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Gamblers or Delegatees: Identifying Hidden Participant Roles in
Crypto Casinos
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ABSTRACT
With the development of blockchain technology, crypto gambling
has gained popularity due to its high level of anonymity. However,
similar to traditional casinos, crypto casinos are controlled by a few
internal Delegatees, making it impossible for them to achieve com-
plete transparency and fairness. These delegatees are hidden among
gamblers and are difficult to identify and distinguish in anonymous
and large-scale blockchain transaction networks. This paper pro-
poses an unsupervised dual-stage role identification method to
adaptively identify key roles and hidden delegatees in label-sparse
crypto casinos. Specifically, inspired by voting-style transaction pat-
terns, we propose a novel voting influence metric for key node iden-
tification. This metric is based on one-dimensional structural en-
tropy to capture global dissemination capability. Subsequently, we
develop a multi-view graph neural network framework enhanced
with two-dimensional global structural entropy minimization and
self-supervised contrastive learning to improve the robustness and
interpretability of hidden role partitioning. Experiments on real-
world cases of the most mainstream blockchains—Ethereum, TRON,
and Arbitrum—demonstrate that our proposed method effectively
reveals distinct role compositions and collusion patterns, distin-
guishing between gamblers and delegatees. Our results achieve a
higher match with identities confirmed by judicial authorities than
existing methods, indicating the effectiveness and generalizability
of our approach in enhancing security and regulation oversight.

CCS CONCEPTS
• Security and privacy→ Economics of security and privacy;
• Mathematics of computing→ Graph algorithms; • Applied
computing→ Digital cash.

KEYWORDS
Crypto gambling, Anonymity, Security, Delegatees, Role identifica-
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1 INTRODUCTION
The rapid growth of blockchain technology [61] has spawned a
new form of online gambling: crypto casinos [9]. These crypto casi-
nos offer various gambling games (e.g., poker, blackjack, roulette,
slot machines) and allow players to bet using cryptocurrencies
on multi-chain networks (e.g., Ethereum, EOS, TRON, Arbitrum)

WWW’25, May 2025, Australia
© 2024 Association for Computing Machinery.

[4], providing a high degree of privacy and anonymity. In some
crypto casinos, gambling funds or tokens strictly follow predefined
rules set by smart contracts [63] to ensure perceived fairness and
transparency, addressing issues like fictitious prize pools, opaque
processes, high costs, and unpaid winnings.

However, the very anonymity afforded by blockchain technology
renders crypto casinos less than absolutely fair and transparent,
exposing them to security and compliance risks. A widely acknowl-
edged issue in conventional casinos is that a few behind-the-scenes
insiders or shills control and operate the entire casino [50], as shown
in Figure 1. These roles, called Delegatees, are crucial in undertak-
ing diverse tasks such as prize management, fund pooling, market
promotion [56], and even illegal activities like money laundering
and underground banking [51]. A similar but more challenging situ-
ation occurs in crypto casinos, where these delegatees exist hidden
among gamblers and dispersed across large-scale and anonymous
transaction networks, making them more difficult to identify. This
circumstance leads to negative impacts, including misleading play-
ers, manipulating the market, and committing fraud [38]. Therefore,
our purpose is to pinpoint these hidden delegatees, assisting players
in reducing information asymmetry and herd behavior, and offering
authorities insights for better regulation of crypto casinos.

Figure 1: Who are Gamblers or Delegatees? Imagine gamblers
gathered around a digital roulette table. Unbeknownst to
them, a few behind-the-scenes Delegatees, cleverly hidden
among gamblers, actually undertake diverse tasks and oper-
ate the entire crypto casino for Stakeholders.

Existing research on crypto-crime regulation and forensics of-
fers valuable insights [25, 37, 55, 62]. However, these techniques
primarily focus on address-level identification in extremely lim-
ited labeled scenarios. In reality, most anonymous addresses lack
explicit labels, leading to an extreme imbalance with unlabeled
addresses. Furthermore, existing address labels typically indicate
the types of transaction scenarios entities are involved in, such as
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exchanges, gambling, scams, DeFi, and mining, without delving
further into the specific roles these entities play in their respective
scenarios. Therefore, role-level identification allows for a more fine-
grained understanding of entity functions and behaviors, especially
in unlabeled casinos. Nevertheless, existing unsupervised role iden-
tification methods face three challenges: a) they are easily affected
by the inherent randomness and noise of the graph, leading to a
lack of robustness; b) most focus only on local network structures
while ignoring global information; c) domain-specific knowledge
has not been fully utilized, resulting in a lack of interpretability.
Thus, it is imperative to adopt new approaches to identify the roles
of different entities in crypto casinos.

This paper presents a novel approach named Crypto Casino
DelegateeMiner (CCDM), to identify key and hidden participant
roles in crypto casinos. CCDM organizes crypto gambling transac-
tions using a multi-chain universal interaction graph model (§4.1)
and then proposes an unsupervised dual-stage role identification
algorithm for our label-sparse and noisy scenario (§4.2). Specifi-
cally, considering the voting-style transaction patterns and global
structural information, we first develop a voting influence met-
ric for key node identification using one-dimensional structural
entropy (1D SE) (§4.2.1). Subsequently, for the remaining nodes,
we design a multi-view GNN-based framework for adaptive hid-
den role identification (§4.2.2), in which local structural-view and
temporal-view embeddings are initially obtained. To enhance the
robustness of clustering (Challenge a), two-dimensional structural
entropy (2D SE) minimization is incorporated into the loss function,
synchronously serving as a measure of the global structure view
(Challenge b). A self-supervised contrastive learning based on a fea-
ture similarity view is designed to improve the interoperability of
clustering (Challenge c). Finally, a cross-role network motif extrac-
tion method is employed to analyze collusion patterns among roles
(§4.3). Extensive experiments of real cases on Ethereum, TRON, and
Arbitrum demonstrate that CCDM effectively uncovers distinct role
compositions and ecosystems unique to each blockchain. Compared
to existing methods, CCDM1 results in a closer alignment with iden-
tities confirmed by judicial authorities and can be extended to other
account-based blockchains. Our main contributions are as follows:

(i) We first presents a systematic investigation into the secu-
rity and transparency of crypto casinos through the lens of role-
level identification, providing a more fine-grained analysis of the
ecosystem than address-level identification. (ii) We propose an un-
supervised dual-stage role identification algorithm that combines key
node identification based on 1D structural entropy and a multi-view
GNN-based framework enhanced with 2D global structural entropy
minimization and self-supervised contrastive learning to improve
robustness and interoperability. (iii) Extensive experiments on real-
world cases on Ethereum, TRON, and Arbitrum are conducted to
uncover diverse role ecosystems and evaluate the effectiveness and
generalizability of CCDM. (iv) Diverse types of collusion schemas
among roles were extracted, such as Arbitrage Triangle, Pooling,
Listing, Sponsor, Prize Loop, Cross-Bridge, Staking Schema, etc.

2 RELATEDWORK
This section endeavors to investigate and provide a summary of
recent relevant studies, which can be broadly categorized into three
1https://github.com/njublockchain/crypto-casino-delegatee-mining

key research: crypto gambling, crypto-crime regulation and foren-
sics, and role recognition research.

Existing research on crypto gambling provides the essential con-
text for understanding this emerging form of gambling. Studies
have explored the relationship between gambling and cryptocur-
rency trading [16], socioeconomic profiles of crypto gamblers [46],
and user behavior patterns in decentralized gambling applications
[39, 45]. Recently, emerging research has presented automatic tools
[26, 53] to identify smart contracts and crypto addresses involved
in gambling in large-scale blockchain networks. However, there
remains a scarcity of research that delves into the identification
and understanding of participant roles in crypto casinos.

Existing research on crypto-crime regulation and forensics pro-
vides us with key insights into how to secure cryptocurrency trans-
actions and implement effective regulation of various types of
crypto-related crimes, directly related to our research design. This
work mainly focuses on account classification, abnormal address
identification, and transaction tracing. To be specific, machine learn-
ing and deep learning methods are utilized to characterize behavior
patterns of accounts and further achieve account de-anonymization
[34, 37, 65]. Moreover, enhanced anomaly detection methods are
employed to address more specialized threats, such as fraud [23, 24],
phishing [11, 55, 57], mixing transactions [58], money laundering
[36], and Ponzi [12]. Furthermore, novel transaction tracking tools
have been proposed to study the flow of funds on blockchain net-
works [35, 59, 60]. However, these techniques mainly focus on
address-level identification, which is limited to labeled scenarios.
Most anonymous addresses lack explicit labels, resulting in a signif-
icant imbalance with unlabeled ones. Additionally, existing labels
typically represent specific transaction scenarios (e.g., exchanges,
gambling, scams, DeFi, mining), without examining the specific
roles these entities play within those scenarios.

Role identification is directly related to our research objective
and task. Intuitively, if two nodes have similar structures, they
belong to the same role [43]. Unlike community detection, role
identification focuses on the global structure and function of nodes,
rather than just closely connected local groups. Current research is
categorized into explicit and implicit role identification. Explicit role
identification involves predefined, specific roles based on existing
theories, experiences, or labels. These roles are typically classified
using supervised or semi-supervised learning methods [20, 30, 64].
Implicit role identification does not require prior definitions and
primarily uses methods like statistical analysis (e.g., block mod-
els [1], probabilistic models [13]), low-rank approximations (e.g.,
non-negative matrix factorization [22]), and unsupervised learning
[41, 52]. Recently, both methods have been closely related to role-
based graph embedding methods [19, 28, 29, 44]. Given the scarcity
and extreme imbalance of labels in the anonymous blockchain sce-
nario, we mainly focus on unsupervised methods. However, current
unsupervised methods are easily affected by the inherent random-
ness and noise of the graph, leading to a lack of robustness. Most of
them focus only on local network structures while ignoring global
information. Domain-specific knowledge has not been fully utilized,
resulting in a lack of interpretability.
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Figure 2: A Framework of Crypto Casino Delegatee Mining (CCDM). First,Multi-chain Graph Construction creates a unified
graph model. Next, Unsupervised Dual-stage Role Identification employs innovative ChainVoteEntropy and multi-view GNN
methods to identify key and hidden roles respectively. Cross-role Pattern Analysis uncovers interaction patterns among roles.

3 PRELIMINARIES
3.1 Problem Definition
Consider a weighted and directed graph 𝐺 = (𝑉 , 𝐸,X), where 𝑉 ,
𝐸 are the set of nodes and edges, and X ∈ R |𝑉 |×𝑑 is the node
feature matrix, with 𝑑 being the number of features for each node.
The adjacency matrix A ∈ {0, 1} |𝑉 |× |𝑉 | represents the connections
between nodes, where A𝑖 𝑗 = 1 if there is an edge between node 𝑖
and 𝑗 , and A𝑖 𝑗 = 0 otherwise. Our task is twofold. First, the key role
identification is to define an influence ranking function 𝑓 : 𝑉 → R,
which assigns in-influence scores to each node. Second, leveraging
the optimized node embeddings Z, we perform clustering to assign
the remaining node 𝑣 to a role cluster𝐶𝑣 . Notably, each node belongs
to only one cluster and each cluster is linked to a unique role.

3.2 Structural Information Principles
In contrast to Shannon entropy, which measures uncertainty in
probabilistic events, structural entropy extends this concept to
the realm of network analysis, quantifying both the dissemination
ability of nodes and the complexity of graph structure. This section
mainly focuses on 1D and 2D structural entropy in a connected,
undirected, and unweighted graph 𝐺 .

One-dimensional Structural Entropy (1D SE). It captures
the complexity of the entire network by focusing on the degree
distribution and overall connectivity patterns, as defined below:

𝐻1 (𝐺) = −
∑︁
𝑣∈𝐺

𝑑𝑣

2𝑒
log2

(
𝑑𝑣

2𝑒

)
(1)

where 𝑑𝑣 is the degree of 𝑣 , and 𝑒 is the number of edges in 𝐺 .
Two-dimensional Structural Entropy (2D SE). It delves into

the modular structure of a network, considering both the commu-
nity organization of nodes and the relationships between commu-
nities. Let 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝐿} be a partition of the vertex set𝑉 in𝐺 .
The 2D SE of 𝐺 based on partition 𝑃 is defined as follows:

𝐻2 (𝐺) = −
𝐿∑︁
𝑙=1

𝑉𝑃𝑙

2𝑒

𝑛𝑃𝑙∑︁
𝑖=1

𝑑
(𝑙 )
𝑖

𝑉𝑃𝑙
log2

𝑑
(𝑙 )
𝑖

𝑉𝑃𝑙
−

𝐿∑︁
𝑙=1

𝑔𝑙

2𝑒
log2

𝑉𝑃𝑙

2𝑒
(2)

where 𝐿 is the number of modules in the partition 𝑃 . 𝑛𝑃𝑙 is the
number of nodes in module 𝑃𝑙 . 𝑑

(𝑙 )
𝑖

is the degree of the 𝑖-th node

in 𝑃𝑙 . 𝑉𝑃𝑙 is the volume of 𝑃𝑙 , which is the sum of degrees of all
nodes in 𝑃𝑙 . 𝑔𝑙 is the edge count with exactly one endpoint in 𝑃𝑙
(i.e., edges that cross module boundaries).

4 A FRAMEWORK OF CCDM (FIGURE 2)
4.1 Multi-chain Graph Construction
Currently, crypto casinos primarily operate on account-based public
blockchains like Ethereum and TRON, differing from Bitcoin UTXO
model [10]. In the account model, addresses are either Externally
Owned Accounts (EOAs) controlled by individuals or organizations,
or Contract Accounts (CAs) managed by smart contracts [27]. This
paper refers to all accounts by addresses. Interactions involve crypto
asset transfers (e.g., ETH, TRX, tokens) between addresses, with
each transaction having a single input and output address [31].
In the gambling ecosystem, project-specific tokens transfers are
equally important. We track transaction flows and token transfers,
and then construct complex interaction graphs.

Definition 1. (Original InteractionGraphModel, og-IGM): A
weighted and heterogeneousmultidi-graph𝐺 = (𝑉𝐸𝑂𝐴,𝑉𝐶𝐴, 𝐸t, 𝐸c),
where 𝑉𝐸𝑂𝐴 and 𝑉𝐶𝐴 represent the set of EOAs and CAs respec-
tively. The EOAs set 𝐸t =

{(
𝑣𝑖 , 𝑣 𝑗 , 𝑎, 𝑡

)
| 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉EOA

}
represents

the directed edge set constructed from transaction information. The
CAs set 𝐸c =

{(
𝑣𝑖 , 𝑣 𝑗 , 𝑓 , 𝑡

)
| 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉EOA ∪𝑉CA

}
represents the di-

rected edge set constructed from token transfer information. The
edge attributes 𝑎, 𝑡 and 𝑓 represent transaction amounts, times-
tamps, and token values respectively.

The og-IGM is a heterogeneous multi-graph that possesses dense
connections as well as different types of information attached to
nodes and edges. The heterogeneity of nodes and edges signifi-
cantly increases the complexity of graph learning. Consequently,
we further simplify the graph to a lightweight homogeneous graph.

Definition 2. (Lightweight Interaction Graph Model, lw-
IGM): A weighted and homogeneous multidi-graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 represents the set of all addresses, and each node 𝑣 ∈ 𝑉
has an extra attribute that indicates whether it is an EOA or CA.
The edge set 𝐸 =

{(
𝑣𝑖 , 𝑣 𝑗 ,𝑚, 𝑡, p

)
| 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉

}
represents interac-

tions between addresses. Edge attributes𝑚, 𝑡 , and p represent the
interaction amount, timestamp, and whether the interaction is a
transaction or token transfer, respectively.

3
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4.2 Dual-stage Role Identification
In real-world networks, some nodes exhibit atypical features due to
noise or anomalies. Hidden roles are often not immediately appar-
ent, and directly analyzing all nodes increases the complexity of the
task. Key nodes, which have greater influence and dissemination
capabilities within the network, can be identified first to reduce
redundant information. This provides more precise guidance and
reference for subsequent hidden role identification, improving the
overall efficiency and accuracy of the process.

4.2.1 Key Node Identification. Traditional centrality measures fail
to fully capture the dynamic interaction pattern and global structure
complexity of blockchain networks. We first draw inspiration from
the voting-style behavior observed in token issuance and transfer,
which can be seen as the inverse of node voting in networks. Second,
as described in §3.2, 1D structural entropy not only considers the
number of direct neighbors but also captures dissemination capabil-
ity and coverage within the entire network. Combining these two
aspects, we propose a novel indicator named ChainVoteEntropy
(See Algorithm 1), designed for identifying key roles in directed
and weighted blockchain transaction networks.

Definition 3. (ChainVoteEntropy)
(i) Voting scores. Different roles vary significantly in terms

of directionality. For instance, Exchanges and Service often handle
large volumes of both incoming and outgoing transactions, while
stakeholders are typically involved in outgoing transactions. Thus,
each node 𝑣 obtains its in-voting score �̃� in

𝑣 and out-voting score
�̃� out
𝑣 separately from its input and output neighbors. The number

of neighbors and the weighted sum of voting ability scores from
neighbors of 𝑣 positively influence voting scores of 𝑣 , defined as:

�̃� in
𝑣 (𝑡) =

√︄
(
∑︁
(𝑢,𝑣)

𝑏out𝑢 (𝑡) ·𝑚 (𝑢,𝑣) )
��𝐸in𝑣 �� (3)

�̃� out
𝑣 (𝑡) =

√︄
(
∑︁
(𝑣,𝑢′ )

𝑏in
𝑢′ (𝑡) ·𝑚 (𝑣,𝑢′ ) )

��𝐸out𝑣

�� (4)

where 𝑏in𝑣 (𝑡) and 𝑏out𝑣 (𝑡) represent the input and output voting
ability of 𝑣 at the 𝑡-th iteration respectively. 𝑚 (𝑣,𝑢′ ) and 𝑚 (𝑢,𝑣)
represent transaction amounts from 𝑣 to 𝑢′ and from 𝑢 to 𝑣 , respec-
tively.

��𝐸in𝑣 �� and ��𝐸out𝑣

�� represent the number of in-neighbors and
out-neighbors of 𝑣 respectively.

(ii) Voting ability. The voting ability of a node can be regarded
as its capacity to disseminate information or influence other nodes.
1D SE provides an effective metric for measuring voting ability.
Specifically, nodes with higher 1D SE have their connections dis-
tributed across a larger and more diverse set of neighbors, resulting
in more information dissemination paths and thus greater voting
ability. Therefore, let each node (�̃� in

𝑣 (𝑡), �̃� out
𝑣 (𝑡), 𝑏in𝑣 (𝑡), 𝑏out𝑣 (𝑡)) is

initialized as (0, 0, 𝐻 in
𝑣 , 𝐻out

𝑣 ), where 𝐻 in
𝑣 and 𝐻out

𝑣 represent the 1D
in- and out- structural entropies of 𝑣 respectively, as defined below.

𝑏in𝑣 (0) = −
𝑤𝑑 in𝑣
𝑉𝐺

log2
𝑤𝑑 in𝑣
𝑉𝐺

, 𝑏out𝑣 (0) = −
𝑤𝑑out𝑣

𝑉𝐺
log2

𝑤𝑑out𝑣

𝑉𝐺
(5)

where 𝑤𝑑 in𝑣 and 𝑤𝑑out𝑣 represent the weighted (amounts) in-
degree and out-degree of 𝑣 respectively. 𝑉𝐺 represents the sum of
weights of all edges in 𝐺 .

(iii) Voting process. In each iteration, selected key addresses
that score higher between the highest �̃� in

𝑣 and �̃� out
𝑣 do not par-

ticipate in subsequent elections. For in-neighbors of the selected
node, their out-voting ability decreases by 1

⟨𝑘 ⟩ , where 〈𝑘〉 is the
average degree of𝐺 . For out-neighbors of the selected node, their in-
voting ability decreases by 1

⟨𝑘 ⟩ . Other voting ability values remain
unchanged. This process repeats until 𝑝 key nodes are selected.

4.2.2 Hidden Role Identification. Manual Statistical Features.
These features are typically obtained through statistical analysis
methods to reveal the characteristics of account states and his-
torical transaction behaviors. Specifically, account state features
include account balance, bounce, etc. Transaction intensity features
encompass input/output transaction amounts, gas fees, etc. Trans-
action frequency features relate to the number of input and output
transactions within a specific period, etc. Additionally, we derive
aggregated features through operations such as summation, averag-
ing, variance, Gini coefficient, etc. Detailed features are described
in Table 5.

Local Structural View (LSV). In blockchain transaction net-
works, the number of neighbors, distribution structure, and trans-
action amounts have significantly different impacts on target nodes.
Therefore, we propose an Enhanced Graph Attention Network
(EGAT) that aggregates edge attributes with graph structures in la-
tent representations. Specifically, the improved attention coefficient
𝛼𝑖 𝑗 represents the importance of neighbor 𝑗 to 𝑖 , defined as:

𝛼𝑖 𝑗 =

exp
(
ReLU

(
®𝑎𝑇

[
𝑊ℎ𝑥𝑖 ∥𝑊ℎ𝑥 𝑗 ∥𝑊𝑒𝑚𝑖 𝑗

] ))∑
𝑘∈N(𝑖 ) exp

(
ReLU

(
®𝑎𝑇 [𝑊ℎ𝑥𝑖 ∥𝑊ℎ𝑥𝑘 ∥𝑊𝑒𝑚𝑖𝑘 ]

) ) (6)

where𝑚𝑖 𝑗 denotes transaction amounts between nodes 𝑖 and 𝑗 ,
N(𝑖) refers to the neighborhood of 𝑖 , Wℎ is a weight matrix used
to transform node features, W𝑒 is a weight matrix for transforming
edge features, ®𝑎 is a learnable weight vector, and 𝑥𝑖 , 𝑥 𝑗 represents
the feature vectors of 𝑖 , 𝑗 respectively. A reconstruction loss function
L𝐺 for EGAT is defined as:

L𝐺 = ∥Â − A∥2𝐹 (7)

where A is the original adjacency matrix, Â is the reconstructed
adjacency matrix, Â = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (HH⊤), and H is the learnt node
embeddings from EGAT.

Temporal Sequence View (TSV). Transaction sequences oc-
curring at different times represent distinct behavioral patterns.
We utilize a Temporal Long Short-Term Memory (TLSTM) model
to capture temporal features by arranging all transaction records
for a given account in ascending chronological order. Each initial
sequence is normalized to a fixed length 𝑆 by either padding with
zeros or truncating. The plus or minus represents the direction of
this transaction. The loss function L𝑇 is defined as:

L𝑇 = ∥T̂ − T∥2𝐹 (8)

where T is the original sequence matrix, T̂ is the reconstructed
sequence matrix, and the total reconstruction loss function is:

L𝐶 = L𝐺 + ·L𝑇 (9)
4
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Hidden Role Partitioning. Gambling transaction networks
consist of time-ordered transaction sequences, exhibiting hierarchi-
cal structures of users and fund flows. Then we input our concate-
nated embedding Z, which merges the Local Structural View and
Temporal Sequence View, into Agglomerative Hierarchical Cluster-
ing (AHC) [6] for role partitioning. AHC is particularly suitable for
datasets with hierarchical structures and uneven density distribu-
tions, characteristics common in gambling networks.

Global Structural View (GSV).However, due to the lack of pre-
defined labels, we cannot guarantee the robustness of role results.
On one hand, the graph noise and randomness are unfavorable
for unsupervised learning. On the other hand, roles are collections
of structurally similar entities, and currently, we only consider
local neighborhood structures without considering the influence
of global structures. To address these two issues, we employ 2D
structural entropy minimization to enhance the robustness of role
partitioning, while simultaneously capturing global structural in-
formation to optimize role partitioning. Given a role partitioning
result 𝑅 = {𝑅1, 𝑅2, ..., 𝑅𝐿} for G, we define:

L𝐸 = −
𝐿∑︁
𝑙=1

𝑉𝑅𝑙

𝑉𝐺

∑︁
𝑣∈𝑅𝑙

𝑤𝑑 in𝑣
𝑉𝑅𝑙

log2
𝑤𝑑 in𝑣
𝑉𝑅𝑙

−
∑︁
𝑣∈𝑉𝑅𝑙

𝑔𝑙

𝑉𝐺
log2

𝑉𝑅𝑙

𝑉𝐺
(10)

where 𝐿 is the number of role clusters in 𝑅.𝑤𝑑𝑖𝑛𝑣 is the weighted
(amounts) in-degree of node 𝑣 . 𝑉𝑅𝑙 is the sum of the weighted in-
degree of all nodes in 𝑅𝑙 . 𝑔𝑙 is the number of edges that cross cluster
boundaries in 𝑅𝑙 . 𝑉𝐺 is the total weight of all edges in 𝐺 .

Feature Similarity View (FSV). Another challenge of our role
identificationmethod is the absence of feedback about whether clus-
ters are well explained. To address this challenge, we designed a self-
supervised contrastive learning to achieve greater interpretability.
Specifically, contrastive learning includes intra-cluster loss, which
minimizes the sum of squared Euclidean distances within the same
cluster to bring similar samples closer, and inter-cluster loss, which
maximizes the sum of squared Euclidean distances between differ-
ent clusters to push dissimilar samples farther apart.

L𝐹 =
1
|𝑅𝑘 |

∑︁
𝑖, 𝑗∈𝑅𝑘

Z𝑖 − Z𝑗 2 − 1
|𝑅𝑘 ∥𝑅𝑙 |

∑︁
𝑖∈𝑅𝑘 , 𝑗∈𝑅𝑙

Z𝑖 − Z𝑗 2 (11)

where 𝑅𝑘 and 𝑅𝑙 represent two different clusters, |𝑅𝑘 | and |𝑅𝑙 |
represent their number of nodes respectively. Z𝑖 and Z𝑗 are the
concatenated embedding of node 𝑖 and 𝑗 respectively.

Joint Training. Finally, the model is trained by minimizing the
total loss L :

L = L𝐶 + 𝛼 · L𝐸 + (1 − 𝛼) · L𝐹 (12)

where 𝛼 is a coefficient controlling the balance in between.

4.2.3 TimeComplexity of CCDM. Blockchain transaction networks
are typically sparse graphs (𝐸 ∼ 𝑂 (𝑁 )) [5], where 𝐸 represents the
number of edges and 𝑁 represents the number of nodes. ChainVo-
teEntropy primarily involves 1D structural entropy calculation and
the voting process, with an overall time complexity approximating
𝑂 ((𝑁 +𝐸) +𝑝 · (𝑁 +𝐸)) ∼ 𝑂 (𝑁 ), exhibiting linear time complexity.
Hidden Role Identification primarily involves the training of LSV,
TSV, GSV, and FSV views, with an overall time complexity approxi-
mating 𝑂 (𝐸 · 𝐹 + 𝑁 · 𝑆 · ℎ + (𝑁 + 𝐸) + 1/𝑐 · 𝑁 2) ∼ 𝑂 (𝑁 2), where 𝐹
is the dimension of node features, 𝑆 is the input sequence length of

TLSTM,ℎ is the size of the TLSTM hidden layer, and 𝑐 is the number
of clusters. Due to the distribution of nodes across different clusters,
the actual complexity is lower than the theoretical upper bound
𝑂 (𝑁 2). Compared to direct clustering methods, it has similar time
complexity but achieves more fine-grained role partitioning.

4.3 Cross-role Pattern Analysis
Collusion or secret cooperation between different roles plays a cru-
cial role in shaping the overall operation of crypto casinos. This
section primarily reveals the intrinsic structure and relationships of
transactions among roles and identifies the main collusion patterns
that emerge from these interactions. We propose a cross-role pat-
tern extraction algorithm (See Algorithm 2). Specifically, based on
network motif methods, we extract motifs involving at least two dif-
ferent roles and calculate their occurrence frequency and z-scores
[33], thereby obtaining frequent collusion cooperation patterns.

5 EXPERIMENTS AND CASE ANALYSIS
5.1 Experiment Setup
Data Preparation. This study focuses on three mainstream public
blockchains: Ethereum, TRON, and Arbitrum to validate the effec-
tiveness and generalizability of CCDM. Ethereum is currently the
primary crypto platform. TRON, due to its low transaction fees, is
the most popular blockchain for gambling activities to date. Emerg-
ing casinos are primarily concentrated on Layer 2 solutions such
as Arbitrum, which offers faster transaction speeds and lower fees.
These blockchains represent three mainstream operation mecha-
nisms of crypto casinos to date.

Experimental datasets consist of native transaction, token trans-
fer, and address-label datasets. Specifically, we use third-party soft-
ware Erigon [17], java-tron [48], and Nitro [3] to synchronize the
raw block data for Ethereum, TRON, and Arbitrum respectively.
Then the open-source ETL tool web3research [40] is used to parse
the raw data according to data structures (Block, Transaction, and
Token Transfer). Labels of crypto casinos and Exchanges come from
industry-trusted sources such as etherscan [18], dappradar [14],
tronscan [49], and arbiscan [2], which are widely used in academic
research (See §2). Other role labels are frommanually verified labels
by official law enforcement agencies in real-world criminal cases.
Baselines. CCDM is compared with existing unsupervised role
identification: (1) Unsupervised graph learning (The generated rep-
resentation from GNN-FiLM [7], SuperGAT [32], EGC [47], GATv2
[8], DirGNN [42] are each input into K-means [21] or DBSCAN [15]
with the highest silhouette coefficient); (2) Low-rank approxima-
tions [22]; (3) Blockchain-domain state-of-the-art methods (Evolved
PageRank with Local Community Detection (EPLCD) [59]).
Evaluation Metrics. To evaluate the effectiveness of CCDM, we
use Purity, Accuracy (ACC), and Normalized Mutual Information
(NMI) [54]. Purity measures the extent to which clusters contain a
single class. ACC assesses the match between predicted and true
labels by finding the optimal one-to-one mapping. NMI quantifies
the shared information between true and predicted clusters. See
Appendix A.1 for details.
Implementation. In EGAT, Output Embedding Size is 32, ReLU
Negative Slope is 0.2, Attention Heads are 4, and Dropout Rate is 0.5.
In TLSTM, Hidden Size is 64, Output Embedding Size is 20, and Se-
quence Length is 15. Layer numbers in EGAT and TLSTM are treated
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as variables. AHC uses complete linkage with cosine distance for
high-dimensional sparse data. 𝛼 are optimized by grid search. Each
baseline GNN model has 2 layers with ReLU, Output Embedding
Size of 32, and Dropout Rate of 0.5. All models use Learning Rate of
0.005. Training runs for 200 epochs with a batch size of 128, and
the maximum number of role clusters is 10.

5.2 Case studies
Ethereum Gambling. We select multiple popular Ethereum casi-
nos at that time and extract their complete set of gambling to-
ken transfers to verify the effectiveness of CCDM. Data statistics
are shown in Table 1. First, we utilize the top-scoring nodes from
ChainVoteEntropy to identify and verify key roles. Evidently, Stake-
holders, engaged in token distribution, show higher output than
input transaction volumes. Exchanges and Service Providers receive a
relatively high volume of input and output transactions. Fund Pools,
used for fund collection and management, exhibit higher input than
output transaction volumes. Then we determined hidden delegatees
and regular gamblers through Algorithm 4.2.2. Taking one of them,
Fairspin (0xc2A8...580883), as an example, the predicted distribution
of roles in the transaction network, the average values (in-degree,
out-degree, weighted in-degree, weighted out-degree, closeness cen-
trality, betweenness centrality, PageRank) of network features for
each role, as well as 3- and 4-node network motifs with an absolute
z-score greater than 2 [33], are shown in Fig 3.

Address !𝑵𝒗𝒊𝒏 #𝑵𝒗𝒐𝒖𝒕 Role
0xcb41...a25f25 0 1.000 Casino Stakeholder
0x7a27…58a235 0 0.375 Casino Stakeholder
0xe8ee...d1e4cb 0 0.215 Casino Stakeholder
0x1d24...f79965 0 0.121 Casino Stakeholder
0x1d4b...3f09fd 0 0.118 Casino Stakeholder
0xb03b...316ae9 0 0.111 Casino Stakeholder
0x72d8…8fc548 1.000 0 Fund Pool
0x6dfc...48c0d7 0.132 0.358 Service Provider
0x4391...2ec747 0.070 0.131 Uniswap Exchange
0x74de...016631 0.010 0.006 Airswap Exchange

(B) Table (a). Normalization values of !𝑁!"# and #𝑁!$%& for 
partial key addresses, along with corresponding roles. 

(D
) C

ro
ss

-r
ol

e 
M

ot
ifs

(A) Fairspin Casino

Type Role/Average Metrics din dout wdin wdout closeness betweenness PageRank
Key

Roles
Casino Stakeholders 1.14 12.29 3.57E+08 7.14E+08 0.003 0.00036 0.0011

Exchanges or Services 42.50 52.63 8,654,029 5,167,423 0.220 0.09787 0.0450

Hidden
Delegatees

Fund Pools 7.00 0.00 1.44E+09 0 0.204 0.00000 0.0057
Arbitrageurs 2.66 2.40 518,361 518,074 0.195 0.00629 0.0030

Listing Agents 1.89 1.66 612,082 607,262 0.0932 0.00147 0.0018
Airdrop Promotors 2.10 0.6 5.15E+07 1.82E+05 0.0052 0.00037 0.0012

Gamblers Regular Gamblers 1.89 1.16 491,229 421,968 0.1643 0.00133 0.0025

(C) Table (b). Network features of different roles, including in-degree, out-degree, weighted 
in-degree, weighted out-degree, closeness centrality, betweenness centrality, and PageRank

|z-score|=5.82
Distribution Schema

|z-score|=5.45
Arbitrage Triangle

|z-score|=3.01
Pooling Schema

|z-score|=2.16
Distribution Schema

|z-score|=2.13
Distribution Schema

|z-score|=2.06
Listing Schema

|z-score|=3.15
Exchange Schema

|z-score|=3.02
Exchange Schema

|z-score|=2.58
Multi-party Collaboration

|z-score|=2.91
Exchange Schema

……

Figure 3: Role clusters of Fairspin Casino. CCDM not only
identifies key roles (Stakeholders (3.3%), Exchanges or Ser-
vices (1.1%), Fund Pools (0.3%)) but also uncovers hidden dele-
gatees (e.g., Airdrop Promoters (6.9%), Listing Agents (13.6%),
Arbitrageurs (30.5%)) and Regular Gamblers (44.3%). The con-
nection patterns and activity modes among different roles
exhibit significant differences in Table (b). Cross-role net-
work motifs with an absolute z-score greater than 2 were
extracted and identified as diverse collusion schemas.

Table 1: Data Statistics of Ethereum, TRON, Arbitrum Cases

Node count Edge count Start_time End_time

Ethereum 467,615 2,486,531 09-21-2021 05-17-2023
TRON 1,287,360 4,354,765 09-09-2021 10-14-2023
Arbitrum 243,658 1,965,545 09-01-2021 08-29-2023

Table 2: Normalization values of �̃� in
𝑣 and �̃� out

𝑣 for partial
key addresses, along with corresponding roles. Bonus payers,
serving as intermediaries, have more output transactions
than input ones. Exchanges receive a relatively high volume
of input and output transactions.

Address �̃� in
𝑣 �̃� out

𝑣 Role

TVXn6N...tXXXXX 0 0.863 Bonus payers
TDDRAf...D88888 0 0.324 Bonus payers

TQpLsV...eMMMMM 0 0.089 Bonus payers
TPRKHn...Zibb75 0.053 0.049 OKEx Exchange
TQ6VZ7...KiSMeV 0.023 0.025 OKEx Exchange
TV866T...PoEfFJ 0.016 0.021 Binance Exchange
TEvgA6...9Z31J7 0.013 0.035 Binance Exchange
TFfEJf...CR7qgh 0.017 0.020 Gate.io Exchange
TJHSgQ...z1rU7u 0.005 0.006 Gate.io Exchange

(a) Airdrop Promoters: Theymay be individuals or teams involved
in promoting and marketing gambling token airdrop campaigns.
Their responsibility is to increase awareness of airdrop campaigns
and attract more participants.
(b) Listing Agents: Listing agents serve as intermediaries between
stakeholders and cryptocurrency exchanges. These agents are en-
trusted by Stakeholders to assist in the listing of their tokens on
various crypto Exchanges.
(c) Arbitrageurs: Arbitrageurs are individuals or entities that en-
gage in arbitrage trading, which involves buying and selling tokens
or assets across different crypto Exchanges to profit from price dis-
crepancies. The relatively balanced in-degree and out-degree of
arbitrageurs demonstrate their role as bridges in fund transfers.
(d) Regular Gamblers: They are investors who have a convic-
tion in the fundamental value and potential of particular tokens.
They actively engage in the cryptocurrency market by purchasing
gambling tokens on various Exchanges.

TRON Gambling. We focus on the most popular cross-border
TRON casino "Fānhuā Hash". "Fānhuā Hash" operates by utiliz-
ing block hashes as the subject of speculation. Players use USDT-
TRC20 to place bets. "Fānhuā Hash" offers a range of gambling
rules, such as "Odd-Even Hash (TTwC4K...eM1Swm)", "Lucky Hash
(TGDa2D...g9DDyU)", and "Bull Hash (TBaoBh...XdY6dD)", each of
which corresponds to betting addresses. For simplicity of calcula-
tion, visualization, and analysis, we traversed multi-layer networks
starting from one known betting address as a source node. Data
statistics are shown in Table 1. After identifying key roles in Table
2, we discover diverse delegatees and regular gamblers beyond
Ethereum casinos. Typical characteristics of suspected addresses
for each role are shown in Table 3.
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Table 3: Statistical features of different roles on TRON casinos, including the number of input transactions(𝑁𝐼𝑇 ), the num-
ber of output transactions(𝑁𝑂𝑇 ), the total amount of input transactions(𝑇𝐴𝐼𝑇 )[Unit: USDT], the total amount of output
transactions(𝑇𝐴𝑂𝑇 )[Unit: USDT], start time, and end time.

Suspected Addresses Roles 𝑁𝐼𝑇 𝑁𝑂𝑇 𝑇𝐴𝐼𝑇 𝑇𝐴𝑂𝑇 Start_time End_time

TVXn6N...tXXXXX Bonus payers 366 11,539 5,142,813.9 5,142,813.3 2022-07-27 2023-01-01
TXTPLF...Y82zGH Funding sponsors 3,654 3,755 10,020,873.5 10,040,463.5 2022-05-09 2023-08-27
TYe2Kt...DRouGL Disguised gamblers 6,947 9,494 14,299,163.9 14,298,197.1 2021-09-13 2022-09-13
TGDa2D...g9DDyU Betting addresses 81 3 1,216.8 1,199.9 2022-08-05 2022-10-03
TUuvLo...eCGf4Z Real gamblers 11 19 530.54 530.51 2022-09-04 2022-09-25

(a) Fund Sponsors: TRON casinos often send bonuses and transac-
tion fees originated from Fund Sponsors for Bonus Payers. In this case,
one of the suspected Fund Sponsor addresses (i.e. TXTPLF...Y82zGH)
transferred 500 TRX to the bonus payer (i.e. TVXn6N...tXXXXX)
on July 27, 2022. Evidently, the sponsor and bonus payer address
belong to the same project team. The sponsor address has multiple
deposit and withdrawal interactions with crypto Exchanges like Bi-
nance, OKEx, and Gate.io. They have a relatively balanced number
of input and output transactions, as shown in Table 3.
(b) Disguised Gamblers: Among gamblers, some suspected ad-
dresses transfer funds to bonus payer addresses. Such gambler ad-
dresses are highly likely to be delegatees controlled by project team
members. In this case, suspected disguised gambler addresses (i.e.,
TYe2Kt...DRouGL, TACJi9...anvGAY) exhibit the following unique
characteristics, as shown in Table 3 and Figure 4: (1) Disguised
gamblers send deposits to betting addresses. (2) Bonus payers send
rewards to disguised gamblers. (3) Disguised gamblers return prof-
its to bonus payers. (4) Compared to regular gamblers, they have an
extremely large number of transactions and transaction amounts.

Bonus payer addresses

Disguised gamblers

Other addresses
A collection of 
addresses not shown

Figure 4: Compared toRegular Gamblers,Disguised Gamblers
return profits to bonus payers after bonus payers “pretend”
to send rewards to them. Three Prize Loops exist in this chart.

(c) Regular Gamblers: Regular Gambler (i.e., TUuvLo...eCGf4Z,
TR5VMU...C86PUm) only transfers funds to known betting ad-
dresses and known bonus payer addresses transfer funds to them
within a short period of time.

Arbitrum Gambling. ZKasino is a popular decentralized casino
platform mainly operating on Arbitrum and Polygon. ZKasino elim-
inates the need for KYC procedures, user sign-ups, and traditional
deposits or withdrawals. Instead, players retain full control of their
funds in their own wallets, placing bets directly without any in-
termediary involvement. With more rapid transaction speeds and

lower fees, ZKasino is poised to revolutionize the online gambling
industry. Each game on the platform corresponds to a smart con-
tract address, includingDice, Coin Flip, Plinko, Slots, etc. For the sake
of clarification, we select Coin Flip Game address(0xC4A4...E5279c)
as the source node and extract its multi-layer transfers. Data statis-
tics are shown in Table 1. We first identified Uniswap, SushiSwap,
Paraswap, Arbswap Exchanges with both high �̃� in

𝑣 and �̃� out
𝑣 (i.e.,

0x1B02...997506, 0x68B3...65FC45) and most likely gamblers with
high �̃� out

𝑣 (i.e., 0x2818...C0D2C7, 0xB28F...C9B282E) directly linked
to the Coin Flip Game contract address. Notably, we discovered
new delegatees in Arbitrum casinos beyond those found on TRON.
(a) Cross-chain Bridges: Cross-chain bridge is a technology frame-
work or service that connects two or more different blockchain
networks and allows assets to be transferred between them. Cross-
chain Bridges (i.e., 0x80C6...99BCF8, 0xE4ED...00BCE8), involved
in large volume transfers across networks, help gamblers transfer
ETH back and forth between the Ethereum mainnet and Arbitrum.
(b) Liquidity Providers: Regular Gamblers or Casino Stakehold-
ers tend to use diverse Liquidity Providers such as liquidity pools
(i.e., 0x1054...ADE261, 0x652D...AC6D97), staking platforms (i.e.,
0xEA8D...4C2176, 0x1F80...E58A28), and lending protocols (i.e.,
0x2032...616B1F, 0xF4B1...0659E1) to exchange ETH for tokens that
can be used for gambling. These Liquidity Providers handle frequent
but smaller transactions. This is consistent with the staking-related
activity and updates officially released by Zkcasino.

5.3 Model Performance, Ablation Studies, and
Parameter Analysis

Model Performance. As stated in §5.1, role labels come from
known Exchanges and some other roles verified by official law en-
forcement agencies in cases. As shown in Table 4, CCDM generally
outperforms other methods across three blockchains regarding
NMI, Purity, and Accuracy due to a dual-stage role recognition
strategy and multi-view graph learning framework. Unsupervised
Graph Learning (such as GATv2 and DirGNN) performs well, while
EGC performs the worst in many cases, with different clustering al-
gorithms yielding varying results. EPLCD shows moderate results,
and RolX exhibits lower clustering performance.
Ablation Studies. To compare the performance with and without
graph learning (0 on the horizontal axis), as well as the performance
of LSV (1), TSV (2), GSV (3), and FSV (4) views within graph learn-
ing, we conducted an ablation study, as shown in Figure 5(a)(b)(c).
Experimental results revealed that combining multiple views con-
sistently leads to the best performance across Ethereum, TRON, and
Arbitrum. GSV plays a crucial role in improving results, while FSV
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Table 4: Model evaluation(%) of our approach and baselines on Ethereum, TRON, and Arbitrum.

Baselines Ethereum TRON Arbitrum

Purity ACC NMI Purity ACC NMI Purity ACC NMI

SuperGAT+KMeans 75.00 68.75 67.06 70.59 58.82 64.75 69.23 53.85 53.20
EGC+KMeans 68.75 25.00 28.96 64.71 47.06 56.22 61.54 46.15 54.60
GATv2+KMeans 75.00 68.75 78.35 76.47 64.71 71.21 76.92 46.15 68.78

GNN-FiLM+KMeans 68.75 50.00 65.18 76.47 64.71 66.38 53.85 53.85 48.92
DirGNN+KMeans 62.50 43.75 64.85 70.59 58.82 62.48 76.92 61.54 58.94

SuperGAT+DBSCAN 68.75 62.50 65.52 70.59 64.71 67.55 61.54 61.54 54.11
EGC+DBSCAN 50.00 31.25 51.26 76.47 58.82 64.90 69.23 46.15 40.05
GATv2+DBSCAN 81.25 75.00 68.47 76.47 76.47 73.89 61.54 61.54 65.30

GNN-FiLM+DBSCAN 56.25 43.75 60.28 64.71 47.06 56.75 69.23 61.54 59.56
DirGNN+DBSCAN 75.00 56.25 67.06 70.59 58.82 67.90 76.92 69.23 73.03

RolX 68.75 62.50 42.98 64.71 52.94 55.92 61.54 46.15 42.20
EPLCD 68.75 50.00 59.26 76.47 58.82 64.30 69.23 69.23 64.65
Ours 81.25 81.25 79.66 82.35 82.35 78.34 76.92 76.92 71.52

Figure 5: Ablation studies and
parameter analysis

adds value but is less impactful than GSV. LSV provides a strong
baseline but requires other views to reach optimal performance. Ar-
bitrum, in particular, shows greater dependence on multiple views.
Parameter Analysis.We explore the sensitivity of layers in EGAT
and TLSTM and report experimental results on Ethereum in Figure
5(d). When the appropriate combination of parameters is chosen, it
can overall improve the model performance, especially in terms of
accuracy, which is of greater concern in real-world cases.
6 DISCUSSION
Theoretic Implication. Our study focuses on enhancing security
and transparency in crypto gambling by uncovering key and hidden
roles. Compared to address-level detection methods, our role-level
discovery provides a more fine-grained analysis of entity functions
without predefined labels. In terms of generalizability, CCDM can be
extended to blockchain platforms employing the Ethereum Virtual
Machine (EVM) model. In terms of scalability, CCDM is proven to
exhibit near-linear time complexity in handling large blockchain
ecosystems characterized by sparse graphs.
Practical Implication. This study elaborates on three distinct
role compositions and operation mechanisms across the most main-
stream blockchain ecosystems. Ethereum casinos closely resemble
centralized casinos, using cryptocurrencies for transactions, thus
the on-chain data consists of gambling token transfers. In this con-
text, Fund Pools, as core account wallets, aggregate many deposits
from users and transfer them to Exchanges for withdrawal. Airdrop
Promoters are responsible for token distribution and community
engagement. Listing Agents provide casino liquidity and exchange
listing activities. Arbitrageurs, through frequent transfers among
Exchanges, affect price fluctuations, market stability and player
participation. TRON casinos conduct on-chain transactions for
exchange, betting, and bonus payment using TRX and USDT. In
this context, Disguised Gamblers, involved in fund transfers, may
create false prosperity and mislead players. Additionally, if the
design of gambling smart contracts is flawed, disguised gamblers
might exploit vulnerabilities to influence game outcomes, ensur-
ing casino profits while deceiving players. Fund Sponsors provide

transaction gas fees or bonuses during casino operation. Arbitrum
casinos, an Ethereum Layer 2 scaling solution, shares similar roles
with TRON casinos but additionally requires Cross-chain Bridges
for fund management and Liquidity Providers for casino operations.

For regulatory authorities, pinpointing key and hidden figures
in crypto casinos enables effective regulation of illegal activities.
For players, understanding hidden delegatees reduces information
asymmetry, protects against manipulation, mitigates herd behav-
iors, and curbs deceptive practices. For casinos, we help optimize
operations and risk management and enhance user trust.
Future Work. In the future, we aim to include data from emerging
blockchain systems like Polygon and EOS for broader insights. At
the same time, we will increase our focus on non-EVM platforms,
such as converting the UTXO model to an account-based model
using heuristic address clustering. Moreover, entities behind ad-
dresses may assume multiple roles, and these roles may evolve over
time. We’ll develop a hybrid role identification method based on
structural entropy in overlapping community scenarios. Finally, we
plan to explore richer transactional semantic information of smart
contracts to provide a more comprehensive network analysis.

7 CONCLUSION
This paper proposes an unsupervised dual-stage role identification
method to adaptively identify key roles and hidden delegatees in
label-sparse crypto casinos, providing a more fine-grained analy-
sis of the ecosystem than address-level identification. The method
combines key node identification based on 1D SE and a multi-view
GNN framework enhanced with 2D global SE minimization and
self-supervised contrastive learning. Experiments on real cases of
Ethereum, TRON, Arbitrum are conducted to show that CCDM
not only quickly identifies key roles but also accurately uncovers
diverse hidden delegatees and collusion patterns. CCDM achieves
a higher match with identities confirmed by authorities than SOTA
methods and is applicable to EVM-based blockchains. We help
enhance regulation, player protection, and casino operations, pro-
moting a more secure and transparent crypto gambling ecosystem.
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A APPENDICES
A.1 Purity, Accuracy, and NMI in Clustering
A.1.1 Purity. Purity is an evaluation metric used to measure how
well the clustering result matches the true class labels. It is com-
puted by finding the majority class in each cluster and calculating
the proportion of correctly assigned data points in the cluster. The
formula for Purity is given by:

Purity =
1
𝑁

𝐾∑︁
𝑘=1

max
𝑗
|𝐶𝑘 ∩ 𝐿𝑗 |

where 𝑁 is the total number of samples, 𝐾 is the number of
clusters,𝐶𝑘 represents the set of samples in cluster 𝑘 , 𝐿𝑗 represents
the set of samples in true class 𝑗 , |𝐶𝑘 ∩𝐿𝑗 | is the number of samples
in cluster 𝐶𝑘 that belong to class 𝐿𝑗 , and max𝑗 |𝐶𝑘 ∩ 𝐿𝑗 | is the
maximum number of samples from any single class 𝐿𝑗 in cluster
𝐶𝑘 .

A.1.2 Accuracy. Accuracy is a common metric used in classifica-
tion tasks, and when true labels are available, it can be used to
evaluate clustering results. Accuracy measures the proportion of

correctly classified instances. The formula for Accuracy is:

Accuracy =
1
𝑁

𝑁∑︁
𝑖=1
I(𝑦𝑖 = 𝑦𝑖 )

where 𝑁 is the total number of samples, 𝑦𝑖 is the true label of
the 𝑖-th sample, 𝑦𝑖 is the predicted label (from clustering) of the
𝑖-th sample, and I(𝑦𝑖 = 𝑦𝑖 ) is an indicator function that returns 1 if
𝑦𝑖 = 𝑦𝑖 and 0 otherwise.

A.1.3 Normalized Mutual Information (NMI). NMI is a metric that
measures the mutual information between the predicted cluster
assignments and the true labels, normalized by the average of the
entropies of both the true labels and the cluster assignments. The
formula for NMI is:

NMI(𝐿,𝐶) = 2 · 𝐼 (𝐿;𝐶)
𝐻 (𝐿) + 𝐻 (𝐶)

where 𝐿 is the set of true labels, and𝐶 is the set of cluster assign-
ments. 𝐼 (𝐿;𝐶) is the mutual information between the true labels
and cluster assignments, defined as:

𝐼 (𝐿;𝐶) =
𝐾∑︁
𝑘=1

𝐽∑︁
𝑗=1

𝑃 (𝐶𝑘 ∩ 𝐿𝑗 ) log
𝑃 (𝐶𝑘 ∩ 𝐿𝑗 )
𝑃 (𝐶𝑘 )𝑃 (𝐿𝑗 )

where 𝑃 (𝐶𝑘 ) is the probability of cluster 𝐶𝑘 , 𝑃 (𝐿𝑗 ) is the prob-
ability of class 𝐿𝑗 , and 𝑃 (𝐶𝑘 ∩ 𝐿𝑗 ) is the joint probability that a
sample belongs to both cluster 𝐶𝑘 and class 𝐿𝑗 .
𝐻 (𝐿) and 𝐻 (𝐶) are the entropies of the true labels and cluster

assignments, respectively:

𝐻 (𝐿) = −
𝐽∑︁
𝑗=1

𝑃 (𝐿𝑗 ) log 𝑃 (𝐿𝑗 )

𝐻 (𝐶) = −
𝐾∑︁
𝑘=1

𝑃 (𝐶𝑘 ) log 𝑃 (𝐶𝑘 )

NMI takes values between 0 and 1, where 1 indicates that the
clustering perfectly matches the true labels.

A.2 Manual Statistical Features
The detailed features are described below in Table 5.

A.3 Key Node Identification
The detailed ChainVoteEntropy algorithm is described below in
Algorithm 1.

A.4 Cross-role Motif Analysis
The detailed cross-role network motif extraction algorithm is de-
scribed below in Algorithm 2.
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1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218
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1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233
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1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 5: Manual Statistical Features include account state features, transaction intensity features, and transaction frequency
features in Section 3.2.2. Account state features include account balance, bounce, etc. Transaction intensity features encompass
input/output transaction amounts, gas fees, etc. Transaction frequency features relate to the number of input and output
transactions within a specific period, the ratio between input and output transactions, etc. Additionally, aggregated features
such as summation, averaging, variance, and Gini coefficient are derived.

Type Symbol Description

Account State Balance The amount of the cryptocurrency or token owned by the address
Nounce The total transaction amount of the address

Transaction Intensity

Total_amount The total amount of all transactions of the address
Total_in_amount The total amount of input transactions of the address
Total_out_amount The total amount of output transactions of the address

Avg_amount The average amount of all transactions of the address
Avg_in_amount The average amount of input transactions of the address
Avg_out_amount The average amount of output transactions of the address

Var_amount The standard deviation amount of all transactions of the address
Var_in_amount The standard deviation amount of input transactions of the address
Var_in_amount The standard deviation amount of output transactions of the address
Gini_amount The Gini coefficient amount of all transactions of the address

Gini_in_amount The Gini coefficient amount of input transactions of the address
Gini_out_amount The Gini coefficient amount of output transactions of the address

Gas The transaction gas supplied by the sender of the address
Gas_in The gas supplied by the input transaction sender of the address
Gas_out The gas supplied by the output transaction sender of the address

Transaction Frequency

Num_all_tran The number of all transactions of the address
Num_in_tran The number of input transactions of the address
Num_out_tran The number of output transactions of the address
Fre_all_tran The frequency of all transactions of the address
Fre_in_tran The frequency of input transactions of the address
Fre_out_tran The frequency of output transactions of the address
R_in_out The ratio of the number of input/output transactions of the address

Algorithm 2 Cross-Role Network Motif Extraction

Input: Graph 𝐺 = (�̃� , 𝐸), Role labels 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}
Parameter: Node number of one motif 𝑆 , Number of randomized
networks 𝑁 , Role number of one motif 𝛽 , Threshold of z-score 𝜃
Output: Cross-role network motifs �̃�
1: Subgraphs 𝑔← ∅
2: for Each size 𝑠 ∈ 𝑆 do
3: 𝑔𝑠 ← FindSubgraphs(𝐺, 𝑠)
4: Motifs �̃� ← ∅
5: for Subgraph 𝑔 ∈ 𝑔 do
6: the set of roles: �̃�𝑔 ← ∅
7: for Node 𝑣 ∈ 𝑔 do
8: if role(𝑣) ∉ �̃�𝑔 then
9: �̃�𝑔 ← �̃�𝑔 ∪ {role(𝑣)}
10: if |�̃�𝑔 | ≥ 𝛽 then
11: 𝑧 ← z-score(𝑔, 𝑁 )
12: if 𝑧 > 𝜃 then
13: �̃� ← �̃� ∪ {𝑔}
14: return Significant cross-role network motifs �̃�

Algorithm 1 ChainVoteEntropy Algorithm

Input: Graph 𝐺 = (�̃� , 𝐸), Edge weights �̃�
Parameter: Output size 𝑝 , Network Average Degree ⟨𝑘⟩, Node
voting abilities 𝑎𝑏𝑖 , 𝑎𝑏 𝑗
Output: Top-𝑝 ranked nodes: 𝑅
1: �̃� , �̃� , 𝑅, 𝑆 ← ∅
2: for (𝑣,𝑢) ∈ 𝐸 do
3: �̃� (𝑣,𝑢 ) , �̃� (𝑢,𝑣) ← 𝑎𝑖 , 𝑎 𝑗

4: 𝑆 ← �̃�

5: while |𝑅 | < 𝑝 do
6: for 𝑣 ∈ 𝑆 do
7: input score �̃� in

𝑣 ←
√︃
|𝐸in𝑣 |

∑
𝑢∈ (𝑢,𝑣)�̃�in𝑣 �̃�𝑢�̃�(𝑢,𝑣)

8: output score �̃� out
𝑣 ←

√︃
|𝐸out𝑣 |

∑
𝑢∈ (𝑣,𝑢 )�̃�out𝑣

�̃�𝑢�̃�(𝑣,𝑢 )

9: 𝑣max ← argmax(�̃� , �̃� )
10: pop(𝑆, 𝑣max)
11: 𝑅 ← 𝑅 ∪ {𝑣max}
12: for (𝑣,𝑢) ∈ 𝐸all𝑣max do
13: Update voting abilities of the 𝑣max’s neighbors

�̃� (𝑣,𝑢 ) ← max(�̃� (𝑣,𝑢 ) − 1
⟨𝑘 ⟩ , 0)

14: return 𝑅

11


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Structural Information Principles

	4 A Framework of CCDM (Figure 2)
	4.1 Multi-chain Graph Construction
	4.2 Dual-stage Role Identification
	4.3 Cross-role Pattern Analysis

	5 Experiments and Case Analysis
	5.1 Experiment Setup
	5.2 Case studies
	5.3 Model Performance, Ablation Studies, and Parameter Analysis

	6 Discussion
	7 Conclusion
	References
	A Appendices
	A.1 Purity, Accuracy, and NMI in Clustering
	A.2 Manual Statistical Features
	A.3 Key Node Identification
	A.4 Cross-role Motif Analysis


