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ABSTRACT

Deep Neural Networks are vulnerable to adversarial attacks. Neural Architecture
Search (NAS), one of the driving tools of deep neural networks, demonstrates
superior performance in prediction accuracy in various machine learning applica-
tions. However, it is unclear how it performs against adversarial attacks. Given the
presence of a robust teacher, it would be interesting to investigate if NAS would
produce robust neural architecture by inheriting robustness from the teacher. In
this paper, we propose Robust Neural Architecture Search by Cross-Layer Knowl-
edge Distillation (RNAS-CL), a novel NAS algorithm that improves the robust-
ness of NAS by learning from a robust teacher through cross-layer knowledge
distillation. Unlike previous knowledge distillation methods that encourage close
student/teacher output only in the last layer, RNAS-CL automatically searches for
the best teacher layer to supervise each student layer. Experimental result evi-
dences the effectiveness of RNAS-CL and shows that RNAS-CL produces small
and robust neural architecture.

1 INTRODUCTION

Neural Architecture Search (NAS), one of the most promising driving tools with state-of-the-art
performance of deep neural networks in various tasks such as computer vision and natural language
processing, has been attracting a lot of attention in recent years. NAS automatically searches for
neural architecture according to user-specified criteria without human intervention, thus avoiding
the time-consuming and burdensome manual design of neural architecture. Most recent studies (Liu
et al., 2019; Cai et al., 2019; Wu et al., 2019; Wan et al., 2020) encode architectures as a weight-
sharing super-net and optimize the weights using gradient descent. Architectures found by NAS
exhibit two significant advantages. First, they achieve SOTA performance for various computer
vision tasks. Second, the architectures found by NAS are efficient in terms of speed and size. Both
advantages make NAS incredibly useful for real-world applications. However, most NAS methods
are designed to optimize accuracy, parameters, or FLOPs. It is not clear how these architectures
perform against adversarial attacks. In this paper, we propose RNAS-CL, a NAS method that jointly
optimizes accuracy, latency, and robustness against adversarial attacks without robust training.

Adversarial attacks are performed by adding adversarial samples, for example, adding small sophis-
ticated perturbations to the clean image, such that the model misclassifies the image. It is widely
accepted that deep learning models are susceptible to adversarial attacks (Szegedy et al., 2014).
Therefore, it is critical to analyze the robustness of models against adversarial attacks. Adversarial
training (Goodfellow et al., 2015) is the most standard defense mechanism against adversarial at-
tacks. Other types of defense mechanisms include models trained by losses or regularizations (Cissé
et al., 2017; Pang et al., 2020), transforming inputs before feeding to model (Guo et al., 2018; Xie
et al., 2019), and using model ensemble (Kurakin et al., 2018; Liu et al., 2018).

Orthogonal to these methods, recent research (Madry et al., 2018; Guo et al., 2020; Su et al., 2018;
Xie & Yuille, 2020; Huang et al., 2021) found an intrinsic influence of network architecture on
adversarial robustness. Inspired by this idea, we propose Robust Knowledge Distillation for Neural
Architecture Search (RNAS-CL), to the best of our knowledge, the first NAS method that uses
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Figure 1: The figure compares various SOTA efficient and robust methods on CIFAR-10. Clean Ac-
curacy represents top-1 accuracy on clean images. Adversarial Accuracy represents top-1 accuracy
on images perturbed by PGD attack. A larger marker size indicates larger architecture. The numbers
in brackets represent the number of parameters and MACs, respectively.

knowledge distilled from a robust teacher model to find a robust architecture. Knowledge distillation
transfers knowledge from a complex teacher model to a small student model. In standard knowledge
distillation (Hinton et al., 2015), outputs from the teacher model are used as “’soft labels” to train
the student model. However, apart from the final teacher outputs, intermediate layers contain rich
attention information. Different intermediate layers attend to different parts of the input object
(Zagoruyko & Komodakis, 2017).

Hence, we ask the question: can a robust teacher improve the robustness of the student model by
providing information about where to look, i.e., where to pay attention? The proposed RNAS-CL
gives affirmative answers to the above question. In RNAS-CL, apart from learning from the output
of the robust teacher model, each layer in the student learns ”where to look™ from the layers in
the teacher model. We hypothesize that learning where to pay attention from a robust teacher will
inherently make the student model more robust to adversarial attacks. However, the teacher and
student might have a different number of layers. This leads us to another question regarding how to
map a student layer to its corresponding teacher layer that it should learn from. In RNAS-CL, apart
from searching the architecture of the student model, we search for the perfect tutor (teacher) layer
for each student layer.

Let us consider a teacher (7') and student (S) model with n; and ng layers, respectively. T;,.S;
are the i-th teacher and student layer, respectively. In RNAS-CL, each student layer S; is associated
with n; gumbel weights, and each gumbel weight corresponds to each teacher layer. Intuitively, each
gumbel weight indicates the weight of the connection between the student layer and each teacher
layer. In the search phase, besides optimizing the architectural weights, we optimize these gumbel
weights to find the perfect teacher layer. We hope the teacher to teach “where to pay attention.”
Therefore, by virtue of our RNAS-CL loss function for each student-teacher layer pair, each student
layers learns robustness from a properly and automatically chosen teacher layer by maximizing the
similarity of its attention map to that of its teacher layer.

1.1 CONTRIBUTIONS
Below are the main contributions of this work.

1. Adversarial robust NAS. RNAS-CL optimizes neural architecture to achieve a good tradeoff
between robustness and prediction accuracy in a differentiable manner. To the best of our knowl-
edge, RNAS-CL is the first NAS method that optimizes robustness and prediction accuracy with-
out robust training. Leveraging the penalty on model size/inference cost, the neural architecture
found by RNAS-CL is compact compared to competing NAS methods. We compare RNAS-CL
with other computationally efficient and robust models (Sehwag et al., 2020; Ye et al., 2019; Gui
et al., 2019; Goldblum et al., 2020; Dong et al., 2020; Huang et al., 2021). Compared to these
models, similar sized RNAS-CL models achieve up to ~ 10% higher clean accuracy and up to
~ 5% higher PGD accuracy on CIFAR-10 dataset.

2. Cross-Layer Knowledge Distillation. Our work advances the research of Knowledge Distilla-
tion (KD) using NAS. In particular, while conventional KD only uses fixed connections between
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Figure 2: (a) Training paradigm based on RNAS-CL. We connect attention maps from each student
layer to each robust teacher layer. For each student layer, we search for the optimum teacher layer.
gi; represents gumbel weights associated between it" student layer and j*" teacher layer. RNAS-CL
induces robustness to the student model by searching for the optimum teacher layer. We also search
for the number of filters in each layer to build an efficient model inspired by FBNetV2 (Wan et al.,
2020). (b) Sample attention maps corresponding to input Image (i) from low-level (ii), mid-level
(iii), and high-level (iv) convolution layers.

teacher and student models to guide the student model, RNAS-CL extends the teaching scheme
to learnable connections between layers of the teacher and the student models.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Since (Hinton et al., 2015), numerous KD variants (Romero et al., 2015; Yim et al., 2017; Zagoruyko
& Komodakis, 2017; Li et al., 2019; Tian et al., 2020a; Sun et al., 2019) based on feature map, atten-
tion map, or contrastive learning have been proposed. (Romero et al., 2015) introduced intermediate-
level hints from a single teacher layer to guide the student model training. Moving a step further,
(Yim et al., 2017), (Zagoruyko & Komodakis, 2017) and (Li et al., 2019) used information from
multiple teacher layers to guide students’ training. Contrary to the above methods, which map few
teacher-student layers or blocks. We map all student layers to a teacher layer. We propose RNAS-
CL to search for the perfect tutor layer for each student layer. Similar to (Zagoruyko & Komodakis,
2017), we minimize the distance between mapped student-teacher attention maps.

2.2  EFFICIENT AND ROBUST MODELS

Research community has extensively researched building efficient and adversarially robust models
individually. However, few works combine both domains, building an efficient and adversarially
robust model. (Sehwag et al., 2020) propose to make the pruning technique aware of the robust
training objective. They formulate pruning as an empirical risk minimization (ERM) problem and
integrate it with a robust training objective. (Huang et al., 2021) investigated the impact of network
width and depth configurations on the robustness of adversarial trained DNNs. They observed that
reducing capacity at last blocks improves adversarial robustness. (Goldblum et al., 2020), propose
Adversarially Robust Distillation (ARD), where they encourage student networks to mimic their
teacher’s output within an e-ball of training samples. Furthermore, there are few NAS methods
(Yue et al., 2022; Ning et al., 2020; Xie et al., 2021) that jointly optimises accuracy, latency and
robustness. Compared to these methods, similar-sized RNAS-CL models achieve both higher clean
and robust accuracy.
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3 ROBUST KNOWLEDGE DISTILLATION FOR NEURAL ARCHITECTURE
SEARCH

We use knowledge distilled from a robust teacher model to search for a robust and efficient archi-
tecture. In standard knowledge distillation, outputs from the teacher model are used as ’soft labels”
to train the student model. However, apart from the final teacher outputs, intermediate features con-
stitute important attention information. Different intermediate layers “attend” to different parts of
the input object. In RNAS-CL, apart from learning from the teacher’s soft labels, the method learns
from intermediate teacher layers where to pay attention, i.e., each student layer is mapped to a robust
teacher layer to learn where to look. In Section 3.1, we discuss how we define attention maps. In
our method, we search for the perfect tutor for each layer. Furthermore, along with increasing the
robustness, we are also interested in searching for an efficient architecture. In Section 3.2 and 3.3,
we discuss our tutor and architecture search algorithm. In Section 3.4, we discuss our searching and
training optimization objectives.

3.1 ATTENTION MAP

We are interested in learning where to pay attention from a robust teacher model. Let us consider
a convolution layer with activation tensor A € RC*H*W where C is the number of channels, and
H and W are spatial dimensions. We define a mapping function F : RCXHXW __ RHXW that
takes A as input and outputs an attention map F(A) € RF*W by [F(A)],, = 2O VA2 s Where
Acnw represents the element of A with channel coordinate ¢ and spatial coordlnates h and w.

We use activation-based mapping function F as proposed in (Zagoruyko & Komodakis, 2017). The
mapping function F is applied to activation tensors after each convolution layer to generate an
attention map. We visualized few attention maps in Figure 2(b). RNAS-CL intends to find a teacher
layer, referred to as a tutor, for each student layer such that the student layer’s attention map is
similar to that of its tutor in the teacher model. The student attention map may differ in dimension
compared to that of its tutor. To address this issue, we interpolate all attention maps to a common
dimension.

3.2 TUTOR SEARCH

As described above, we aim to find a tutor (teacher layer) for each student layer, which teaches
where to pay attention. However, each student layer can choose any tutor, resulting in an exponen-
tially large search space. For example, the search space for a student model with 20 layers and a
teacher model with 50 layers is of size 502°. In order to address the computational issue, we employ
Gumbel-Softmax (Jang et al., 2017) to search for the tutor for each student layer in a differentiable

manner. Given network parameter v = [vy,...,v,] and a constant 7. The Gumbel-Softmax func-
tion is defined as g(v) = [¢1, . . ., gn]| Where g; = % and ¢; ~ N(0,1) is the uniform

random noise, which is also referred to as Gumbel noise. When 7 — 0, Gumbel-Softmax tends to
the arg max function. Gumbel-Softmax is a “re-parametrization trick”, that can be regarded as a
differentiable approximation to the argmax function.

Now consider a teacher 7" and student .S model with n; and n; number of layers, respectively. Al
and A’ are the i*" activation tensors of teacher and student layers. In RNAS-CL, each student layer
(i) is associated with n, Gumbel weights (g;) such that g; € R'X™t. Let gi; be the Gumbel weight

associated with i*" student and ;' teacher layer. Then the attention loss is defined as

Lawn(At, As) iigl ]:(Aé) &
’ n xntl = I\f A’ |\2 17 (A2

where A; and A, are activation tensors for all student and teacher convolution layers. F is the
mapping function as defined in Section 3.1. || - || is the £2-norm. We exponentially decay the
temperature 7 of Gumbel-Softmax while searching, leading to an encoding close to a one-hot vector.
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3.3 ARCHITECTURE SEARCH

Apart from searching the tutor for each layer, we are interested in building efficient architecture with
low latency. Inspired by FBNetV2 (Wan et al., 2020), we search for the optimal number of filters,
or the number of output channels, for each convolution block. Let A = {fi, f2,..., fn} be the
choices of filters and {21, 22, ..., 2, } be their corresponding outputs for a convolution block. Then
the cumulative output is definedas Z = >, gf,f )zi, where g,(z) is the Gumbel weight corresponding
to i'" filter choice. The number of FLOPs is optimized so as to ensure low latency. The FLOPs are
proportional to the number of filters, and the cumulative number of filters is a function of Gumbel
weights. As a result, the FLOPs can be optimized in a differential manner using SGD.

3.4 RNAS-CL Loss

Following the convention of state-of-the-art NAS methods (Liu et al., 2019; Wu et al., 2019; Wan
et al., 2020), RNAS-CL has searching and training phases. In the search phase, Gumbel weights and
other model parameters are updated at each epoch of SGD, where the Gumbel weights correspond
to the intermediate student-teacher connection (3.1) and the filter choices (3.3). The weights are
optimised using our RNAS-CL search loss defined by (2).

Let y be the ground-truth one-hot encoded vector, p and g be output probabilities of the student
and teacher network and A, A; be activation tensors for all student and teacher convolution layers.
Then the RNAS-CL search loss is defined as

L(y,p,q,Ar, As) = (—ylogp + KL(p,q) + Vs Lamn(Ar, As))ny, 2
where KL(p,q) = >, pilog % is the Kullback-Leibler(KL) divergence between two probabil-
ity measures. Laqy iS the attention loss as defined in (1) and -y, is a normalization constant. 7y
represents latency, which is optimized in a differential manner following (Wan et al., 2020).

After the search phase, a tutor is selected as the j* teacher layer with j* = argmax; g;; for each
student layer 7. In addition, the filter choices described in Section 3.3 for neural architecture are
decided as the one corresponding to the maximum Gumbel weight for each convolution block. We
then start the training phase, where the searched architecture is trained using the RNAS-CL train
loss defined below.

L(y,p,q, A, As) = —ylogp + KL(p,q) + Ve Latin(As, As), (3)

where y, p, q, A;, A, are same as in (2) and -, is a normalization constant. Note that, g; in L a4, 1S
a one-hot vector. Thus, each student attention map is optimized w.r.t. to a single tutor layer.

4 EXPERIMENTS

In this paper, we evaluate RNAS-CL on two public benchmarks for image classification. (1) CIFAR-
10 - a collection of 60k images in 10 classes (Krizhevsky, 2009). (2) ImageNet-100 - a subset of
ImageNet-1k dataset (Russakovsky et al., 2015) with 100 classes and about 130k images (Tian et al.,
2020b). We use standard data augmentation techniques for each dataset, such as random-resize crop-
ping and random flipping. We train different architectures found by RNAS-CL on both CIFAR-10
and ImageNet-100. On each dataset, we first perform the searching step. We train our model using
RNAS-CL search loss (2). We search for the channel number and the connected teacher layer at
each student layer. We conduct experiments with different search spaces and various robust teacher
models. In this section, we refer to our model by RNAS-CL-X-T where X represents our search
space, and T represents the robust teacher model. Detailed search space is the appendix (Section
A.4). We use 4 robust teacher model, ResNet-50, ResNet-18, WideResNet-50, and WideResNet-34,
which are referred to as R-50, R-18, WRT-50, and WRT-34. For example, RNAS-CL-S3-R-18 rep-
resents a model trained in the S3 search space using an adversarially robust ResNet-18 model. The
hyper-parameters for our training have been discussed in the appendix (Section A.1). For robustness
evaluation, we choose three powerful attacks including FGSM (Goodfellow et al., 2015), MI-FGSM
(Dong et al., 2018) and PGD (Madry et al., 2018), CW (Carlini & Wagner, 2017). Consistent with
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Method [ Clean Acc [ FSGM | PGD?*" | MI-FGSM [ #Params M) [ MACs (M)
Without Adversarial Training
DARTS (Liu et al., 2019) 97.03 42.48 7.09 0.28 33 500"
PC-DARTS (Xu et al., 2020) 97.05 49.18 9.84 1.21 3.6 600™
RACL (Dong et al., 2020) 97.44 50.53 1.93 4.68 3.6 500"
AmoebaNet (Real et al., 2019) 97.39 44.79 0.25 0.80 32 500"
NasNet (Zoph et al., 2018) 97.37 47.53 0.42 1.01 3.8 600"
MVV2-ARD (Goldblum et al., 2020) 76.13 - 38.21 - 34 300
E2RNAS-C16 (Yue et al., 2022) 93.97 - 6.76 - 0.44 -
RNAS-CL-S3-WRT-34 (Our) 89.4 44.95 34.3 38.92 0.11 6.64
RNAS-CL-S5-WRT-34 (Our) 90.4 46.72 35.59 40.57 0.21 11.02
RNAS-CL-S7-WRT-34 (Our) 90.62 48.93 37.24 42.27 0.32 15.58
RNAS-CL-M-WRT-34 (Our) 92.46 50.51 39.84 44.54 3 326
RNAS-CL-L-WRT-34 (Our) 92.6 52.37 41.9 46.66 11 1210
With Adversarial Training
Hydra ResNet 18 (Sehwag et al., 2020) 69 - 41.6 - 0.11 37.63
Hydra ResNet 34 (Sehwag et al., 2020) 71.8 - 44.4 - 0.21 75.43
Hydra ResNet 50 (Sehwag et al., 2020) 739 - 453 - 0.25 85.92
ADV-ADMM ResNet 18 (Ye et al., 2019) | 58.7 - 36.1 - 0.11 37.63
ADV-ADMM ResNet 34 (Ye et al., 2019) | 68.8 - 41.5 - 0.21 75.43
ADV-ADMM ResNet 50 (Ye et al., 2019) | 69.1 - 422 - 0.25 85.92
RobNet-Small (Guo et al., 2020) 78.05 53.93 48.32 48.98 441 -
RobNet-Medium (Guo et al., 2020) 78.33 54.55 49.13 49.34 5.66 -
RobNet-Large (Guo et al., 2020) 78.57 54.98 49.44 49.92 6.89 -
NasNet (Zoph et al., 2018) 83.660 55.67 48.02 53.05 38 600"
DARTS (Liu et al., 2019) 83.75 55.75 4491 51.63 33 5007
PC-DARTS (Xu et al., 2020) 83.94 52.67 41.92 49.09 3.6 600"
RACL (Dong et al., 2020) 83.89 57.44 49.34 54.73 3.6 5007
VGG-11-R (Huang et al., 2021) 79.63 57.35 43.93 - 5.83 -
DN-121-R (Huang et al., 2021) 87.22 67.12 5252 - 6 -
DARTS-R (Huang et al., 2021) 87.2 66.74 52.36 - 2.53 -
MVV2-ARD (Goldblum et al., 2020) 84.70 - 46.28 - 34 300
MSRobNet-1000 (Ning et al., 2020) 84.5 59.6 527 - 3.16 -
MSRobNet-2000 (Ning et al., 2020) 85.7 60.6 53.6 - 6.46 -
SZ 555 (Xieetal., 2021) 76.54 - 31.83 - 1.68 -
RNAS-CL-S3-WRT-34 (Our) 83.45 50.67 43.07 43.98 0.11 6.64
RNAS-CL-S5-WRT-34 (Our) 84.75 51.99 44.68 46.3 0.21 11.02
RNAS-CL-S7-WRT-34 (Our) 85.81 49.11 4324 45.53 0.32 15.58
RNAS-CL-M-WRT-34 (Our) 87.29 59.71 51.76 5343 3 326
RNAS-CL-L-WRT-34 (Our) 86.28 61.12 53.69 55.07 11 1210

Table 1: The table shows performance of various efficient and robust methods on CIFAR-10 dataset.
Clean Acc represents top-1 accuracy on clean images. FSGM, PGD?°, MI-FGSM represents top-1
accuracy on images perturbed by the corresponding attacks. PGD?C represents 20 step PGD attack.
* represents approximate values. Columns with unreported values are represented by -.

adversarial literature (Madry et al., 2018; Zhang et al., 2019b), the adversarial perturbation is con-
sidered under [, norm with a total perturbation scale of 8/255 (0.031). We discuss our results on
ImageNet-100 dataset in the appendix (Section A.3).

4.1 COMPARE EFFICIENT AND ROBUST CIFAR-10 MODELS

In this section, we compare the robustness of our method against other SOTA efficient and robust
models. In Table 1, we compare RNAS-CL to both efficient models trained with and without ad-
versarial training. All RNAS-CL models are trained with robust WideResNet-34 (Rice et al., 2020)
as the teacher model. RNAS-CL significantly outperforms all models trained without adversarial
training in terms of adversarial accuracy. While being significantly smaller, our models achieve sig-
nificantly higher adversarial accuracy when compared to models trained without adversarial train-
ing. For example, RNAS-CL-S7-WRT-34 achieves more than 28% higher PGD accuracy compared
to most of the other methods. Compared to MVVV2-ARD, RNAS-CL-S7-WRT-34 achieves ~ 1%
lower PGD accuracy; however, it exceeds MVVV2-ARD by 14.5% in clean accuracy while being
10x smaller. A similar-sized model, for example, RNAS-CL-M-WRT-34, exceeds both clean and
PGD accuracy by 16.5% and 1.43%.

Next, we compare RNAS-CL against adversarially trained robust models. For a fair comparison,
after the training stage, we train our RNAS-CL models with the TRADES optimization objective
for 20 epochs. For retraining, the cross-entropy term in (3) is replaced by TRADES optimization
objective. Adversarially training RNAS-CL models improve its adversarial accuracy. RNAS-CL
models achieve similar or higher adversarial accuracy compared to other adversarially trained mod-
els. However, RNAS-CL models are much smaller and achieve significantly higher clean accuracy.
For example, in Table 1, RNAS-CL-M-WRT-34 achieves similar or higher adversarial accuracy than
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most other methods while being smaller and significantly exceeding in terms of clean accuracy. Sim-
ilar results can also be visualized in Figure 1. In Figure 1, RNAS-CL models are on the top right
corner of the plot, representing the models with the highest clean and adversarial accuracy.

5 CONCLUSION

In this paper, we propose Robust Neural Architecture Search by Cross-Layer Knowledge Distillation
(RNAS-CL), a novel NAS algorithm that improves the robustness of the student model by learning
from a robust teacher through cross-layer knowledge distillation. RNAS-CL optimizes neural archi-
tecture to achieve a good tradeoff between robustness and clean accuracy in a differentiable manner
without robust training. RNAS-CL extends conventional knowledge distillation by learning student-
teacher cross-connections. We show that models obtained by RNAS-CL outperform all models
obtained without robust training in terms of adversarial robustness. We show that adding adversarial
training can further increase the adversarial robustness of RNAS-CL models. After robust training,
RNAS-CL achieves similar adversarial robustness compared to models obtained via robust training
while outperforming them in terms of clean accuracy.
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A APPENDIX

A.1 HYPER-PARAMETERS

In this section, we discuss the hyper-parameters used for our training. For both datasets, we use
SGD optimizer. For CIFAR-10, default values of momentum and weight decay are set to 0.9 and
2e — 4, respectively. The batch size is set to 128. We train our model for 100 epochs in both the
searching and training phases. The learning rate is initialized as 0.1, and reduced by a factor of 10
after the 75" and the 90" epoch. For ImageNet-100, default values of momentum and weight decay
are set to 0.9 and 4e — 5, respectively. The batch size is set to 256. The learning rate is initialized
as 0.05 and annealed down to zero following a cosine schedule. After the search stage which takes
100 epochs, the searched architecture is trained from scratch using RNAS-CL train loss (3) for 200
epochs. Following the settings of FBNetV2, the temperature (7) in Gumbel-Softmax is initialized
as 5.0 and exponentially annealed by e ~%-94% every epoch in the search phase. The hyper-parameter
As and )\ in (2, 3) is selected from a candidate set {0.01,0.1,0.1,1.0,10,100}. Both As and A; are
set to 1.0 for all experiments. In the search phase for each batch, we use 80% of the data to optimize
the model weights and the remaining 20% data to optimize architectural weights which are Gumbel
weights.

A.2 COMPARISON AGAINST VARIOUS PERTURBATION BUDGET

To further illustrate the effectiveness of RNAS-CL, we compare RNAS-CL with previously proposed
defense mechanisms against various perturbation budgets. In Figure 3, we compare various methods
against PGD and FSGM attacks. For both attacks, RNAS-CL outperforms its counterparts at all
perturbations. RNAS-CL significantly outperforms other methods as perturbation size increases.
For ¢ = 0.1, RNAS-CL exceeds other methods by ~20% for both PGD and FSGM attacks.
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Figure 3: Robustness evaluation under different perturbation sizes for PGD and FGSM attacks.

A.3 COMPARE EFFICIENT AND ROBUST IMAGENET-100 MODELS

Method Clean | PGD?° | #Params (M) | MACs (M)
Hydra (ResNet-18) - 90% (Sehwag et al., 2020) | 59.96 29.79 1.1 1200
LWM (ResNet-18) - 90% (Han et al., 2015) 590272767 i 1200
RNAS-CLI-R-TS 8527 83 394 241.98
RNAS-CLA-R50 859877508 396 244776
RNAS-CLI-WRT50 85467336 401 25537
RNAS-CLI-REI8 ¥ TRADES 789472902 394 241.98
RNAS-CLI-R“50 + TRADES 799573244 3.96 244776
RNAS-CLI-WRTI50 ¥ TRADES 7947728106 401 25537

Table 2: Performance of various efficient and robust methods on ImageNet-100 dataset. Clean Acc
and Adv Acc are the same as that in Table 1. All MACs were calculated without special hardware
(Han et al., 2016) or special software (Park et al., 2017)
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We compare RNAS-CL to adversarially robust pruning methods on ImageNet-100 dataset, with
results shown in Table 2. RNAS-CL models are trained with three different robust teachers, ResNet-
18, ResNet-50, and WideResNet-50, with the ImageNet pre-trained (Engstrom et al., 2019) being
the robust teacher. It is observed that RNAS-CL models consistently exceed other models by ~
25% in terms of clean accuracy while exibiting adversarial robustness. In Table 2, both Hydra and
LWM were adversarially trained using TRADES (Zhang et al., 2019a). For a fair comparison, after
the regular training stage without TRADES, we retrain our RNAS-CL models with the TRADES
optimization objective. We replace the cross-entropy term in (3) by the TRADES optimization
objective. With such training, RNAS-CL achieves similar or higher adversarial accuracy while
significantly outperforming Hydra and LWM in clean accuracy with only a fraction of MACs.
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Figure 4: Adversarial accuracy of various models at various perturbation budgets on the ImageNet-
100 dataset.

We further study adversarial accuracy at various perturbation budgets for three different teacher
models. As illustrated in Figure 4, RNAS-CL exceeds its counterpart in adversarial accuracy at
various perturbation budgets for all teacher models on the ImageNet-100 dataset. This demonstrates
the significance of cross-layer connections in RNAS-CL.

A.4 ARCHITECTURE

In this section, we discuss architectures for various proposed super-nets used in RNAS-CL for
CIFAR-10 and ImageNet-100 datasets. Table 3 describes the super-nets used for CIFAR-10. We
use super-nets with three blocks. Super-nets used for ImageNet-100 are described in Table 4. For
ImageNet-100, the number of blocks varies from 3 to 5.

Search Space for CIFAR-10
Search Space Depth Stage 1 Stage 2 Stage 3
RNAS-CL-S3 3-3-3 16, 12 32,28, 24,20 64, 60, 56, 52
RNAS-CL-S5 5-5-5 16, 12 32,28, 24,20 64, 60, 56, 52
RNAS-CL-S7 7-7-7 16, 12 32,28, 24,20 64, 60, 56, 52
RNAS-CL-M 9-7-1 80, 76 160, 156, 152, 148 128, 124, 120, 116
RNAS-CL-L 9-7-1 160, 156 320, 316, 312, 308 256, 252,248, 244

Table 3: The table describes the search space for CIFAR-10. Depth represents the depth of each
stage. For example, 3-3-3 represents three convolution blocks in each stage. All search spaces have
three stages. Stage 1, Stage 2, and Stage 3 represent the filter choices for their respective stages.
For example, at stage 3 of RNAS-CL-S3, for each convolution block, we search between 4 output
channels (64, 60, 56, 52).
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Search Space for ImageNet-100
Search Space | Depth Stage 1 | Stage2 | Stage 3 Stage 4 Stage 5
28,24 40, 36 26, 88, 80,
RNAS-CL-IS | 3-3-3 20, 16 32,28 Zé, 64, 56,
96, 88, 80, | 128 120, 108,
RNAS-CL-IM | 3-3-34 %(8), %2’ g(z)’ gg’ 72, 64,56, | 100,92, 84,
’ ’ 48 76, 68
216, 208, 200,
28.24. | 40,36, 96, 88, 80, | 128 120, 108, | 192, 184,176,
RNAS-CL-I 3-3-3-4-4 20. 16 32 28 72, 64,56, | 100,92, 84, 168, 160, 152,
’ ’ 48 76, 68 144,136, 128,
120, 108

Table 4: The table describes the search space for ImageNet-100. Similar to Table 3, depth represents
the depth of each stage. For ImageNet-100, we have up to 5 stages. Stage 1, Stage 2, Stage 3, Stage
4, and Stage 5 represent the filter choices for their respective stages. For example, in stage 1, for
each convolution block, we search for its channel within 4 output channel options (28, 24, 20, 16).

A.5 ARCHITECTURE SEARCH BY FBNETV2

RNAS-CL builds both an efficient and adversarially robust deep learning model. In this work, we
use the training paradigm of FBNetV2 to search for efficient models. In Figure 5, we illustrate the
searching process for neural architecture at a single convolution layer. Each filter choice is attached
with a Gumbel weight. These Gumbel weights are optimized to select an efficient model.

Convolution Filters of a Convolution Block (Student Layer)

1
<gfd)

xgy)
— Output

x g

xg&)

D p—

Figure 5: Illustration of searching for the neural architecture of each layer of student model using
the searching mechanism in FBNetV2. g! represents gumbel weights associated with each mask.

13



	Introduction
	Contributions

	Related Work
	Knowledge Distillation
	Efficient and Robust models

	Robust Knowledge Distillation for Neural Architecture Search
	Attention Map
	Tutor Search
	Architecture Search
	RNAS-CL Loss

	Experiments
	Compare Efficient and Robust CIFAR-10 models

	Conclusion
	Appendix
	Hyper-parameters
	Comparison against various perturbation budget
	Compare Efficient and Robust ImageNet-100 models
	Architecture
	Architecture Search by FBNetV2


