially proposed for NLP tasks, Transformers Vaswani et al. (2017) have
been recently proposed for vision tasks. The image is split into a sequence of patches that are pro-
jected into token embeddings, and fed to transformer encoders that employ self-attention to learn
rich image representations Dosovitskiy et al. (2020). With sufficient training data, ViTs are able to
outperform ConvNets on various image classification benchmarks Guo et al. (2022). Nevertheless,
their high number of parameters induces high storage cost, which hinders complete finetuning for
each new task and naturally motivates this study. Several variants of ViTs have been proposed in
the literature, out of which Swin Liu et al. (2021b) is probably the most popular thanks to its high
performance on various vision tasks. Swin employs local attention applied to different regions of the
input image from one layer to another, unlike the initial ViT architecture Dosovitskiy et al. (2020)
which uses global attention. Despite we evaluate our approach using Swin, our tiny adapters can be
added to any ViT architecture.
Network Pruning. When referred to deep neural networks, pruning consists of reducing the number
of parameters of a pre-trained model Han et al. (2015a); Cun et al. (1990). It can be roughly catego-
rized into two groups: (i) unstructured pruning, which removes the least significant weights (accord-
ing to certain criteria like weight magnitude Han et al. (2015b) or gradient magnitude Molchanov
et al. (2019)) without a specific structure to be followed; (ii) structured pruning, which focuses in
removing model sub-structures, like channels Tartaglione et al. (2018); He et al. (2017) or attention
heads Michel et al. (2019). A key focus of these works resides in identifying redundant connections
whose removal brings the least perturbation to the overall performance.
This work does not introduce a new pruning method, although TINA does use iterative pruning. In
this regard TINA is unique in two key aspects. First, pruning methods traditionally reduce the car-
dinality of the parameters of a network trained on a specific task, while TINA reduces the number
of parameters injected via adapters to adapt the model to a new task without changing the original
model parameters. Second, we leverage on the adapter’s structure to design an on-purpose impor-
tance metric that accounts simultaneously parameters from the two layers in adapters, while pruning
typically considers parameters of every layer independently.
Efficient Transformers Finetuning. The lack of the typical CNN inductive biases in ViTs makes
them difficult to be finetuned on new tasks without using (very) large datasets. For this reason, Liu

2

Under review as a conference paper at ICLR 2023

et al. (2021a) addresses this by adding a regularization term during finetuning to extract additional
information in self-supervised manner by the model. However, it requires updating all the param-
eters and storing one copy of the fine-tuned model per task. This causes substantial storage and
deployment costs and hinders the applicability of large-scale models to real-world applications. In
order to address this issue, three types of approaches have been proposed for NLP tasks: (i) only
updating newly added parameters (added either to the input or model) Pfeiffer et al. (2021); Houlsby
et al. (2019)Chen et al. (2022); (ii) sparsely updating a small number of parameters of the model Hu
et al. (2021); Ben Zaken et al. (2022); (iii) performing low-rank factorization for the weights to be
updated Karimi Mahabadi et al. (2021). Inspired by prompting techniques in NLP, Jia et al. (2022)
introduced VPT, a method that learns prompts for efficient finetuning of ViTs. Although prompting
achieves good performance, it lacks flexibility since prompt sizes must be equal to the dimensions of
the corresponding layers in the pretrained ViT. Thus, prompts are not suitable for downstream tasks
that strongly differ form the pre-training task Chen et al. (2022). Among these approaches, adapters,
belonging to the first category, showed promising results in comparison with full model fine-tuning.
Our work falls into the first category of approaches. More precisely, TINA is based on the adapters
proposed in Houlsby et al. (2019), but we provide a specific training algorithm that enables small
size adapters’ training. Furthermore, while the other state-of-the-art approaches adopt fixed size
adapters in every layer Chen et al. (2022) In our preliminary results, we show different layers require
different adapter sizes to adapt efficiently to the new tasks (see Appendix A.2.1). TINA dynamically
estimates the adapter size for each layer and even removes them, if necessary. In this manner, we
reduce the number of trainable parameters and improve the performance.

3 PROPOSED METHOD

In this section, we start with the description of adapters Houlsby et al. (2019) and their practical
benefits. Then, we introduce our proposed method to estimate the hidden dimension for each adapter
layer that can effectively train ViTs reaching higher performance with fewer parameters.

3.1 PRELIMINARIES

We assume that we have at our disposal a pretrained ViT network and that our goal is to adapt this
network to learn a classifier for a new task. We have access to an annotated dataset for the targeted
downstream task. To this aim, we employ small modules, referred to as adapters that are added to
the layers of the pre-trained model in order to adapt it to the downstream task while keeping the
weights of the original model frozen. Therefore, adapting the network consists in jointly training
the linear classifier (commonly referred to as head) and the parameters of the adapters. For the sake
of simplicity, we no longer mention the linear classifier parameters when describing our training
procedure, but it has to be kept in mind that they are jointly learned with the adapters.
Formally, ViT architectures such as the original ViT Dosovitskiy et al. (2020) or Swin Liu et al.
(2021b) employ layers composed of two main sub-layers: a multi-head self-attention layer and a
feedforward layer, each of them preceded by layer normalization. A residual connection is applied
across each of the sub-layers. We insert two adapters after each of these sub-layers. The adapter is
always applied directly to the output of the target sub-layer, as show in Fig. 2a. The internal structure
of adapters is visually summarized in Fig. 2b. Considering the ith adapter added to our pretrained
ViT, let hi ∈ Rmi denote its input of size mi Following Houlsby et al. (2019), adapters employ a
first fully connected layers that down-project hi into zi ∈ Rni with some non-linear activation ϕ(·).
This layer is parametrized by a linear projection matrix W down

i ∈ Rmi×ni . Then, a second fully
connected layer with parameters W up

i ∈ Rni×mi up-samples zi producing as output ri ∈ Rmi .
Finally, a residual skip-connection is employed inside the adapter module such that, if ri is always
close to 0, the adapter module degenerates to an identity function. To summarize, given the input
vector hi, the output vector h′

i is calculated as:

h′
i = W up

i ϕ
(
W down

i hi

)
+ hi. (1)

The total number of parameters in adapters is equal to 2 · ni ·mi. Since mi is fixed, we generally
specify ni such that ni ≪ mi to obtain a low number of trainable parameters. We define the com-
pression rate σi of an adapter as follows σi =

mi

ni
.

In previous works Houlsby et al. (2019); Rücklé et al. (2021), adapters have a unique hidden di-
mension ni for every adapter Pfeiffer et al. (2021); Houlsby et al. (2019). This choice, however,

3

Under review as a conference paper at ICLR 2023

Series Adapter

LayerNorm

MSA

Adapter

LayerNorm

MLP

Adapter

Input

h'

Adapter

Upsample

Updated

Frozen

Downsample

h

(a) Adapters injected into ViT model.

...

...

...

...

X

(b) Internal structure of adapters with TINA.

Figure 2: Illustration of adapter structure injected into ViT, and our approach to adjust adapter’s
size. MSA and MLP indicate multi-head self-attention and feedfoward blocks, respectively.

can potentially be sub-optimal as early layers may focus on general patterns and late layers on task-
specific ones Zhang et al. (2020). Allowing the model to dynamically adjust the adapter’s hidden
dimension ni (or equivalently, σi), and identifying where they should be injected, can help adapta-
tion to the downstream task proficiently.

3.2 OVERALL PROCEDURE OF TINA

Let W V iT be the initial parameters of the ViT model which are frozen through the whole adaptation
process. Our goal is to learn W ada, the set containing the adapter parameters W ada

i of every ith

ViT sub-layer. In previous works Houlsby et al. (2019); Rebuffi et al. (2018), W ada
i is straightfor-

wardly learned with stochastic-gradient-descent-based optimization. However, in our experiments
(see Sec. 4) we show that this approach does not perform well in the case of tiny adapters (small
ni values). To develop our training scheme, we start from the observation that, with the existing
optimizers, sequentially training and pruning a large network is a successful strategy to find small
networks with good performance, while directly training small networks usually suffers from opti-
mization issues Frankle & Carbin (2018). Therefore, we propose to start from large adapters and
adopt an iterative pruning strategy that iteratively reduce their dimensions -detailed in Algorithm 1-.

Algorithm 1 TINA

1: procedure TINA (W V iT , W ada , ρ, σtarget)
2: Learn W ada ▷ W V iT is maintained frozen
3: while σ < σtarget do ▷ while compression target is not met
4: W ada ← top(1−ρ) fraction of neurons in W ada ▷ according to their score (Sec. 4.2)
5: Fine-tune the remaining W ada on the target dataset ▷ W V iT is maintained frozen
6: end while
7: return W ada

8: end procedure

We initialize every adapter with a hidden dimension proportional to its input dimensions. We start
from constant compression rates σi for every layer and equal to σ0. In our first training stage (line 2),
we learn the adapter parameters W ada via cross-entropy minimization using stochastic gradient
descent. Then, we propose to estimate a score that measures the importance of each adapter’s
neurons. The estimation of this score is detailed in Sec. 3.3. This score is used to select the neurons
that have the smallest impact on the adapter outputs. More precisely, we remove the bottom fraction
ρ of neurons from W ada (line 4). The remaining ones will constitute the new adapter configuration
and the hidden space sizes ni are updated accordingly.
If the achieved average compression rate σ is still lower than the target σtarget, another compression
iteration follows; otherwise the achieved configuration will be returned and the method stops. Note

that the number of training cycles C is given by: C =

⌈
log(σ0)−log(σtarget)

log(ρ) − 1

⌉
, where ⌈·⌉ denotes

4

Under review as a conference paper at ICLR 2023

the ceiling function. Therefore, our training scheme stops after a deterministic number of iterations
that can be computed in advance. Besides, while we employ a stopping criteria based on a specific
target compression rate, a target performance on a validation dataset could be used.

3.3 IMPORTANCE SCORE IN TINY ADAPTIVE ADAPTERS (TINA)

In this section, we present the importance score function that we use in our training algorithm. Our
design of the scoring function is motivated by the observation that, if an entire row in W down

i and
an entire column in W up

i are equal to zero, then our adapter is strictly equivalent to an adapter with
a smaller dimension ni. Therefore, we propose a novel scoring function to employ the sum of the L1

norm of the corresponding row in W down
i and the corresponding column in W up

i . More precisely,
our importance score is formulated as follows:

Iij = 1

ni +mi

(
mi∑
k=1

∣∣∣W down
i [j, k]

∣∣∣+ ni∑
k=1

∣∣∣Wup
i [k, j]

∣∣∣) , (2)

where [·, ·] denotes the matrix indexing operator. This importance score can be interpreted as a
”look-ahead” strategy, where we observe, besides the output of a specific j-th neuron in the hidden
space, also the impact of such an output in the next layer. Note that this formulation is based only on
the magnitude of parameters belonging to the same neuron of down-sampling, and its corresponding
up-sampling neuron, and not on the magnitude of activations. This makes the importance score more
computationally efficient since activation-based scoring would depend on the input images, and
consequently, statistics should be gathered at the batch or at the dataset level. This would induce
important additional computation. Furthermore, this choice is empirically supported by many works
in the literature, like Chauvin (1988); Han et al. (2015b); Molchanov et al. (2017); Renda et al.
(2020).We also provide more details that motivates equation 2 in the Appendix, at Sec. A.4.

Importantly, Iij is normalized by the total number in the sums to allow fair comparison across
adapters with different input and hidden layer sizes.

4 EXPERIMENTS

We provide the details about the datasets and our experimental setup.
Datasets. We evaluate our methods using the protocol previously adopted by Liu et al. (2021a),
which consists of ten datasets for image classification tasks divided into two benchmarks. The first
benchmark is known as DomainNet Pan et al. (2019). It contains six different visual domains, which
makes the fine-tuning experiments non-trivial. Since DomainNet does not have a labeled testing set,
we use the validation dataset for testing, as in Pan et al. (2019). The second benchmark contains
CIFAR-10/CIFAR-100 Krizhevsky et al., Oxford Flowers102 Nilsback & Zisserman (2008) and
SVHN Netzer et al. (2011), which are widely used as low-regime training datasets. Contrarily to
DomainNet, these datasets are not single task oriented, but contain a larger variety of domains/tasks.
We refer to them as belonging to the Multi-task benchmark.
Implementation Details. We follow the training protocol adopted by Liu et al. (2021a). We conduct
our experiments with the official pretrained model Swin-T (∼27M parameters) Liu et al. (2021b)
trained on ImageNet-1K. In all our experiments, we use the AdamW Loshchilov & Hutter (2019)
optimizer with a cosine decay learning-rate scheduler for 80 epochs, preceded by 20 epochs of linear
warm-up. In all the experiments, the images are resized to the same fixed resolution (224 × 224).
Contrarily to Liu et al. (2021a) that trains every baseline for 100 epochs only, we train them for 500
epochs to allow fair comparison with our approach that requires multiple training cycles C. With
TINA, ρ is set to 50%, namely we half the number of neurons in the adapters, at each 100 epochs.

4.1 MAIN RESULTS

We compare our proposed method TINA with multiple PETs methods that were initially for NLP
transformers. We include the following methods. • Full fine-tuning: it fine-tunes all parameters of
the model. • Att/MLP fine-tune: we only tune the Attention/MLP layers and the classification head.
Linear-probe: all parameters are frozen except for the task-specific classification layer. • Adapters

5

Under review as a conference paper at ICLR 2023

Table 1: Results on the DomainNet benchmark Pan et al. (2019).

Method # Params Trained Clipart Infograph Painting Quickdraw Real Sketch Mean
(M) ↓ (%) ↓ ↑

Full fine-tuning 27.8 100 79.16 48.29 74.64 75.88 86.21 73.26 72.90
Att-blocks 8.93 32.14 48.36 75.38 73.28 86.13 72.81 72.57 79.44
MLP-blocks 17.54 63.12 79.23 48.11 75.02 74.82 86.35 73.29 72.80
Linear prob 0.27 0.95 62.89 33.96 64.93 42.95 81.69 54.24 56.77

PHM-Adapter 0.47 1.72 75.79 44.62 72.49 66.62 83.73 68.51 68.62
Compacter 0.41 1.44 75.25 44.19 72.09 66.01 83.42 67.99 68.16
LoRa (Q, K) 0.42 1.51 74.53 43.65 71.81 64.53 83.81 67.09 67.57
BitFit 0.34 1.22 72.14 41.07 70.00 60.39 82.43 64.43 65.08
VPT (10 tokens) 0.32 1.15 61.91 24.87 57.05 57.09 76.94 55.12 55.49
VPT (100 tokens) 0.71 2.57 64.33 18.65 63.20 59.40 79.65 56.41 56.94
AdaptFormer-64 0.84 3.06 73.76 42.38 71.11 63.41 83.23 66.14 66.67
AdaptFormer-256 2.54 9.24 75.32 43.74 72.16 66.00 83.88 67.68 68.13
Adapters (ni = 47) 1.37 4.90 76.15 45.28 73.04 67.86 84.83 69.17 69.39
Adapters (ni = 23) 0.68 2.47 75.28 44.17 72.41 66.44 83.98 68.02 68.38
Adapters (ni = 1) 0.30 1.07 72.12 41.30 69.93 59.95 82.49 64.18 65.00

Adapters (σ = 32) 1.37 4.90 77.42 46.51 74.06 69.81 85.30 70.84 70.65
TINA (1 cycle) 0.80 2.89 76.83 46.00 73.76 67.93 85.05 69.61 69.86
TINA (2 cycles) 0.53 1.92 76.83 45.45 73.11 66.67 84.42 69.05 69.26
TINA (3 cycles) 0.40 1.43 75.44 44.60 72.59 64.73 83.87 68.05 68.21
TINA (4 cycles) 0.30 1.07 74.38 43.52 71.50 63.41 83.12 67.46 67.23

Table 2: Results on the Multi-task benchmark.

Method # Params (M) ↓ Trained (%) ↓ CIFAR100 CIFAR10 Flowers SVHN Mean ↑
Full fine-tuning 27.8 100 88.13 98.50 97.35 96.59 95.14
Att-blocks 8.93 32.14 88.03 98.41 97.79 95.99 95.05
MLP-blocks 17.54 63.12 88.44 98.47 96.50 96.14 94.89
Linear prob 0.27 0.95 75.58 91.84 76.80 55.26 74.87

PHM-Adapter 0.47 1.72 84.17 96.48 89.18 93.32 90.78
Compacter 0.41 1.44 83.95 96.26 88.43 92.67 90.32
LoRa (Q, K) 0.42 1.51 83.87 96.41 87.07 91.87 89.81
BitFit 0.34 1.22 83.56 96.14 87.85 90.29 89.46
VPT (10 tokens) 0.33 1.20 67.69 90.99 22.77 85.11 66.64
VPT (100 tokens) 0.52 1.88 72.53 93.03 34.88 86.70 71.78
AdaptFormer-64 0.66 2.38 83.79 96.93 90.50 92.45 90.91
AdaptFormer-256 2.98 8.55 84.74 97.23 92.13 94.97 92.27
Adapters (ni = 47) 1.37 4.90 85.04 97.52 92.72 96.35 92.91
Adapters (ni = 23) 0.68 2.47 85.18 97.57 92.16 95.81 92.68
Adapters (ni = 1) 0.30 1.07 82.60 96.03 89.77 88.80 89.30

Adapters (σ = 32) 1.37 4.90 85.59 97.49 94.80 96.27 93.53
TINA (1 cycle) 0.80 2.89 87.12 97.98 96.59 96.98 94.67
TINA (2 cycles) 0.53 1.92 86.33 97.49 96.73 96.48 94.26
TINA (3 cycles) 0.40 1.43 85.22 97.11 96.81 95.60 93.69
TINA (4 cycles) 0.30 1.07 84.07 97.11 96.81 93.94 92.98

Houlsby et al. (2019): we add adapters with σ = 32 to have adapters with hidden dimensionality
proportional to the input dimension mi. We also include variants where the size of every adapter is
fixed over all the layers: ni = 47, and ni = 23. These baselines are considered to emphasize the
effect of parameter allocation throughout the layers on the final performance. • BitFit Ben Zaken
et al. (2022): all the weights are frozen, the biases are learned. By not storing intermediate acti-
vations, this method enables substantial memory savings. • PHM-Adapter Zhang et al. (2021): the
weights of the adapters are learned using parameterized hyper-complex multiplication layers (PHM)
layers. • Compacter Karimi Mahabadi et al. (2021): adapter weights are learned using PHM layers.
• LoRa Hu et al. (2021): trainable low-rank matrices are employed to approximate the updates for
the model. Updates are applied mainly to the key k and the query q of the attention blocks. • Adapt-
Former Chen et al. (2022): introduces a small module like Adapters, but only after MLP network
with a scaling parameters s applied to the output of the injected modules. • VPT Jia et al. (2022):
fine-tuning learnable parameters (i.e. prompts) injected into the embedding space.

Discussion. Table 1 reports the number of trained parameters and the average accuracy across
datasets in the DomainNet benchmark, while Table 2 contains the results achieved for the Multi-
task benchmark. For both, the number of trained parameters is reported in millions, and the average
top-1 accuracy on the datasets is reported in the rightest column. We observe that full fine-tuning

6

Under review as a conference paper at ICLR 2023

97.35

97.35 97.64
97.8

97.45 97.58

96.59
96.92

96.73 96.81

5 1 2 5 10 2 5 100 2 5

90

92

94

96

98

100

Adapters Full-finetuning TINA

Top-1 Accuracy versus compression rate σ on VGG-Flowers

Compression rate σ (Log-scale)

A
c
c
u
r
a
c
y

Figure 3: Comparison of top-1 accuracy versus compression rate σ on VGG-Flowers. Size of blob
markers represents the number of trainable parameters.

has generally the highest accuracy, but it requires a huge number of parameters to be finetuned for
each dataset. Among the vanilla fine-tuning baselines, we observe that tuning the parameters of
the attention/MLP layer turns out to be surprisingly effective. Nevertheless, it still requires a high
number of task-specific parameters, compared to other PET approaches. Linear probing does not
perform well illustrating the need to change the feature representations when adapting to new tasks.
PHM, LoRA, and Compacter are effective methods to get on-par performance with full-model fine-
tune while adjusting less than 2% of the parameters. Contrarily to what is observed for NLP tasks
Houlsby et al. (2019), PETs on visual tasks do not reach full fine-tuning performance on any dataset
with low number of trainable parameters (smaller than 2%). VPT does not perform well, indicating
that injecting tokens into the embedding space do not help much if the pre-training dataset is differ-
ent from the downstream task. Generally speaking, all PET methods maintain similar performance
rankings on all the tasks. This suggests that the choice of the best adaptation strategy does not de-
pend on the downstream task.
Adapters outperform all PET methods in terms of accuracy (69.39% for DomainNet, 92.91% for
Multi-task) but just with a higher number of trainable parameters (1.37M, 4.90% of the total) for
σ = 32. Adapters outperform AdaptFormer with fewer parameters (92.91% with 1.37M parameters,
versus 92.27% with 2.98M parameters). This result indicates that adapting the representations after
both MSA and MLP blocks, as done in Adapters (see Fig2a), allows better adaptation than acting
only on the MLP block via a parallel branch (as in AdaptFormer).
When comparing adapter with uniform and proportional parameter distribution, we observe that
allocating parameters proportionally to the layer dimension performs better. Indeed, adapters with
σ = 32 outperform adapters with ni = 47∀i (70.65% vs 69.39% in DomainNet, 93.53% vs 92.91%
in Multi-task). This suggests that the last layers, which have higher dimensionality, are more task-
specific, and consequently require more adaptation. We also show that reducing the size of adapters
(ni = 23) hurts the performance with a drop which, despite being marginal for Multi-task (0.23%)
is more consistent in DomainNet (1.01%). This emphasizes that training tiny adapters in a vanilla
fashion, leads to unsatisfying performance and motivates our specific training procedure.
TINA versus Vanilla training. From Table 1 we observe that, in the DomainNet benchmark, TINA

outperforms methods with similar trained parameters, in all the compression ranges. In particular, in
the most challenging one (with 0.30M parameters), TINA outperforms the closest approach, BitFit,
which trains 0.34M parameters, showing a gain in average accuracy larger than 2%.
Looking at the Multi-task benchmark (Table 2), we observe that TINA significantly reduces the
number of parameters by 4× (0.40M, 1.43%) while outperforming all PET methods in the Multi-
task benchmark. In particular, TINA outperforms adapters-ni = 47 despite having less parameters,
demonstrating that our iterative training procedure improves the parameter efficiency. To further
emphasize on the performance gap between the two approaches, we introduce Fig. 5, illustrating
the performance as a function of the number of trainable parameters. We observe the significant
performance gap between vanilla adapters compared to adapters trained with TINA approach.

7

Under review as a conference paper at ICLR 2023

Table 3: Comparative performance analysis for neuron selection on VGG-Flowers.
L1(w) and L1(a) denote magnitude pruning of the parameters and the activations respectively.

Method Pruning Method Score Iterative Scaling σ

32 64 128 256 512

Vanilla Adapters - - - - 94.80 90.12 89.42 88.85 86.03

Baselines

Vanilla L1 L1(w) - 95.46 95.06 94.28 93.79
Local L1(w) - 96.10 95.57 96.15 96.23
Local L1(w) ✓ - 96.41 96.65 96.72 96.72
Global L1(a) ✓ - 96.10 94.28 93.80 93.25
Global L1(a) ✓ ✓ - 96.13 95.15 95.77 95.72
Global I0 - 94.88 95.28 95.66 95.45
Global I ✓ - 96.10 95.82 96.34 96.50

TINA Global I ✓ ✓ - 96.59 96.92 96.73 96.81

4.2 ABLATION STUDY

Importance score for TINA. Next, we move on to our design choice of dimensionality reduction
inside adapters throughout the adaptation cycles. We observe the contribution of various compo-
nents of TINA with different setups. • Vanilla Adapters corresponds to injecting adapters with a
compression rate σ. • Vanilla L1: we select same percentage of neurons for each adapter applied
to down-sampling layer only. • Local neuron selection: we select the same percentage of neurons
for each adapter (ρ = 50%, 75%, etc...), applied to down-sampling, and up-sampling layers inde-
pendently.• Global neuron selection: we select a specific amount of neurons ρ to be removed. The
amount of selected neurons per adapter is calculated using I as in equation 2, if scaling is applied.
We also evaluate our scoring function without the scaling factor ni +mi. This variant of our score
is denoted by I0. • Global with L1(a): we select a specific amount of neurons ρ to be removed
according to the magnitude of the neuron activation. • TINA: our proposed method as in Alg. 1.
To compare the different methods we proceed as follows. When using an iterative method, we al-
ways start from the baseline model where σ=32. When using a non-iterative method: we start with
adapters of σ0 = σtarget/(1 − ρ), and prune once only after the first cycle. Training continues for
C−1 cycles to guarantee fair comparison with iterative methods. Results are reported in Table 3.
Discussion. Table 3 summarizes the performance of local and global neuron selection for adapters.

Firstly, we notice the drop of performance for vanilla adapters, as we reduce the number of param-
eters -higher values of σ-. Secondly, we notice the advantage of using global over local neuron
selection. Local neuron selection method still has all the adapters injected but with low dimen-
sionality ni. On the contrary, global neuron selection method emphasizes on finetuning adapters at
specific layers, where other adapters are removed completely.
At the last cycles, TINA identifies important adapters for the adaptation, and focuses on finetuning
them. Thus, the model performance improves by adjusting specific latent representations of the
model tailored for the downstream task while training adapters with fewer parameters. In Table 3,
for σ = 64 we observe that TINA (using either local/global neuron selection) achieves better perfor-
mance than a vanilla training of adapters on VGG-Flowers dataset with a performance gap of 6.14%.
Interestingly, this gap in performance expands, as we compare smaller adapters σ = 256, 512. When
comparing to a vanilla L1 importance scoring, we see the beneficial effect of considering parameters
both in the downsampling and in the upsampling for the adapters, with consistent gains in perfor-
mance for all the explored compression rates, ranging from 0.5% to more than 3%. We can observe
that the performance gap is especially clear with high compression rates. Finally, scaling the impor-
tance score as in equation 2 boosts the performance of Global for every σ value by about 1%.
Parameter allocation analysis with TINA. Fig. 4 illustrates the distribution of the removed and re-
maining neurons using TINA on VGG-Flowers, and CIFAR-10. We observe the difference between
local neuron selection that removes uniformly neurons from adapters and global neuron selection.
We witness that the latter totally removes some adapters from the model (see layers 4, 5, 7, 8 on
VGG-Flowers) and allocates many parameters to some other adapters. We provide normalized plots
for VGG-Flowers, and CIFAR100 illustrating the distribution of removed neurons (Fig. 9, and 10)
Furthermore, global neuron selection adapts differently to each dataset as shown in Fig. 4. The dis-
tribution of removed neurons is different for CIFAR-10, where fewer adapters have been removed
completely with respect to VGG-Flowers. For VGG-Flowers, only adapters at late stages are kept,

8

Under review as a conference paper at ICLR 2023

5 10 15 20
Adapter index i

0

20

40

60

80

Nu
m

be
r o

f N
eu

ro
ns

 n
i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(a) Local pruning: all datasets.

5 10 15 20
Adapter index i

0

20

40

60

80
Nu

m
be

r o
f N

eu
ro

ns
 n

i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(b) Global pruning: VGG-Flowers .

5 10 15 20
Adapter index i

0

20

40

60

80

Nu
m

be
r o

f N
eu

ro
ns

 n
i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(c) Global pruning: CIFAR-10.

Figure 4: Layer-wise analysis of adapter’s neurons distribution at 4th cycle. Bar plots represent
number of neurons ni at each adapter i using local, global pruning for VGG-Flowers and CIFAR-
10, respectively.

Table 4: Performance analysis of our method on different ViTs backbones.

Method # Params (M) ↓ Trained (%) ↓ CIFAR-100 CIFAR-10 VGG-Flowers SVHN Mean ↑

V
iT

-B
-1

6 Finetune 85.90 100 91.22 99.01 99.32 97.68 96.81
Adapters 0.96 0.89 89.39 98.02 97.69 94.17 94.82

TINA 0.62 0.54 89.86 98.09 98.75 94.94 95.41
TINA 0.37 0.32 89.84 98.17 98.85 95.32 95.55

Sw
in

-S

Finetune 48.80 100 90.12 98.88 98.37 98.16 96.38
Adapters 0.41 4.88 89.05 98.48 94.60 97.25 94.84

TINA 0.23 2.75 88.86 98.53 96.16 97.22 95.19
TINA 0.11 1.32 88.62 98.50 96.68 96.94 95.18

C
vT

Finetune 19.65 100 90.01 98.68 97.98 98.09 96.19
Adapters 0.78 4.00 86.68 97.91 88.93 96.96 92.62

TINA 0.47 2.40 86.47 97.98 93.28 97.17 93.73
TINA 0.28 1.44 85.87 97.77 94.31 96.67 93.66

which may indicate that early layer’s representations are suitable for this dataset. However for
CIFAR-10, remaining adapters are widespread through all layers of ViT.

ViT variants with TINA. We analyze the performance of TINA using different ViT backbones.
TINA is injected into Swin-S, ViT Dosovitskiy et al. (2020) and CVT Wu et al. (2021), that improves
ViTs by introducing convolutions into ViT to yield the best of both designs .
We train the 3 baselines Finetuning, Adapters, and TINA for 3 cycles. We report the best score for
the last cycle in Table 4. TINA achieves on-par performance with respect to full model finetuning
with a gap of 1.2%, 1.2% and 1.4% for ViT-B/16, Swin-S and CvT, respectively. By finetuning less
than 1.5% of parameters including the head classifier.
TINA outperforms vanilla adapters with 4 times fewer parameters on all ViT backbones (ViT, Swin-T
and CvT) models. These experiments show that TINA do generalize to various ViT backbones.

5 CONCLUSION

In this work we propose TINA, a training algorithm to learn TINy Adapters for the problem of ViT
finetuning. Rather than directly training adapters with few parameters, we propose to start with
large and over-parametrized adapters, and then, iteratively select the more important neurons in ev-
ery adapter. Our training procedure estimates the hidden dimension for each adapter which reduces
the number of trainable parameters and even removes adapters at certain layers when necessary. Ex-
perimentally we demonstrate the greater performance of our training scheme with respect to vanilla
adapters and show that our method achieves good performance with unprecedentedly low numbers
of trainable parameters. Our ablation study validates the positive impact of our adaptive strategy to
estimate the hidden dimension of each adapter.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.
1. URL https://aclanthology.org/2022.acl-short.1.

Rodrigo Berriel, Stephane Lathuillere, Moin Nabi, Tassilo Klein, Thiago Oliveira-Santos, Nicu
Sebe, and Elisa Ricci. Budget-aware adapters for multi-domain learning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 382–391, 2019.

Yves Chauvin. A back-propagation algorithm with optimal use of hidden units. Advances in neural
information processing systems, 1, 1988.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition, 2022. URL https:
//arxiv.org/abs/2205.13535.

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pp. 598–605. Morgan Kaufmann, 1990.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 12175–12185, 2022.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015a. doi: 10.48550/ARXIV.1510.00149.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015b.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. 2021.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning, 2022. URL https://arxiv.org/abs/2203.
12119.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–
1035, 2021.

10

https://aclanthology.org/2022.acl-short.1
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2205.13535
https://arxiv.org/abs/2203.12119
https://arxiv.org/abs/2203.12119

Under review as a conference paper at ICLR 2023

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research).

Yahui Liu, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno Lepri, and Marco De Nadai. Efficient
training of visual transformers with small datasets. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. pp. 10012–10022,
2021b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In ACL/IJCNLP, pp.
565–576, 2021.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 67–82, 2018.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
volume abs/1608.08710. OpenReview.net, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estima-
tion for neural network pruning. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11256–11264, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In Indian Conference on Computer Vision, Graphics and Image Processing, Dec 2008.

Yingwei Pan, Yehao Li, Qi Cai, Yang Chen, and Ting Yao. Multi-source domain adaptation and
semi-supervised domain adaptation with focus on visual domain adaptation challenge 2019. 2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 487–503, Online, April 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.eacl-main.39.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. Advances in neural information processing systems, 30, 2017.

Sylvestre-Alvise Rebuffi, Andrea Vedaldi, and Hakan Bilen. Efficient parametrization of multi-
domain deep neural networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8119–8127, 2018. doi: 10.1109/CVPR.2018.00847.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2020.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. In EMNLP (1),
2021.

11

Under review as a conference paper at ICLR 2023

Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca Francini. Learning sparse neural
networks via sensitivity-driven regularization. Advances in neural information processing sys-
tems, 31, 2018.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 22–31, 2021.

Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan, Anh Tuan Luu, Siu Hui, and Jie Fu. Beyond
fully-connected layers with quaternions: Parameterization of hypercomplex multiplications with
$1/n$ parameters. In International Conference on Learning Representations, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C. Mozer, and Yoram Singer. Identity crisis:
Memorization and generalization under extreme overparameterization. In International Confer-
ence on Learning Representations, 2020.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

In this appendix, we provide: (1) additional experimental results to further analyze the proposed
TINA approach. (2) justify in more detail our choice for the design of the importance score (3)
provide details regarding the datasets used in our experiments.

88.13

92.15

90.13

89.67

88.74

88.27

87.12

86.22

85.42

84.67

5 1 2 5 10 2 5 100 2 5

84

86

88

90

92

94

Adapters Full-finetuning TINA

Top-1 Accuracy versus compression rate σ on CIFAR-100

Compression rate σ (Log-scale)

A
c
c
u
r
a
c
y

Figure 5: Comparison of top-1 accuracy of vanilla adapters, and TINA with respect to compression
rate σ on CIFAR-100 dataset. Size of blob markers represents the number of trainable parameters.
We notice that at σ = 2, 4, 8, TINA outperforms full finetuning.

A.1 LOCAL VERSUS GLOBAL NEURONS SELECTION

Table 5: A comparative performance analysis of local and global neuron selection on VGG-Flowers.

Method Pruning Method Selection Iterative Scaling σ

32 64 128 256 512 1024 2048 4096

Vanilla adapters 94.80 90.12 89.42 88.85 86.03 86.09 85.14 85.14

Baselines

Local ✓ - 96.10 95.57 96.15 96.23 96.76 95.83 95.83
Local ✓ ✓ - 96.41 96.65 96.72 96.72 96.81 96.83 94.54
Global ✓ - 94.88 95.28 95.66 95.45 95.56 96.03 96.03
Global ✓ ✓ - 96.10 95.82 96.34 96.50 96.15 96.03 96.03

TINA Global ✓ ✓ ✓ - 96.59 96.92 96.73 96.81 96.55 96.47 96.17

Here below, we provide extra experiments for adapters with different sizes for VGG-Flowers,
CIFAR-10, and CIFAR-100.

Tables 5and 6 report the performance of TINA algorithm with respect to vanilla training -Baseline-
on VGG-Flowers, CIFAR-10 and CIFAR-100. TINA outperforms vanilla adapters on all the
adapters with a significant performance gap. Interestingly, this gap in performance expands, as
we compare smaller adapters σ = 256, ..., 4096 (higher compression ratio).

Furthermore, these results emphasizes on the usefulness of each component of the importance score
for TINA. We notice that applying global neuron selection, normalization and iterative training out-
performs local neuron selection on almost all adapter sizes for VGG-Flowers (Table 5) and CIFAR-
100 (Table 6). This indicates that each component of the importance score of TINA is important to
boost the performance and reduce the parameters.

13

Under review as a conference paper at ICLR 2023

Table 6: A comparative performance analysis of local and global neuron selection on CIFAR-10 and
CIFAR-100.

Method Pruning Method Selection Iterative Scaling σ

32 64 128 256 512 1024 2048 4096

CIFAR-10

Vanilla adapters - 97.89 97.39 97.06 96.60 96.53 96.27 82.06 82.06
Local ✓ ✓ - 98.06 97.92 97.64 97.11 96.91 96.44 93.49

TINA Global ✓ ✓ ✓ - 97.98 97.92 97.49 97.15 96.71 96.04 95.57
CIFAR-100

Vanilla adapters - 86.22 85.02 84.33 83.54 82.26 82.19 83.17 82.19
Baseline Local ✓ ✓ - 86.88 86.15 85.30 84.06 83.71 83.35 78.44
TINA Global ✓ ✓ ✓ - 87.12 86.22 85.42 84.67 83.25 82.67 82.10

A.2 VANILLA VERSUS TINA TRAINING FOR ADAPTERS

To validate the greater optimization performance of TINA, in Figs. 6a, 6b, we show the training loss
curves of vanilla, and TINA training of adapters for CIFAR-100, and SVHN, respectively. At the
end of training, the two models (i.e. vanilla training and TINA) have similar numbers of training
parameters.

(a) Training loss on CIFAR-100.

(b) Training loss on SVHN.

Figure 6: Training loss curves of finetuning adapters with vanilla, and TINA training.

We notice that the loss of the training using TINA algorithm is much smoother than vanilla training
resulting in adapters that generalize well on the downstream task as previously shown in Fig. 5.
Furthermore, we notice spikes in the training loss of TINA, due to the removal of neurons after
each cycle. Eventually, sequential training and neuron selection is a successful strategy to find
small networks while maintaining good performance, since directly training small networks does
not provide similar results Frankle & Carbin (2018).

14

Under review as a conference paper at ICLR 2023

A.2.1 IMPACT OF THE PARAMETER ALLOCATION

In this ablation study, we validate the idea that every layer of a ViT needd to be adapted differently
in order to learn a new task. The Swin-B vision transformer model that we use in all our experiments
consists of 4 stages. Therefore, we propose to evaluate the performance when we vary the adapter
size in each stage. The results are reported in table 7. First, it shows that the size of adapters has a
strong effect on the model performance. In general, the best performances are achieved when using
adapters with higher number of parameters. Furthermore, bigger sizes of adapters are not sufficient
for better performance, but subject to which stage they are injected into. We observe that adding
adapters to late stages (i.e. III and IV), boosts the performance better than injecting them into early
stages: adapters with σi = 128 added to (III, IV) stages rather than (I, II) improves the performance
from 95.29%, 73.38% to 97.40%, 87.04% on CIFAR-10, and VGG-Flowers, respectively.

Table 7: Effect of adapters compression rate σi on adapters performance in terms for top-1 accuracy
(%) for CIFAR-10 and VGG-Flowers datasets. Compression rate σ = ∞ equivalent to not adding
adapter. We vary the σi value for each ViT stage (I, II, III, IV)

σi in each Swin Stage Dataset
I II III IV CIFAR-10 VGG-Flowers

128 128 32 32 97.91 89.90
32 32 128 128 97.64 87.05

128 32 128 32 97.84 89.45
32 128 32 128 97.72 88.49

128 128 128 32 97.79 89.22
256 128 64 32 97.91 89.84
32 64 128 256 97.43 86.90

128 128 ∞ ∞ 95.29 73.38
∞ ∞ 128 128 97.40 87.04
∞ 128 128 ∞ 96.97 84.65

128 ∞ ∞ 128 96.53 80.84

A.3 ILLUSTRATIONS OF LOCAL VERSUS GLOBAL NEURON SELECTION

Figures 7 and 8 show additional illustrations of the distribution of the removed and remaining neu-
rons using TINA on VGG-Flowers, and CIFAR-10. We show the learned adapters at different cycles
for both local and global neuron selection methods. We also complete these visualizations (Figures
9 and 10) with histograms where we show the percentages of remaining neurons. Overall, these
experiments show that our method is capable of obtaining different parameter allocations that are
specific to every task.

5 10 15 20
Adapter index i

0

20

40

60

80

Nu
m

be
r o

f N
eu

ro
ns

 n
i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(a) Local pruning: all datasets.

5 10 15 20
Adapter index i

0

20

40

60

80

Nu
m

be
r o

f N
eu

ro
ns

 n
i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(b) Global pruning: VGG-Flowers .

5 10 15 20
Adapter index i

0

20

40

60

80

Nu
m

be
r o

f N
eu

ro
ns

 n
i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(c) Global pruning: CIFAR-10.

Figure 7: Layer-wise analysis of adapter’s neurons distribution at 3rd cycle. Bar plots represent
number of neurons ni at each adapter i using local, global neuron selection for VGG-Flowers and
CIFAR-10, respectively.

15

Under review as a conference paper at ICLR 2023

5 10 15 20
Adapter index i

0

20

40

60

80
Nu

m
be

r o
f N

eu
ro

ns
 n

i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(a) Local pruning: all datasets.

5 10 15 20
Adapter index i

0

20

40

60

80
Nu

m
be

r o
f N

eu
ro

ns
 n

i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(b) Global pruning: VGG-Flowers .

5 10 15 20
Adapter index i

0

20

40

60

80

Nu
m

be
r o

f N
eu

ro
ns

 n
i

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Removed
Remaining

(c) Global pruning: CIFAR-10.

Figure 8: Layer-wise analysis of adapter’s neurons distribution at 5th cycle. Bar plots represent
number of neurons ni at each adapter i using local, global neuron selection for VGG-Flowers and
CIFAR-10, respectively.

5 10 15 20
Adapter index i

0

20

40

60

80

100

Re
m

ai
ni

ng
 n

eu
ro

ns
 (%

)

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Remaining

(a) Local pruning: all datasets.

5 10 15 20
Adapter index i

0

20

40

60

80

100

Re
m

ai
ni

ng
 n

eu
ro

ns
 (%

)

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Remaining

(b) Global pruning: VGG-Flowers .

5 10 15 20
Adapter index i

0

20

40

60

80

100

Re
m

ai
ni

ng
 n

eu
ro

ns
 (%

)

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Remaining

(c) Global pruning: CIFAR-10.

Figure 9: Layer-wise analysis of adapter’s neurons distribution at 3rd cycle. Normalized bar plots
represent percentage (%) of remaining neurons ni at each adapter i using local, global neuron
selection for VGG-Flowers and CIFAR-10, respectively.

A.3.1 IMPACT OF ρ

In this section, we investigate the effect of the hyper-parameter ρ.

In figure 11. We notice that higher values of ρ hurts the performance, because we remove many
parameters after each cycle, but we reduce the size of adapters significantly. On the other hand, if ρ
is small (i.e 25%), we maintain good performance on VGG-Flowers dataset, but it requires higher
training cycles C to reach the target compression rate σtarget.

We have a trade-off between the performance, and training budget in order to reach the σtarget.
Removing too much parameters at each cycles, hurts performance. Maintaining good performance
requires higher number of training cycles C.

A.3.2 SERIES ADAPTERS VERSUS PARALLEL ADAPTERS

In this experiment, we would like to investigate two different designs for adapters as illustrated in
Figure 12. Traditional adapters known as series adapters (SA) Houlsby et al. (2019), and another
variant parallel adapters (PA) He et al. (2021). The parallel configuration PA acts as a perturbation
on the base network, the serial configuration more directly changes the hidden representations fed
into the next layer. In this way, the parallel adapters are less prone to the loss of the ‘knowledge’
stored in the base model. Also, they are more efficient during training, where we can benefit from
parallel operations. On the other hand, SA increases the latency of the model at inference time.

According to results in Table 8, SA outperforms PA with 1.5% on Quickdraw dataset. It indicates
that acting directly on the feature allows more efficient adaptation to the new task. Furthermore, we

16

Under review as a conference paper at ICLR 2023

5 10 15 20
Adapter index i

0

20

40

60

80

100

Re
m

ai
ni

ng
 n

eu
ro

ns
 (%

)

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Remaining

(a) Local pruning: all datasets.

5 10 15 20
Adapter index i

0

20

40

60

80

100

Re
m

ai
ni

ng
 n

eu
ro

ns
 (%

)

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Remaining

(b) Global pruning: VGG-Flowers .

5 10 15 20
Adapter index i

0

20

40

60

80

100

Re
m

ai
ni

ng
 n

eu
ro

ns
 (%

)

5 10 15 20
Adapter index i

5 10 15 20
Adapter index i

Remaining

(c) Global pruning: CIFAR-10.

Figure 10: Layer-wise analysis of adapter’s neurons distribution at 5th cycle. Normalized bar plots
represent percentage (%) of remaining neurons ni at each adapter i using local, global neuron
selection for VGG-Flowers and CIFAR-10, respectively.

0 200 400 600 800 1000 1200

0

20

40

60

80

100
0.25

0.5

0.75

0.9

A Performance on VGG-Flowers with various values for p (amount of neurons remo

Epochs

A
c
c
u
r
a
c
y

Figure 11: Analysis of TINA performance on VGG-Flowers dataset with different values of ρ. If
ρ is very high, the drop in performance is significant, but it requires less C training cycles to reach
σtraget.

notice that both PA, and SA benefits from the higher sizes of adapters, where over-parametrization
eases the optimization process and improves performance.

A.4 MAGNITUDE ASSUMPTION AS IMPORTANCE SCORE

In this section we provide more insights on the importance score employed within TINA. In partic-
ular, under Gaussian input assumption for adapters and imposing weight decay at training time, we
will see that, towards a better choice of parameters to be removed, considering just W down

i is sub-
optimal, and W up

i should be accounted as well. We drop the adapter index i for abuse of notation,
as we will always refer to the same adapter.
Let us have an m-dimensional input h, whose elements are distributed according to a Gaussian
N (µk,Σk). We assume the adapter has already been trained; hence we consider, in the down-
sampling phase all the wdown

jk as constants. Form the property of linear expectations, we know
that, before reaching the non-linear activation, the post-synaptic potential is still a Gaussian random

17

Under review as a conference paper at ICLR 2023

Parallel AdapterSeries Adapter

LayerNorm

LayerNorm

MLP Adapter

LayerNorm

Adapter

LayerNorm

Input X

LayerNorm

MSA

Adapter

LayerNorm

MLP

Adapter

Input X

h

h'
h'

MSA

Adapter

Upsample

Updated
Frozen

Downsample

Figure 12: Two different designs for Adapter. Series Adapters (SA) Houlsby et al. (2019), and our
proposed variant parallel adapters (PA). PA does not alter the representation of the pretrained model.

Table 8: Comparison between Series Adapters (SA) and Parallel Adapters (PA)with different com-
pression ratio σ on Quickdraw with adapters. The number of parameters is reported in million and
includes the linear classifier parameters

Method σ = 32 σ = 64 σ = 128 σ = 256
SA 69.29 67.45 65.96 64.32
Params (in M) 1.4 0.8 0.5 0.4
PA 67.91 66.0 64.49 62.92
Params (in M) 1.4 0.8 0.6 0.4

variable, having average

µdown
j =

m∑
k=1

W down
jk · µk (3)

and variance

Σdown
j =

m∑
k=1

W down
jk ·

[
W down

jk Σkk + 2
∑
k′<k

W down
jk′ Σkk′

]
(4)

where Σab indicates an element of the covariance matrix for the input of the adapter. For sake of
easier tractation, if we assume Σkk′ = 0 ∀k ̸= k′, equation 4 simply reduces to

Σdown
j =

m∑
k=1

(
W down

jk

)2
Σkk. (5)

In transformers, the commonly-used activation function is the Gaussian error linear unit (GELU),
whose analytical expression is

ϕ(x) = x · 1
2

[
1 + erf

(
x√
2

)]
(6)

where erf(·) is the error function. For values close to zero, or larger than zero, it can be approximated
to the identity function, while for values much lower than zero, it asymptotically tends to zero. Let
us focus on the first scenario: we can approximate the post-synaptic potential to the output of the
non-linearity, saying that the output

zj ≈ N (µdown
j ,Σdown

j). (7)

At this point, the signal undergoes an up-sampling: following-up on the same approach adopted for
the down-sampling, we find that the output r still follows an Gaussian distribution having average

µup
l =

n∑
j=1

Wup
jl µ

down
j =

n∑
j=1

Wup
jl

m∑
k=1

W down
jk · µk (8)

18

Under review as a conference paper at ICLR 2023

and variance

Σup
l =

n∑
j=1

(
Wup

jl

)2
Σdown

j =

n∑
j=1

(
Wup

jl

)2 m∑
k=1

(
W down

jk

)2
Σkk. (9)

µup
l,ā = µup

l −Wup
al

m∑
k=1

W down
ak · µk

Σup
l,ā = Σup

l − (Wup
al)

2
m∑

k=1

(
W down

ak

)2
Σkk. (10)

In order to assess the impact of removing a whole neuron in the embedding space, we can write the
KL-divergence of the distribution for rl with and without the a-th neuron in the embedding space

DKL(rl, rl,ā) = log

(
Σup

l − (Wup
al)

2∑m
k=1

(
W down

ak

)2
Σkk

Σup
l

)
+

+
(Σup

l)
2
+
(
µup
l − µup

l +Wup
al

∑m
k=1 W

down
ak · µk

)
2 ·
[
Σup

l − (Wup
al)

2∑m
k=1

(
W down

ak

)2
Σkk

]2 − 1

2
. (11)

According to equation 10, we can rewrite equation 11 as

DKL(rl, rl,ā) = log

(
1−

(Wup
al)

2∑m
k=1

(
W down

ak

)2
Σkk

Σup
l

)
+

+
(Σup

l)
2
+
(
Wup

al

∑m
k=1 W

down
ak · µk

)
2 ·
[
Σup

l − (Wup
al)

2∑m
k=1

(
W down

ak

)2
Σkk

]2 − 1

2
. (12)

Let us now investigate which is the a-th neuron which, when removed, causes the least perturbation
at the output rl (or in other words, such that DKL(rl, rl,ā) is as low as possible). Looking at the

argument of the logarithm, we ask (Wup
al)

2 ∑m
k=1(W

down
ak)

2
Σkk

Σup
l

= 0 and, since we can safely assume

Σup
l , we need to select a such that (Wup

al)
2∑m

k=1

(
W down

ak

)2
Σkk = 0. Considering that also Σkk >

0 ∀k, we satisfy the condition if either:

• W down
ak = 0 ∀k, namely the L1 norm for W down

−a is zero;

• Wup
al = 0. Considering though that this condition needs to be satisfied for all the l outputs

of the adapters, we ask Wup
al = 0 ∀l or, in other words, the L1 norm for W up

a− is also zero.

We observe that, when either of the two conditions are met, the KL divergence is zero as

DKL(rl, rl,ā) = log(1) +
(Σup

l)
2

2 · (Σup
l)

2 −
1

2
= 0

We can also assume that, if either W down
ak = 0 ∀k or Wup

al = 0 ∀l, the norm of the non-zero
parameters associated to some neuron a are small when training with any weight penalty regularizer
(as the contribution to the output is zero, the signal is either not forward or back-propagated, leaving
the weight penalty term the only update for these parameters). This further motivates our proposed
importance score given in equation 2.

A.5 DETAILS ABOUT DATASETS

In Table 9, we report different statistics that capture the diversity of the datasets we use in our
experiments.

19

Under review as a conference paper at ICLR 2023

Table 9: Datasets used in our empirical analysis

Dataset Train Size Test Size Classes

M
ul

ti-
ta

sk CIFAR-10 50000 10000 10
CIFAR-100 50000 10000 100

Oxford Flowers 2040 6149 102
SVHN 73257 26032 10

D
om

ai
nN

et

Clipart 33525 14604 345
Infograph 36023 15582 345
Painting 50416 21850 345

Quickdraw 120750 51750 345
Real 120906 52041 345

Sketch 48212 20916 345

A.6 BASELINES DETAILS: PHM, COMPACTER, AND LORA

In order to have, a comparable number of trainable parameters for the baselines listed in Table 1 and
Table 2. We set Compacter n = 12, and for PHM, n = 12.

In LoRa, the budget is expressed with a rank parameter r. We evaluate different rank values for
LoRa and reported in our experiments the configuration leading to the best performance. For this
preliminary experiment, we considered the Quickdraw dataset as a proxy to select the best r. The
result is presented in Table 10. Rank r = 8 gives the best performance with a satisfying number of
trainable parameters.

Table 10: Effect of rank dimension r on Quickdraw with LoRa fine-tuning.

Method n = 4 n = 8 n = 16 n = 32

Accuracy (%) 59.72 62.89 59.7 61.87
of Params 349209 419865 561177 843801

20

	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Overall Procedure of TINA
	Importance Score in Tiny Adaptive Adapters (TINA)

	Experiments
	Main results
	Ablation study

	Conclusion
	Appendix
	Local versus Global Neurons Selection
	Vanilla versus TINA Training for Adapters
	Impact of the parameter allocation

	Illustrations of Local versus Global Neuron Selection
	Impact of
	Series Adapters Versus Parallel Adapters

	Magnitude assumption as importance score
	Details about Datasets
	Baselines Details: PHM, Compacter, and LoRA

