
Exchangeability in Neural Network Architectures
and its Application to Dynamic Pruning

Pu (Luke) Yi 1 Tianlang Chen 1 Yifan Yang 2 Sara Achour 1 3

Abstract

Researchers have explored various ways to im-
prove the efficiency of Neural networks (NNs) by
identifying and reducing the redundancy, such as
pruning or quantizing unimportant weights. Sym-
metry in the NN architectures has been identified
by prior work as a possible type of redundancy,
but exploiting it for efficient inference is not yet
explored. In this work, we formalize the symme-
try of parameters and intermediate values in NNs
using the statistical property of exchangeablility.
We identify that exchangeable values in NN com-
putation may contain overlapping information,
leading to redundancy. Exploiting the insight, we
derive a principled general dynamic pruning algo-
rithm EXPRUNE to remove symmetry-induced re-
dundancy on a per-input basis. We also provide an
instantiation of EXPRUNE that performs neuron-
level dynamic pruning by predicting negative in-
puts to ReLU activations. We evaluate EXPRUNE
on two computer vision models, one graph model
and one language model. EXPRUNE provides
10.98–26.3% reduction in FLOPs with negligi-
ble accuracy drop and 21.01–39.05% reduction in
FLOPs with at most 1% accuracy drop. We also
demonstrate that EXPRUNE composes with static
pruning. On models that have been aggressively
pruned statically, EXPRUNE provides additional
10.24–11.11% reduction in FLOPs with negligi-
ble accuracy drop and 13.91–14.39% reduction in
FLOPs with at most 1% accuracy drop.

1Department of Computer Science, Stanford University, CA,
USA 2Nvidia, Santa Clara, CA 95051 3Department of Electrical
Engineering, Stanford University, CA, USA. Correspondence to:
Pu (Luke) Yi <lukeyi@stanford.edu>.

Presented in 3 rd Efficient Systems for Foundation Models Work-
shop at the International Conference on Machine Learning, Van-
couver, Canada. PMLR 267, 2025. Copyright 2025 by the au-
thor(s).

1. Introduction
The demand for increasingly large and powerful deep neural
networks (NNs) greatly increased the memory/compute foot-
print of NN inference tasks (Han et al., 2022; Deng et al.,
2020). To tame resource usage, researchers have devel-
oped various NN optimizations that statically reduce model
size before deployment, including static pruning (Cheng
et al., 2024), quantization (Gholami et al., 2022), knowl-
edge distillation (Gou et al., 2021), and neural architecture
search (Elsken et al., 2019). To a lesser extent, researchers
have also developed optimizations that dynamically prune
the inference computation on a per-input basis (Shazeer
et al., 2017; Teerapittayanon et al., 2016). A common thread
linking many of these methods is that they focus on elimi-
nating redundancies present in the trained model.

In this work, we present EXPRUNE, a general, dynamic
pruning optimization that enables multi-granularity (e.g.,
neuron/kernel/layer) partial computation on a per-input ba-
sis. This optimization capitalizes on the presence of ex-
changeable model parameters and intermediate values, a
property that we show is implied by certain forms of sym-
metry. Exchangeability is a statistical property that im-
plies identically distributed and symmetric interdependence
among random variables (Dean & Verducci, 1990). Intu-
itively, exchangeable model parameters and values contain
overlapping information, which induces redundant computa-
tion. In this work, we show that certain groups of parameters
are trained to be exchangeable with respect to random initial-
izations and thus produce exchangeable intermediate values
– these quantities are exchangeable by construction. We also
establish a formal link between exchangeability and permu-
tation invariance of parameters, a related model property
that has not yet been exploited for efficiency. Because the
EXPRUNE is grounded in these theoretical results, it can
generalize across model architectures, and we identify ex-
changeable parameter/value patterns in a range of modern
NNs, such as Convolution Neural Networks (CNNs), Graph
Neural Networks (GNNs) and transformer-based language
models (LMs).

To our knowledge, this work is both the first to model
NN symmetry with exchangeability and to use symmetry-
induced redundancies to perform dynamic pruning. Theo-

1



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

reticians have previously linked NN symmetries to redun-
dancy (Lim et al., 2024b) and studied the impact of these
symmetries on NN models’ ability to generalize (Dinh et al.,
2017), their interpretability (Godfrey et al., 2022a;b), and
loss landscape (Zhao et al., 2023). These works did not
link the symmetry to exchangeability, or mechanized it to
perform static/dynamic pruning.

To demonstrate the efficacy of this method, we instantiate
the EXPRUNE algorithm to prune computations of each neu-
ron’s activation by predicting negative inputs to the ReLU
activation function. We evaluate this EXPRUNE instantiation
on CNNs, GNNs, and LMs. We demonstrate that EXPRUNE
provides 10.98–26.3% reduction in FLOPs with negligible
accuracy drop and 21.01–39.05% reduction in FLOPs with
at most 1% accuracy drop. We also empirically demonstrate
that EXPRUNE composes with static pruning. On models
that have been aggressively pruned statically, EXPRUNE
provides additional 10.24–11.11% reduction in FLOPs with
negligible accuracy drop and 13.91–14.39% reduction in
FLOPs with at most 1% accuracy drop. Our evaluation code
is released at https://github.com/y553546436/
Exchangeablility-NN-Dynamic-Pruning.

2. Related Work
Symmetry in Deep Learning. Symmetry in NNs and its
impact have been extensively studied by theoreticians. Sym-
metry is known to affect model generalization (Dinh et al.,
2017), the loss landscape (Zhao et al., 2023; Lim et al.,
2024b), interpretability (Godfrey et al., 2022a;b), Bayesian
NN inference (Kurle et al., 2022), graph metanetwork pro-
cessing (Lim et al., 2024a), and aligning symmetric sub-
structures helps improving efficiency and performance of
ensemble NN models (Singh & Jaggi, 2020; Imfeld et al.,
2024; Ainsworth et al., 2023). Researchers have also ex-
plored deliberately breaking the symmetry in NN architec-
tures (Lim et al., 2024b; Pourzanjani et al., 2017; Pittorino
et al., 2022; Laurent et al., 2024; Ziyin et al., 2025). A
related but different concept is equivariance (Zaheer et al.,
2017; Satorras et al., 2021; Cohen & Welling, 2016), a
feature of special NN architectures that the NNs produce
consistent outputs under symmetry transformations of the
inputs. To the best of our knowledge, we are the first to use
dynamic pruning to reduce symmetry-induced redundancy.

Static NN Model Optimizations. Various techniques have
been proposed to derive efficient NN models with smaller
sizes and fewer parameters, including pruning (Han et al.,
2015; Cheng et al., 2024), quantization (Saha et al., 2024;
Gholami et al., 2022; Hubara et al., 2016; Qin et al., 2020),
knowledge distillation (Hinton et al., 2015; Gou et al., 2021),
and neural architectural search (Elsken et al., 2019). These
methods are statically applied before model deployment. In
contrast, ours is dynamic and applies on a per-input basis

during inference. In our evaluation (Section 5.1), we show
that our method composes with static pruning.

Dynamic Pruning at Inference. Researchers have explored
coarse-grained dynamic pruning methods, which are ap-
plied on a per-input basis during NN inference (Cheng et al.,
2024). They explored dynamically pruning layers (Teer-
apittayanon et al., 2016; Tambe et al., 2021; Han et al.,
2022), tokens (Anagnostidis et al., 2023), channels (Lin
et al., 2017; Elkerdawy et al., 2022), spatial domain (Liu
et al., 2018), and branches (Shazeer et al., 2017). These
methods are specialized to certain model architectures and
coarse-grained, operating on structures larger than neurons.
In contrast, our method can operate at very fine granularity
(neuron level) and can be generalized across multiple archi-
tectures and granularities. SnaPEA (Akhlaghi et al., 2018)
and ComPreEND (Kim et al., 2022) explored neuron-level
dynamic pruning for convolution. These methods are nar-
row in scope, focusing on CNNs and do not natively support
models with normalization layers (Ioffe & Szegedy, 2015;
Ba et al., 2016) or skip connections (He et al., 2015) in
modern CNNs. Some other works (Wakatsuki et al., 2021;
Kong et al., 2023) exploited similar patches in input feature
maps to derive upper bound of the weighted sum given the
partial sum, and terminated early when the upper bound is
below zero. These methods only take effect on similar input
patches and are specialized to CNNs and video processing.
In contrast, our method works many model architectures
and does not require similar input patches.

3. Exchangeability in Neural Networks
We present our theories on exchangeability in NNs in Sec-
tion 3.1, and then identify exchangeable parameters and
values in transformers 3.2. We use a simple ReLU-activated
multi-layer-perceptron (MLP) without bias as an example to
provide intuitions, shown in Figure 1. In this example, we fo-
cus on two hidden layers (colored) with weights W ′ and W .
Denote the neuron activations of sequential layers shown
as a, b, c. We have b = ReLU(W ′a), c = ReLU(Wb) =
ReLU(WReLU(W ′a)). Note that the choice of ReLU is
immaterial in this section, as our theorems are independent
of specific activation functions.

An obvious symmetry in the model is that permuting the hid-
den (colored) neurons’ positions (the connected edges move
along) does not change the function mapping from a to c.
We delineate the symmetry using a statistical property called
exchangeability. There are two forms of exchangeability in
Figure 1: exchangeable parameters are the colored edges
ζi = (W ′

1i,W
′
2i,W

′
3i,Wi1,Wi2), and exchangeable values

are colored intermediate values ξi = bi or ξi = W1ibi. In-
tuitively, exchangeability here means that if we view ζi’s
(i = 1, 2, 3, 4) as random variables, with respect to random
initializations of the NNs, they are from the same distribu-

2

https://github.com/y553546436/Exchangeablility-NN-Dynamic-Pruning
https://github.com/y553546436/Exchangeablility-NN-Dynamic-Pruning


Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Wb1

b2

b3

b4

c1 = ReLU(W11b1 + W12b2 + W13b3 + W14b4 )

Exchangeable

W’
a1

a2

c2a3

Figure 1. Illustration of exchangeable parameters and values in ReLU-activated MLP without bias. a, b, c are neuron activations. W ′ and
W are weight matrices. Symmetric parameters and values with different colors are exchangeable, thus identically distributed.

tion and have symmetric interdependence relationship. The
same is true for ξi’s, for any given input to the NN. We next
introduce statistical exchangeability formally.

Let P be a n × n permutation matrix for some n. The
following definition is taken from Kuchibhotla (Kuchibhotla,
2020) (assuming the probability density function exists).

Definition 1 (Exchangeablility). Suppose ζ =
(ζ1, . . . , ζn) ∈ Xn is a vector of random variables,
ζi’s are exchangeable iff their joint probability density
function p(ζ) is invariant to input permutations, i.e., ∀
permutation matrix P and ζ ∈ Xn, p(Pζ) = p(ζ).

Exchangeability is stronger than identically distributed, as
it in addition implies the symmetry among ζi’s, but it is
weaker than iid since it does not exclude dependence among
ζi’s (Chow & Teicher, 2003).

3.1. Exchangeable Parameters and Values in NNs

We present the intuitive theorem statements about exchange-
able parameters and intermediate values in NNs that can be
derived from symmetry. Please refer to Appendix A.1 for
the formal statements and proofs. Below is our key insight.

Key Insight. ζi’s are initialized exchangeable, as most
popular NN initialization schemes make the parameters iid .
Some pose additional constraints on orthogonality or unit
variances (Saxe et al., 2013; Mishkin & Matas, 2015), which
introduce dependence among initialized parameters but still
make them exchangeable. Therefore, we only need to prove
that each training step preserves the exchangeability.

Theorem 1 (Exchangeable Parameters). Given an NN ar-
chitecture, assume that the parameter groups of interest
ζi’s are initialized exchangeable. If permuting the order of
ζi’s (e.g., swap ζ1 and ζ2 in the NN) in any way does not
change the NN function, then ζi’s in the trained model are
exchangeable with respect to random initializations.

Theorem 2 (Exchangeable Values). Under the conditions of
Theorem 1, for any NN input x at inference, define ξi’s as
ξi = gθ′,ζi(x), for some function g that can be parameter-

ized by θ′ (NN parameters other than ζi’s) and one ζi. ξi’s
are exchangeable with respect to random NN initializations.

Note that it is possible that gθ′,ζi uses all or only a part of
ζi. Given a group of exchangeable parameters ζi’s, there
might be multiple groups of exchangeable values ξi’s in NN
computation, each with a different g function.

3.2. Exchangeablility in Transformers

Using the insights from Theorems 1 and 2, we identify
exchangeable parameters and values in transfomer architec-
tures. Exchangeability in other popular NN architectures
(MLP, CNNs, embeddings) is presented in Appendix A.2.
The exchangeable parameters ζi’s can often be found in
a “map-reduce” pattern, where ζi’s map the input into
exchangeable values ξi’s, which are then reduced with a
permutation-invariant function.

We analyze a decoder-only transformer architecture due to
its popularity in recent LLMs (Touvron et al., 2023; Radford
et al., 2019; Bai et al., 2023). We formalize the simple case
of single-head attention followed by a fully connected layer.
Please refer to Appendix A.2 for how the basic analysis can
be extended for normalization layers and skip connections
(using similar techniques as in CNNs).

The key insight here is that the output dimensions of the
attention layer are exchangeable. Denote the input se-
quence length as m. Let the vector dimensions for each
token be d1, d2, d3 before attention, after attention, and af-
ter fully-connected layer respectively. The input X has
shape d1 ×m, the key, query, value matrices K,Q, V all
have shape d2 × d1. The fully connected layer’s weight
W has shape d3 × d2. The function of these two layers
is WVXσ((QX)T (KX)), where σ is column-wise soft-
max. We instantiate n = d2 and ζi = Vi· ⊕W·i (or ζi =
Ki· ⊕Qi· ⊕Vi· ⊕W·i). Permuting ζi’s does not change the
NN function because (WPT )(PV )Xσ((QX)T (KX)) =
WVXσ((QX)T (KX)), for any permutation matrix P .
The exchangeable values here are the attention layer’s

3



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

output ξi = Vi·Xσ((QX)T (KX)), or the final output
ξi = W·iVi·Xσ((QX)T (KX)). Interestingly, this indi-
cates that the intermediate activations in every decoder layer
are exchangeable.

4. EXPRUNE Algorithm
We next present EXPRUNE algorithm, a dynamic pruning al-
gorithm for NNs that leverages the exchangeability property
identified in Section 3. Exchangeable values are identically
distributed. Intuitively, they may contain overlapping in-
formation, which is a form of redundancy. In this section,
we present our algorithm EXPRUNE that removes this re-
dundancy on a per-input basis at inference, by terminating
computation of exchangeable values early, when certain
confidence metric is satisfied.

4.1. General Dynamic Pruning Algorithm

Assume we want to compute a NN sub-module with func-
tion ρ(ξ), where ξi’s are exchangeable values. The input to
the sub-module have been computed. ρ is invariant to per-
mutations of ξi’s, and can be approximated by n′ (n′ ≤ n)
different ξi’s as input. Larger n′ leads to more accurate
approximation. Assume that we have a confidence met-
ric confident that takes a set of ξi’s as input, and outputs
whether we are confident about the current result. We can
also optionally have a heuristic function h, where hi assigns
a prioritization score for computation of ξi. For example,
h can be based on the cost to compute ξi, or the estimated
importance of ξi.

Algorithm 2a presents the EXPRUNE general algorithm.
It sequentially computes ξi’s in the order specified by h,
and terminate early when the current result satisfies the
confidence metric. Note that EXPRUNE can also optionally
do confidence test less often to reduce overhead. This simple
algorithm captures the idea behind many existing algorithms,
e.g., finding the best arm in multi-armed bandit problem
with smallest number of pulls possible (Bagaria et al., 2018),
adaptively computing the top k softmax values without full
evaluation (Baharav et al., 2024), and channel-level dynamic
pruning in CNNs (Lin et al., 2017).

4.2. Early Negative Prediction for ReLU

We present an specific instantiation of EXPRUNE that dy-
namically prunes computation for each ReLU-activated neu-
ron. The permutation-invariant function ρ is instantiated as
summation. The algorithm exploits the property of ReLU
that it outputs zero for negative input. We can therefore
terminate computation of ξi’s when we predict based on the
computed ξi’s that the final sum is likely negative. Note
that this is only possible because ξi’s are exchangeable
and thus identically distributed. In some cases, the sum of

ξi’s is not directly processed by ReLU, but is first scaled
and added biases, e.g., normalization layers, layer biases,
shortcut connections. The negative prediction takes into
account computed ξi’s, the number of ξi’s processed n′, the
scaling weight w, and the added bias b when determining
confidence. We devise two negative prediction methods as
follows (assuming w = 1, b = 0 for simplicity).

• Threshold. We set a predetermined threshold T and
terminate when the current mean is below threshold∑n′

i=1 ξ
′
i < n′T . This simple method only requires

one more operation per invocation, as the running sum
is computed by NN already.

• StatsTest. We perform a Wald’s test (Wald,
1992) with confidence level α, checking if

(
∑n′

i=1 ξ′i)
2

n′ ∑n′
i=1 ξ′2i −(

∑n′
i=1 ξ′i)

2
< (Φ−1(α))2, where Φ is

the cumulative density function of the standard normal
distribution, and the right hand side of the simplified
inequality can be stored as constant. This method
introduces overhead that scales linearly the number
of ξi’s, as it requires computing running sum of the
squared term. It is more costly but potentially more
accurate. Note that the assumptions of Wald’s test are
not met by all exchangeable sequences, but we find
that it works well in practice (Section 5).

Note that one parameter T or α can be shared across many
neurons, e.g., all neurons in a NN layer. We discuss the
limitations of the algorithm in Appendix A.5.

5. Evaluation
We evaluate EXPRUNE for early negative prediction for
ReLU (Section 4.2) on various models with ReLU activa-
tion functions. Table 1 summarizes our benchmarks, models,
and fidelity metrics. We do early negative prediction for
computation of exchangeable partial activations followed
by ReLU, specifically, in all convolution layers in GCN, all
convolution layers except for the first one in CNNs, and
the first linear layer after each attention layer in OPT. We
configure EXPRUNE to perform one negative prediction
when n′ = 32 to reduce overhead, i.e., EXPRUNE invokes
negative predict once when n′ = 32 and terminate if confi-
dent, otherwise computes all other ξi’s. We choose n′ = 32
as many statistics methods target sample sizes of at least
30 (VanVoorhis et al., 2007). We use the floating-point op-
eration performed (FLOPs) as our performance metric, as
it is a good proxy for inference efficiency (Mirzadeh et al.,
2024). We take into account the overhead of EXPRUNE
when calculating FLOPs. We report FLOPs of the whole
model for CNNs and GCNs as EXPRUNE is applied to most
of the computation, and the FLOPs of all the linear layers in
between an attention layer and a ReLU activation for OPT,
as EXPRUNE is only applied to these layers. The FLOPs

4



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Require: confident, h, n
ξ′ =<>
for i in argsort(h) do

Compute ξi, ξ′ = ξ′ ⊕ ξi
if confident(ξ′) then

return ρ(ξ)
end if

end for
return ρ(ξ)

(a) EXPRUNE general algorithm.

Require: negative predict, h, w, b, n
ξ′ =<>, n′ = 0
for i in argsort(h) do

Compute ξi, ξ′ = ξ′ ⊕ ξi, n′ += 1
if negative predict(ξ′, n′, w, b) then

return 0
end if

end for
return w

∑n
i=1 ξi+b

(b) EXPRUNE algorithm instantiated for neuron-level early negative
prediction of ReLU.

Figure 2. Pseudocode for EXPRUNE algorithm. ξ1, . . . , ξn are exchangeable values to be computed. h is heuristic prioritization scores,
and by default hi = i. ρ is invariant to input permutations and can be approximately evaluated with fewer than n input ξi’s.

Task Dataset Models Fidelity Metric
Image Classification CIFAR10 VGG11-BN, ResNet18-BN Accuracy

Graph Property Prediction ogbg-molhiv Graph Convolutional NN (GCN) ROC-AUC
Question Answering PIQA OPT-1.3B (pretrained model) Accuracy

Table 1. Datasets and models. BN means the model is enhanced with BatchNorm (Ioffe & Szegedy, 2015).

of these linear layers account for approximately 1/3 of the
total FLOPs in the unoptimized inference (Ding et al., 2024;
Zhang et al., 2022; Wolf et al., 2020). We use Optuna (Ak-
iba et al., 2019) to find optimal parameter combinations for
EXPRUNE on validation set, and evaluate the best candi-
dates on test set. Specifically, each layer has one parameter
T (THRESHOLD) or α (STATSTEST). Please refer to Ap-
pendix A.4 for details of our experimental setup.

5.1. Results and Analysis

Performance of EXPRUNE. Figure 3 shows the perfor-
mance of EXPRUNE. We use the default evaluation order
(hi = i). Across four models and compared to the unopti-
mized baseline, EXPRUNE is able to deliver 10.98–26.3%
reduction in FLOPs with negligible (<0.1%) fidelity drop,
and 21.01–39.05% reduction in FLOPs with at most 1%
fidelity drop. We find that STATSTEST performs much bet-
ter than THRESHOLD for CNNs. Though STATSTEST has
higher overhead, it offers more accurate negative prediction
for CNNs. In GCN and OPT, STATSTEST and THRESHOLD
perform similarly. This is because it takes fewer FLOPs to
compute each exchangeable value ξi in the 1D convolution
of GCN and the linear layer of OPT, compared to 2D con-
volution in CNNs, and thus the overhead of STATSTEST
acounts for a larger portion in the total FLOPs.

EXPRUNE and Static Pruning. We demonstrate that EX-
PRUNE can be applied to statically pruned VGG11-BN mod-
els and offer additional reduction in FLOPs. We statically
prune the VGG11-BN model by iteratively setting the 5%
parameters in all convolution kernels with smallest magni-
tude to zero, and finetune the model on the training set to

recover accuracy, following the practice of Song et al. (Han
et al., 2015). Note that the static pruning also preserves the
exchangeability similarly as training does (Section 3.1). We
take the models at 78th, 79th, and 80th iterations, where
only 1.93%, 1.83%, and 1.74% weights in convolution lay-
ers are left. We choose aggressively pruned models because
we want to study how EXPRUNE works with already ex-
tremely compressed models. To work with these models, we
configure EXPRUNE to let hi equals the number of FLOPs
required to compute ξi (number of none-zero weights in
ζi), computing the cheap ξi’s first. This corresponds to
sorting channels of convolution kernels, which can be done
statically and introduces no overhead during inference.

The results are shown in Figure 4. Across three pruned
models, EXPRUNE still provides 10.24–11.11% reduction
in FLOPs with negligible (<0.1%) accuracy drop, and
13.91–14.39% reduction in FLOPs with at most 1% ac-
curacy drop, compared to the unoptimized inference on
statically pruned models. THRESHOLD achieves better re-
sults than STATSTEST in pruned models, because in these
models the exchangeable values ξi’s are cheaper to com-
pute, making the overhead of STATSTEST offset the FLOPs
reduction of computing fewer ξi’s. Figure 4d shows all
the points in three models compared together. We find
that EXPRUNE combined with static pruning achieve bet-
ter accuracy-performance trade-off than only static prun-
ing. This indicates EXPRUNE composes with static pruning,
because EXPRUNE is able to remove symmetry-induced
redundancy, which cannot be removed by static pruning.

5



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

0.50 0.60 0.70 0.80 0.90 1.00
normalized FLOPs

0.85
0.85
0.86
0.86
0.87
0.88
0.88

ac
cu

ra
cy

(a) VGG11-BN

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
normalized FLOPs

0.91
0.91
0.91
0.92
0.92
0.92
0.92
0.92
0.93

ac
cu

ra
cy

(b) ResNet18-BN

0.80 0.85 0.90 0.95 1.00
normalized FLOPs

0.76
0.76
0.77
0.77
0.77
0.77
0.78
0.78

ro
c-

au
c

(c) GCN

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
normalized FLOPs

0.65
0.66
0.67
0.68
0.69
0.70
0.71

ac
cu

ra
cy

(d) OPT (FLOPs number of linear layers.)

Figure 3. ● is STATSTEST, ▲ is THRESHOLD, ⋆ is the unopti-
mized baseline. show fidelty and normalized FLOPs for unopti-
mized baseline. shows baseline fidelity minus 1%.

6. Conclusion
We present a novel theory that formalizes a type of symme-
try in NN architectures as statistical exchangeability. We
identify exchangeable parameters and intermediate values
in popular NNs. Exploiting this insight, we devise a general
dynamic pruning algorithm EXPRUNE that removes the re-
dundancy induced by exchangeable intermediate values. We
instantiate EXPRUNE for neuron-level dynamic pruning, by
terminating the computation early when a negative input to
ReLU is predicted. We demonstrate that EXPRUNE is able
to provide large FLOPs reduction in image CNNs, GCNs,
and LMs. In addition, we show that EXPRUNE is able to
compose with static pruning, provding additional FLOPs
reduction on CNNs that are heavily pruned statically.

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
normalized FLOPs

0.75
0.76
0.76
0.77
0.77
0.78

ac
cu

ra
cy

(a) 78th Iteration (1.93% dense convolution layers)

0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03
normalized FLOPs

0.74
0.74
0.75
0.76

ac
cu

ra
cy

(b) 79th Iteration (1.83% dense convolution layers)

0.85 0.88 0.90 0.93 0.95 0.98 1.00 1.03
normalized FLOPs

0.73
0.73
0.73
0.73
0.74
0.74
0.74
0.74
0.75

ac
cu

ra
cy

(c) 80th Iteration (1.74% dense convolution layers)

0.75 0.80 0.85 0.90 0.95 1.00
normalized FLOPs

0.73
0.74
0.75
0.76
0.77

ac
cu

ra
cy

(d) 78th, 79th, and 80th iterations

Figure 4. Fidelity-FLOPs scatter plots for statically pruned
VGG11-BN models. FLOPs are normalized to largest model’s
unoptimized baseline in (d). Colors and lines have the same mean-
ing as in Figure 3.

Impact Statement
EXPRUNE enables deploying AI with fewer resources, and
makes AI more energy efficient and environment-friendly.
It also facilitates AI inference on edge devices with limited
resources, where data is collected and processed locally
without sending it to centralized servers, enhancing user
data security and privacy.

References
Ainsworth, S., Hayase, J., and Srinivasa, S. Git Re-Basin:

Merging models modulo permutation symmetries. In The
Eleventh International Conference on Learning Represen-

6



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

tations, 2023. URL https://openreview.net/
forum?id=CQsmMYmlP5T.

Akhlaghi, V., Yazdanbakhsh, A., Samadi, K., Gupta, R. K.,
and Esmaeilzadeh, H. SnaPEA: Predictive early acti-
vation for reducing computation in deep convolutional
neural networks. In 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pp. 662–673, 2018. doi: 10.1109/ISCA.2018.00061.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Anagnostidis, S., Pavllo, D., Biggio, L., Noci, L., Lucchi, A.,
and Hofmann, T. Dynamic context pruning for efficient
and interpretable autoregressive transformers. Advances
in Neural Information Processing Systems, 36:65202–
65223, 2023.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normaliza-
tion, 2016. URL https://arxiv.org/abs/1607.
06450.

Bagaria, V., Kamath, G., Ntranos, V., Zhang, M., and Tse, D.
Medoids in almost-linear time via multi-armed bandits.
In International Conference on Artificial Intelligence and
Statistics, pp. 500–509. PMLR, 2018.

Baharav, T., Kang, R., Sullivan, C., Tiwari, M., Luxen-
berg, E., Tse, D., and Pilanci, M. Adaptive sampling
for efficient softmax approximation. Advances in Neu-
ral Information Processing Systems, 37:117580–117613,
2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M.,
Lin, J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J.,
Men, R., Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang,
P., Wang, S., Wang, W., Wu, S., Xu, B., Xu, J., Yang,
A., Yang, H., Yang, J., Yang, S., Yao, Y., Yu, B., Yuan,
H., Yuan, Z., Zhang, J., Zhang, X., Zhang, Y., Zhang,
Z., Zhou, C., Zhou, J., Zhou, X., and Zhu, T. Qwen
technical report, 2023. URL https://arxiv.org/
abs/2309.16609.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Cheng, H., Zhang, M., and Shi, J. Q. A survey on deep
neural network pruning: Taxonomy, comparison, analysis,
and recommendations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):10558–10578,
2024. doi: 10.1109/TPAMI.2024.3447085.

Chow, Y. S. and Teicher, H. Probability theory: indepen-
dence, interchangeability, martingales. Springer Science
& Business Media, 2003.

Cohen, T. and Welling, M. Group equivariant convo-
lutional networks. In Balcan, M. F. and Weinberger,
K. Q. (eds.), Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pp. 2990–2999,
New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
cohenc16.html.

Dean, A. M. and Verducci, J. S. Linear transformations that
preserve majorization, schur concavity, and exchangeabil-
ity. Linear algebra and its applications, 127:121–138,
1990.

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. Model com-
pression and hardware acceleration for neural networks:
A comprehensive survey. Proceedings of the IEEE, 108
(4):485–532, 2020.

Ding, N., Tang, Y., Qin, H., Zhou, Z., Xu, C., Li, L., Han,
K., Heng, L., and Wang, Y. MemoryFormer: Minimize
transformer computation by removing fully-connected
layers. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=04EC4ZnZJj.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp
minima can generalize for deep nets. In Proceedings of
the 34th International Conference on Machine Learning -
Volume 70, ICML’17, pp. 1019–1028. JMLR.org, 2017.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation in
reinforcement learning, 2017. URL https://arxiv.
org/abs/1702.03118.

Elkerdawy, S., Elhoushi, M., Zhang, H., and Ray, N. Fire
together wire together: A dynamic pruning approach with
self-supervised mask prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2022.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: a survey. J. Mach. Learn. Res., 20(1):1997–2017,
January 2019. ISSN 1532-4435.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods for ef-
ficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Godfrey, C., Brown, D., Emerson, T., and Kvinge, H. On
the symmetries of deep learning models and their internal
representations. In Proceedings of the 36th International

7

https://openreview.net/forum?id=CQsmMYmlP5T
https://openreview.net/forum?id=CQsmMYmlP5T
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v48/cohenc16.html
https://openreview.net/forum?id=04EC4ZnZJj
https://openreview.net/forum?id=04EC4ZnZJj
https://arxiv.org/abs/1702.03118
https://arxiv.org/abs/1702.03118


Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Conference on Neural Information Processing Systems,
NIPS ’22, Red Hook, NY, USA, 2022a. Curran Asso-
ciates Inc. ISBN 9781713871088.

Godfrey, C., Brown, D., Emerson, T., and Kvinge, H. On the
symmetries of deep learning models and their internal rep-
resentations. Advances in Neural Information Processing
Systems, 35:11893–11905, 2022b.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge
distillation: A survey. Int. J. Comput. Vision, 129(6):
1789–1819, June 2021. ISSN 0920-5691. doi: 10.1007/
s11263-021-01453-z. URL https://doi.org/10.
1007/s11263-021-01453-z.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems,
2015.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and
Wang, Y. Dynamic Neural Networks: A Survey .
IEEE Transactions on Pattern Analysis & Machine
Intelligence, 44(11):7436–7456, November 2022. ISSN
1939-3539. doi: 10.1109/TPAMI.2021.3117837. URL
https://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3117837.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus), 2023. URL https://arxiv.org/abs/
1606.08415.

Hinton, G. E., Vinyals, O., and Dean, J. Dis-
tilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http:
//dblp.uni-trier.de/db/journals/corr/
corr1503.html#HintonVD15.

Holm, S. A simple sequentially rejective multiple test pro-
cedure. Scandinavian journal of statistics, pp. 65–70,
1979.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks. In Proceedings
of the 30th International Conference on Neural Informa-
tion Processing Systems, NIPS’16, pp. 4114–4122, Red
Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

Imfeld, M., Graldi, J., Giordano, M., Hofmann, T., Anag-
nostidis, S., and Singh, S. P. Transformer fusion with
optimal transport. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=LjeqMvQpen.

Ioffe, S. and Szegedy, C. Batch normalization: accelerating
deep network training by reducing internal covariate shift.
In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume
37, ICML’15, pp. 448–456. JMLR.org, 2015.

Kim, N., Park, H., Lee, D., Kang, S., Lee, J., and Choi, K.
ComPreEND: Computation pruning through predictive
early negative detection for ReLU in a deep neural net-
work accelerator. IEEE Transactions on Computers, 71
(7):1537–1550, 2022. doi: 10.1109/TC.2021.3092205.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Kong, R., Li, Y., Yuan, Y., and Kong, L. ConvReLU++:
Reference-based lossless acceleration of Conv-ReLU op-
erations on mobile cpu. In Proceedings of the 21st Annual
International Conference on Mobile Systems, Applica-
tions and Services, pp. 503–515, 2023.

Krizhevsky, A. Learning multiple layers of features
from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

Kuchibhotla, A. K. Exchangeability, conformal prediction,
and rank tests. arXiv preprint arXiv:2005.06095, 2020.

Kurle, R., Herbrich, R., Januschowski, T., Wang, B.,
and Gasthaus, J. On the detrimental effect of invari-
ances in the likelihood for variational inference. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=ft4xGJ8tIZH.

Laurent, O., Aldea, E., and Franchi, G. A symmetry-aware
exploration of bayesian neural network posteriors. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=FOSBQuXgAq.

Lim, D., Maron, H., Law, M. T., Lorraine, J., and Lucas,
J. Graph metanetworks for processing diverse neural
architectures. In The Twelfth International Conference
on Learning Representations, 2024a. URL https://
openreview.net/forum?id=ijK5hyxs0n.

Lim, D., Putterman, T., Walters, R., Maron, H., and Jegelka,
S. The empirical impact of neural parameter symme-
tries, or lack thereof. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024b. URL https://openreview.net/forum?
id=pCVxYw6FKg.

8

https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3117837
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3117837
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
http://dblp.uni-trier.de/db/journals/corr/corr1503.html#HintonVD15
https://openreview.net/forum?id=LjeqMvQpen
https://openreview.net/forum?id=LjeqMvQpen
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://openreview.net/forum?id=ft4xGJ8tIZH
https://openreview.net/forum?id=ft4xGJ8tIZH
https://openreview.net/forum?id=FOSBQuXgAq
https://openreview.net/forum?id=FOSBQuXgAq
https://openreview.net/forum?id=ijK5hyxs0n
https://openreview.net/forum?id=ijK5hyxs0n
https://openreview.net/forum?id=pCVxYw6FKg
https://openreview.net/forum?id=pCVxYw6FKg


Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Lin, J., Rao, Y., Lu, J., and Zhou, J. Runtime neural
pruning. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
a51fb975227d6640e4fe47854476d133-Paper.
pdf.

Liu, Z., Xu, J., Peng, X., and Xiong, R. Frequency-
Domain dynamic pruning for convolutional neural
networks. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
a9a6653e48976138166de32772b1bf40-Paper.
pdf.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. In 1st
International Conference on Learning Representations
(ICLR 2013), 2013.

Mirzadeh, S. I., Alizadeh-Vahid, K., Mehta, S., del Mundo,
C. C., Tuzel, O., Samei, G., Rastegari, M., and Fara-
jtabar, M. ReLU strikes back: Exploiting activation
sparsity in large language models. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=osoWxY8q2E.

Mishkin, D. and Matas, J. All you need is a good init. In 4th
International Conference on Learning Representations
(ICLR 2016), 2015.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

Pittorino, F., Ferraro, A., Perugini, G., Feinauer, C., Bal-
dassi, C., and Zecchina, R. Deep networks on toroids:
removing symmetries reveals the structure of flat regions
in the landscape geometry. In International Conference
on Machine Learning, pp. 17759–17781. PMLR, 2022.

Pourzanjani, A. A., Jiang, R. M., and Petzold, L. R. Im-
proving the identifiability of neural networks for bayesian
inference. In NIPS workshop on bayesian deep learning,
volume 4, pp. 31, 2017.

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N.
Binary neural networks: A survey. Pattern Recognition,
105:107281, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Saha, R., Sagan, N., Srivastava, V., Goldsmith, A., and Pi-
lanci, M. Compressing large language models using low
rank and low precision decomposition. In The Thirty-
eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024. URL https://openreview.
net/forum?id=lkx3OpcqSZ.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equiv-
ariant graph neural networks. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 9323–9332. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/satorras21a.html.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=B1ckMDqlg.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In 3rd Inter-
national Conference on Learning Representations (ICLR
2015), pp. 1–14. Computational and Biological Learning
Society, 2015.

Singh, S. P. and Jaggi, M. Model fusion via optimal trans-
port. Advances in Neural Information Processing Systems,
33, 2020.

Tambe, T., Hooper, C., Pentecost, L., Jia, T., Yang, E.-
Y., Donato, M., Sanh, V., Whatmough, P., Rush, A. M.,
Brooks, D., and Wei, G.-Y. EdgeBERT: Sentence-level
energy optimizations for latency-aware multi-task NLP
inference. In MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO
’21, pp. 830–844, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450385572.
doi: 10.1145/3466752.3480095. URL https://doi.
org/10.1145/3466752.3480095.

Teerapittayanon, S., McDanel, B., and Kung, H.
BranchyNet: Fast inference via early exiting from deep
neural networks. In 2016 23rd International Conference
on Pattern Recognition (ICPR), pp. 2464–2469, 2016.
doi: 10.1109/ICPR.2016.7900006.

9

https://proceedings.neurips.cc/paper_files/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a9a6653e48976138166de32772b1bf40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a9a6653e48976138166de32772b1bf40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a9a6653e48976138166de32772b1bf40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/a9a6653e48976138166de32772b1bf40-Paper.pdf
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=lkx3OpcqSZ
https://openreview.net/forum?id=lkx3OpcqSZ
https://proceedings.mlr.press/v139/satorras21a.html
https://proceedings.mlr.press/v139/satorras21a.html
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://doi.org/10.1145/3466752.3480095
https://doi.org/10.1145/3466752.3480095


Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

VanVoorhis, C. W., Morgan, B. L., et al. Understanding
power and rules of thumb for determining sample sizes.
Tutorials in quantitative methods for psychology, 3(2):
43–50, 2007.

Wakatsuki, T., Kanai, S., and Fujiwara, Y. Accelerate
inference of cnns for video analysis while preserving
exactness exploiting activation sparsity. In Smola,
A., Dimakis, A., and Stoica, I. (eds.), Proceedings of
Machine Learning and Systems, volume 3, pp. 860–872,
2021. URL https://proceedings.mlsys.
org/paper_files/paper/2021/file/
b9799a12d683d136cc817f94b73a8938-Paper.
pdf.

Wald, A. Sequential tests of statistical hypotheses. In
Breakthroughs in statistics: Foundations and basic theory,
pp. 256–298. Springer, 1992.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jer-
nite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame,
M., Lhoest, Q., and Rush, A. M. Transformers: State-
of-the-art natural language processing. In Proceedings
of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
MoleculeNet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. Deep sets. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pp.
3394–3404, Red Hook, NY, USA, 2017. Curran Asso-
ciates Inc. ISBN 9781510860964.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zhao, B., Ganev, I., Walters, R., Yu, R., and Dehmamy, N.
Symmetries, flat minima, and the conserved quantities of

gradient flow. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=9ZpciCOunFb.

Ziyin, L., Xu, Y., and Chuang, I. L. Remove symme-
tries to control model expressivity. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=Gv0TOAigIY.

10

https://proceedings.mlsys.org/paper_files/paper/2021/file/b9799a12d683d136cc817f94b73a8938-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/b9799a12d683d136cc817f94b73a8938-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/b9799a12d683d136cc817f94b73a8938-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/b9799a12d683d136cc817f94b73a8938-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=9ZpciCOunFb
https://openreview.net/forum?id=9ZpciCOunFb
https://openreview.net/forum?id=Gv0TOAigIY
https://openreview.net/forum?id=Gv0TOAigIY


Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

A. Technical Appendices and Supplementary Material
A.1. Formalism

The following theorem states a condition under which a transformation on exchangeable random variables preserves their
exchangeability (Kuchibhotla, 2020; Dean & Verducci, 1990) (stronger condition).
Theorem 3 (Exchangeability Preservation). Suppose ζ = (ζ1, . . . , ζn) ∈ Xn is a vector of exchangeable random variables.
Fix a transformation G : Xn → Xn. If G is permutation equivariant, i.e., ∀ permutation matrix P and ζ ∈ Xn,
PG(ζ) = G(Pζ), then G(·) preserves exchangeability of ζ.

Parameter space symmetry is a relevant concept to describe the symmetry in parameter space. Given a NN architecture with
N real-valued parameters, we denote the NN function parameterized by θ ∈ RN as fθ : X → Y , where X ,Y are input and
output spaces respectively. A parameter space symmetry is defined as follows (Lim et al., 2024b).
Definition 2 (Parameter Space Symmetry). A function ω : RN → RN is a parameter space symmetry if fω(θ)(x) =
fθ(x),∀x ∈ X , θ ∈ RN , i.e., fω(θ) and fθ are the same function for any parameters θ ∈ RN .

In the example (Figure 1), each permutation on ζi = (W ′
1i,W

′
2i,W

′
3i,Wi1,Wi2) (the associated weights of each hidden

neuron) is a parameter space symmetry.

Denote the parameters of interest as ζ = (ζ1, . . . , ζn), where ∀i, ζi ∈ Rm, ζ ∈ (Rm)n. For simple notations, when clear
from the context, we use the same variable name x to denote a mn-long vector in Rmn or a n-long vector of m-long vectors
(Rm)n with the same elements. This means x can be automatically flattened ((Rm)n → Rmn) as x = ⊕n

i=1xi, where ⊕ is
vector concatenation, or reshaped (Rmn → (Rm)n) as xij = x(i−1)m+j . Assume that θ = θ′ ⊕ ζ, where θ′ is a vector of
other parameters. Define a function ωP : RN → RN as ωP (θ) = θ′ ⊕ Pζ, where Pζ = ⊕n

i=1(Pζ)i ∈ Rmn, for some
permutation matrix P . In other words, ωP permutes ζi’s in θ with the permutation matrix P .
Theorem 4 (Exchangeable Parameters). Given an NN architecture with function fθ, assume that ζi’s are initialized
exchangeable. If for any permutation matrix P , ωP defined above is a parameter space symmetry, then ζi’s are exchangeable
after training, with respect to random initializations.
Proof. Here we assume using simple gradient descent for supervised learning on classification tasks for simplicity, but the
the proof easily generalizes to other optimization algorithms. As we are only interested in ζi’s, we formalize a training step
as a transformation on only the ζi’s.1 Denote the NN loss function as Lζ : X × Y ×RN−mn → R, parameterized by ζ.
Lζ(x, y, θ

′) = ψ(fθ(x), y) for some metric function ψ such as cross entropy. A training step GS : (Rm)n → (Rm)n takes
a training batch of B samples S ∈ (X × Y)B , and does a gradient descent step GS(ζ) = ζ − γ

∑
(x,y)∈S ∇ζLζ(x, y, θ

′),
where γ is the learning rate, and ∇ζLζ(x, y, θ

′) is the gradient of Lζ with respective to ζ, evaluated at (x, y, θ′).

According to Theorem 3, we only need to prove that each training step GS is equivariant with respect to any permutation P
of ζi’s, i.e., PGS(ζ) = GS(Pζ), for all ζ, θ′, S. We have

PGS(ζ) = P (ζ − γ
∑

(x,y)∈S

∇ζLζ(x, y, θ
′)) = Pζ − γ

∑
(x,y)∈S

P∇ζLζ(x, y, θ
′)

GS(Pζ) = Pζ − γ
∑

(x,y)∈S

∇PζLPζ(x, y, θ
′).

Note that ∇PζLPζ is not the same as ∇ζLPζ , as the derivatives in the gradient vector of the former case shall match
the parameter order in Pζ rather than ζ. Since ωP is a parameter space symmetry, by definition 2, ∀ζ ∈ (Rm)n, fθ
and fωP (θ) are the same function, and thus Lζ and LPζ are the same function. Therefore, it is straightforward that
∇PζLPζ(x, y, θ

′) = P∇ζLζ(x, y, θ
′) for all x, y, ζ, θ′. This implies that PGS(ζ) = GS(Pζ).

Theorem 5 (Exchangeable Values). Under the conditions of Theorem 4, after training, for any NN input x ∈ X , define ξi’s
as ξi = gθ′,ζi

(x), for some function g that can be parameterized by θ′ and one ζi. ξi’s are exchangeable with respect to
random NN initializations.
Proof. Since θ′ is shared among ξi’s, the only variable in ξi is ζi. (ζ1, . . . , ζn) → (ξ1, . . . , ξn) is an exchangeability
preserving transformation by Theorem 3. Therefore, ξi’s are exchangeable.

Note that it is possible that gθ′,ζi uses all or only a part of ζi in its computation. Given a group of exchangeable parameters
ζi’s, there might be multiple groups of exchangeable values ξi’s in NN computation, each with a different g function.

1In fact, one can prove that permuting ζi’s does not affect the update to other parameters in θ′.

11



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

C1 = ReLU(Conv(B1,W11) + Conv(B2,W12))

Exchangeable
A

W’
B

W
C

Figure 5. Illustration of exchangeable parameters and values in a ReLU-activated CNN without bias. A,B,C are neuron activations. W ′

and W are convolution kernels. Symmetric parameters and values with different colors are exchangeable, thus identically distributed.

A.2. Exchangeable Parameters and Values in Popular Neural Networks

We omit the proof of parameter space symmetry when it is straightforward.

Multi-Layer Perceptron: A small MLP example without bias is shown in Figure 1. In general, for two sequential
fully-connected layers with weight matrices and biases (W ′, b′) and (W, b), we can instantiate n as the number of neurons in
the middle, ζi =W ′

i·⊕b′i⊕W·i (exchangeable parameters) and ξi = σ(W ′
i·a+b

′
i)W·i, or ξi = σ(W ′

i·a+b
′
i) (exchangeable

values), where σ is any activation function. Since biases in other NN structures can be similarly handled, for simplicity, we
assume that there is no bias in the following cases.

Convolutions: We analyze 2D convolution in CNNs with 1 group as an example. The analysis easily extends to 1D or multi-
dimensional convolutions and grouped convolutions, covering models such as GCNs. An illustration of the exchangeable
structures in CNNs is shown in Figure 5. Consider two sequential convolution layers where the number of channels of
input A, first output B are C1, C2 respectively. The convolution weights W ′ and W have shapes (C2, C1,KW1,KH1) and
(C3, C2,KW2,KH2) (output channels, input channels, kernel width, kernel height) respectively. Define the 2D convolution
function conv, such that B = conv(A,W ′). Now we consider multiple common structures in CNNs. When we instantiate
ζ, we assume that the weight tensors are flattened when concatenated together.

Two consecutive convolution layers. We instantiate n = C2, ζi = W ′
i· ⊕W·i, and ξi = conv(σ(conv(A,W ′

i·)),W·i), or
ξi = σ(conv(A,W ′

i·)), for any activation function σ.

Normalization Layers. Normalization layers (NL) such as batch normalization (Ioffe & Szegedy, 2015) and layer nor-
malization (Ba et al., 2016) are popular for stabilizing training. It applies a channel-wise scaling and bias. In CNNs,
one normalization layer is usually inserted right before or after each activation function. We present an analysis for the
latter case but the analysis also applies to the former case. Denote the NL functions as NL with parameters nl, and NLi

denotes the NL applied to the i-th channel, parameterized by nli. We instantiate n = C2, ζi = W ′
i· ⊕ nli ⊕W·i, and

ξi = conv(NLi(σ(conv(A,W
′
i·))),W·i).

One convolution layer followed by a fully connected layer. For simplicity, we assume B goes through channel-wise
average pooling pool (pool(B) is of shape C2) before the fully connected layer. The analysis easily generalizes to
other/no pooling as well. The second layer then has function Wpool(B). We instantiate n = C2, ζi = W ′

i· ⊕W·i, and
ξi = pool(conv(A,W ′

i·))W·i.

Skip Connections. Skip connections from A to C do not affect the rest of the analysis. Skip connections from a layer before
A to B, and from B to a layer after C are similar, and we present an analysis for the former case. We can simply include in
ζi the parameters that produce, and also the parameters that consume, the i-th channel of the shortcut values. The rest of the
analysis is unaffected.

Embeddings Embeddings are used for many tasks such as NLP (Mikolov et al., 2013; Pennington et al., 2014) and
graphs (Kipf & Welling, 2017). Embeddings are “distributed” representations as the relevant information is represented
in many dimensions. Our theory characterizes the symmetry often present in the embedding dimensions as statistically
exchangeable. For example, in Word2vec (Mikolov et al., 2013), the NN architecture is simply an embedding layer (look-up
table) and a fully connected layer, followed by a softmax operation σ. It takes a word as input, and output likelihoods for
each word to be in its context. Let m be the number of words, n be the embedding dimension, A be the embedding matrix
for all the words, M be the fully connected layer weight matrix (both of size m× n). The NN takes into input a word index
k, and outputs σ(MAT

k ). We instantiate ζi = A·i ⊕M·i and ξi = AkiM·i. Alternatively, ξi = Aki, which indicates that

12



Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

Require: winner confident, h, n
ξ′ =<>, class scores =< 0, 0, . . . , 0 >, n′ = 0
for i in argsort(h) do

Compute ξi, ξ′ = ξ′ ⊕ ξi, class scores += ξi, n′ += 1
cur winner = argmax(class scores)
if winner confident(ξ′, class scores, cur winner, n′) then

return cur winner
end if

end for
return argmax(class scores)

Figure 6. Pseudocode for EXPRUNE algorithm instantiated for prediction head in classification. ξ1, . . . , ξn are exchangeable values to be
computed. h is heuristic prioritization scores, and by default hi = i. ξi’s and class scores are in Rk, where k is the number of classes.

learned embedding dimensions are exchangeable.

A.3. EXPRUNE Instantiated for Prediction Head in Classification

We present another possible instantiation of EXPRUNE for prediction head in NNs, i.e., the last fully-connected layer
preceding the argmax, which is widely used in modern NNs such as MLP, CNNs, GNNs, transformers for classification
tasks. Note that this instantiation is not evaluated in this work as the prediction head often comprises only a small portion
of the total computation. However, one can potentially adapt it to replace argmax with softmax, and this sub-structure
accounts for a large portion of computation in the attention computation in transformers. Let k be the number of classes, each
ξi ∈ Rk provides a partial score for each class. Note that the granularity of this instantiation is larger than the instantiation
in Section 4.2, because each ξi is a vector instead of a single value, i.e., it is the computation from one neuron to all k output
neurons, not to just 1 output neuron. We provide two possible winner confident metrics as follows.

THRESHOLD. We set a predetermined threshold and terminate when the margin of mean between the largest and second
largest scores is below threshold, i.e., terminate when c1 − c2 < nT , where the largest and second largest values in
class scores as c1, c2, respective.

STATSTEST. We can conduct a Wald’s test (Wald, 1992) for cur winner against each of other classes, and terminate when
all k − 1 tests pass. Each test compares the mean of the largest class score to another class score. Since multiple tests are
involved, we can use the Holm-Bonferroni method (Holm, 1979) to assign adjusted confidence levels for each test, given the
overall type-I error bound α.

A.4. Evaluation Details

All the details can be found in our codebase at https://github.com/y553546436/
Exchangeablility-NN-Dynamic-Pruning.

Datasets and Models. We have 3 datasets, covering 3 different tasks and input types. The test set labels of PIQA (Bisk et al.,
2020) are not published, so we use the validation set as the test set, and 10% of the training set as the validation set. This is
reasonable because the pretrained OPT model was not trained on PIQA training set. For CIFAR10 (Krizhevsky, 2009), we
use a fixed split of the training set, with 90% samples used for training, 10% used as validation set, and use the default test set.
We use the default dataset splits for ogbg-molhiv dataset (Wu et al., 2018). We use popular CNNs for image inputs, GCN for
graph inputs, and pretrained transformer language model for text inputs. We choose OPT (Zhang et al., 2022) because it is
an off-the-shelf ReLU activated language model. We use the default OPT architecture from HuggingFace (Wolf et al., 2020).
The GCN architectures follow Kipf and Welling (Kipf & Welling, 2017). We use the adapted CNNs (Simonyan & Zisserman,
2015; He et al., 2015) for CIFAR10 from https://github.com/kuangliu/pytorch-cifar. Specifically, the
first layer and the pooling layer before the prediction head are adapted in size for the image size and class number in
CIFAR10. We train image CNNs and GCNs locally using the training set, and used the pretrained weights for OPT (Zhang
et al., 2022) from HuggingFace (Wolf et al., 2020). For local training of CNNs, we use AdamW optimizer, 5 × 10−3

learning rate, 16 batch size, 10−4 weight decay, 1cycle learning rate scheduler, and 30 epochs. When statically pruning
VGG11-BN, we use the same training scheme in every pruning iteration to finetune the model after 5% parameters in all
convolution kernels are set to zero. For local training of GCN, we use AdamW optimizer, 10−3 learning rate, 32 batch size,

13

https://github.com/y553546436/Exchangeablility-NN-Dynamic-Pruning
https://github.com/y553546436/Exchangeablility-NN-Dynamic-Pruning
https://github.com/kuangliu/pytorch-cifar


Exchangeability in Neural Network Architectures and its Application to Dynamic Pruning

10−4 weight decay, 1cycle learning rate scheduler, and 80 epochs.

Baselines and Metrics. As noted in Section 2, there is no neuron-level dynamic pruning algorithm for modern NN
architectures to the best of our knowledge. Therefore, we configure EXPRUNE with THRESHOLD and STATSTEST, described
in Section 4.2, and compare with the unoptimized inference. THRESHOLD uses one FLOP as the threshold n′T is stored as
a constant. STATSTEST uses 2n′ + 6 FLOPs as it uses 2n′ FLOPs for computing the sum of ξ′2i , and 6 more to compute the
Wald’s statistic and compare it to the stored threshold.

Hyperparameter optimization. As different layers in NN may have different error sensitivities, we use Optuna (Akiba et al.,
2019) to find optimal parameter combinations for EXPRUNE. Specifically, each layer has one parameter T (THRESHOLD)
or α (STATSTEST). We tune the hyperparameters for 2000 trials on the validation set. Using the data we have on validation
set, we select a subset of promising parameter configurations to run on the test set. This emulates the process of selecting
the hyperparameter combination for deployment. We iteratively select all the combinations on the fidelity-FLOPs Parato
Frontier (dubbed one Parato slice), remove them from the set, and choose all on the next Parato slice. We include all points
on the first 5 Parato slices.

Across all models, we set the range of α as [0, 0.5] in STATSTEST for all layers. The range of T in THRESHOLD is [−30, 0]
for CNNs, [−1, 0] for GCN, [−0.005, 0] for OPT. For statically pruned models, we additionally add a parameter r in range
[0.1, 0.5] to tune for each layer, which controls when EXPRUNE is disabled. When the ratio of the total FLOPs that can be
potentially pruned for a channel’s computation to the overhead of EXPRUNE is below r, EXPRUNE is disabled. For each
model, we provide a set of initial points to warm up Optuna’s surrogate model. Please see our code for details.

A.5. Limitations and Future Work

Exchangeability and Confidence Test. Exchangeability of a finite sequence of random variables could indicate either that
they are conditionally iid , or that they form a case of sampling without replacement. The latter case does not satisfy the
assumptions made by Wald’s test (Wald, 1992). We do not know which case that exchangeable parameters and values in
NNs fall into exactly. It is interesting and valuable to investigate stronger statistical properties to describe them. It is of great
practical value to devise better confidence test for EXPRUNE that is more accurate and more efficient.

Other EXPRUNE Instantiations. We provided one EXPRUNE instantiation that targets ReLU activation, but EXPRUNE can
work with other activation functions (e.g., GELU (Hendrycks & Gimpel, 2023) and SiLU (Elfwing et al., 2017)) with adjusted
confidence metric. It should be noted that ReLU can effectively replace GELU or SiLU for efficient inference (Mirzadeh
et al., 2024). EXPRUNE can also be instantiated to other granularities (e.g., kernel, layer, branches) and target other forms of
partial evaluation.

EXPRUNE and Hardware Acceleration. EXPRUNE reduces FLOPs but also breaks certain structures of computation
which are exploited in hardware accelerators. We note that SnaPEA (Akhlaghi et al., 2018) shared similar compute patterns
to EXPRUNE, and it is demonstrated that the FLOP reduction of SnaPEA could translate to real speed up and energy saving
with special architecture support. It is of great practical value to design special architectures and hardware support to
accelerate EXPRUNE.

14


