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Abstract

Strategic classification (SC) explores how individuals or entities modify their fea-
tures strategically to achieve favorable classification outcomes. However, existing
SC methods, which are largely based on linear models or shallow neural networks,
face significant limitations in terms of scalability and capacity when applied to real-
world datasets with significantly increasing scale, especially in financial services
and the internet sector. In this paper, we investigate how to leverage large language
models to design a more scalable and efficient SC framework, especially in the
case of growing individuals engaged with decision-making processes. Specifically,
we introduce GLIM, a gradient-free SC method grounded in in-context learning.
During the feed-forward process of self-attention, GLIM implicitly simulates the
typical bi-level optimization process of SC, including both the feature manipulation
and decision rule optimization. Without fine-tuning the LLMs, our proposed GLIM
enjoys the advantage of cost-effective adaptation in dynamic strategic environ-
ments. Theoretically, we prove GLIM can support pre-trained LLMs to adapt
to a broad range of strategic manipulations. We validate our approach through
experiments with a collection of pre-trained LLLMs on real-world and synthetic
datasets in financial and internet domains, demonstrating that our GLIM exhibits
both robustness and efficiency, and offering an effective solution for large-scale SC
tasks.

1 Introduction

As machine learning (ML) algorithms are increasingly applied in high-stakes decision-making
domains such as hiring, lending, and college admissions, the need for rapid and accurate adaptation to
dynamic inputs has become crucial. When individuals are provided with information about decision
rules, they may strategically manipulate their features to achieve favorable outcomes. Such strategic
manipulation undermines the performance of ML models and diminishes their reliability. This
phenomenon aligns with Goodhart’s Law, which states, “Once a measure becomes a target, it ceases
to be a good measure” [64]. When decision rules are made public, individuals may adjust their
features in ways that exploit the evaluation criteria.

In response to this issue, strategic classification (SC)[30] has emerged as a growing area of research.
SC aims to develop algorithms that improve the accuracy of decision models in environments where
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Figure 1: The figure illustrates a strategic classification scenario. Comparison between traditional
gradient-based approaches and our gradient-free method using LLMs with ICL for efficient adaptation
to Large-scale and evolving data without fine-tuning.

individuals are likely to strategically manipulate their inputs [51136}59]. The SC problem is typically
framed as a bi-level optimization [30] following the Stackelberg game structure, with the inner and
outer optimization objectives referred to as strategic manipulation and decision rule optimization.

Despite growing theoretical and empirical progress, most existing SC methods, as summarized in
Table[] rely on lightweight models such as linear classifiers or MLPs, and are primarily validated on
small-scale datasets (e.g., Adult and Spam, with fewer than 50,000 samples). However, real-world
applications commonly involve significantly larger, dynamically evolving datasets, often ranging from
millions to billions of samples, rendering existing methods computationally infeasible and inefficient
due to their reliance on continuous retraining and explicit gradient computations.

Our work is particularly motivated by data-intensive application domains such as the internet sector
and financial services, where the input distributions shift rapidly due to user interaction or market
dynamics, and efficient adaptation to large-scale data is critical. For example, in Figure[T} consider
phishing URL detection, where attackers continuously modify URLs to evade detection systems. This
setting naturally involves large-scale and non-stationary data with adversarial dynamics. Traditional
SC approaches often rely on iterative retraining or gradient updates to remain robust, which becomes
computationally expensive and infeasible at scale.

In contrast, large language models (LLMs) have demonstrated strong capabilities in modeling
high-dimensional and evolving input streams [0, 2], offering a promising foundation for scalable
and retraining-free solutions to strategic classification in modern data environments such as fraud
detection, credit scoring, spam filtering, and content moderation. However, empowering LLMs with
the strategic classification paradigm introduces a unique challenge:

(i) On the one hand, once strategic manipulations lead to changes in individuals’ distribution,
models for producing decision rules have to be retrained to adapt to the changed distribu-
tion [42]]. However, when dealing with large-scale data, the cost associated with retraining
LLMs becomes prohibitively expensive and infeasible.

(i1) On the other hand, without retraining the LLMs, it is challenging to model the bi-level opti-
mization of SC, i.e., including the strategic manipulation and the decision rule optimization.

To address these challenges, we propose a novel gradient-free method that leverages in-context
learning (ICL) in LLMs to perform strategic classification without updating model parameters.
Specifically, we aim to answer the following questions:

1. How does ICL simulate strategic manipulations and feature changes in LLMs?
2. How does ICL guide the adjustment of decision rules in LLMs against strategic manipulation?

Beyond applying ICL to SC tasks, our work theoretically validates the effectiveness of ICL in
addressing SC challenges.

Our primary contributions and findings are summarized as follows:



Table 1: Comparison of capabilities between existing SC solutions and our proposed method.

Method Linear form Non-linear form Gradient-free large-scale data OOD generalization
Linear Model [2711601(141132]/61] 4 X X X X
MLP [22]1521/69] 4 4 X X X
GLIM (Ours) 4 4 4 4 4

* We theoretically establish, for the first time, how LLMs leveraging in-context learning can
implicitly simulate both the strategic manipulation and decision rule optimization stages of
the SC bi-level problem, without any fine-tuning.

* Based on this insight, we introduce a Gradient-free Learning In-context Method (GLIM),
that embeds the SC bi-level optimization within pre-trained LLMs, enabling robust and
efficient deployment of SC in real-world scenarios.

* We validate our theoretical insights through comprehensive experiments on both synthetic
and real-world datasets. The results demonstrate the practical utility and effectiveness of our
approach in real-world SC applications.

In Section |2, we introduce the strategic classification task and the in-context learning mechanisms
within LLMs. In Section [3] we demonstrate the feasibility of leveraging LLMs for the strategic
classification problem and introduce a bi-level implicit gradient descent method for SC. In Section
we experimentally validate our theoretical findings and the feasibility of our proposed methods. In
Section[5] we review related work on strategic machine learning and large language models.

2 Preliminaries

This section introduces the mathematical formulation of strategic classification (SC) and the funda-
mental concepts of in-context learning (ICL) within LLMs. Throughout our paper, uppercase letters
denote random variables (e.g., X, Y), while lowercase letters represent their realizations (e.g., z, y).
Bold symbols (e.g., x and X) are used for vectors or matrices.

2.1 Strategic Classification Task

The SC problem can be formulated as a Stackelberg game E] involving two players: a decision maker
(the classifier) and decision subjects (the classified individuals) [30} 50].

This setting captures real-world scenarios such as loan approval and college admissions, where
institutions publicly announce evaluation criteria, and applicants adapt their features (e.g., test scores,
financial statements) towards such criteria. Formally, the decision maker defines a decision rule, e.g.,
some classifier, f : R? — {0, 1}, mapping feature vectors to binary outcomes y € {0, 1}. Once the
rule f is known, individuals may modify their features x to a new version x’ in hopes of receiving a
favorable decision. Such modification incurs a cost, quantified by a cost function ¢(x, x’).

In the inner state of this bi-level optimization, each agent aims to maximize their utility, trading off
classification benefit with manipulation cost:

Definition 2.1 (Strategic manipulation in SC tasks). The optimal modified feature vector x’ is
determined by:
x' = b(x) = arg max [f(z') — Ac(z, 2)], (1
z'e
where f(z') € {0, 1} is the classification result after modification, c¢(z, z) is the manipulation cost,
A > 0 is a trade-off parameter, and D is the feature space. Usually, the cost is modeled as the
Mahalanobis Distance ¢(x,x’) = (x’ — x) T M(x’ — x), where M is a Mahalanobis matrix [26] 9].

In the outer stage, the classification rule f is designed to remain robust under such strategic manipu-
lation:

In this Stackelberg framework [44], the interaction unfolds in two sequential stages: (i) the decision maker
publishes its policy (classification rule f), which may be strategic or non-strategic; and (ii) the decision subjects,
after recognizing the policy and its associated costs, determine whether to modify their features.



Definition 2.2 (Decision rule optimization in SC tasks). The decision maker publishes a rule f* that
maximizes accuracy w.r.t modified inputs:

f* € arg r;lea}(E(m,y)ND []1 (f(b(]))) = y)] ) (2)
where F refers to the decision function space, and y is the true label.

This objective captures the goal of designing classifiers that remain accurate even when subjects
strategically modify their features. In other words, the decision maker aims to anticipate and
counteract strategic behavior.

2.2 In-Context Learning

In-context learning (ICL) is a paradigm where LL.Ms perform tasks by conditioning on a small
number of labeled examples provided within the input prompt, without requiring any parameter
updates. This allows the model to generalize from examples in the input alone, making ICL a flexible
and retraining-free strategy for downstream tasks.

Self-attention. For a given token e;, its updated embedding through self-attention is [[71]:

ej + e + ZPth Softmax (K, qn.;), &)
I

where qy,; is the query vector for head h at position j, and Ky, Vy, P}, are learned projection
matrices that determine attention scores and output mixing. Bias terms are omitted for clarity.

ICL as Implicit Gradient Descent. Recent theoretical progress [2} [1} [73]] shows that the forward
propagation in LLMs—particularly through linear self-attention layers—can be interpreted as per-
forming implicit gradient descent (GD). Intuitively, this informs that the model learns by simulating
an update process internally, even though no actual change of the parameter weights occurs.

(n+1)

Lemma 1 (Forward propagation as implicit gradient descent [1]]). Let y, denote the output of
the (-th self-attention layer at token position (d + 1,n + 1), i.e.,yénﬂ) = [SAE](dH),(nH) . Then
we have: (nt) 4

y" T = (D ), )
where wfil = w%d —A/VR,, (w?d), with Ry, (w) := 5= >0 (w'z; — wjx,-)Q

This lemma formalizes that ICL can simulate gradient-based learning internally via forward passes,
without explicitly tuning parameters. Further details on the derivation for ICL are provided in
Appendix [C] and the proof of this lemma is included in Appendix [D]

3 A Gradient-free Learning In-context Method for Strategic Classification

3.1 LLM-Empowered Strategic Classification

Stemming from [30], strategic classification (SC) can be framed as a bi-level optimization problem
(as a Stackelberg framework [44]]) where individuals (agents) strategically manipulate their features to
receive favorable classification outcomes El, while the decision maker aims to learn a robust decision
rule that anticipates and counteracts such manipulations. To formalize this idea, we recall the bi-level
SC problem as stated in section 2.1}

Inner Stage (Strategic manipulation): x' = arg max [f(x") = Ae(x,%)], 5)
x'e
Outer Stage (Decision rule optimization): f* = arg r}la]}__c Exy) [L{f(x) =y}]. (6)
€

First, we present two formal definitions to characterize how the two-stage bi-level optimization
introduced above is formulated in the language of LLMs:

31n strategic classification literature, it is commonly assumed that agents are aware of the decision rule. This
work adheres to this classical assumption.
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Figure 2: Bi-level optimization in strategic classification is simulated within LLMs, where both inner
and outer stage optimizations are realized via ICL.

LLM-implemented Inner Stage. With a sequence of labeled prompt examples {(x}, y;)}";, a
decision rule f is implicitly defined via attention-based interactions in LLMs. Another feature
x; is appended as a query token, whose representation evolves through self-attention and yields a
manipulated feature x’.

Definition 3.1 (Strategic Manipulation via ICL (Inner Stage)). Let x; denote an agent’s feature
and {(x}, y;)}_, be prompt examples. The LLM’s forward pass produces a manipulated feature
x); as: x; = x; + AxIC", where Ax!- denotes the feature update implicitly induced by the LLM’s
self-attention mechanism during ICL.

LLM-Implemented Outer Stage. In the outer stage, the decision maker aims to optimize the
decision rule f(-; W) based on manipulated features x’. In our gradient-free framework, this process
is reflected through an ICL-induced shift in predicted scores §j; = f (x W), effectively capturing
the implicit optimization of the outer-stage decision rule f and the dec151on weight .

Definition 3.2 (Decision Rule Optimization via ICL (Quter Stage)). Let f(-; W) be the decision
rule implicitly encoded in the LLM. When exposed to manipulated input x’, the classifier’s response
adapts through in-context prediction, resulting in:

§ = =W, 7

where ' denotes the updated prediction, induced by prompt-driven interactions within the self-
attention layers.

Existing SC approaches solve such a bi-level optimization problem through explicit gradient de-
scent [30L 132} 159], i.e., by tuning the decision models. However, fine-tuning a large pre-trained
model such as LLaMA or DeepSeek incurs prohibitive computational costs. Instead, we propose to
implement this two-stage bi-level optimization process of SC task by leveraging the connection
between the ICL and implicit GD, without requiring any parameter updates or fine-tuning.

3.2 Gradient-free Strategic Manipulation via ICL

This subsection provides a theoretical justification for how LLMs equipped with ICL can simulate the
strategic manipulation of agents (as the inner stage). Specifically, we show that the feature update Ax
obtained from a feed-forward linear self-attention layer matches the update derived from traditional
gradient descent in strategic classification. For clarity in analysis, we adopt a standard assumption in
SC formulations [30, 50, [61]): the decision rule f(-) is assumed to be linear, i.e., f(x) = W, xlﬂ

Gradient-aware Inner Optimization in Traditional SC. Conventionally, solving Az in strategic
manipulation may be viewed as a gradient-descent step with a learning rate 7 and a loss function Lgp
for Eq. (3):

Ax = —nVxLep(x; W) = AX?D =A-nl—y)WT, (8)

where Lgp is instantiated as a manipulation-aware loss:

N
Lop(x,X'; W) %Zyj e(35,3)) + (1= 1) - (L= FO< W) 4+ Al x))] . (9)

“However, our further real-world study using LLMs also verify the superiority of our proposed method in the
non-linear regime.



where A is a coefficient matrix that depends on y; and the manipulation cost function CE]

Gradient-free Inner Optimization via ICL. We now demonstrate that LLMs can implicitly realize
the same Ax through forward-only propagation without explicit gradient descent. Consider a linear
SA layerE]applied to token (x;, y;):

(x5, 9;) = (x5,9;) + PVK'q;, (10)

where q; is the query vector derived from x;, and K, V, P are learned key, value, and projection
matrices, respectively. Thus, the feature modification during the forward-only propagation, which we
termed as ICL-induced update, can be written as:

Ax'" = PVK'q;. (11)

Then we prove that there exists pre-conditioned self-attention weights P, V, K, and query vectors q;
such that Axg-CL = AX]GD (see detailed derivation in Appendix E):

Proposition 1 (ICL Implements the Gradient-free Strategic Manipulation.). Let f(x; W) be a linear
classifier. Then, there exists P,V , K such that for any input x;, the ICL-induced update satisfies:

Axéa‘ = AX?D, where AXé»CL = PVKqu, AX?D =A-n(l- yj)WT. (12)

Remark 1. This proposition E] informs that LLMs equipped with ICL can simulate the agent-side
strategic manipulation by performing implicit GD. This establishes a constructive equivalence
between explicit strategic manipulation and attention-driven ICL behavior, thereby grounding ICL as
a forward-only approximation of inner-stage optimization in SC.

Remark 2 (Linear Derivation.). Following previous protocols [2, [16}[73]], our theoretical analysis is
performed in the linear regime. However, we note that our proposed method is also compatible with
any non-linear attention and transformer structures, which have also been extensively empirically
validated through our comprehensive experiments (in Appendix .

3.3 Gradient-free Decision Rule Optimization via ICL

This subsection provides a theoretical justification for how LLMs equipped with ICL can simulate the
outer-stage optimization in strategic classification. Specifically, we demonstrate that the prediction
update Ag;, which reflects a shift in the classifier’s decision rule (f), can be implicitly implemented
via a forward pass in a self-attention layer, without requiring explicit gradient descent or parameter
updates.

Remark 3. The predicted score is denoted as §; = f(x}; W) = WX;-, where W € R is the decision
weight vector and x’ is the manipulated feature.

Gradient-aware Outer Optimization in Traditional SC. Under standard SC settings, the outer-level
decision rule optimization is performed by minimizing a classification loss. For example, using a
cross-entropy loss L, the update to W via gradient descent is:

— ) — - Yj o 1_yj ’

where L ;(W;x’) is instantiated as:

n

LyWix) == [y;log(Wx)) + (1 — y;) log(1 — Wx))] . (14)
j=1
Thus, the corresponding shift in prediction output is:
APFP = AW - x]. (15)

Gradient-free OQuter Optimization via ICL. We now show that LLMs can reproduce the same
prediction update Ag; via a forward pass through a self-attention layer. Consider the modified feature

>See detailed derivation in Appendix @
SThe linear self-attention layer is simplified from Eq.(3)
"See detailed proof in Appendix



vector x;, along with the previous predictions §/;, is embedded into the prompt. The ICL-induced
forward update is:

(x},95) « (X}, ;) + PVK'q, (16)
where q; is the query vector, and P, V, K are the projection, value, and key matrices.

The update to the prediction output from linear self-attention layers is:

95 =; + AJCY, where At :=PVK'q;. (17)

Therefore, we prove that one can construct P, V, K such that: Agi™ = AgFP ﬁ

Proposition 2 (ICL Implements Gradient-free Decision Rule Update). Let f(x) = (W,x) be a
linear classifier. Then, there exists a construction of self-attention matrices K, V, P such that for
any token (x;,9;), where §; = f(x}), the ICL-induced update satisfies:

Ay;‘CL = PVKTCI]' = AijGD, where AQJGD =AW . X;-. (18)

Remark 4. This propositimﬂ confirms that forward-only self-attention dynamics in ICL can simulate
gradient-based updates in the outer stage of SC. It establishes a constructive equivalence between
explicit decision rule optimization and ICL-driven prediction adaptation.

Remark 5 (Unified Simulation of Bi-level Optimization). Together with Proposition [I] this result
completes the alignment between ICL and bi-level optimization in SC. ICL enables agent-side
manipulation and decision-side rule adjustment, all within a gradient-free, forward-only framework.

3.4 Discussion on Policy Transparency

A fundamental characteristic of strategic machine learning is that decision subjects manipulate their
input features strategically, understanding the classification rules to achieve more favorable results.
This implies that the classification rules should be set transparently to the decision subjects.

Our work is based on theoretical foundations, demonstrating that when LLLMs receive a series of
in-context prompts, their internal reasoning and output adjustment can be considered an approximate
form of "implicit" gradient descent. In other words, although we do not explicitly update the
large-scale parameters, LLMs, driven by contextual information such as “which features to be more
sensitive to” and “how to define decision boundaries,” adjust their self-attention layers to align with
downstream task expectations. Therefore, strategic machine learning based on large language models
can also maintain policy transparency. A more detailed discussion is provided in Appendix

4 Experiment

4.1 Setup

Dataset. We evaluate our method on six benchmark datasets, comprising five real-world datasets and
one synthetic dataset:

» Large-scale datasets: CISFraud [63l], a large-scale transactional dataset provided by IEEE
and an international bank for fraud detection. PhiUSIIL [55], a phishing URL detection
dataset reflecting adversarial evasion scenarios in cybersecurity. Synthetic [46], a synthetic
dataset generated using the PaySim simulator, which mimics mobile financial transactions
and fraud patterns based on real-world data.

* Small-scale datasets: Adult [4], a census dataset for predicting whether an individual’s
income. Spam [40]], a text-based dataset for binary classification of email messages as spam
or not. Credit [79], a credit scoring dataset used for predicting the risk of credit default in
consumer finance scenarios.

Methods. We consider two optimal policies a decision maker can use: 1) "strategic policy" means
that models consider and handle possible strategic manipulation. 2) "non-strategic policy" means that
models in a strategic context, but do not consider strategic manipulation.

8See detail derivation in Appendix
°See full derivation in Appendix
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Figure 4: Comparison of ICL-guided decision rule optimization with Linear and non-linear self-
attention layers across dataset scales.

For the baseline method, we employ a linear regression model as a reference classifier, optimizing
it through gradient descent. In GLIM, we mainly utilize the pre-trained LLM APIs, e.g., GPT-
40 [I53]], and refine its responses through in-context learning. Each method is subjected to 10-fold
cross-validation, and the average results are presented in Table[2] We also conducted experiments
on Claude [3]], Mixtral [38]], DeepSeek [45],Gemini [65], Qwen3 [13]], and LLama [49]]. Detailed
implementation specifics are provided in Appendix I}

4.2 Verification on Strategic Manipulation as Implicit Gradient in ICL

To validate the effectiveness of ICL in guiding strategic manipulation through the gradient-free
method, we measure both cosine similarity and L2 distance between the feature vectors updated by
ICL and those produced by gradient descent. These measurements are conducted under both linear
and non-linear settings across different datasets. The results, presented in Figure[3(a)]and[3(b)] show
that the cosine similarity for both methods eventually converges to approximately the same value
after some fluctuations, while their L2 distances decrease to nearly zero.

We also compare the mean offset of the feature distribution (distribution shift) and the KL
divergence[[70] across iterations, as illustrated in Figure and [3(d)] The close alignment of
the two curves confirms that ICL-guided manipulation within the self-attention layers performs
comparably to gradient descent. More results are included in Figure [6]of Appendix

4.3 Verification on Decision Rule Optimization as Implicit Gradient in ICL

To examine how effectively ICL serves as a gradient-free solution for decision rule optimization, we
compare the cosine similarity and L2 distance during the optimization process, as depicted in Figure[d]
with linear and non-linear attention mechanisms. Across multiple datasets, the two methods exhibit a
cosine similarity that gradually rises toward 0.95, while their L2 distances settle at approximately 0.1.
These findings suggest that ICL can successfully optimize decision rules via implicit gradients.

Furthermore, we compare how cross-entropy loss evolves in LLMs with GLIM versus the methods
via gradient descent for decision optimization. The corresponding results appear in Figure [5(a) and
[5(b) with different datasets: a similar loss trend emerges for gradient-free and gradient-aware methods.
However, as illustrated in Figure[5(b)] when applied to large-scale datasets, the loss reduction attained
by LLMs with GLIM surpasses that of existing approaches. These results confirm that it is entirely
feasible to employ our proposed method for strategic classification tasks using LLMs.
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Table 2: Performance Comparison between GLIM and Existing Methods under Strategic and Non-
strategic Settings across Datasets.

Large-scale Dataset Small-scale Dataset
Methods
PhiUSIIL ~ CISFraud  Synthetic Credit Adult Spam
Existing methods (as shown in Table[T)
Linear Model Strategic 63~20i1.02 63.61i1'20 65~50i2.18 75~52i0.60 77~10j:1.58 89.67i0'72
Non-Strategic 57.39410.62 56.631108 00.874911 70.7310.31 72.164162 87.524058
MLP Strategic 65.65:&1‘14 65.04:&1‘27 70.9():&2‘49 77.06:&0‘41 78~74:k1.83 91.05;&0_54
Non-Strategic 59~25i0.57 59~03i1.06 65.39i2'03 71~50i0.33 73-57i1.55 89-01i0,69
GLIM (ours)
DeepSeek-V3 Strategic 85~10i0‘98 84.62i1‘09 85~15i2‘18 89~33i0‘35 86.22i1‘34 94~85i0‘67
P Non-Strategic 78904101 78.744114 80.684912 81.45.047 78.77+133 89.314104s
GPT-4o Strategic 86.50.091 86.89110s 86.831235 89.641027 91351129 95.971061
Non-Strategic 7914994 80.15.1 10 81.1949519 80.961044 80.234131 91.28. 045
Claude-3.7 Strategic 85.07+0.95 849841108 84504011 86.511931 88.58+151 94.504066

Non—Strategic 78‘40i0.83 78‘54i1.17 78‘89i2'()() 80‘39i0.37 83‘85i1'5[) 89‘50i0.61

Note: 1) We selected linear models and MLPs as representative lightweight approaches from existing methods.
2) The values represent accuracy (%) with standard deviations indicated after the £ sign. We highlight the best
performing results in bold. 3) More complete experimental results are included in Tables 3] (in Appendix [K).

4.4 Analysis on GLIM

Figures and [5(d)] demonstrate that as data volume increases, the performance of lightweight
models becomes less stable, while the proposed GLIM method maintains consistent scalability.
Table 2] summarizes the overall classification performance across various datasets under both Non-
Strategic and Strategic settings. These results collectively indicate that applying GLIM enables large
language models to effectively handle strategic classification (SC) tasks, maintaining robustness even
when agents engage in strategic manipulations.

Specifically, on the large-scale PhiUSIIL dataset under the Strategic setting, GPT-40 with GLIM
achieves an accuracy of 86.50%, showing the model’s strong capacity to adapt to strategic inputs.
Moreover, on the Adult dataset, accuracy increases by 8.36% from the Non-Strategic to the Strategic
setting when equipped with GLIM, suggesting that the mechanism not only preserves but also
enhances decision robustness under strategic influence. Overall, these findings verify that GLIM
allows large language models to generalize SC-related reasoning effectively across datasets of
different scales and complexities. More experimental results are included in Appendix K]

5 Related Work

5.1 Strategic Machine Learning

In the realm of strategic classification [30], many studies aim to mitigate strategic manipulations
exhibited by individuals interacting with decision models [19} 160, [10, 33| [82, |69]. Building on
strategic classification, performative prediction [54, (57,29} 31} 48 152]] has been proposed to study
settings where the deployment of a predictive model influences the distribution of the prediction
target. Recently, more studies have explored the role of causal reasoning in strategic machine



learning [50} 9} 134, [72}, 211 |8}, [78 [76}, [74. [75]], distinguishing between manipulable and improvable
features while accounting for how strategic manipulations may alter underlying qualifications. Other
works shift the focus to social welfare [28| 23| [77]], aiming to regulate the strategic behavior of agents
to maximize social welfare. To avoid disproportionate disadvantage on certain demographic groups,
ongoing research also investigates fairness in strategic machine learning [81, 24} 39]. More related
work is discussed in Appendix

5.2 Large Language Model

Recently, large language models (LLMs) [6], with strong in-context learning (ICL capabilities [68|[11],
have been applied across a wide range of domains beyond traditional NLP tasks. For example, LLMs
have shown significant potential in education [37], medicine [67]], and various scientific fields [5]. A
recent work has broadened the study of large language models by incorporating them into auction
mechanisms [20]. Other studies [7} 47] have explored the use of external tools to enhance the
capabilities of LLMs for complex tasks. A series of studies employing linear transformers have
demonstrated that forward propagation with ICL in LLMs can internally simulate gradient-based
learning mechanisms [2 [73, [16} [17]. Specifically, these models undergo a process analogous to
gradient descent by updating the weights in their self-attention layers. To deepen our understanding of
ICL, another research direction investigates the problem of learning a function class from in-context
examples [25} 112,141} [80].

6 Conclusion

In this study, we demonstrate the feasibility of using large language models (LLMs) to tackle
strategic classification problems, which is a pioneering attempt to bridge strategic classification and
LLMs via ICL. This is the first to employ LLMs to model and solve the bi-level, game-theoretic
optimization structure of SC. Building on this bi-level implicit gradient optimization, our work
proposes a gradient-free in-context learning method (GLIM) that empowers LLMs to solve strategic
classification tasks. It enables a scalable and retraining-free approach to large-scale SC tasks, where
classical gradient-based retraining requires excessive computational resources and time. From a
broader social science perspective, our work establishes a crucial bridge between large language
models and strategic machine learning. Future research will explore the integration of strategic
learning within performative prediction frameworks and seek to further enhance policy transparency
in LLM-based decision models.
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A Clarification on Our Position Towards Gradient-based Methods

We explicitly state that our proposed gradient-free method (GLIM), leveraging large language models
and in-context learning, is not intended to criticize or dismiss traditional gradient-based methods
widely used in machine learning. Gradient-based optimization has proven extraordinarily effective,
well-established, and foundational for machine learning research and applications.

Rather, our work aims to explore and demonstrate an alternative solution path tailored specifically
for large-scale strategic classification scenarios, particularly addressing situations where gradient
computations and frequent retraining might face practical computational limitations or scalability
issues. Our work should be seen as an exploratory contribution, offering additional methodological
options to researchers and practitioners, rather than diminishing or replacing the value of gradient-
based methods. This work proposes to provide additional methodological options to researchers and
practitioners, rather than diminishing or replacing the value of gradient-based methods.

B Additional Related Work

There are also some excellent works in the field of strategic machine learning [30] that we did
not discuss in Section[5] A previous work [57] proposes lookahead regularization in classification
models to anticipate agent behavior during training. To handle inter-user dependencies, incorporating
shallow graph neural networks [22]] offers a novel pathway for strategic classification. Another
work [43] leverages differentiable optimization layers to directly optimize strategic empirical risk
in end-to-end systems. Investigating multi-agent strategic settings, [35] proposes classification
methods that account for such interdependent effects to improve fairness and robustness. Recently,
[62]] proposes an optimal stochastic decision rule for strategic classification, demonstrating that
introducing randomness into the classifier can effectively reduce classification errors and improve
robustness compared to deterministic approaches.

C Preliminaries of In-context Learning

Following [58l [73]], We review a standard multi-head self-attention (S A) layer which updates each
element e; in a set of tokens {eq, ..., e, } according to

ej < e+ SA(5,{e1,...,en})
K/ qn,; (19)
=e;+ ) P} softmax (hJ) Vi,

where P, V;,, K, are the projection, value, and key matrices respectively, dy, is the dimension of
the key vector and qy, ; is the query vector, all for the h-th head.

The columns of the value matrix V;, = [vp1,...,Vp n] consist of vectors vy, ; = Wy - e,
where we introduce W, as the parameter matrix of V. Similarly, kj, 1 = Wk, - e; for the key
matrix Kj, = [kp1,..., ks n] and qn,j = Wq, - ¢; for the query vector qj. These parameters,

Py, Wy, Wk}, and Wq, of an SA layer, consist of all projection matrices. The self-attention
layer described above corresponds to the one used in standard LLMs and ICL is leveraged to bootstrap
the update of these parameter matrices.

During the forward propagation in self-attention layers, ICL aims to leverage the contextual examples
{(xs,y:)},, embedded into tokens {e; }* ; to predict the response for the new query token e, .
Specifically, the model observes an in-context prompt composed of n pairs examples and then
produces a hypothesis 4,41 for e,, 1 Mathematically, one can view the ICL process as inducing a
temporary “in-context” mapping Frcr (parametrized by language models) such that:

Un+1 = Fror(entiler, -+ en). (20)
Because this mapping is never explicitly “trained” in the traditional sense (i.e., by gradient descent
on the model parameters), the objective of ICL is to minimize the prediction error on the new token
using only the in-context examples as guidance. Concretely, the loss function for the ICL forward
propagation can often be written as:

Licr = fi(In+1,Yn+1), 21
where f; is a task-specific measure of prediction error, e.g., mean-squared error or cross-entropy loss.
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D Implicit Gradient Descent in Self-Attention Layers

Our Lemmal(T]indicates that, under ICL guidance, the token update process within the self-attention
layer can be viewed as an implicit gradient optimization process [2].

First, we highlight the dependency on the tokens e; of the linear self-attention operation

€; < € + SA({el, ey GN}) =€j + ZPthK;?th
h

=e;j + Z P, Z Vh,i & kh,iQhJ (22)
h i

=e; + Z PhWh,V Z eh,i ® eh,in:KWh}er
h 7

with ® the outer product between two vectors. With this, we can now easily draw connections to
one step of gradient descent on L(W) = 7 Zfil |Wz; — y;]|* with learning rate n which yields

weight change

N
_ _ N
AW = -V L(W) = — Z (Wi —y;)ar. (23)
. . Lo I, 0\ . . .
We provide the weight matrices in block form: Wi = Wg = 0 0 with I, and I, the identity
matrices of size N, and N, respectively. Furthermore, we set Wy, = (Vgo _OI > with the weight
y

matrix Wy € RYv*N= of the linear model we wish to train and P = -1 with identity matrix of size

N, + N,. With this simple construction, we obtain the following dynamics
N
Ty Lj 1] 0 0 L I, 0O Z; I, O :ZJ]
(yj) - (?JJ) * N ; (<Wo —I, ) \yi © 0 0) \y 0 0
— (" T i J
() 373 () (5) ()

= () (o).

for every token e; = (z;,y;) including the query token en4+1 = €rest = (Ttest, —WoTiest) Which will
give us the desired result.

E Derivation of Strategic Manipulation via Utility-aligned Loss

In strategic classification, agents modify their features x’ to maximize the utility function:
U(f(x'),x") = f(x') = Ae(x,X) (25)

where f(x') = Wx' is a linear classifier, and ¢(x,x’) = (x' — x) " M(x’ — x) represents the
manipulation cost with M > 0.

Given the sample-wise loss function:
Lap(x7) = yic(xi, ;) + (1 — yi) [1 = £(x}) + Ac(xi, x;)] (26)
The gradient with respect to manipulated features is:

Vi Lop = yi - 2M(x) — x;) + (1 — y;) [-W T 4+ 2AM(x] — x;)] (27)
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Let Ax; = x| — x; denote the feature modification. The gradient descent update with learning rate n
becomes:

Ax; = —nVx Lcp (28)
Case 1: y; = 1 (Positive Class)
ngL_,CGD = 2MAX¢, (29)
Ax; = —n - 2MAx,, (30)
(I+2nM)Ax; =0 = Ax; =0. 31

Interpretation: No incentive for manipulation when already classified positively.

Case 2: y; = 0 (Negative Class)

Vi Lep = —W' + 2 AMAXx;, (32)
Ax; =W — 2nAMAX;, (33)
(I+2nAM)Ax; = W . (34)

Using the eigendecomposition M = QAQ':

Ax; = QI +2n\A)"1QTW . (35)
Define the adaptation matrix:
A= (T+2p M)~ L, (36)
yielding:
Ax; =nAW . (37)
Combining both cases:
Ax; = (1 — y;) AW T, (38)

¢« W e R — WT ¢ RdxL
e M, A € Rixd,

+ Ax; € R?*! (dimensionally consistent).

This shows that minimizing the loss function Lgp(x;x’) results in the same manipulation direction
as maximizing the utility function U (f(x’),x’).

Remark 6 (Generality of Cost Function Forms). While our derivation assumes the manipulation cost
c(z,2') = (2’ —x) " M (2’ — ) based on the Mahalanobis distance for analytical tractability, our
results can be extended to a broader class of distance-based cost functions. In fact, many commonly
used cost measures in strategic classification, such as L,, norms, graph distances, and general norms
or seminorms, also satisfy the triangle inequality and support similar gradient-based manipulation
dynamics [S1]. As long as the cost function is differentiable and convex, the gradient-based feature
update remains well-defined, and our analysis of in-context manipulation behavior and utility-aligned
loss minimization holds under these alternative formulations.

F The Self-attention Layer Projection Matrix Constructed for Strategic
Manipulation

To demonstrate that the implicit gradient update via in-context learning (ICL) matches the explicit
gradient descent step:

AxFP = A (1 —y,)WT, (39)

we provide a constructive setup of the self-attention matrices as follows.
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F.1 Matrix Construction

We define the key, query, and value matrices in block form:

I, 0O . 0 0
where I, € R9*? is the identity matrix for feature tokens. The projection matrix is defined as:
1 /7A 0
P= N (O 0) , (41)

with A being the manipulation cost-adjusted coefficient matrix from Equation (39), and NV is the
number of context tokens.

F.2 Update Dynamics

For a query token (x;,y;), the query vector is formed as:

a =Wo (’;j) - (’f{) : “2)

The full attention-based update becomes:

1 /4 0
Ax;CL =P. VKqu = N < > ZWV67 (WKQ) q;- 43)

Unfolding the matrix multiplication:

N
An
ICL— WZ 1—y)W x“xj>. (44)

Assuming homogeneous label groups (i.e., all y; = y;), we obtain:
AXIV = A (1 —y) W', (45)

which exactly matches the explicit gradient update Ax§P.

F.3 Consistency Verification

The complete feature update under ICL is then:

X;» = X; + AXECL = X; + A 7’](1 — yj)WT, (46)

confirming equivalence to the explicit manipulation update in Equation (39). The block structure of
Wy and P ensures that the label component y; remains unchanged during the forward pass.

This construction avoids explicit computation of inverse matrices at runtime by directly encoding
the gradient dynamics into self-attention weight matrices. The resulting ICL process reflects a
forward-only approximation of agent-side strategic behavior within the Transformer framework, and
demonstrates the capacity of attention mechanisms to simulate first-order optimization steps relevant
to strategic classification.

Remark 7 (Connection to Proposition [T). This derivation provides the explicit configuration of
matrices P, V, K, and query vector qj, as required in Proposition[I} It confirms that, under linear
attention with properly constructed weight matrices, the ICL-induced update AXE»CL exactly matches

the explicit gradient response AX?D, thereby validating the proposition with a constructive proof.

F.4 Extension Beyond the Homogeneous Assumption

The homogeneous label assumption is a theoretical simplification [[18]] used to illustrate the underlying
mechanism of the attention-based update. It enables us to transparently demonstrate how the attention-
induced update can precisely align with the gradient descent direction under idealized conditions.
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Derivation Beyond the Assumption. In practical heterogeneous contexts, the update becomes a
weighted aggregation of local update directions:

An al
Axil =2 D (1= )W (xix;), @0
=1

where (x;,x;) represents the similarity between the query and a context example.

More generally, the attention mechanism implicitly performs a weighted combination of local
gradients:

N
ICL
AXICE =Y " - g(xi, i), (48)
i=1
where o ; are the attention weights and g(xi,y;) denotes the local update direction associated with

each context sample.

When the context samples are independently drawn and sufficiently representative of the local data
distribution around x, statistical learning theory [56] ensures that:

lim AxizCL ~ B, yi)~Proca [9(Xi5 ¥i)] - (49)

N —oc0

The approximation error can then be bounded as:

e = || AN — Vi L(x;)]

, (50)

and its expected value satisfies:
/1 .
E[ej} <C- v +46, with d<L- W(Plocalapglobal)y (29

where C' - 4/ % corresponds to the sampling error, and § captures the distribution shift. Specifically,

C'is a constant depending on the gradient variance, L is the Lipschitz constant of £, and ¥V denotes
the Wasserstein distance between local and global data distributions.

G The Self-attention Layer Projection Matrix Constructed for Decision Rule
Optimization

We provide a constructive proof of Proposition 2] showing that a single-layer linear self-attention
mechanism can simulate the gradient-based update to predictions in the outer-level optimization of
strategic classification. To explicitly align the self-attention mechanism with the gradient update
AQ?D, we construct the weight matrices as follows:

G.1 Key and Query Matrices

We construct the key and query matrices to focus exclusively on feature dimensions while ignoring
the prediction values:

Wi =Wq = (Iéi 8> € R+ x(d+1) (52)

Thus, the query vector becomes:
/ /
won)-() el e
G.2 Value Matrix

The value matrix encodes token-wise gradient terms derived from the cross-entropy loss. For each
context token ¢, define the gradient term:

0;:=m (Wx; T Wxé) X (54)
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Then define the token-specific value matrix:

W‘(;') — (5OZ 8) c R(d+1)><(d+1). (55)

Summing over all context tokens gives the full value matrix:
N
_ w_(_0 0
P )] 59

G.3 Projection Matrix

The projection matrix isolates the predicted score dimension (i.e., the final output of the classifier)
from the token embedding:

P= (8 ?) e R+ x(d+1) (57)

This ensures that the output update affects only the prediction dimension.

We now compute the full attention-based update through matrix products:

0 0
T _
VK= (Zi]\il 0ilg 0) ’

0
VKqu:( N T l>7
S0, Xk

i=1"1 5

0
PVK'q; = N . —yi .
@ <77 2im1 (V[gx/ - 1£V[?/Jx/) <X§7X9>>

Thus, the second (prediction) component is:

N

N Yi -y 5

Agit=n) (Wx’. e Wx<> (i, x5) = A", (58)
i=1 v !

This construction provides a token-wise simulation of gradient descent over prediction scores using a
single self-attention pass, without explicitly modifying W. It assumes access to all relevant features
x; and uses attention as a proxy for computing interactions (x/, X/7>

Remark 8 (Connection to Proposition . This derivation offers a complete, constructive realization
of the condition in Proposition 2} It demonstrates that the change in predicted score from gradient
descent, AjSP, can be exactly matched by a self-attention layer via PVKqu, thereby validating
the proposition through an attention-driven forward computation.

H Discuss on Policy Transparency in Strategic Machine Learning

Policy transparency is a fundamental concern in strategic machine learning (SC), where individuals
strategically manipulate their input features based on their understanding of the classification rules to
secure favorable outcomes. Ensuring that classification policies are transparent allows individuals to
make informed decisions about how to adjust their features legitimately, thereby maintaining fairness
and accountability in the decision-making process.

Transparency in Traditional SC Models. Traditional SC models, such as linear classifiers and
shallow multilayer perceptrons (MLPs), are preferred in strategic settings due to their inherent
interpretability. These lightweight models allow decision-makers to clearly communicate the criteria
used for classification, enabling individuals to understand which features are most influential and
how they can adjust their inputs accordingly. This transparency not only fosters trust but also helps in
mitigating adversarial manipulations by making the decision boundaries explicit and understandable.

Challenges with LL.M-based SC Models. In contrast, large language models (LLMs) introduce
significant challenges to policy transparency. LLMs are characterized by their vast number of
parameters and complex architectures, including multiple layers of self-attention mechanisms. This
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complexity renders their internal decision-making processes less transparent, making it difficult for
users to discern how specific input features influence the final classification outcome. The black-box
nature of LLMs can therefore obscure the classification rules, increasing the risk of individuals
exploiting hidden patterns or ambiguities to manipulate their features strategically.

Our Theoretical Contribution: ICL as Implicit Gradient Descent. Our work addresses this
transparency challenge by theoretically demonstrating that in-context learning (ICL) within LLMs
can be approximated as an implicit gradient descent optimization process. Specifically, we have
proven that the iterative adjustments made by LLMs during ICL resemble the steps taken in traditional
gradient descent algorithms used in transparent SC models. This approximation provides a conceptual
framework for understanding how LLMs adapt to strategic manipulations, offering a semblance of
interpretability despite their complex architectures.

Enhancing Transparency through Attention Visualization. Building on our theoretical findings,
we propose leveraging the self-attention mechanisms inherent in LLMs to enhance policy transparency.
By visualizing attention weights, stakeholders can gain insights into which input features the model
emphasizes during classification. This visualization acts as a proxy for understanding the decision-
making process, allowing users to see how different features contribute to the final classification
outcome. Consequently, even though the overall model remains complex, the attention patterns
provide a tangible means of interpreting the classification rules.

Implications and Future Directions. Our approach offers a pathway to reconcile the powerful
modeling capabilities of LLMs with the need for policy transparency in SC tasks. By framing ICL
as an implicit gradient descent process and utilizing attention visualizations, we provide a method
to interpret and audit LLM-based classification rules effectively. Future research could explore
more sophisticated visualization techniques and formalize the interpretability guarantees provided by
attention mechanisms. Additionally, developing strategies to balance transparency with the prevention
of strategic manipulations remains an important avenue for ensuring both fairness and robustness in
LLM-based SC systems.

In conclusion, while LLMs present inherent challenges to policy transparency in strategic classifica-
tion, our theoretical framework and interpretative techniques offer viable solutions. By understanding
ICL as an implicit optimization process and utilizing attention visualizations, we enhance the trans-
parency of LLM-based decision models, ensuring that classification policies remain both effective
and comprehensible to users.

I Extension to Non-linear Attention Mechanisms

Our theoretical analysis in Section[3|adopts a linear self-attention formulation for clarity and analytical
traceability. However, modern large language models (LLMs) such as GPT, LLaMA, and DeepSeek
operate with a non-linear multi-head attention mechanism that uses the Softmax function. In this
section, we demonstrate that despite the structural differences, our framework remains applicable in
practice and can be naturally extended to non-linear attention.

I.1 Non-linear Attention in Transformers
In the standard Transformer architecture [Z1]], the update of a token e; via multi-head self-attention
(omitting biases) is:
ej « e+ Y P,V Softmax(Kj qn.;), (59)
h
where:

* qp,; is the query vector of head h at position j;

* K, V}, are the key and value matrices from the prompt;

* Softmax(-) produces a probability distribution over prompt positions;
* Py, is the output projection matrix for head h.

This process computes a content-dependent weighted average over value vectors, where weights are
derived from key-query similarity.
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I.2 From Linear to Non-linear ICL Updates

In our linear construction (e.g., Appendix [F [G), the ICL-induced update is explicitly written as:

A:E;CL = PVKqu, and Ay;CL = PVKqu, (60)

which allows direct alignment with known gradient expressions. However, in non-linear attention,
the presence of Softmax(-) introduces dynamic, input-dependent weights, breaking the closed-form
linearity.

Here, we provide a more detailed derivation and justification showing that this simplification is
theoretically reasonable: even under the Softmax-based attention setting, gradient descent (GD)
updates can still be effectively approximated.

While Softmax attention performs a convex combination, that is, a positive weighted average, this
restriction holds only in the first layer of the network. As additional non-linear attention layers are
stacked and the value matrices are adjusted, the model gradually evolves beyond this constraint to
realize more flexible, non-linear, and even implicitly negative-weighted, gradient-like updates.

Derivation: Non-linear attention with Softmax approximating gradient descent. We consider a
Transformer equipped with Softmax attention and residual connections:

Zoy1 = Zy + ViZy - Softmax(Be X, - (CoXy) ), (61)

where Z, € R(@+1D)x(n+1) i the hidden state at layer £, X, denotes the covariate part (the first d
rows of Z;), By, Cy € R%*? are query/key projection matrices, and V; € R(4+1)x(d+1) i5 the value
projection matrix.

To simplify the derivation, we assume

1 0 0
B, =Cp= ;Id,Ve = {0 _TJ ) (62)

indicating that only the label dimension is updated. Under this setup, the attention weights become

Softmax(%XXT)ij o exp( 12:c(i)—rx(j)> , (63)

which reflects the exponentiated similarity between the query 2) and context ("), followed by

normalization.

This forward process can be connected to functional gradient descent (FGD):
fepr(@) = fo(@) + 10> (W = fo(aD)) K (@D, x), (64)
i=1

where K (z,2') = exp(z'2’/0?) is an exponential kernel and f, denotes the current function
estimate.

We initialize the input as

D oo ) p(nt)
X X x

o =
0 [yu) SRR CON } ; (65)
where the first n columns are training examples and the (n+1)-th is the query with label zero.
In the first layer, the attention module computes weights

St __ep(gpaWTatl) - K@, o) 66)
i Zj exp(%x(j)—rx(”"rl)) Zj K(w(j)71’(”+1))7

and aggregates labels through the value matrix:

A@) = —rg Y al" Uy, (67)

i=1

This step indeed performs a positive weighted average, but it serves only as a rough initial estimate of
the FGD target.
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Figure 6: Comparison and validation of ICL-guided strategic manipulation. (a) and (b) compare ICL
and gradient-descent methods across data scales; (c) and (d) evaluate implicit gradient alignment via
distribution metrics.
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Figure 7: (a) and (b) compare ICL-guided decision rule optimization and gradient-descent methods
across data scales; (c) and (d): comparison of cross-entropy losses between ICL and gradient-based
methods.

Residual updates in deeper layers. As additional layers are stacked, residual connections accumulate
prior updates and inject the residual difference (y(* — fy(z())) into each non-linear attention
operation. Through residual accumulation, error correction, and non-linear mixing, the update

becomes
n

for1(x) = fo(x) + 70 7(2) Z (y(i) - fg(x(i)))K(x(i), x), (68)
i=1
where 7(x) denotes a normalization factor induced by the Softmax scaling.

Although Softmax attention enforces positive and normalized weights locally, this constraint does
not limit the model’s overall expressive power. Through multi-layer stacking, tunable value projec-
tions, and residual propagation, the Transformer can effectively emulate complex update dynamics,
including gradient-like steps with varying magnitude and sign. Consequently, the multi-layer non-
linear attention structure can approximate a broad family of optimization trajectories, supporting the
theoretical soundness of our Softmax simplification.

Empirical and Theoretical Support. Recent work, such as [12], demonstrates that attention layers
can implement first-order optimization steps in function space, reinforcing our perspective that
Transformer-based ICL can realize gradient behaviors even in the non-linear regime.

This extension is further supported by our empirical experimental validations, as shown in Figures 6]
and[7]

J Setup Details

J.1 Dataset Details

To evaluate our method across different domains and scales, we use a mixture of real-world and
synthetic datasets, especially in internet sector and financial services, summarized as follows:

Large-scale datasets: CISFraud (IEEE-CIS Fraud Detection) [63]], a large-scale transactional dataset
provided by IEEE and a major international bank, containing over 1 million online payment records
with identity, device, and transaction features for fraud classification. PhiUSIIL [55l], a phishing URL
detection dataset containing 134,850 legitimate and 100,945 malicious URLs, reflecting adversarial
evasion scenarios in cybersecurity. Diabetes [66]], a large-scale medical dataset with 253,680 instances,
featuring demographic and clinical attributes used for type 2 diabetes risk prediction. Synthetic [46],
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Table 3: Performance comparison across various models and datasets under Strategic and Non-
Strategic settings on large-scale datasets

Methods PhiUSIIL ~ CISFraud  Synthetic Diabetes
Existing methods (as shown in Table
. Strategic 63.2041.02 63.614199 65504918 67.2341.84
Linear Model o Sirategic 57394062 5663108 60.871911  61.944; 7
MLP Strategic 65.6511.14 65044197 70904549 69.851503
Non-Strategic 59.254057 59.034106 65.394903 63.8849.91
GNN Strategic 68.37i1_21 68.84:|:1_27 70.10:|:2,35 70.44:‘:2.31
Non-Strategic 59-31i0.64 60.45i1_02 65.41i2_15 64.7512,12
GLIM (ours)
Strategic 85.1040.98 842541109 85.154918 88.7415 16
DeepSeek-V3  on Strategic  78.9041 01 78745114 80.681910 81.155; 55
Gemini-2.5 Strategic 84.17i1,03 84.41i1_09 87.18i2_20 87.60i2.54
’ Non-Strategic 76.394104 76.804109 78.874917 80.3849.31
GPT-40 Strategic 86.50i0_91 85.51:|:1_08 86.83:|:2,35 89'27:t2.68
Non-Strategic 79-14i0.94 80.25i1_10 81.19i2_19 82.40i2.19
Claude-3.7 Strategic 85.0740.95 84981108 84.504511 88.024907
) Non-Strategic 78~40:t0.83 77.91:|:1_17 78.89:|:2,00 80.65:‘:2.48
LLama-3.3 Strategic 83.86i1_01 83.16:|:1_11 84.67:|:2_15 87.74:‘:2.35
’ Non-Strategic  76.8619.97 75.041114 76.731216 79.924513
0 3 Strategic 82.354103 84.1641.19 803241599 86.631593
wen Non-Strategic  77.2911.05 76264116 77341920 79.1012.00
Mixtral Strategic 84.20i0,91 84.90i1_00 85.1 1i2.14 88.26i2.18

Non-Strategic 77424006 717.7241.05 78.664909 80.1049.91

a synthetic dataset generated using the PaySim simulator, which mimics mobile financial transactions
and fraud patterns based on real-world data.

Small-scale datasets: Adult [4], a census dataset for predicting whether an individual’s income, often
used in classification tasks. Spam [40], a text-based dataset for binary classification of email messages
as spam or not, useful for evaluating manipulation. Credit [[/9], a credit scoring dataset, used for
predicting the risk of credit default in consumer finance scenarios. German [40]], a small-scale Dataset
to assess credit risk in loans from the UCI ML Repository for classification tasks. Student [15]], a
dataset includes student performance data in mathematics and Portuguese language courses.

The real-world scenes corresponding to these datasets are classified as follows:

 Internet sector datasets: PhiUSIIL, Synthetic, and Spam;
¢ Financial Services datasets: CISFraud, Adult, Credit, and German,;
¢ Other domain datasets: Diabetes and Student.

J.2 Model Selection and Configuration

Our experiments employ a variety of state-of-the-art large language models (LLMs), accessed via
their respective APIs, to implement the proposed GLIM framework. The selected models include:

* GPT-40 [53]]: Accessed via OpenAl’s official APIL. This model offers enhanced reasoning
and multimodal capabilities, providing robust performance in complex SC tasks.

* DeepSeek-V3 [45]: A Chinese-English bilingual open-source LLM optimized for down-
stream reasoning, retrieval, and generation tasks, evaluated through DeepSeek’s API plat-
form.
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Table 4: Performance comparison across various models and datasets under Strategic and Non-
Strategic settings on small-scale datasets

Methods Credit Adult Spam Student German

Existing methods (as shown in Table
. Strategic 75524060 77.104158 89.674072 85174945 88.3141.96
Linear Model o Sirategic 70735051 72164105 87521055 81.82404: 82072901
MLP Strategic 77.0641041 78744183 91.054054 86964941 87.384507
Non-Strategic 71504033 73.57+155 89.014069 82.054916 84.824945
GNN Strategic 80.121052 78541181 91441064 87.0l4263 88931212
Non-Strategic 72-27i0.34 74'37i1.57 88. 13i0.71 82.9012,58 85.14i2,37

GLIM (ours)

Strategic 89.33 4535 86221134 94851067 89524943 91.204535
DeepSeek-V3  on Strategic 81454041 78774135 89315068 83321057 849749 06
Gemini-2.5 Strategic 84.81i0,34 85.84i1_38 94-75i0.69 88.33i2.8g 90.18i2_25
’ Non-Strategic 80.621035 79371143 89741065 824441577 83114913
GPT-40 Strategic 89.64i0_27 91.35:|:1_29 95'97:|:0.61 91.61:‘:2'91 92.34:|:2_45
Non-Strategic 80.96i0,44 80.23i1_31 91-28i0.65 84.33i2.79 85.69i2,61
Claude-3.7 Strategic 865110931 88581151 945041066 85924954 91.074233
) Non-Strategic 80.39i0_37 83.85:|:1_50 89.50:|:0,61 83.92:‘:2.41 84.55:|:2_64
LLama-3.3 Strategic 87.581030 88701141 94304064 89441293 90.681519
’ Non-Strategic  78.961940 79.191135 87491064 84171266 83.224941
Owen3 Strategic 87.90,035 884041130 952241071 885841971 90.274535
Non-Strategic  80.621035 79.901130 89511069 83281283 83.971959
Mixtral Strategic 88.24i0,29 89.04i1_33 94-12i0.63 88.92i2.63 90.84i2_42

Non-Strategic 80.1219.38 80.754138 90341065 83424067 8421455

* Claude-3.7 [3]]: Provided by Anthropic via their API, Claude-3.7 emphasizes safety and
alignment, making it a strong baseline for stable classification under strategic contexts.

* Gemini-2.5 [65]: Offered by Google Cloud, Gemini models are equipped for multimodal un-
derstanding. We utilize Gemini-2.5 through Vertex AI API for tabular strategic classification
tasks.

e LLama-3.3 [49]: An open-source model by Meta, available via API endpoints and Hug-
gingFace, used here in its instruction-tuned form (70B variant when available).

* Mixtral [38]: A sparse mixture-of-experts model combining multiple expert networks,
suitable for dynamic contexts and scalable SC evaluations.

* Qwen3 [13]: Provided by Alibaba Cloud, Qwen3 supports multilingual instruction following
and robust handling of tabular and structured prompts. Integrated through the DashScope
APL

All models are run with consistent hyperparameters across experiments. Prompt formatting is
standardized to minimize variance due to stylistic differences in input-output formatting.

J.3 Prompt Design

Effective prompt design is essential to enable in-context learning (ICL) for strategic classification (SC).
We construct prompts that integrate both manipulation-aware and manipulation-agnostic settings
while maintaining a consistent structure. A representative prompt example is shown below, illustrating
(1) task setup, (ii) in-context examples, and (iii) batch evaluation.
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(i) Task Definition. The prompt begins with an instruction header describing the SC setup, consis-
tent with the theoretical formulation in Section

You are a strategic classification assistant. In this scenario:

There are two players: a decision maker and decision subjects. - The decision maker publishes
its policy (classification rule f). - The decision subjects, after observing the policy and associated
costs, determine whether to strategically modify their features.

Specifically, the decision maker defines a classifier mapping feature vectors to binary outcomes
y € {0,1}. Once the rule is known, individuals may modify their features to obtain a favorable
decision. Such modification incurs a cost, quantified by a cost function.

The strategic manipulation rule for decision subjects is: ... (see Definition 2.1). The optimization
rule for the decision maker is: ... (see Definition 2.2).

Please restate your understanding of the strategic classification setting in concise terms.

(ii) In-context Examples. Following the instruction, a series of labeled demonstration examples
(typically 12-24) are provided to simulate the adaptation process. Each example includes both the
initial features and the resulting classification outcome. In the strategic condition, the feature set
reflects manipulation based on our theoretical updates, while in non-strategic cases, the original
features are used.

Example 1:

Initial features:

- age: 34

- workclass: Private

- fnlwgt: 203034

- education: Bachelors

- education-num: 13

- marital-status: Separated

- occupation: Sales

- relationship: Not-in-family
- race: White

- sex: Male

- capital-gain: 0

- capital-loss: 2824

- hours-per-week: 50

- native-country: United-States

Initial result: income >50K

Example k: ...

(iii) Batch Evaluation. For large-scale evaluation, prompts are programmatically generated to
include a batch of test instances. Each prompt instructs the LLM to (1) apply the manipulation rule if
beneficial, (2) update its decision rule accordingly, and (3) output the resulting accuracy.
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Next, I will provide you with a series of applicant cases. For each, please: 1. Apply the
rules above to strategically manipulate the applicant’s features if beneficial. 2. Update your
decision-making rules as per the definitions above. 3. For each applicant, even after strategic
manipulation, the true label should remain unchanged. Finally, report the accuracy rate under
your classification rules.

Test examples: ...

Implementation Note. In our implementation, both inner (strategic manipulation) and outer (decision
adaptation) processes are unified within a single prompt, allowing the LLM to jointly simulate the
two-level optimization cycle in one inference pass.

J.4 Tllustrative Example of Bi-level Optimization via GLIM

To illustrate how our GLIM framework operates within an LLM, we consider a credit approval task
as an example.

Given several in-context examples of applicants with varying financial histories and approval out-
comes, the LLM implicitly infers a decision rule. Some features may exert a stronger influence (e.g.,
recent payment behavior), while others contribute less, shaping the internal classification boundary
through attention dynamics.

When a new agent is presented, the LLM not only predicts the approval outcome but also implicitly
anticipates how the applicant might strategically manipulate certain features (e.g., reducing overdue
counts or increasing recent payments) to receive a favorable decision.

Through repeated exposure to strategically manipulated examples in the prompt, the LLM implicitly
adjusts its decision rule toward a more stable and robust form. This corresponds to the outer-stage
optimization, while the simulated feature changes capture the inner-stage manipulation, together
completing the bi-level strategic classification process.

This example simulates both stages of strategic classification through forward-only inference, all
without parameter tuning, relying entirely on in-context learning.

J.5 Implementation Details

The experimental pipeline is implemented in Python, with integration across multiple LLM APIs.
Our infrastructure supports large-scale evaluation while ensuring reproducibility. Official SDKs (e.g.,
openai, anthropic, google-cloud-aiplatform) are used to interface with model APIs. All keys are
securely stored via encrypted environment variables. A modular prompt generator selects appropriate
examples and formats based on dataset type, manipulation setting, and model constraints. This allows
easy extensibility to new datasets or model variants.

K Additional Experimental Results

We apply our proposed ICL-based approach, GLIM, across multiple large language model APIs and
document the detailed results in Tables [3land [l

In this comparison, we note that the baseline models used in our experiments, such as linear models
and shallow neural networks, are optimized through traditional training procedures involving parame-
ter updates. In contrast, GLIM operates in a zero-update regime, leveraging the inherent in-context
reasoning capabilities of pre-trained LLMs. This distinction reflects a difference in mechanism rather
than in model capacity.
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L Discussion on Our Method

L.1 Prompting Cost for Strategic Manipulation of Agent

One potential concern when adapting strategic classification (SC) to large language models (LLMs)
lies in the cost of interaction, particularly the computational and structural overhead associated with
in-context learning (ICL). In classical SC literature, agent-side manipulation cost is often modeled as
a transformation cost over input features, such as Mahalanobis or L,, norms. In contrast, the LLM
setting introduces a new dimension: the cost of prompts for agents.

In our framework, however, we intentionally abstract away the prompting cost by adopting a percep-
tual prediction view of agent behavior, consistent with recent theoretical perspectives in strategic
learning [50,161]. From this perspective, agents are modeled as cognitive entities who respond by
adjusting their feature representations. The prompt cost, being a fixed system, level expense unrelated
to individual feature manipulation, does not influence the agent’s strategic calculus.

Moreover, in real-world deployments, prompt construction and transmission are typically handled
by system infrastructure or shared communication protocols, incurring negligible marginal cost for
individual agents. In contrast, modifying one’s features (e.g., improving test scores, altering financial
statements) entails significant personal effort or risk. Therefore, although we acknowledge that
prompting costs may be relevant in certain system-level analyses, they play no substantive role in the
agent-level incentive structure we seek to model. Hence, we choose to omit prompt cost from our
formal analysis.

L.2 Discussion on Theory-Practice Divergence at Scale

As shown in Figures|3(b) and the cosine similarity tends to decrease over iterations, indicating
a divergence between our theoretical analysis and the empirical results at scale. This divergence
may be attributable to factors such as model capacity, data distribution shifts, or nonlinearities in
real-world tasks.

We acknowledge the existence of this divergence and further analyze this phenomenon in future work
to better understand the conditions under which such divergences occur.

L.3 Discussion on API Cost Analysis of GLIM

A key practical limitation of our approach is its reliance on proprietary large language models that are
accessed via commercial APIs, such as OpenAl GPT-40 and DeepSeek. Unlike traditional machine
learning models, which can be trained or deployed locally with a fixed hardware budget, our method
depends on repeated calls to remote LLM API services.

In our experiments, we observed that the total inference cost is not constant but grows with the number
of API requests. Each additional example increases the total token count in a roughly proportional
manner, resulting in higher overall expenses. This observation highlights the need to account for
API-related cost structures when designing systems that involve frequent or large-scale model queries.
Such variability is inherent to current commercial LLM platforms and represents a fundamental
constraint for real-world deployment.

To mitigate this limitation, several directions can be explored. One potential strategy is to design
more cost-efficient prompt engineering methods that reduce the number of required API calls without
compromising performance. However, in practice, the dynamic nature of agent distributions and
context diversity makes strict control over prompt volume challenging. Another promising direction
is the development of hybrid systems, where LLM-based reasoning is selectively applied to complex
or ambiguous cases, while lightweight local models handle routine or latency-sensitive requests.
This hybrid paradigm could significantly reduce dependence on commercial APIs while maintaining
flexibility and adaptability.

Addressing these practical constraints will be an important avenue for future work, as we aim to
optimize the trade-off between the flexibility of LLM-powered reasoning and the cost-effectiveness
required for sustainable large-scale deployment.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly reflect the intent and scope of the paper,
and the contributions are stated in three parts.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations and boundaries of this work are all discussed.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete proof.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explicitly state the functions and publicly available datasets used and any
information needed to reproduce the experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use LLM APIs and provide open access to our preprocessed data, interme-
diate datasets, and part of our code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
item[] Answer: [Yes]

Justification: All details and necessary information to understand the results have been
provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the errors of the experiments and calculate the standard deviations
for the main experiments, presented in tables and figures.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We use LLM APIs and our computing resources are described in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensure compliance in every
respects.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both potential positive societal impacts and negative societal
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper about the code and datasets we have used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There is no new asset introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method of this paper is our original and the LLM is used only for
correcting writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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