
Soft Task-Aware Routing of Experts
for Equivariant Representation Learning

Jaebyeong Jeon Hyeonseo Jang Jy-yong Sohn Kibok Lee
Department of Statistics and Data Science, Yonsei University

{jaebyeong98, jhyeonseo715, jysohn1108, kibok}@yonsei.ac.kr

Abstract

Equivariant representation learning aims to capture variations induced by input
transformations in the representation space, whereas invariant representation learn-
ing encodes semantic information by disregarding such transformations. Recent
studies have shown that jointly learning both types of representations is often
beneficial for downstream tasks, typically by employing separate projection heads.
However, this design overlooks information shared between invariant and equiv-
ariant learning, which leads to redundant feature learning and inefficient use of
model capacity. To address this, we introduce Soft Task-Aware Routing (STAR), a
routing strategy for projection heads that models them as experts. STAR induces
the experts to specialize in capturing either shared or task-specific information,
thereby reducing redundant feature learning. We validate this effect by observing
lower canonical correlations between invariant and equivariant embeddings. Ex-
perimental results show consistent improvements across diverse transfer learning
tasks. The code is available at https://github.com/YonseiML/star.

1 Introduction

Figure 1: Crater Illusion. A lunar im-
age that appear as a dome (left) or a crater
(right) depending on orientation [46].

Self-supervised learning (SSL) has emerged as a promi-
nent paradigm for learning representations from large-
scale unlabeled data [3, 20, 4, 17]. Among various ap-
proaches, invariant representation learning methods gen-
erate multiple views of the same instance through trans-
formations such as data augmentations, and encourage
these views to map to the same representation, thereby
preserving semantic content regardless of the transforma-
tions applied. However, enforcing strict invariance can
discard augmentation-aware information, such as color
and spatial location, which may degrade performance
in downstream tasks that depend on such information [27]. To address this limitation, equivariant
representation learning has emerged as a complementary paradigm that captures structured variations
in the representation space corresponding to transformations applied in the input space [9, 14, 18, 51].
By preserving augmentation-aware information, equivariant representation learning yields richer
representations, leading to improved performance on downstream tasks.
Recent approaches such as EquiMod [9] employ a shared encoder followed by two projection heads,
which independently produce invariant and equivariant embeddings from a shared representation.
This design implicitly assumes that the invariant and equivariant learning tasks are independent,
encouraging each projection head to specialize in its respective objective. However, this assumption
might not be true in practice; rather, these two tasks are inherently interdependent. This interdepen-
dence can be intuitively illustrated by the well-known crater illusion, where the same lunar surface
may appear either as a crater or a dome depending on the light conditions, as shown in Figure 1.
For instance, recognizing whether the object is a crater or a dome—a semantic category typically

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/YonseiML/star

captured through invariant learning—helps infer which side is illuminated—a property expected to be
captured through equivariant learning. Conversely, understanding the orientation of the scene helps
recognize the semantic category. This bidirectional dependency highlights the interdependent nature
of invariant and equivariant learning.1 Consequently, when two independent projection heads are
employed for invariant and equivariant learning, they tend to redundantly capture shared information
across branches—a phenomenon we refer to as redundant feature learning.
To mitigate redundant feature learning, we introduce Soft Task-Aware Routing (STAR)—a strategy
that explicitly coordinates shared and task-specific information. We instantiate STAR in two forms:
(i) by adding a shared projection head that provides a common embedding bridging the two learning
objectives and capturing information beneficial to both, and (ii) by adapting the Multi-gate Mixture-
of-Experts (MMoE) [31] as the projection module, which dynamically allocates experts based on the
input for each task. These designs allow the model to more effectively disentangle shared and task-
specific information. For the latter implementation, we employ MMoE solely during self-supervised
pretraining and transfer only the encoder for downstream tasks, unlike its conventional use for joint
training and inference in supervised multi-task learning [31].
Our contributions are summarized as follows:

• We reveal that invariant and equivariant objectives are inherently interdependent, showing that
conventional two-branch approaches with separate projection heads independently encode shared
information across tasks, leading to redundant feature learning.

• We propose Soft Task-Aware Routing (STAR) for invariant–equivariant representation learning
that explicitly coordinates shared and task-specific information, thereby mitigating redundant
feature learning and improving transfer performance across various downstream tasks.

• We validate the effectiveness of STAR by demonstrating a substantial reduction in canonical corre-
lation between projection modules, along with a positive correlation between reduced redundant
feature learning and improved generalization performance.

2 Related Work

Equivariant Representation Learning. Early approaches to SSL enforce invariance to transforma-
tions by encouraging augmented views of the same image to produce similar embeddings [3, 20, 17, 4],
but such constraints may discard informative features like color or spatial location, which could be
important for downstream tasks [27]. To address this limitation, recent research explores equivariant
representation learning, aiming to learn representations that transform consistently with input trans-
formations. E-SSL [8] introduces an auxiliary task of predicting the applied augmentation, while
AugSelf [27] predicts the difference between applied augmentation parameters. Both approaches
implicitly learn equivariant representations by predicting input transformations through embedding
space differences without explicitly modeling the transformation functions. CARE [18] shows that
rotational symmetry in the representation space, aligned with input augmentations, can induce equiv-
ariance without modeling the transformations. In contrast, recent methods such as EquiMod [9],
SIE [14], and STL [51] explicitly model transformation effects by predicting augmentation-induced
shifts in the embedding space. EquiMod achieves this through a learnable predictor conditioned
on the applied augmentation. SIE splits the representation into invariant and equivariant parts, and
generates augmentation-conditioned predictor using a hypernetwork. STL learns transformation
representations directly from unlabeled image pairs. Both STL and CE-SSL [50] are trained with
explicit augmentation parameters, while CE-SSL focuses on preserving structured variability in the
representation space rather than explicitly modeling the transformations. Our proposed approach,
STAR, advances this line of work by emphasizing the interplay between invariant and equivariant
learning. Rather than treating the two objectives as independent, STAR explicitly models the shared
information essential to both while mitigating redundant feature learning, thereby enabling the model
to more effectively capture features distinctive to each objective.

Mixture of Experts. The Mixture of Experts (MoE) framework was first introduced by [23], where
multiple experts are trained jointly along with a single gating module. This gate performs soft routing
by assigning input-dependent weights to each expert’s output. The router adaptively combines these
outputs, enhancing both flexibility and performance on downstream tasks. Recently, MoE has been
1In Figure 3, we empirically verify the existence of shared information between invariant and equivariant learning
tasks using a benchmark dataset.

2

extended to multi-task and other representation learning settings. One such example is MMoE [31],
which introduces a multi-gate architecture into the MoE framework for multi-task learning. In this
design, experts are shared across tasks, while each task is equipped with its own gating network.
This setup enables the model to learn task relationships directly from data. In computer vision,
V-MoE [42] introduces a sparse Vision Transformer that achieves comparable accuracy to large
dense models with about half the inference cost. Neural Experts [1] further extend MoE to implicit
representations by dividing the input space among MLP experts, enabling local, piecewise function
learning. Unlike conventional MoE models that require routing during both training and inference—
making them difficult to transfer across tasks—STAR confines the MMoE structure to the projection
head during pretraining. Since projection heads are discarded after self-supervised pretraining, the
expert specialization achieved within them does not need to be retained during transfer. This design
preserves the benefits of expert routing while completely eliminating the transferability limitation of
conventional MoE, enabling efficient fine-tuning and seamless adaptation to downstream tasks.

3 Preliminaries: Invariant and Equivariant Representation Learning

Let X be the image space and A be a set of augmentation parameters that induce transformations
on X . Given an image x ∈ X and an augmentation parameter a ∈ A, we define the transformation
function T : X ×A → X that produces the augmented view T (x; a). An encoder f : X → Y maps
the input image to its latent representation y ∈ Y .

Invariant Representation Learning. Invariant representation learning aims to learn an encoder f
that is invariant to transformations applied to the input. Formally, invariance on the representation
space is defined as:

∀a ∈ A, f(x) = f(T (x; a)). (1)

A relaxed formulation, which requires consistency among transformed views of the same image, is
given by:

∀a, a′ ∈ A, f(T (x; a)) = f(T (x; a′)). (2)

If the parameter of an identity transformation is included in A, then Eq. (1) implies Eq. (2).
In practice, this invariance is achieved by training the encoder to produce similar representations
across augmented views of the same image. This is commonly achieved by minimizing a dissimilarity
loss of the form:

Linv = L(f(T (x; a)), f(T (x; a′))). (3)

where a, a′ ∈ A. In contrastive learning, a common choice for the loss function L is the InfoNCE
loss [47], which aims to minimize the distance between representations of augmented views of the
same image, while pushing them away from representations of other images. This leads the encoder
to learn representations that are consistent across views, thereby preserving semantic content while
discarding information that is specific to the applied transformations.

Equivariant Representation Learning. Equivariant representation learning focuses on learning
representations that reflect the transformations applied to the input. Unlike invariance, which seeks to
map all augmented views to the same representation, equivariance preserves structured changes that
correspond to the transformation in the input space. Formally, equivariance on the representation
space is defined as:

∀a ∈ A, f(T (x; a)) = ϕT (f(x), a). (4)

where ϕT : Y ×A → Y denotes a transformation function in the representation space. The function
ϕT is learned to reflect how the input transformation T (·; a) affects the latent representation. When
ϕT reduces to the identity function for all a, Eq. (4) simplifies to the invariance condition in Eq. (1).
In this case, invariance can be viewed as a special case of equivariance.
To encourage equivariance during training, the model learns to predict the transformed representation
of a transformed input. This leads to a learning objective of the form:

Leq = L(ϕT (f(x), a), f(T (x; a))). (5)

where the loss L minimizes the discrepancy between the predicted and target representations of
the transformed input. This formulation is designed to capture features that are sensitive to trans-
formations, such as pose and color. It is often incorporated as an auxiliary loss in addition to

3

–v

…

⨂

⨂

⨁ ⨁

⨂

Expert

Inv.

Equiv.

InfoNCE
MMoE
Projection

MMoE

⨂

⨁

⨁ ⨁

Single Shared
Projection

MMoE

Router

Equivariant Learning

Figure 2: Overview of Proposed Routing Strategy: Soft Task-Aware Routing (STAR) of Experts.
Given two augmented views T (x; a) and T (x; a′), the encoder f extracts features, which are then
projected by the single shared projection (with three experts) or the MMoE projection module into
invariant (zinv) and equivariant (zeq) embeddings. For equivariant learning, the projected augmentation
parameter ψ(a) and the equivariant embedding zeq are fed into a predictor ϕT to predict the target
embedding zeq. In practice, we implement ψ as a single-layer MLP, and ϕT as a 3-layer MLP.

the invariant learning objective in recent works on equivariant learning [9, 14, 51]. The overall
invariant–equivariant loss is formulated as a weighted sum of the invariant and equivariant losses:

L = Linv + λLeq. (6)

where λ is a balancing coefficient that controls the contribution of the equivariant loss.

4 Method

In this section, we present Soft Task-Aware Routing (STAR) for learning invariant and equivariant
representations. Motivated by redundant feature learning that arises when using separate projection
heads for the invariant and equivariant objectives, STAR disentangles shared and task-specific
information and adaptively weights their contributions based on the task and input image. For clarity,
we refer to each projection head as an expert throughout the paper.

4.1 Soft Task-Aware Routing

Setup. Given a batch of input images {xi}Bi=1, we generate two augmented views per image by
applying transformations T (·; ai) and T (·; a′i), where ai, a′i are augmentation parameters sampled
from a distribution over A. Specifically, for the i-th image xi, we obtain two augmented views:

vi = T (xi; ai), vi+B = T (xi; a
′
i). (7)

Thus, the resulting batch consists of 2B augmented views, where the first B correspond to {vi}Bi=1

and the remaining B to {vi+B}Bi=1. Each augmented view vi is processed by the encoder f to extract
a latent representation. The features are then passed into our proposed task-aware projection modules,
as illustrated in Figure 2, to produce the invariant embedding zinv

i and the equivariant embedding zeq
i .

Single Shared Projection. As discussed in Section 1, using two separate experts for invariant
and equivariant learning can lead to redundant feature learning on experts. To alleviate this issue,
it is crucial to model the shared information between the two tasks. A straightforward yet effective
approach is to introduce a single expert shared across invariant and equivariant learning tasks, thereby
allowing the model to capture information essential to both. To formalize this, we define three experts
taking the representation as input: an invariant expert Einv, an equivariant expert Eeq, and a shared
expert Es. The embeddings are then computed as follows:

zinv
i = Einv(f(vi)) + Esh(f(vi)), zeq

i = Eeq(f(vi)) + Esh(f(vi)). (8)

4

An overview of this computation is illustrated in the left panel of Figure 2. This additive formulation
naturally encourages the shared expert to capture information relevant to both tasks, since its output
contributes directly to both invariant and equivariant objectives. However, the shared expert’s output
is always weighted equally regardless of tasks and input images, making the model unable to account
for the varying importance of shared information across them. While effective in reducing redundancy,
this approach is inflexible and cannot adjust how shared and task-specific information are weighted.

MMoE Projection. To extend the single shared projection to a more flexible and adaptive design,
we introduce the MMoE projection module, which adaptively selects relevant experts from a shared
set based on the task and input. This mechanism is illustrated in the center panel of Figure 2.
Specifically, the MMoE module contains the shared set of experts {Ek}Nk=1 and two task-specific
routers Rinv and Req. The routers compute assignment weights as:

sinv
i,k = softmaxk(Rinv(f(vi))), seq

i,k = softmaxk(Req(f(vi))), (9)

where sinv
i,k and seq

i,k denote the assignment weights of the k-th expert for the i-th view in the batch,
used in the invariant and equivariant projections, respectively. Here, the k-th component of the
softmax activation applied to a vector w = [w1, w2, ..., wN] ∈ RN is defined as:

softmaxk(w) =
exp(wk)∑N
j=1 exp(wj)

. (10)

In our case, w is the router output, and gk denotes the score assigned to the k-th expert. Unlike hard
assignment strategies, our method employs soft routing, where each expert contributes proportionally
to its routing score. Accordingly, the invariant and equivariant embeddings are computed as weighted
sums:

zinv
i =

N∑
k=1

sinv
i,kEk(f(vi)), zeq

i =

N∑
k=1

seq
i,kEk(f(vi)). (11)

The equivariant embedding of the original input xi, denoted as zo
i , is obtained in the same manner:

zo
i =

N∑
k=1

seq
i,kEk(f(xi)). (12)

This design enables the model to adaptively route experts depending on the learning objective (i.e.,
invariant or equivariant) and the input image, resulting in a natural division into shared and task-
specific roles. Notably, the single shared projection introduced earlier can be regarded as a degenerate
case of MMoE projection, where all experts are equally weighted rather than adaptively determined.

4.2 Equivariant Learning

To explicitly model the shift induced by augmentations in the equivariant embedding space, we
compute the predicted equivariant embedding by adding a shift that reflects the effect of the applied
augmentation to the original equivariant embedding zo

i . This shift in the equivariant embedding space
is predicted by an equivariant predictor ϕT that takes as input both zo

i and a projected augmentation
parameter, obtained via a projection function ψ:

ẑeq
i = zo

i + ϕT (z
o
i , ψ(ai)). (13)

The residual connection in Eq. (13) ensures that the semantic content of the original equivariant
embedding is preserved while effectively modeling the shift in the embedding space caused by
transformations.
Following the standard formulation of invariant learning, we define the equivariant loss in a similar
manner using the InfoNCE loss [47]. For each predicted embedding ẑeq

i , the corresponding target
embedding zeq

i serves as a positive sample, while the remaining equivariant embeddings in the batch
serve as negatives. The overall equivariant loss is defined as:

Leq = − 1

2B

2B∑
i=1

log
exp

(
sim(zeq

i , ẑ
eq
i)/τ

)
2B∑

j=1,j ̸=i

exp
(
sim(zeq

i , z
eq
j)/τ

) . (14)

where sim(·, ·) denotes cosine similarity and τ is a temperature parameter. We use the invariant–
equivariant loss described in Eq. (6) for our method employing SimCLR [3] for invariant loss unless
otherwise specified. We set τ = 0.2 and λ = 1 for all experiments.

5

Table 1: Out-of-Domain Classification. Linear evaluation accuracy (%) of ResNet-50 pretrained on
ImageNet100 for 500 epochs and ResNet-18 pretrained on STL10 for 200 epochs, respectively. Bold
entries indicate the best performance among methods, while underlined entries denote the second
best. Standard deviations are reported in Table B.2.

Method CIFAR10 CIFAR100 Food MIT67 Pets Flowers Caltech101 Cars Aircraft DTD SUN397 Mean Avg. Rank

ImageNet100-pretrained ResNet-50

SimCLR 87.88 67.92 63.60 66.57 76.71 88.37 85.02 47.09 48.23 69.17 52.02 68.42 5.00
AugSelf 88.61 69.68 65.37 67.51 77.24 89.70 85.09 47.48 48.65 69.31 53.00 69.24 3.82
EquiMod 88.99 70.22 64.43 67.54 77.78 90.33 86.62 48.94 49.91 69.33 52.79 69.72 3.18
CARE 82.81 58.97 55.78 56.39 59.89 75.84 73.14 29.12 36.00 62.22 42.48 57.51 6.00
STAR-SS 89.81 71.45 66.82 68.71 78.58 91.17 87.78 51.01 50.16 70.57 53.86 70.90 1.82
STAR-MMoE 90.09 72.31 67.05 67.96 79.27 91.45 87.76 51.54 51.15 70.80 54.12 71.23 1.18

STL10-pretrained ResNet-18

SimCLR 83.56 55.19 33.75 39.01 46.15 60.27 66.85 17.38 27.17 43.12 28.58 45.55 5.73
AugSelf 84.03 58.65 38.11 41.74 47.80 68.54 69.33 20.23 31.53 45.68 32.51 48.92 4.18
EquiMod 85.73 60.06 37.43 42.49 48.83 67.07 71.17 19.95 33.03 47.00 32.15 49.54 3.82
CARE 77.10 51.32 43.52 48.18 46.19 65.84 61.75 21.99 33.77 50.00 35.78 48.68 3.36
STAR-SS 85.64 61.10 40.17 44.50 50.07 72.59 73.39 21.89 33.90 48.58 34.25 51.46 2.55
STAR-MMoE 87.45 64.78 41.24 46.82 51.10 73.99 74.76 22.74 35.61 49.75 35.50 53.07 1.36

Table 2: In-Domain Classification. Linear evalua-
tion accuracy (%) of ResNet-50 and ResNet-18 pre-
trained on ImageNet100 and STL10, respectively.

Method STL10 ImageNet100

SimCLR 85.24 83.43
AugSelf 85.99 83.95
EquiMod 87.01 84.81
CARE 79.86 80.38
STAR-SS 86.75 84.82
STAR-MMoE 86.74 84.83

Table 3: Object Detection. Evaluation of
learned representations on the object detection
task using Faster R-CNN with a frozen ResNet-
50-C4 backbone on VOC07+12. Reported met-
rics include AP, AP50, and AP75.

Method AP AP50 AP75

SimCLR 47.96±0.19 76.35±0.14 51.62±0.46
AugSelf 48.00±0.21 76.14±0.08 51.83±0.34
EquiMod 48.52±0.15 76.55±0.01 52.82±0.22
CARE 48.41±0.28 76.16±0.20 52.06±0.55
STAR-SS 48.77±0.16 76.64±0.03 52.77±0.31
STAR-MMoE 48.85±0.20 76.81±0.07 53.01±0.23

5 Experiments

Setup. We pretrain ResNet-18 [19] on STL10 [7] for 200 epochs and ResNet-50 on Ima-
geNet100 [43, 45] for 500 epochs, both with a batch size of 256. For our proposed methods,
we denote the single shared projection variant as STAR-SS and the MMoE projection variant as
STAR-MMoE. We compare our methods against existing equivariant representation learning ap-
proaches, including AugSelf [27], EquiMod [9], and CARE [18]. For all approaches, SimCLR [3] is
used as invariant representation learning baseline.
For STL10, we use 16 experts as the default configurations, while 8 experts are used for ImageNet100.
For analysis, we use the STL10-pretrained model with 8 experts for better interpretability. All results
are averaged over three runs, reporting mean and standard deviation, and we reproduce all compared
methods to ensure fair comparisons. See Appendix B for detailed configurations.

5.1 Main Results

Image Classification. We conduct transfer learning experiments on 11 downstream datasets:
CIFAR10/100 [26], Food [2], MIT67 [39], Pets [37], Flowers [34], Caltech101 [13], Cars [25],
Aircraft [32], DTD [6], and SUN397 [49]. For evaluation, we follow the linear evaluation protocol
used in [24]. Table 1 shows the transfer learning results across various downstream tasks. Out of the
11 downstream datasets, our method achieves the best performance in 7 when pretrained on STL10,
and 10 when pretrained on ImageNet100, consistently surpassing previous approaches. As shown in
Table 2, our method also achieves strong in-domain performance, suggesting that improvements in
out-of-domain performance are achieved without degrading, or even potentially enhancing in-domain
performance.

Object Detection. We evaluate our method on the object detection task using the Pascal VOC07+12
dataset [11]. According to [16], performance obtained after full fine-tuning reflects not only the
quality of the learned representations, but also the effects of initialization and optimization strategies.
Therefore, linear evaluation with a frozen backbone is more appropriate for assessing the quality of

6

Table 4: Few-Shot Classification. Few-shot classificiation accuracy (%) with 95% confidence
intervals averaged over 2000 episodes. (N,K) denotes N -way K-shot tasks. Bold entries indicate
the best performance among methods, while underlined entries denote the second best.

Method FC100 CUB200 Plant Disease

(5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5)

ImageNet100-pretrained ResNet-50

SimCLR 35.72±0.34 50.27±0.38 45.65±0.49 61.13±0.48 71.55±0.47 87.88±0.32
AugSelf 36.12±0.37 51.02±0.40 45.96±0.49 61.94±0.48 72.18±0.47 88.48±0.32
EquiMod 35.21±0.35 49.49±0.39 46.11±0.49 61.72±0.49 72.48±0.47 88.71±0.32

CARE 27.09±0.28 36.44±0.35 41.01±0.47 53.40±0.48 50.93±0.46 70.74±0.40
STAR-SS 35.80±0.37 51.33±0.39 47.11±0.49 62.12±0.47 72.48±0.48 89.46±0.29

STAR-MMoE 38.26±0.37 53.57±0.38 47.26±0.47 63.46±0.47 73.86±0.46 90.04±0.29

STL10-pretrained ResNet-18

SimCLR 36.49±0.35 51.46±0.44 35.55±0.36 50.18±0.37 56.89±0.48 75.86±0.39
AugSelf 37.99±0.37 52.81±0.39 38.34±0.38 54.02±0.39 59.76±0.49 78.31±0.36
EquiMod 36.42±0.36 50.64±0.36 39.08±0.43 52.88±0.44 58.25±0.48 78.01±0.37

CARE 32.93±0.39 43.04±0.40 36.93±0.42 51.28±0.43 58.62±0.49 79.67±0.36
STAR-SS 38.97±0.39 53.36±0.40 40.70±0.43 55.37±0.42 60.11±0.48 79.83±0.36

STAR-MMoE 39.35±0.39 54.87±0.40 41.46±0.42 57.31±0.45 61.70±0.47 81.14±0.36

the learned representations. Following this principle, we adopt a representation evaluation protocol
analogous to that used in image classification, where the backbone is frozen to assess the quality of
the learned representations. Specifically, we transfer pretrained weights to the Faster R-CNN [41]
architecture with an R50-C4 backbone, freeze all convolutional layers from C1 to C4, and fine-tune
only the region proposal network (RPN) and the object classification head (C5). As shown in Table 3,
our method outperforms all baselines in AP, AP50, and AP75, demonstrating that it produces stronger
and more transferable representations for object-level understanding.

Few-Shot Classification. We evaluate the generalizability of learned representations under limited
data conditions via few-shot classification, following the linear evaluation protocol for few-shot
learning in [27]. Specifically, we report classification accuracies and 95% confidence intervals for
5-way 1-shot and 5-way 5-shot tasks across 2000 episodes on FC100 [36], CUB200 [48], and Plant
Disease datasets [33]. As shown in Table 4, our method consistently achieves the best performance
across all few-shot classification settings, outperforming other equivariant representation learning
methods in every case.

5.2 Analysis

Query Invariance-only

Equivariance-only

Figure 3: k-NN Retrieval on STL10. Query
image (left); retrievals from the invariance-
only model (top-right) and the equivariance-only
model (bottom-right).

Shared Information between Invariant and
Equivariant Learning. To verify the existence
of shared information between invariant and equiv-
ariant learning, we conduct k-NN retrieval on
STL10 test set augmented with flipped images
using invariance-only and equivariance-only mod-
els, where we employ SimCLR [3] as invariance-
only model and EquiMod [9] without the invariant
loss as equivariance-only model. Notably, the
equivariance-only model retrieves semantically
similar neighbors even without invariant learning.
Specifically, in the results of the equivariance-only
model, we observe three patterns: (i) it consistently retrieves samples belonging the same semantic
object class, (ii) it consistently matches samples with the same color, and (iii) it alternates between
samples of the same orientation with query and their flipped counterparts. These observations indicate
that the equivariance-only model encodes not only augmentation-aware aspects such as orientation
and color but also semantic cues like object identity, highlighting the shared information between
invariant and equivariant learning.

Expert Specialization. We investigate how the MMoE projection module allocates experts to the
invariant and equivariant objectives by analyzing the average routing weight distributions, measured

7

1 2 3 4 5 6 7 8
Expert Index (Reordered)

0.0

0.1

0.2

0.3

0.4

0.5

Ro
ut

in
g

W
ei

gh
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
in

/M
ax

 R
at

io

Invariance
Equivariance
Min/Max Ratio

(a) Routing weight distribution across experts.

airplane

Query

airplane

1-NN

airplane

2-NN

airplane

3-NN

airplane

4-NN

airplane airplane ship ship truck

airplane truck car airplane car

Shared
(Expert 1)

Invariance
(Expert 3)

Equivariance
(Expert 7)

(b) k-NN retrieval on STL10 test dataset.

Figure 4: Analysis of Expert Specialization. (a) Routing weights averaged over test data in STL10,
with experts reordered based on their roles. The min/max ratio (purple) measures the balance between
how much each expert is utilized by the invariant and equivariant objectives. (b) k-NN retrieval
results using the output embeddings of individual experts.

1 2 3 4 5 6 7 8
Expert Index (Reordered)

1
2

3
4

5
6

7
8Ex

pe
rt

 In
de

x
(R

eo
rd

er
ed

) .44 .58 .53 .53 .55 .47 .49

.44 .34 .29 .22 .29 .31 .32

.58 .34 .48 .50 .51 .37 .39

.53 .29 .48 .47 .52 .34 .36

.53 .22 .50 .47 .52 .35 .37

.55 .29 .51 .52 .52 .37 .38

.47 .31 .37 .34 .35 .37 .59

.49 .32 .39 .36 .37 .38 .59
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

(a) Canonical correlation matrix.

2 4 8 16 32
of Experts

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Ca

no
ni

ca
l C

or
re

la
ti

on

STAR-MMoE
STAR-SS
EquiMod

(b) Mean canonical correlation.

2 4 8 16 32
of Experts

49

50

51

52

53

54

M
ea

n
Ac

cu
ra

cy
 (

%
)

STAR-MMoE
STAR-SS
EquiMod

(c) Mean accuracy.

Figure 5: Analysis of Redundant Feature Learning. (a) Pairwise canonical correlation between
expert outputs. (b) Mean canonical correlation and (c) mean classification accuracy on 11 out-of-
domain datasets across different numbers of experts in our proposed method. For (a), the numerical
values of the diagonal elements are omitted for better visualization.

on the STL10 test dataset, as shown in Figure 4a. Expert 1 receives relatively balanced weights
from both routers, implying that it learns information shared between the invariant and equivariant
objectives. In contrast, Experts 2 to 6 are mainly used for the invariant objective, and Experts 7
and 8 are mainly used for the equivariant objective, indicating the task-specific specialization of
experts. This distinction is further quantified by the min/max ratio, which computes the proportion
of the smaller routing weight value to the larger one for each expert; higher values imply more
balanced usage across tasks. To confirm these observations, we conduct k-NN retrieval on the STL10
test set, as shown in Figure 4b. Expert 3 and Expert 7 retrieve samples that emphasize invariance-
and equivariance-specific features, respectively, while Expert 1 retrieves semantically consistent
neighbors, indicating that it captures shared information beneficial to both objectives. These results
demonstrate that the MMoE architecture supports meaningful expert specialization aligned with the
learning objectives.

Redundant Feature Learning. We assess redundant feature learning among experts by measuring
canonical correlation between their outputs, where a higher correlation indicates that experts capture
similar, potentially redundant information. In Figure 5a, the matrix shows that experts assigned to the
same objective (e.g., Experts 7 and 8) tend to exhibit higher mutual similarity, whereas the similarity
between experts specialized in different objectives (e.g. Experts 3 and 7) remains relatively low.
Notably, Expert 1 exhibits moderate similarity with both groups, indicating that it primarily encodes
information shared across invariant and equivariant objectives.
To further quantify how redundant feature learning affects generalization, we vary the number of
experts to control the degree of redundant feature learning in the model. As shown in Figure 5b,
increasing the number of experts tends to reduce redundant feature learning, as reflected in the
lower mean canonical correlation. This reduction in redundant feature learning is accompanied by
consistent improvements in the mean accuracy, as shown in Figure 5c. Compared to baselines such
as EquiMod, our method consistently achieves both reduced redundant feature learning and higher

8

25 50 75 100 125 150 175 200
Epoch

0

2

4

6

N
or

m
 o

f W
ei

gh
t

U
pd

at
e

STAR-MMoE (0.30)
STAR-SS (0.34)
EquiMod (0.59)

Figure 6: Convergence of Experts. Frobenius
norm of weight update for experts over training
epochs. All models are initialized and optimized
using the same scheme to ensure a fair comparison
of weight updates.

1 2 3 4 5 6 7 8
Expert Index (Reordered)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
or

e

Shared Invariant Equivariant

P-equivariance Invariance

Figure 7: Equivariance of Expert Embeddings.
P-equivariance and invariance of experts embed-
dings in our method pretrained on STL10.

accuracy, suggesting the effectiveness of dynamic expert allocation. These results highlight that
reducing redundant feature learning through adaptive expert assignment plays a key role in promoting
specialization and improving generalization.

Impact of Redundant Feature Learning for Representations. To understand how redundant
feature learning affects the backbone representations, we analyze its impact on expert convergence and
the resulting gradient quality. As shown in Figure 6, experts in our method with the MMoE projection
converge faster than those in EquiMod, consistent with prior findings that MoE architectures achieve
faster convergence than dense models under the same number of training steps [28, 12, 40]. Since
convergence of expert directly shapes the gradient signals to the backbone, faster convergence implies
that our experts provide higher-quality and task-specific gradients to the backbone early in training,
when the learning rate is high. In contrast, experts in EquiMod converge more slowly and yield
suboptimal gradients, as redundant feature learning hinders task specialization and weakens task-
specific updates. We empirically validate this by measuring the cosine similarity between gradients
from different experts with respect to the backbone, which decreases from 0.59 in EquiMod to 0.30
in our method with MMoE projection. This result indicates reduced redundant feature learning and
improved task specialization.

Table 5: Equivariance of Representations. Com-
parison of R-equivariance and P-equivariance of
representations learned by different methods pre-
trained on STL10.

Method R-equiv. ↑ P-equiv. ↓

SimCLR 0.74 0.72
AugSelf 0.92 0.32
EquiMod 0.91 0.38
CARE 0.97 0.51
STAR-SS 0.93 0.27
STAR-MMoE 0.98 0.27

Evaluation of Equivariance. We evaluate the
equivariance of representations and experts us-
ing R-equivariance and P-equivariance, as pro-
posed in [38]. R-equivariance, measured with
cosine similarity, quantifies how well the trans-
formed embedding can be predicted from the
original embedding and the transformation pa-
rameters, whereas P-equivariance, measured with
mean squared error, quantifies how accurately
the transformation parameters can be recovered
from the original and transformed embeddings.
As shown in Table 5, representations from our
method achieve higher R-equivariance and lower
P-equivariance than those from other methods, indicating stronger equivariance.
Figure 7 shows the P-equivariance and invariance scores across experts in our method. Invariance is
measured as the cosine similarity between embeddings of differently augmented views. Equivariant
experts exhibit lower P-equivariance and lower invariance, indicating that they specialize in the equiv-
ariant learning task and capture transformation-related information essential for learning equivariance.
In contrast, invariant experts show higher P-equivariance and higher invariance, demonstrating they
specialize in the invariant learning task. In addition, the shared expert shows moderate P-equivariance
together with an invariance score comparable to that of invariant experts, reflecting its role in encoding
shared information between invariant and equivariant learning. These results further confirm that our
method achieves task specialization.

9

1.0 1.5 2.0 2.5 3.0 3.5
Training Time (h)

44

46

48

50

52

M
ea

n
Ac

cu
ra

cy
 (

%
)

STAR-MMoE
EquiMod
AugSelf
SimCLR

Figure 8: Training Efficiency in Out-of-Domain
Classification. Mean accuracy (%) of STL10-
pretrained models in out-of-domain classification.
Markers are shown every 100 epochs.

Training Efficiency. Figure 8 compares the
mean accuracy of different methods over train-
ing time in the out-of-domain classification set-
ting, with wall-clock time measured on a single
RTX 4090 GPU. While most methods steadily
improve, SimCLR and AugSelf show saturation
or even decline after 300 epochs, indicating a ten-
dency to overfit to the training distribution and a
limited ability to generalize to unseen domains.
This observation is consistent with Figure A.1a,
where their in-domain accuracy continues to in-
crease beyond 300 epochs. In contrast, our pro-
posed method consistently achieves higher accu-
racy and maintains this advantage throughout the
entire training process. For example, our method
surpasses other approaches trained for longer du-
rations. Although our method may incur a higher
cost per epoch, its ability to efficiently achieve strong generalization in less wall-clock time highlights
its advantage in scenarios where early stopping is desirable.

6 Discussion and Conclusion

This work revisits equivariant representation learning and demonstrates that treating the invariant and
equivariant objectives as fully independent, as commonly done in two-branch architectures, leads to
redundant feature learning on experts. To address this, we propose STAR, which dynamically routes
experts to each task. This reduces redundant feature learning and enhances generalization across
downstream tasks such as image classification, few-shot learning, and object detection.

Limitations. A limitation of our method is the use of soft routing, which prevents the use of sparse
routing strategies such as top-k routing. While sparse routing improves computational efficiency in
conventional MoE models [44, 12], it causes unstable training in our setting due to the presence of
batch normalization in each expert. Activating only a subset of experts per sample leads to unreliable
batch statistics, especially problematic in SSL where stable statistics are essential. To avoid this,
we adopt soft routing to ensure that all experts receive inputs in every batch. Although this reduces
computational efficiency and scalability, it enables stable training dynamics.

Acknowledgements

This work was partially supported by the National Research Foundation of Korea (NRF) grant funded
by the Ministry of Science and ICT (MSIT) of the Korean government (RS-2024-00341749, RS-
2024-00345351, RS-2024-00408003), and Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by MSIT (RS-2023-00259934, RS-2025-02283048).

References
[1] Yizhak Ben-Shabat, Chamin Hewa Koneputugodage, Sameera Ramasinghe, and Stephen Gould.

Neural experts: Mixture of experts for implicit neural representations. In NeurIPS, 2024.

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative
components with random forests. In ECCV, 2014.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML, 2020.

[4] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR,
2021.

[5] Xinlei Chen*, Saining Xie*, and Kaiming He. An empirical study of training self-supervised
vision transformers. In ICCV, 2021.

10

[6] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In CVPR, 2014.

[7] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In AISTATS, 2011.

[8] Rumen Dangovski, Li Jing, Charlotte Loh, Seungwook Han, Akash Srivastava, Brian Cheung,
Pulkit Agrawal, and Marin Soljačić. Equivariant contrastive learning. In ICLR, 2022.

[9] Alexandre Devillers and Mathieu Lefort. Equimod: An equivariance module to improve
self-supervised learning. In ICLR, 2023.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR, 2021.

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

[12] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv:2101.03961, 2022.

[13] Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In CVPR
Workshop, 2004.

[14] Quentin Garrido, Laurent Najman, and Yann Lecun. Self-supervised learning of split invariant
equivariant representations. In ICML, 2023.

[15] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[16] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking
self-supervised visual representation learning. In ICCV, 2019.

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a
new approach to self-supervised learning. In NeurIPS, 2020.

[18] Sharut Gupta, Joshua Robinson, Derek Lim, Soledad Villar, and Stefanie Jegelka. Structuring
representation geometry with rotationally equivariant contrastive learning. In ICLR, 2024.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

[21] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. AugMix: A simple data processing method to improve robustness and uncertainty.
In ICLR, 2020.

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In ICML, 2015.

[23] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 1991.

[24] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do better imagenet models transfer better?
In CVPR, 2019.

11

[25] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In CVPR Workshops, 2013.

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[27] Hankook Lee, Kibok Lee, Kimin Lee, Honglak Lee, and Jinwoo Shin. Improving transferability
of representations via augmentation-aware self-supervision. In NeurIPS, 2021.

[28] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. In ICLR, 2021.

[29] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. In ICLR,
2016.

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

[31] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts. In KDD, 2018.

[32] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. Technical report, Visual Geometry Group, University of
Oxford, 2013.

[33] Sharada P. Mohanty, David P. Hughes, and Marcel Salathé. Using deep learning for image-based
plant disease detection. Frontiers in Plant Science, 2016.

[34] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large
number of classes. In ICVGIP, 2008.

[35] Jeongheon Oh and Kibok Lee. On the effectiveness of supervision in asymmetric non-contrastive
learning. In ICML, 2024.

[36] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In NeurIPS, 2018.

[37] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
CVPR, 2012.

[38] Christos Plachouras, Julien Guinot, George Fazekas, Elio Quinton, Emmanouil Benetos, and
Johan Pauwels. Towards a unified representation evaluation framework beyond downstream
tasks. In IJCNN, 2025.

[39] Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In CVPR, 2009.

[40] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,
Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-
experts inference and training to power next-generation ai scale. In ICML, 2022.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NeurIPS, 2015.

[42] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
In NeurIPS, 2021.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge. IJCV, 2015.

[44] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In ICLR, 2017.

12

[45] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV,
2020.

[46] NASA/GSFC/Arizona State University. Recent impact crater on the lunar surface show-
ing crater illusion. https://commons.wikimedia.org/w/index.php?curid=149760419,
2023. Public Domain.

[47] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[48] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. Technical report, California Institute of Technology, 2011.

[49] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun
database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.

[50] Thomas Yerxa, Jenelle Feather, Eero P. Simoncelli, and SueYeon Chung. Contrastive-equivariant
self-supervised learning improves alignment with primate visual area it. In NeurIPS, 2024.

[51] Jaemyung Yu, Jaehyun Choi, Dong-Jae Lee, HyeongGwon Hong, and Junmo Kim. Self-
supervised transformation learning for equivariant representations. In NeurIPS, 2024.

13

https://commons.wikimedia.org/w/index.php?curid=149760419

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports standard deviations of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources, including
computational time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The proposed method for jointly learning invariant and equivariant repre-
sentations using a task-aware routing mechanism has the potential to advance the field of
self-supervised learning and improve the transferability of learned features across domains.
By explicitly modeling shared and task-specific components, our approach enables more
expressive and generalizable representations, which may benefit applications in downstream
tasks such as classification, detection, and few-shot learning.
While our work is foundational and not directly tied to deployment in sensitive domains,
stronger representation learning techniques could be misused in areas such as surveillance
or user profiling, especially if used without transparency or accountability. To encourage
responsible use and promote reproducibility, we plan to publicly release our code and
pretrained models upon acceptance. This release will support transparency and allow the
community to evaluate, adapt, and monitor potential societal impacts.

17

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not contain any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

18

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There are no crowdsourcing experiments or research with human subjects in
this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not contain any potential risks iccured by study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in the paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Soft Task-Aware Routing of Experts
for Equivariant Representation Learning

Supplementary Material

A Additional Experiments

A.1 Comparison with STL

Table A.1 compares the linear evaluation performance of our method against STL [51] and STL
combined with AugMix [21] across 11 downstream classification benchmarks. We report results
under two pretraining settings: STL10 with ResNet-18 and ImageNet100 with ResNet-50. Following
the experimental setting of the STL paper, we evaluate on the AWS Flowers dataset, which differs
from the Oxford Flowers [34] in its train/test split. Except for this replacement, all other evaluation
protocols are kept identical.

Table A.1: Image Classification. Linear evaluation accuracy (%) across 11 datasets. Models are
pretrained on STL10 using ResNet-18 or on ImageNet100 using ResNet-50. Symbol * denotes
performance reported in [51], based on 200 epochs for STL10 and 500 epochs for ImageNet100. For
Flowers, we use AWS Flowers instead of the Oxford Flowers.

Pretraining Method In-domain CIFAR10 CIFAR100 Food MIT67 Pets Flowers Caltech101 Cars Aircraft DTD SUN397 Mean

ImageNet100
STL* 81.10 86.55 66.84 64.32 56.64 65.00 94.51 81.83 35.44 45.42 64.68 44.69 64.18
STL + AugMix* 81.64 87.19 67.70 66.12 59.70 67.10 94.87 84.61 38.48 46.14 69.57 45.75 66.11
STAR-MMoE 84.83 90.09 72.31 67.05 67.96 79.27 93.64 87.76 51.54 51.15 70.80 54.12 71.43

STL10
STL* 84.83 85.22 60.13 38.05 43.53 46.57 73.50 71.36 18.85 30.25 45.34 31.63 49.49
STL + AugMix* 85.57 86.01 62.07 40.16 44.90 46.69 77.37 73.29 19.32 30.87 48.71 33.44 51.17
STAR-MMoE 86.74 87.45 64.78 41.24 46.82 51.10 78.92 74.76 22.74 35.61 49.75 35.50 53.52

Across both pretraining regimes, our method consistently outperforms STL and its AugMix variant
on the majority of datasets. These results demonstrate the effectiveness of our method in producing
more generalizable representations.

A.2 Training Efficiency

1.0 1.5 2.0 2.5 3.0 3.5
Training Time (h)

82

83

84

85

86

87

88

89

Ac
cu

ra
cy

 (
%

)

STAR-MMoE
EquiMod
AugSelf
SimCLR

(a) STL10-pretrained model

8 10 12 14 16 18
Training Time (h)

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

Ac
cu

ra
cy

 (
%

)

STAR-MMoE
EquiMod
AugSelf
SimCLR

(b) ImageNet100-pretrained model

Figure A.1: Training Efficiency in In-Domain Classification. Mean accuracy (%) of (a) STL10-
pretrained and (b) ImageNet100-pretrained models in in-domain classification. For STL10 pretraining,
all markers are shown every 100 epochs; for ImageNet100 pretraining, markers are shown every
100 epochs for SimCLR and AugSelf (from 200 epochs) and every 50 epochs for EquiMod and
STAR-MMoE (from 100 epochs).

21

Figure A.1 shows that all methods follow similar convergence trends in the in-domain classification
setting, with most reaching comparable accuracy levels as training progresses. Notably, STAR-MMoE
achieves performance on par with AugSelf, the best method under ImageNet100 pretraining, and
EquiMod, the best under STL10 pretraining.

1.0 1.5 2.0 2.5 3.0 3.5
Training Time (h)

49

50

51

52

53

54

55

56

Ac
cu

ra
cy

 (
%

)

STAR-MMoE
EquiMod
AugSelf
SimCLR

(a) STL10-pretrained model

8 10 12 14 16 18
Training Time (h)

56.5

57.0

57.5

58.0

58.5

59.0

59.5

60.0

60.5

Ac
cu

ra
cy

 (
%

)

STAR-MMoE
EquiMod
AugSelf
SimCLR

(b) ImageNet100-pretrained model

Figure A.2: Training Efficiency in Few-Shot Classification. Mean accuracy (%) of (a) STL10-
pretrained and (b) ImageNet100-pretrained models in few-shot classification. For STL10 pretraining,
all markers are shown every 100 epochs; for ImageNet100 pretraining, markers are shown every
100 epochs for SimCLR and AugSelf (from 200 epochs) and every 50 epochs for EquiMod and
STAR-MMoE (from 100 epochs).

However, the distinction becomes more pronounced in the few-shot classification setting, as shown
in Figure A.2. our method consistently outperforms all other methods, including those trained for
longer durations. Figure A.2a further illustrates that, unlike STAR-MMoE, the methods pretrained
with STL10 become saturated even with additional training.

8 10 12 14 16 18
Training Time (h)

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5

Ac
cu

ra
cy

 (
%

)

STAR-MMoE
EquiMod
AugSelf
SimCLR

Figure A.3: Training Efficiency in Out-of-Domain Classification. Mean accuracy (%) of
ImageNet100-pretrained models in out-of-domain classification. Markers are shown every 100
epochs for SimCLR and AugSelf (from 200 epochs) and every 50 epochs for EquiMod and STAR-
MMoE (from 100 epochs).

Consistent with the results in Figure 8, Figure A.3 exhibits the same trend, further underscoring the
strength of STAR-MMoE with ImageNet100 pretraining. In most cases, our method surpasses others
even when they are trained for longer durations. This demonstrates that the proposed approach not
only achieves superior transfer accuracy but also attains it more efficiently, making it particularly well
suited for scenarios that demand strong generalization to unseen domains and high training efficiency.

A.3 ViT Backbone

To assess the backbone independence of our proposed method, we conduct additional experiments
using the Vision Transformer (ViT) [10] architecture. Specifically, we adopt MoCo-v3 [5], which
utilizes ViT as its backbone, and modify SimCLR by replacing the original ResNet18 or ResNet50

22

with ViT. Following the experimental setup introduced in [35], ViT-Small is pretrained on Ima-
geNet100 for 200 epochs with a batch size of 256. The training setup commonly employs the AdamW
optimizer [30], with a linear warm-up of the learning rate during the first 40 epochs, a momentum of
0.9, and a weight decay of 0.1. A cosine learning rate schedule [29] is used for both the encoder and
the projector, while in the case of MoCo-v3, the same schedule is also applied to the predictor.

MoCo-v3. We adopt the original parameter settings, with a learning rate of 1.5e-4 and a temperature
of 0.2 for both contrastive and equivariant learning. The exponential moving average (EMA)
coefficient is initialized at 0.99 and gradually increased to 1. We use a 3-layer MLP for each expert,
with hidden and output dimensions set to 4096 and 256, respectively. The equivariant predictor is a
single-layer MLP with an input dimension of 512 and an output dimension of 256.

SimCLR. The learning rate is set to 1.5e-3, and the temperature for contrastive and equivariant
learning is also fixed at 0.2. We use a 3-layer MLP for each expert, with hidden and output dimensions
set to 4096 and 256, respectively. The equivariant predictor is a single-layer MLP with an input
dimension of 512 and an output dimension of 256.

Table A.2: Backbone Ablation Study. Linear evaluation accuracy (%) of ViT-S/16 pretrained on
ImageNet100.

Baseline Method CIFAR10 CIFAR100 Food MIT67 Pets Flowers Caltech101 Cars Aircraft DTD SUN397 Mean

SimCLR

- 85.19±0.41 65.17±0.10 56.67±0.19 57.21±1.37 66.24±0.42 84.89±0.22 75.04±0.18 30.67±0.46 35.66±0.33 61.15±0.96 44.91±0.22 60.25
AugSelf 85.69±0.34 65.88±0.44 57.36±0.22 57.39±0.31 66.89±0.18 84.89±0.26 75.38±0.39 30.67±0.32 36.00±0.14 61.44±1.13 45.42±0.18 60.64
EquiMod 86.81±0.28 67.47±0.50 59.34±0.14 60.40±0.37 69.86±0.86 86.90±0.32 78.12±0.15 33.71±0.52 38.67±0.27 62.87±0.52 47.08±0.03 62.84
Ours 86.95±0.21 68.24±0.18 59.73±0.12 59.75±0.59 68.49±0.20 87.43±0.40 79.42±0.75 35.96±0.70 39.96±0.26 62.91±0.18 46.84±0.23 63.24

MoCo-v3

- 84.96±0.23 64.85±0.20 57.74±0.04 57.74±1.32 65.99±0.48 84.69±0.38 75.85±0.27 30.45±0.39 35.91±0.37 60.89±0.57 45.48±0.15 60.41
AugSelf 85.83±0.30 66.41±0.24 58.66±0.23 58.21±0.32 66.00±0.46 85.57±0.17 76.58±0.16 30.57±0.72 36.12±0.42 60.67±0.48 45.71±0.23 60.94
EquiMod 85.98±0.17 66.52±0.38 59.69±0.26 59.75±0.85 67.88±0.35 87.30±0.17 78.01±0.76 32.01±0.58 37.76±0.49 63.21±0.24 46.82±0.11 62.23
Ours 86.72±0.08 67.89±0.20 60.38±0.24 60.40±0.19 67.57±0.30 87.84±0.22 79.64±0.32 35.27±0.32 39.20±0.53 62.93±1.18 47.73±0.16 63.23

In Table A.2, our method achieves better performance than existing equivariant representation learning
approaches across most datasets. This highlights the effectiveness of the proposed MMoE projection
module, which is applicable to the ViT backbone.

A.4 Ablation Study on Components

We conduct an ablation study to assess the contribution of each component in our method. As
shown in Table A.3, substituting the projection head in EquiMod with the MMoE projection module
leads to clear improvements in both in- and out-of-domain settings, highlighting its effectiveness in
reducing redundant feature learning through dynamic expert allocation. In both EquiMod and our
proposed method, adding the residual connection (RC) and increasing the depth of the equivariant
predictor (PD) contribute to improved out-of-domain generalization. However, the deeper predictor
slightly reduces the in-domain performance. Combining all three components results in the best
out-of-domain performance, demonstrating their complementary contributions to both expressivity
and generalization.

Table A.3: Ablation Study on Components. MMoE: MMoE projection module; RC: residual
connection; PD: deeper equivariant predictor.

Method MMoE RC PD In-domain Out-domain

EquiMod

✗ ✗ ✗ 87.01 49.54
✗ ✓ ✗ 87.19 49.78
✗ ✗ ✓ 86.03 50.85
✗ ✓ ✓ 87.01 50.99

STAR-MMoE

✓ ✗ ✗ 87.39 51.43
✓ ✓ ✗ 87.41 52.07
✓ ✗ ✓ 86.57 52.53
✓ ✓ ✓ 86.74 53.07

23

A.5 Ablation Study on Baseline Invariant Learning Methods

Although the main results are presented based on SimCLR, as shown in Table A.4, our method
generalizes well when combined with other invariant learning objectives, consistently outperforming
all methods across various baseline invariant learning methods, including MoCo, SimSiam, and
BYOL. Notably, EquiMod performs worse than AugSelf in non-contrastive frameworks such as
SimSiam and BYOL, whereas our method maintains strong performance across both contrastive and
non-contrastive frameworks.

Table A.4: Ablation Study on Baseline Invariant Learning Methods. Linear evaluation accuracy
(%) of ResNet-18 pretrained on STL10 with various methods across SSL frameworks.

Baseline Method STL10 CIFAR10 CIFAR100 Food MIT67 Pets Flowers Caltech101 Cars Aircraft DTD SUN397 Mean

MoCo

- 81.98±0.49 83.69±0.48 58.02±0.67 34.74±0.23 40.10±0.71 42.13±0.24 63.64±0.22 65.78±0.13 16.87±0.40 28.93±0.66 43.53±0.65 29.89±0.28 46.12
AugSelf 82.27±0.31 84.49±0.20 60.29±0.34 37.68±0.19 42.12±1.29 45.05±0.33 68.15±0.12 66.95±0.36 17.98±0.06 30.65±0.82 45.41±0.29 31.79±0.16 48.23
EquiMod 85.92±0.20 86.44±0.14 62.28±0.32 38.67±0.21 44.18±0.50 47.46±0.22 69.88±0.27 70.42±0.44 19.56±0.36 32.77±1.39 46.86±0.28 33.07±0.25 50.15
STAR-MMoE 86.93±0.07 87.40±0.22 63.89±0.28 39.76±0.21 45.80±0.49 49.49±0.28 72.25±0.13 72.62±0.52 21.35±0.39 33.89±0.47 48.23±0.56 34.33±0.16 51.73

SimSiam

- 85.46±0.10 82.48±0.66 54.43±0.90 34.38±0.18 39.65±0.65 45.68±0.29 58.93±0.42 66.62±1.05 17.28±0.16 27.23±0.99 42.78±0.99 28.83±0.10 45.30
AugSelf 86.06±0.13 86.20±0.23 62.97±0.24 41.71±0.05 44.90±0.63 49.59±0.51 73.08±0.12 72.47±0.93 21.24±0.54 33.82±0.42 48.10±0.24 34.49±0.08 51.69
EquiMod 87.05±0.35 85.94±0.99 61.02±1.33 39.39±0.37 43.83±0.41 50.09±0.30 69.61±0.54 71.48±0.72 20.41±0.50 33.02±0.39 47.75±1.26 32.94±0.03 50.50
STAR-MMoE 87.85±0.31 85.84±0.72 62.33±1.29 41.36±0.11 46.39±0.80 51.35±0.11 73.37±0.49 73.99±0.54 22.88±0.45 35.56±0.66 48.88±0.37 34.67±0.17 52.42

BYOL

- 87.10±0.13 86.39±0.16 60.89±0.19 37.38±0.18 41.79±0.53 50.95±0.21 67.42±0.55 70.43±1.38 23.70±0.71 32.18±0.71 44.79±0.81 31.69±0.05 49.78
AugSelf 87.13±0.46 86.95±0.20 64.34±0.15 43.38±0.18 45.62±0.29 52.73±0.60 74.45±0.43 73.86±0.21 25.56±0.55 35.50±0.54 49.04±0.09 34.96±0.26 53.31
EquiMod 87.70±0.20 86.75±0.11 62.88±0.17 41.22±0.24 45.55±0.17 51.60±0.21 73.96±0.26 74.40±0.38 23.75±0.46 36.46±0.51 49.61±0.38 35.40±0.09 52.87
STAR-MMoE 86.44±0.39 86.70±0.30 64.25±0.21 43.25±0.37 47.21±0.63 52.45±0.69 76.22±0.31 74.76±0.33 24.86±0.66 38.07±0.80 49.80±0.42 36.21±0.32 53.98

A.6 Hyperparameter Optimization

We study how variation of hyperparameters can influence our model. For that purpose, we train
ResNet-18 on STL10 with 16 experts and ResNet-50 on ImageNet100 for each factor modification,
and present results for both in-domain and out-domain scenarios. We mainly inspect the influence of
λ, the balancing coefficient of the equivariant loss (see Eq. (6)), and τ , the temperature parameter
used in the equivariant learning objective (see Eq. (14)). All hyperparameters are tuned based on
out-of-domain performance to ensure generalization. As shown in Table A.5, both parameters have a
notable impact on performance.

Table A.5: Hyperparameter Tuning for λ and τ . λ is the loss balancing coefficient, and τ is
the temperature parameter used in the equivariant learning objective. We report performance on
in-domain and out-domain settings under varying values of each.

Pretraining λ In-domain Out-of-domain

ImageNet100

0.1 84.02 70.32
0.2 84.20 70.82
0.5 84.66 70.94
1 84.83 71.23
2 84.79 70.61
5 84.68 70.44
10 83.82 69.14

STL10

0.1 86.47 50.37
0.2 86.46 51.27
0.5 86.65 52.25
1 86.74 53.07
2 86.17 52.52
5 84.95 50.88
10 82.64 48.87

(a) λ: Loss balancing coefficient

Pretraining d In-domain Out-of-domain

ImageNet100

0.05 84.12 70.53
0.1 84.70 70.86
0.2 84.83 71.23
0.5 84.20 70.98
1 84.10 70.74

STL10

0.05 85.84 51.74
0.1 86.98 52.59
0.2 86.74 53.07
0.5 86.66 52.09
1 86.45 50.66

(b) τ : Equivariant temperature parameter

We observe that λ controls the relative strength of the equivariant learning signal. Increasing λ
improves performance up to a certain point, with the best results observed at λ = 1, beyond which
performance drops due to the overemphasis on equivariance. This highlights the importance of
balancing equivariant and invariant objectives to prevent one from dominating the learning process.
For τ , which modulates the sharpness of the similarity distribution in the equivariant contrastive loss,
we find that τ = 0.2 achieves optimal results. Smaller values such as 0.05 may cause representational

24

collapse due to overly confident similarity distributions, whereas larger values such as 1 reduce
the discriminative power of the model. These trends are consistent across both in-domain and
out-domain evaluations, emphasizing the necessity of careful calibration of hyperparameters for
generalizable representation learning. Moreover, the similar tendencies for both λ and τ are observed
across STL10 and ImageNet100 pretraining settings, and we find that EquiMod exhibits the same
optimal hyperparameter configuration, indicating that these settings generalize well across related
architectures.

A.7 Qualitative Analysis of Learned Representations

watercress

AugSelf

Query

watercress

1-NN

hibiscus

2-NN

mallow

3-NN

camellia

4-NN

watercress

EquiMod

watercress watercress blanket flower water lily

watercress

STL

watercress watercress rose barbeton daisy

watercress

Ours

watercress watercress watercress watercress

toad lily

AugSelf

Query

fritillary

1-NN

hard-leaved
pocket orchid

2-NN

toad lily

3-NN

pincushion
flower

4-NN

toad lily

EquiMod

carnation toad lily fritillary foxglove

toad lily

STL

gaura toad lily pincushion
flower

bougainvillea

toad lily

Ours

toad lily toad lily toad lily toad lily

Figure A.4: k-NN Retrieval on Flowers Test Set. Results of k-NN retrieval using backbone features
learned by Equivariant SSL methods.

Figure A.4 presents qualitative results of k-NN retrieval on the Flowers test set using backbone
features from equivariant SSL methods. All models are based on ResNet-18 pretrained on STL10.
We observe that most methods exhibit strong sensitivity to color information, often retrieving visually
similar but semantically incorrect samples. For example, methods such as AugSelf and EquiMod
frequently return instances from different classes that share similar color distributions with the
query. STL also tends to favor samples with matching low-level visual cues, rather than consistently
retrieving semantically correct instances. This indicates that their learned representations may not
fully capture semantic object-level features.
In contrast, our method consistently retrieves samples from the same class as the query while still
preserving sensitivity to fine-grained visual details such as color and texture. This suggests that
our proposed method enables the model to encode features that are consistent with the class more
effectively. Quantitatively, this advantage is reflected in a performance improvement of approximately
5 percentage points compared to the method that performs best on the Flowers dataset.

A.8 Retrieval Visualization of Individual Experts

Figure A.5 provides full k-NN retrieval results using the output embeddings of all individual experts.
While Figure 4b in the main paper focuses on three specific experts, namely the shared expert
(Expert 1), the invariant expert (Expert 3), and the equivariant expert (Expert 7), this extended
visualization enables a more comprehensive examination of the specialization exhibited by all
experts.
We observe diverse retrieval patterns across experts. Expert 1 consistently retrieves semantically
similar instances, indicating a focus on object-level meaning. Experts 2 through 6 often retrieve
samples that differ in color from the query, suggesting that these experts have learned to ignore color
and instead emphasize more abstract features. In contrast, Expert 7 and Expert 8 tend to retrieve
samples with similar color characteristics, indicating that these experts have learned to capture
information related to the augmentations.
This qualitative evidence supports the notion that the MMoE architecture induces meaningful divi-
sion of roles among experts, with some specializing in robust semantic consistency and others in
transformation sensitivity. Such functional diversity contributes to the model’s capacity to generalize
across tasks and domains.

25

airplane

Query

airplane

1-NN

airplane

2-NN

airplane

3-NN

airplane

4-NN

airplane truck car truck truck

airplane airplane ship ship truck

airplane airplane ship airplane airplane

airplane car airplane airplane airplane

airplane airplane ship ship airplane

airplane truck car airplane car

airplane truck airplane truck car

Expert 1

Expert 2

Expert 3

Expert 4

Expert 5

Expert 6

Expert 7

Expert 8

Figure A.5: k-NN Retrieval on STL10 Test Set. k-NN retrieval results using the output embeddings
of all individual experts.

A.9 Expert Specialization in ImageNet100 Pretraining

1 2 3 4 5 6 7 8
Expert Index (Reordered)

0.0

0.1

0.2

0.3

0.4

0.5

Ro
ut

in
g

W
ei

gh
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
in

/M
ax

 R
at

io

Invariance
Equivariance
Min/Max Ratio

Figure A.6: Routing Weight Distribution Across Experts. Routing weights averaged over test data
in ImageNet100, with experts reordered based on their roles.

We investigate expert specialization in ImageNet100 pretraining following the same procedure as
in Figure 4. Figure A.6 illustrates that Expert 1 receives relatively balanced routing weights from
both invariant and equivariant branches, whereas Experts 2–6 are predominantly used for invariant
learning and Experts 7–8 for equivariant learning. This observation indicates that the experts are well

26

specialized for their respective learning objectives. Furthermore, Figure A.7 presents k-NN retrieval
results on a subset of the ImageNet100 test set, where we randomly select 10 classes for visualization.
Consistent with Figure A.5, each expert retrieves samples aligned with its designated role, confirming
that our method effectively promotes expert specialization in the ImageNet100 pretraining setting as
well.

tripod

Query

tripod

1-NN

throne

2-NN

tripod

3-NN

tripod

4-NN

tripod Doberman harmonica Doberman tripod

tripod tripod Dutch oven throne keyboard

tripod tripod lorikeet tripod lorikeet

tripod Dutch oven tripod bannister tripod

tripod tripod tripod Doberman tripod

tripod tripod harmonica reel reel

tripod Doberman throne Great Dane Doberman

Expert 1

Expert 2

Expert 3

Expert 4

Expert 5

Expert 6

Expert 7

Expert 8

Figure A.7: k-NN Retrieval on ImageNet100 Test Set. k-NN retrieval results using the output
embeddings of all individual experts.

B Experimental Setup

B.1 Datasets

Table B.1 summarizes the datasets used in our experiments. Category (a) includes the pretraining
datasets, STL10 and ImageNet100, which are exclusively used during the unsupervised pretraining
phase. Category (b) covers the datasets used for linear evaluation, with each dataset annotated by the
number of classes and the number of samples in the training, validation, and test splits. For datasets
without an official validation split, validation samples are randomly selected from the training set.
Category (c) consists of few-shot benchmarks, including the meta-test split of FC100 [36], as well
as the full datasets of CUB200 [48] and Plant Disease [33]. Finally, Category (d) comprises object
detection datasets, where we use the trainval split of VOC07+12 [11] for training and the test
split for evaluation.

27

Table B.1: Dataset Information. Overview of the datasets used in the experiments. This table lists
dataset names, the number of classes, and the counts for training, validation, and test samples, along
with the evaluation metrics.

Category Dataset # of classes Training Validation Test Metric

(a) Pretraining STL10 [7] 10 105,000 - - -
ImageNet100 [43, 45] 1000 126,689 - - -

(b) Linear Evaluation

CIFAR10 [26] 10 45,000 5,000 10,000 Top-1 accuracy
CIFAR100 [26] 100 45,000 5,000 10,000 Top-1 accuracy
Food [2] 101 68,175 7,575 25,250 Top-1 accuracy
MIT67 [39] 67 4,690 670 1,340 Top-1 accuracy
Pets [37] 37 2,940 740 3,669 Mean per-class accuracy
Flowers [34] 102 1,020 1,020 6,149 Mean per-class accuracy
Caltech101 [13] 101 2,525 505 5,647 Mean per-class accuracy
Cars [25] 196 6,494 1,650 8,041 Top-1 accuracy
Aircraft [32] 100 3,334 3,333 3,333 Mean per-class accuracy
DTD (split 1) [6] 47 1,880 1,880 1,880 Top-1 accuracy
SUN397 (split 1) [49] 397 15,880 3,970 19,850 Top-1 accuracy

(c) Few-shot
FC100 [36] 20 - - 12,000 Average accuracy
CUB200 [48] 200 - - 11,780 Average accuracy
Plant Disease [33] 38 - - 54,305 Average accuracy

(d) Object Detection VOC2007+2012 [11] 20 16,551 - 4,952 Average precision

B.2 Pretraining Setups

B.2.1 ImageNet100 Pretraining

We pretrain a ResNet-50 backbone [19] on ImageNet100, a 100-class subset of ImageNet [43],
following the dataset splits in [45]. The model is trained using the SimCLR framework [3], employing
stochastic gradient descent (SGD) for 500 epochs with a batch size of 256. A cosine annealing
learning rate schedule [29] is used, initialized at 0.03 and without restarts, and a weight decay of
0.0005 is applied. The architecture includes 8 experts {Ei}8i=1, each implemented as a 3-layer MLP
with a hidden dimension of 2048 and an output dimension of 128. Batch normalization [22] is
excluded from the final layer of each expert. The equivariant predictor ϕT consists of 3 layers, each
with a hidden dimension of 512. The routers Rinv and Req are implemented as single-layer MLPs
that output 8-dimensional vectors corresponding to the number of experts, followed by softmax
activations to produce normalized weights over experts. Pretraining on ImageNet100 is performed
using 4 NVIDIA RTX 4090 GPUs.

B.2.2 STL10 Pretraining

We pretrain a ResNet-18 backbone on STL10 using stochastic gradient descent (SGD). Training is
conducted for 200 epochs with a batch size of 256. A cosine annealing learning rate schedule without
restarts is used, with the initial learning rate set to 0.03, except for SimSiam where a learning rate of
0.05 is used. A weight decay of 0.0005 is applied. The routers are implemented in the same manner
as those used for ImageNet100 pretraining. For STL10, pretraining is conducted on a single NVIDIA
RTX 4090 GPU.

SimCLR. We use a 3-layer expert architecture with 16 experts {Ei}16i=1, each with hidden and
output dimensions of 512 and 128, respectively. Batch normalization is excluded from the final
layer of each expert. The equivariant predictor is a 3-layer MLP with a hidden dimension of 512.
A temperature parameter of 0.2 is used consistently for both contrastive and equivariant learning
objectives.

MoCo. A 3-layer expert architecture with 8 experts is employed, where each expert has a hidden
dimension of 512 and an output dimension of 128. Batch normalization is excluded from the final
layer. The equivariant predictor is a single-layer MLP. A temperature parameter of 0.2 is used
consistently for both contrastive and equivariant learning objectives.

SimSiam. We use a 2-layer expert architecture with 4 experts, each having hidden and output
dimensions of 2048. Batch normalization is excluded from the final layer. The equivariant predictor
is a single-layer MLP with input and output dimensions of 2048. A temperature of 0.1 is used for
equivariant learning.

28

BYOL. A 2-layer expert architecture is used, consisting of 4 experts with a hidden dimension of
4096 and an output dimension of 256. Batch normalization is excluded from the final layer. The
equivariant predictor is a 2-layer MLP with a hidden dimension of 512. A temperature of 0.1 is used
for equivariant learning.

B.3 Evaluation Protocol

Linear Evaluation. We adopt the standard linear evaluation protocol [3, 17, 24], where a linear
classifier is trained on top of frozen features extracted from center-cropped images of size 224×224 (or
96× 96 when pretrained on STL10), without any data augmentation. Specifically, each image is first
resized so that its shorter side is 224 pixels, followed by a center crop of size 224×224. The classifier
is optimized using an ℓ2-regularized cross-entropy objective with L-BFGS. The regularization strength
is selected based on validation accuracy from 45 logarithmically spaced values ranging from 10−6 to
105, and the final test accuracy is reported using the best model. We set the maximum number of
L-BFGS iterations to 5000 and employ warm-start initialization by using the previous solution as the
starting point for the next optimization step.

Few-Shot Classification. To evaluate representations in few-shot benchmarks, we perform logistic
regression on top of frozen features using N ×K support samples, without any fine-tuning or data
augmentation, within each N -way K-shot episode.

Object Detection. We train a Faster R-CNN [41] with a R50-C4 backbone on the VOC2007+2012
trainval split containing 16551 images. To assess the quality of learned representations, we freeze
all convolutional layers from C1 to C4 and train only the region proposal network (RPN) and the
object classification head C5. The model is optimized for 24000 iterations with a batch size of 16
using synchronized batch normalization. The learning rate is set to 0.1 initially and decays by a factor
of 10 at 18000 and 22000 iterations. A linear warmup [15] is applied during the first 1000 iterations
with slope 0.333.

R-equivariance and P-equivariance. To evaluate R-equivariance, we train a linear layer to predict
the embedding of an augmented image from the original image embedding and its corresponding
augmentation parameters. The augmentation parameters are first projected to a 32-dimensional vector
using a single-layer projector. We then concatenate the projected augmentation parameters with the
original image embedding and feed the result into a one-layer predictor to generate the predicted
embedding of augmented image. Finally, we compute the cosine similarity between the predicted
and ground-truth embedding of augmented image.
For P-equivariance, we train a 1-layer predictor to estimate the augmentation parameters from the
embeddings of the original and augmented images. Specifically, we concatenate the embeddings
of the original and augmented images and feed the resulting vector into the predictor. Finally,
we compute the mean-squared error (MSE) between the predicted and ground-truth augmentation
parameters.

B.4 Augmentations

In this section, we describe how augmentation parameters are defined based on the transformations
used in AugSelf [27] including random crop, horizontal flip, color jitter, grayscale, and Gaussian
blur. Each parameter set is defined according to the specific configuration of each transformation. In
our method, all parameters are normalized using the empirical mean and standard deviation of each
transformation-specific variable before being projected into the embedding space. These normalized
parameters are then projected into the same dimensional space as the equivariant embedding through
a single linear layer.

• RandomResizedCrop. The parameter is defined by the center coordinates Hcenter and Wcenter of
the crop, along with the crop size given by height H and width W . The crop is applied to images
resized to 96×96 for STL10 and 224×224 for ImageNet100.

• RandomHorizontalFlip. This transformation is applied with a probability of 0.5. Since the
operation is binary, the parameter is defined as either 0 or 1.

• ColorJitter. Color jitter includes four parameters: brightness, contrast, saturation, and hue. It
is applied with a probability of 0.8. The maximum strength is set to 0.4 for brightness, contrast, and
saturation, and 0.1 for hue. Each parameter is sampled independently from the ranges [0.6, 1.4] for

29

brightness, contrast, and saturation, and [−0.1, 0.1] for hue. The transformations are applied in a
random order rather than a fixed sequence. If ColorJitter is not applied, a default parameter of
[1, 1, 1, 0] is used.

• RandomGrayScale. Grayscale conversion is applied with a probability of 0.2. Similar to flipping,
the parameter is binary with values of 0 or 1.

• GaussianBlur. The parameter consists of both the standard deviation of the blur, which ranges
from 0.1 to 2.0, and a binary flag indicating whether the transformation was applied.

30

Ta
bl

e
B

.2
:O

ut
-o

f-
D

om
ai

n
C

la
ss

ifi
ca

tio
n.

L
in

ea
re

va
lu

at
io

n
ac

cu
ra

cy
(%

)o
fR

es
N

et
-5

0
an

d
R

es
N

et
-1

8
pr

et
ra

in
ed

on
Im

ag
eN

et
10

0
an

d
ST

L
10

,r
es

pe
ct

iv
el

y.
B

ol
d

en
tr

ie
si

nd
ic

at
e

th
e

be
st

pe
rf

or
m

an
ce

am
on

g
m

et
ho

ds
,w

hi
le

un
de

rl
in

ed
en

tr
ie

s
de

no
te

th
e

se
co

nd
be

st
.

M
et

ho
d

C
IF

A
R

10
C

IF
A

R
10

0
Fo

od
M

IT
67

Pe
ts

Fl
ow

er
s

C
al

te
ch

10
1

C
ar

s
A

ir
cr

af
t

D
T

D
SU

N
39

7
M

ea
n

A
vg

.R
an

k

Im
ag

eN
et

10
0-

pr
et

ra
in

ed
R

es
N

et
-5

0

Si
m

C
L

R
87

.8
8±

0.
27

67
.9

2±
0.

19
63

.6
0±

0.
32

66
.5

7±
1.

0
76

.7
1±

0.
77

88
.3

7±
0.

37
85

.0
2±

0.
20

47
.0

9±
0.

21
48

.2
3±

0.
36

69
.1

7±
0.

28
52

.0
2±

0.
27

68
.4

2±
0.

20
5.

00
A

ug
Se

lf
88

.6
1±

0.
12

69
.6

8±
0.

16
65

.3
7±

0.
22

67
.5

1±
0.

43
77

.2
4±

0.
38

89
.7

0±
0.

32
85

.0
9±

0.
14

47
.4

8±
0.

44
48

.6
5±

0.
28

69
.3

1±
0.

83
53

.0
0±

0.
12

69
.2

4±
0.

22
3.

82
E

qu
iM

od
88

.9
9±

0.
18

70
.2

2±
0.

20
64

.4
3±

0.
15

67
.5

4±
0.

43
77

.7
8±

0.
13

90
.3

3±
0.

02
86

.6
2±

0.
09

48
.9

4±
0.

20
49

.9
1±

0.
42

69
.3

3±
0.

17
52

.7
9±

0.
23

69
.7

2±
0.

17
3.

18
C

A
R

E
82

.8
1±

0.
19

58
.9

7±
0.

43
55

.7
8±

0.
10

56
.3

9±
0.

37
59

.8
9±

0.
80

75
.8

4±
0.

14
73

.1
4±

0.
16

29
.1

2±
0.

59
36

.0
0±

0.
48

62
.2

2±
0.

81
42

.4
8±

0.
25

57
.5

1±
0.

42
6.

00
ST

A
R

-S
S

89
.8

1±
0.

06
71

.4
5±

0.
28

66
.8

2±
0.

06
68

.7
1±

0.
84

78
.5

8±
0.

42
91

.1
7±

0.
22

87
.7

8±
0.

53
51

.0
1±

0.
60

50
.1

6±
0.

25
70

.5
7±

0.
15

53
.8

6±
0.

15
70

.9
0±

0.
29

1.
82

ST
A

R
-M

M
oE

90
.0

9±
0.

12
72

.3
1±

0.
27

67
.0

5±
0.

11
67

.9
6±

0.
47

79
.2

7±
0.

27
91

.4
5±

0.
20

87
.7

6±
0.

25
51

.5
4±

0.
56

51
.1

5±
0.

49
70

.8
0±

0.
20

54
.1

2±
0.

10
71

.2
3±

0.
21

1.
18

ST
L1

0-
pr

et
ra

in
ed

R
es

N
et

-1
8

Si
m

C
L

R
83

.5
6±

0.
84

55
.1

9±
1.

59
33

.7
5±

0.
25

39
.0

1±
0.

92
46

.1
5±

0.
34

60
.2

7±
0.

66
66

.8
5±

0.
22

17
.3

8±
0.

31
27

.1
7±

0.
84

43
.1

2±
0.

25
28

.5
8±

0.
03

45
.5

5±
0.

27
5.

73
A

ug
Se

lf
84

.0
3±

1.
31

58
.6

5±
1.

92
38

.1
1±

0.
22

41
.7

4±
0.

92
47

.8
0±

0.
18

68
.5

4±
0.

30
69

.3
3±

0.
36

20
.2

3±
0.

23
31

.5
3±

0.
27

45
.6

8±
1.

19
32

.5
1±

0.
27

48
.9

2±
0.

28
4.

18
E

qu
iM

od
85

.7
3±

0.
43

60
.0

6±
0.

68
37

.4
3±

0.
24

42
.4

9±
1.

50
48

.8
3±

0.
10

67
.0

7±
0.

29
71

.1
7±

0.
10

19
.9

5±
0.

69
33

.0
3±

0.
56

47
.0

0±
0.

60
32

.1
5±

0.
10

49
.5

4±
0.

33
3.

82
C

A
R

E
77

.1
0±

0.
04

51
.3

2±
0.

01
43

.5
2±

0.
01

48
.1

8±
0.

04
46

.1
9±

0.
02

65
.8

4±
0.

03
61

.7
5±

0.
07

21
.9

9±
0.

00
33

.7
7±

0.
53

50
.0

0±
0.

00
35

.7
8±

0.
00

48
.6

8±
0.

07
3.

36
ST

A
R

-S
S

85
.6

4±
0.

13
61

.1
0±

0.
10

40
.1

7±
0.

29
44

.5
0±

0.
65

50
.0

7±
0.

27
72

.5
9±

0.
25

73
.3

9±
0.

16
21

.8
9±

0.
29

33
.9

0±
0.

41
48

.5
8±

0.
35

34
.2

5±
0.

28
51

.4
6±

0.
05

2.
55

ST
A

R
-M

M
oE

87
.4

5±
0.

07
64

.7
8±

0.
35

41
.2

4±
0.

16
46

.8
2±

0.
61

51
.1

0±
0.

44
73

.9
9±

0.
25

74
.7

6±
0.

39
22

.7
4±

0.
39

35
.6

1±
0.

21
49

.7
5±

0.
92

35
.5

0±
0.

25
53

.0
7±

0.
21

1.
36

31

	Introduction
	Related Work
	Preliminaries: Invariant and Equivariant Representation Learning
	Method
	Soft Task-Aware Routing
	Equivariant Learning

	Experiments
	Main Results
	Analysis

	Discussion and Conclusion
	Additional Experiments
	Comparison with STL
	Training Efficiency
	ViT Backbone
	Ablation Study on Components
	Ablation Study on Baseline Invariant Learning Methods
	Hyperparameter Optimization
	Qualitative Analysis of Learned Representations
	Retrieval Visualization of Individual Experts
	Expert Specialization in ImageNet100 Pretraining

	Experimental Setup
	Datasets
	Pretraining Setups
	ImageNet100 Pretraining
	STL10 Pretraining

	Evaluation Protocol
	Augmentations

