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Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) often suffers from
the scarcity of positive samples on challenging tasks such as formal theorem
proving. In this work, we propose ProofAug+, an RL training pipeline for
LLM theorem provers that improves the training performance by acquir-
ing more positive samples during rollout through ProofAug, a previously
developed inference-time proof repair technique. The design of ProofAug+
is guided by two principles, progress guarantee and variance reduction, to
address the performance degradation and policy collapse issues observed
when integrating ProofAug into GRPO via naive direct replacement. These
principles first lead to a novel LLM RLVR algorithm, Proximal Language
Modeling Policy Optimization (PLPO), where in each iteration we use the
exact objective as the optimization target instead of surrogate objectives
used in TRPO/PPO and employ a gradient rejection mechanism to sup-
press large policy updates. Then, we integrate ProofAug into PLPO in a
constrained way to achieve a balance between the exploitation of additional
positive reward signals and the suppression of distribution shift that could
violate the progress guarantee principle. Experiments show that PLPO
achieves better stability than baseline GRPO-like algorithms while main-
taining higher entropy during training. Building on PLPO, the resulting
ProofAug+ pipeline further yields significant performance gains.

1 Introduction

Reinforcement Learning with verifiable rewards (RLVR) has been viewed as a promising way
towards advanced reasoning LLMs, given the success of DeepSeek-R1(DeepSeek-AI et al.,
2025) in mathematical reasoning and coding tasks. While RLVR is expected to benefit from
the exploration-exploitation mechanism of RL to gain performance improvement, recent
work(Nath et al., 2025; Yue et al., 2025) shows experimental evidence that popular RLVR
algorithms, such as PPO (Schulman et al., 2017b), GRPO (Zheng et al., 2025), and even
the more recent DAPO (Yu et al., 2025) that aims to encourage exploration, tend to gain
performance improvement mainly from self-distillation, rather than from the ‘capability
gain’ measured by the pass@k performance of high k value.
There have been many efforts to address this problem. Among them, one line of work
tries to inject capability into the model by introducing extra offline data into the training
process(Dong et al., 2025; Liu et al., 2025b). Specifically, given a training prompt, an extra
response is provided by an explicit offline policy or from an offline dataset (which can be seen
as sampled from an underlying behavior policy). Such practice can be seen as an extension
of the typical SFT-RL pipeline of the LLM post-training. However, a fundamental drawback
of these methods is that the offline behavior policy can no longer provide much help to the
training when the online one surpasses its ability.
In this work, we show that for formal theorem proving – a task where the model response is
highly structured and the extra info can be obtained during verification – we can efficiently
boost the sample efficiency of RLVR training by exploiting the structural information in the
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model proof. Specifically, we use the ProofAug method (Liu et al., 2025a) to repair part of
the traces that fail to prove the theorems. It can be viewed as injecting the environment
interaction information into the online policy to get an associate policy.
We first conduct a preliminary experiment showing that directly replacing the original
proof with the ProofAug proof in RLVR can hurt performance. Then, we analyze the
possible causes and conclude two principles, progress guarantee and variance reduction,
to guide the algorithm design for applying ProofAug. Our derivations according to the
principles lead to a novel policy optimization method Proximal Language modeling Policy
Optimization (PLPO) that is applicable for training any autoregressive language model.
Next, as for integrating the ProofAug into PLPO, we carefully select the variables to mod-
ify in the gradient update expression and add several conditions for applying the replacement
of ProofAug, in order to avoid large extents of principle breaking.
We call the whole training pipeline described above by ProofAug+, and verify the effective-
ness of it on the Goedel-Pset dataset. Our experimental results show that PLPO outper-
forms the baseline algorithms in stability and performance, and ProofAug+ further boosts
the training efficiency. We conclude this section by emphasizing our contributions:

• We propose a novel RLVR training scheme for formal theorem proving, ProofAug+,
which boosts the training process through integrating ProofAug into the RLVR
pipeline in a conditioned way. ProofAug+ shows a margin of ~4.0% accuracy when
compared with the GRPO-hybrid baseline.

• A novel RLVR training algorithm for LLM, Proximal Language Modeling Proximal
Optimization (PLPO), is proposed as the base algorithm of ProofAug+. Benefiting
from using the exact policy advantage as the optimization target and employing
a gradient rejection mechanism to substitute ratio-clipping, PLPO is superior in
stability and performance than popular PPO variant counterparts.

• The ProofAug+ scheme serves as a theorem-proving domain example of boosting
RLVR training sample efficiency with inference-time techniques. It is hopeful that
it can inspire integration of techniques that share similar properties with ProofAug
in other domains into the RLVR training.

2 Preliminaries

2.1 RLVR algorithms for LLMs

This subsection introduces popular Reinforcement Learning algorithms (with verifiable re-
wards) for LLMs and introduces our notations.
Token-level RL. Following Ouyang et al. (2022); Shao et al. (2024); DeepSeek-AI et al.
(2025), the current mainstream practice of using RL for LLMs employs a token-level setting,
where each token corresponds to an RL step. Tasks can be modeled as T -horizon MDPs
when the number of maximum new tokens allowed to generate for the model is T . The
state space is defined to be V∗, the set of sequences with elements in V, including the null
string. Let St, Rt denote the state and reward at time t, respectively. The specialness
of the language modeling setting for RL lies in that the t + 1 time state St+1 is exactly
the concatenation of the time-t state and action. Thus, a trace τ is determined only by
the states S0, S1, · · · , ST . For integrity, we assume that the LMs always output padding
tokens till time T when it stopped earlier than T . The environment reward is typically
a sequence-level 0-1 reward dependent on a verifier, such as the Lean 4 proof checker in
our case. For a token sequence s ∈ V∗, the verifier outputs a binary value R(s) indicating
whether s completes the task. In the token-level setting, the reward could only be non-zero
at t = T − 1 and equals to R(ST ).
When the initial state S0 is drawn from an underlying theorem statement distribution
D ∈ P(V∗), the goal of RL is to learn a parameterized policy πθ (the LLM, with fixed
sampling strategy) to maximize the expected total return

ηD(π) := Ex∼D[ηx(π)], (1)
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where ηx(π) := Vπ(x) := Eτ∼π[
∑T−1

t=0 Rt|S0 = x] is the prompt-wise target (the value for π
at prompt x). To optimize Equation (1), policy gradient methods are the popular choices.
Vanilla policy gradient, or REINFORCE (Sutton et al., 1999), performs gradient ascent
on the target using the Monte-Carlo estimated gradient. Since the vanilla policy gradient
may suffer from large variance and instability, subsequent methods propose to constrain
the policy update in each iteration to address this issue. For example, the Proximal Policy
Optimization (PPO) (Schulman et al., 2017b) method applies ratio-clipping on a surrogate
objective and proposes to optimize the following target

JPPO
π (π̃) = Es∼ρπ,a∼π(·|s) [min (rAπ(s, a), clip(r, 1− ϵl, 1 + ϵh)Aπ(s, a))] , (2)

for each iteration. Here, ρπ(s) :=
∑∞

t=0 γ
tPπ(St = s) denotes the visiting frequency of s

when using the policy π to sample the traces, Aπ(s, a) := Vπ(s⊕a)−Vπ(s) is the advantage
function, and r := π̃(a|s)

π(a|s) is the importance ratio. estimated by generalized advantage
estimation (GAE) (Schulman et al., 2018) method, using an extra parameterized value
model. Recently, Shao et al. (2024) proposes GRPO, where the advantage is estimated by
the group normalized reward (R(Si)−mean({Si}ni ))/Std{Si}ni for a group of samples {Si}ni
from the same prompt to obviate the need of an extra value model.
Sequence-level RL. The recent work Zheng et al. (2025) argues for aligning the unit of the
the reward and that of the optimization target, thus proposing the following sequence-level
GSPO target

JGSPO
π (π̃) = Ey∼π(·|x) [min (rAπ(y), clip(r, 1− ϵl, 1 + ϵh)Aπ(y))] , (3)

where r :=
(

π̃(y|x)
π(y|x)

) 1
|y| and y ∼ π(·|x) represents that y is a response sampled from π given

the prompt x. The estimation of the advantage Aπ maintains the same with GRPO.

2.2 Preliminary Experiment: Naive Direct-Replacement

(a) Performance(dotted) and entropy (b) Tactic usage statistics

Figure 1: Results of naive trace replacement using ProofAug

We first briefly introduce Lean and ProofAug here. Lean is an interactive theorem prover
that supports verifying any proof to a statement by inferring whether it can be reduced to
axioms. Given a proof attempt by LLM, if the attempt is not passing the Lean proof check,
ProofAug repairs in by trying a list of tactics on the intermediate conjectures the errors
locate in in a back-tracing way to repair the proof. See Section A for more details.
To integrate ProofAug into the RL pipeline, a naive idea is to replace all the wrong proof
traces with corrected ones, by which we call ‘Direct-Replacement’. We implement this idea
and show the experimental results in Figure 1. The lines with dots are test performance,
and those without dots are entropy curves. It can be seen that adding ProofAug naively not
only is detrimental to both the stability and performance, but also accelerates the entropy
collapse. We also make a statistics on the tactics the models use after 10 steps training
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Algorithm 1 PLPO: Proximal Language Modeling Policy Optimization
Require: Max iteration M , Task prompt distribution D, rollout sample size N , sample

batch size B, initial LLM πinit and an optimizer (AdamW)
1: π̃ ← πinit
2: for Iteration k = 1, 2, · · · to M do
3: π ← π̃
4: for Batch b = 1, 2, · · · to ⌊NB ⌋ do
5: Sample a batch of prompts Db of size B
6: For each prompt x, sample n responses yx = {yi}ni=1 according to π
7: Get the rewards {R(yi)}ni=1 from the verifier
8: Calculate gb ← 1

Bn

∑
x∈Db

∑
i∈[n] g

i according to Equation (4)
9: Use the optimizer to update π̃ given the current step gradient gb

10: end for
11: end for
12: Output π̃

in these two settings in Figure 1b. It can be seen that after direct-replacement, the model
tends to use fewer tactics. We call this phenomenon ‘tactic collapse’.
The preliminary experiment suggests that we need some design principles to guide the
integration of inference-time techniques into RLVR.

3 Method

To handle the issues observed in the preliminary experiment, the design of ProofAug+ is
guided by the following two principles: 1)Progress Guarantee. There should be a theoret-
ical guarantee or at least a convincing informal argument that the objective Equation (1) is
expected to increase in each policy optimization iteration. Besides, entropy collapse should
be mitigated to encourage exploration, in order that the training can still make progress in
the long-term. 2)Variance Reduction. The variance of the gradient estimation should
be reduced to increase the stability and accelerate the training. Factors leading to the
overfitting to the data should be suppressed.
In this section, we will first review the derivation of PPO and propose to make several
modifications according to the principles, obtaining our PLPO algorithm tailored for LLM
training, as shown in Algorithm 11. The PLPO sample gradient is:

gi =
(
1− 1ĜRA(y

i;π, π̃)
) π̃(yi|x)
π(yi|x)

Âπ(y
i)∇ log π̃(yi|x), (4)

where we use the LOO advantage estimation Âπ(y
i) = R(yi)−

∑
j ̸=i R(yj)

n−1 , and GRA stands
for the gradient rejection area,

ĜRA(yi;π, π̃) = (Âπ(y
i) > 0 ∧ r(yi) > 1 + ϵh) ∨ (Âπ(y

i) < 0 ∧ r(yi) < 1− ϵl), (5)

where we provide two types of rejection indicator r, ‘sum’ and ‘average’, for more flexible
control of rejection area than ratio-clipping:

r(y) :=


π̃(y|x)
π(y|x) , sum-type,(
π̃(y|x)
π(y|x)

) 1
|y|

, average-type.
(6)

Based on PLPO, given a ProofAug operator O on VT that transforms yi to yiO, we set
a list of conditions for applying O on yi in ProofAug+, represented by a boolean value
function C(yi; yiO, {R(yj)}nj=1), abbreviated by Ci for the ith sample. The sample gradient

1For simplicity, we only describe the algorithm for the case of only 1 epoch in each iteration.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 ProofAug+
Require: Max iteration M , Task prompt distribution D, rollout sample size N , sample

batch size B, initial LLM πinit, an optimizer (AdamW), a ProofAug operator O and a
ProofAug application criteria C (Equation (8))

1: π̃ ← πinit
2: for Iteration k = 1, 2, · · · to M do
3: π ← π̃
4: for Batch b = 1, 2, · · · to ⌊NB ⌋ do
5: Sample a batch of prompts Db of size B
6: For each prompt x, sample n responses yx = {yi}ni=1 according to π
7: Get the rewards {R(yi)}ni=1 from the verifier
8: Apply ProofAug on the samples to get yiO ← O(yi)
9: Get the rewards {R(yiO)}ni=1 from the verifier

10: Calculate Ci ← C(yi; yiO, {R(yj)}nj=1)

11: Calculate yiOC ← CiyiO + (1− Ci)yi

12: Calculate gb ← 1
Bn

∑
x∈Db

∑
i∈[n] g

iOC according to Equation (7)
13: Use the optimizer to update π̃ given the current step gradient gb
14: end for
15: end for
16: Output π̃

in ProofAug+ is:

giOC :=
(
1− 1ĜRA(y

iOC ;π, π̃)
) π̃(yiOC |x)
π(yiOC |x)

∇ log π̃(yiOC |x)Âπ(y
iOC ), (7)

where Âπ(y
iOC ) = R(yiOC ) −

∑
j ̸=i R(yj)

n−1 as before, and yiOC = CiyiO + (1 − Ci)yi. The
specific form of C is:

C(yi; yiO, {R(yj)}nj ) =
{

True if d(yiO) ̸= 1 and d(yiO) ≥ d(yi) and ∀j, R(yj) = 0,

False otherwise, (8)

where d(y) is the depth of the proof.
The rest of the section states how PLPO and ProofAug+ are derived and explains the design
choices.

3.1 Derivation of PLPO

As stated above, PLPO is derived from PPO with modifications tailored for LLM under our
two principles. Let us review the derivation of PPO in the token-level setting first.

Reviewing the derivation of TRPO/PPO

The optimization target for TRPO and PPO (before the ratio-clipping operation) is derived
in an RL setting with a discounting factor γ < 1. Given a stochastic policy π, the following
identity (proved in Kakade & Langford (2002)) helps express the expected return η(π̃) of
another policy π̃ in terms of π: η(π̃) = η(π) +

∑
s ρπ̃(s)

∑
a π̃(a|s)Aπ(s, a).

Schulman et al. (2017a) shows a lower bound for the policy advantage η(π̃)− η(π):

η(π̃)− η(π) ≥ JCPI
π (π̃)− 4γ maxs,a |Aπ(s, a)|

(1− γ)2
Dmax

KL (π, π̃),

where the conservative policy iteration (Kakade & Langford, 2002) objective JCPI
π (π̃) =∑

s ρπ(s)
∑

a π̃(a|s)Aπ(s, a) is a quantity that does not include a ρπ̃(·) term and is thus
used as the surrogate objective in TRPO and PPO.
In this work, we point out that for the LM question-response task, where we have a fixed
horizon T and γ = 1, and ρπ(s) = π(s) :=

∏T−1
t=0 π(st+1|s:t), there is no need to use the

surrogate objective JCPI
π (π̃). Instead, we have the following lemma:

5
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Lemma 1. Under the token-level LLM RL setting described in Section 2.1, the policy
advantage η(π̃)− η(π) =: JLM

π (π̃) has the following form:

JLM
π (π̃) := η(π̃)− η(π) = Es∼ρq,a∼q

[
π̃(s⊕ a|x)
q(s⊕ a|x)

Aπ(s, a)

]
, (9)

and the corresponding gradient is

∇JLM
π (π̃) = Es∼ρq,a∼q

[
π̃(s⊕ a|x)
q(s⊕ a|x)

∇ log π̃(s⊕ a|x)Aπ(s, a)

]
, (10)

where q(·|·) : V× V∗ → R+ is any sampling LM whose support contains the support of π̃.

We leave the proof of the lemma to Section C. The lemma can immediately lead to a policy
optimization algorithm as long as we take the old policy π as q and determine an advantage
estimation method. Nevertheless, the resulted algorithm could be instable due to the large
updates. Following the variance reduction principle, we seek for a technique for suppressing
large updates.

Gradient Rejection Mechanism

Although clipping the importance ratio is the standard PPO practice, we propose to de-
couple the target gradient estimation and large update suppression via a gradient rejection
mechanism. We show our arguments below.
First note that the ratio-clipping operation equals to setting the sample gradients falling in
the area
{(s, a)|((Aπ(s, a) > 0) ∧ (r(s, a) > ϵhigh)) ∨ ((Aπ(s, a) < 0) ∧ (r(s, a) < ϵlow))}, (11)

to zero, in order to control the policy update in one iteration. In PPO and its variants such
as GRPO, r is the importance ratio π̃(a|s)

π(a|s) . As to the case of Equation (10), if we follow-suit
to use π̃(s⊕a)

q(s⊕a) as the gradient rejection indicator, an obvious issue is that for long sequences
the ratio might accumulate as the number of token increases and could make the rejection
rate higher than expected.2

In this work, we argue that there is no a priori reason to choose a term that serves for the
estimation of the policy advantage as the criteria for large updates rejection. Instead, we
provide two choices for the update rejection criteria, ‘average’ and ‘sum’,

r(s, a) :=

{
π̃(s⊕a|x)
π(s⊕a|x) , sum,

( π̃(s⊕a|x)
π(s⊕a|x) )

1
|s|−|x|+1 , average,

(12)

to meet the need of different training scenarios. The ‘average’ choice corresponds to the
length normalized importance ratio used in Zheng et al. (2025), and the ‘sum’ choice de-
grades the target into a ratio-clipping loss.
Thus, the final form of the (expected) token-level PLPO gradient is

∇JPLPO-token
π (π̃) = Es∼ρq,a∼q

[
(1− 1GRAtoken(s, a;π, π̃))

π̃(s⊕ a)

q(s⊕ a)
∇ log π̃(s⊕ a)Aπ(s, a)

]
,

(13)
where the token-level GRA is defined by

GRAtoken(s, a;π, π̃) := (Aπ > 0 ∧ r(s, a) > 1 + ϵh) ∨ (Aπ < 0 ∧ r(s, a) < 1− ϵl).

Transfer to sequence-level setting

In Equation (13), the token-level advantage Ai
π,t(y

i
:t, y

i
t+1) is hard to estimate without a

value model. The group-relative advantage estimation in GRPO and subsequent work such
2A simple ideal experiment is to assume all token-wise ratio subjects to the Gaussian distribution,

thus the random walk makes the sequence ratio explodes.

6
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as Dr. GRPO (Liu et al., 2025c) directly use the sequence-level advantage estimations, for
example, the LOO estimation Ri

LOO := R(Si) − 1
n−1

∑
j ̸=i R(Sj), to substitute the token-

level advantage Ai
π,t(y

i
:t, y

i
t+1) = Vπ(y

i
:t+1) − Vπ(y

i
:t) for all t values. Although R(Si) is an

estimation of Vπ(y
i
:t+1) when conditioned on the filtration before t + 1, 1

n−1

∑
j ̸=i R(Sj) is

not correlated to Vπ(y
i
:t) unless the other traces share identical prefix with yi.

As a result, we decide to transfer to the sequence-level setting to avoid this obstacle. To
transfer Equation (13) to the sequence-level setting, it suffices to use the whole response y
to substitute the token action a and the only state s that will be sampled is the initial state
S0 = x. We obtain

∇JPLPO
π (π̃) = Ey∼π(·|x)

[
(1− 1GRA(y;π, π̃))

π̃(y)

π(y)
∇ log π̃(y)Aπ(y)

]
, (14)

with the GRA

GRA(y;π, π̃) := (Aπ(y) > 0 ∧ r(y) > 1 + ϵh) ∨ (Aπ < 0 ∧ r(y) < 1− ϵl) (15)

and r(y) defined in Equation (6). We note that under the sequence-level RL setting, the
LOO estimation is unbiased for the sequence-level advantage Aπ(y) = Vπ(x ⊕ y) − Vπ(x).
The practical algorithm corresponding to Equation (14) is exactly the PLPO algorithm
shown in Algorithm 1.

3.2 Integrating ProofAug into PLPO

We introduce the associate policy notation πO(y) := Pry′∼π(y
′O = y) to represent the

procedure of first using π to sample, then applying O on the sampled proof. The naive
direct-replacement approach introduced Section 2.2 can be interpreted as using πO as the
rollout distribution for estimating the PPO target Equation (2) while directly using π(yi) to
estimate π(yiO), thus causing a distribution shift in the estimation of the importance ratio,
breaking the progress guarantee principle. At the same time, it also results in inappropriate
gradient rejection rule, which could lead to large update breaking the variance reduction
rule. As a result, despite that πO is expected to explore more positive reward traces, the
training performance degrades.
Conditioned proof repair. To mitigate the distribution shift when estimating the PLPO
πO-sample gradient,(

1− 1ĜRA(y
iO;πO, π̃)

) π̃(yiO|x)
πO(yiO|x)

ÂπO
(yiO)∇ log π̃(yiO|x), (16)

we choose to add constraints for applying ProofAug to strike a balance between additional
positive reward signals and distribution shift, i.e. the repaired proofs that we infer do not
benefit the training too much are abandoned. Specifically, we set the following restrictions
for applying the ProofAug operation O on a proof response yi: 1)d(yiO) ̸= 1 and d(yiO) ≥
d(yi). We reject the ProofAug proofs with depth=1, i.e. the single tactic case, and cases
where ProofAug decreases the depth of the original proof. 2)∀j ∈ [n], R(yj) = 0. This
conservative strategy requires we only apply ProofAug when all the original proofs fail. The
boolean value function C(yi; yiO, {R(yj)}nj=1) indicates whether the above conditions are
satisfied. The explicit expression of C is given in Equation (8).
We explain the design of two rules as follows:(1)Depth-decrease proofs discourage the model
to think deep. It only tells the model to use the high-level automated tactic (2)When we
can already sample an R(y) = 1 trace from the prompt, learning from this proof is expected
to inject most of the key knowledge related to the statement to the model. As a result of
the two constraints, we can reduce the frequency of ProofAug application, thus suppressing
the distribution shift and tactic collapse without satisfying the useful positive reward signal
that can teach the model novel proving patterns.
There is another difference between our final ProofAug+ algorithm and the one correspond-
ing to Equation (16). Equation (16) is derived by using πO as the Monte-Carlo estima-
tion sampling distribution. As a result, the LOO estimation of the value baseline uses
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{R(yjO)}j ̸=i instead of the original reward baseline
∑

j ̸=i R(yj)

n−1 . In order to let π̃ learn not
only from the actions that increase VπO

, but also from what πO can prove while π cannot,
we choose to use the original reward baseline.
Integrating the techniques introduced in this section, including PLPO and conditioned proof
repair, we finally obtain our ProofAug+ pipeline, as described in Algorithm 2.

4 Experiment

4.1 Experimental Setup

Dataset and Base model In this work, we validate our claims by training Qwen2.5-1.5B-
Instruct (Qwen et al., 2025) on Goedel-Pset (Lin et al., 2025a), the largest open-source
Lean 4 statement dataset covering from high school exercises to Olympiad-level problems,
and test the trained model on a subset of 497 samples of Goedel-Pset. We first sample 10k
problems from Goedel-Pset and use Kimina-Prover-1.7B (Wang et al., 2025) to prove them.
Among the 10k samples, 8844 statement-proof pairs (with the thinking process removed)
can be extracted. We use the 8844 data pairs as the cold-start data to fine-tune Qwen2.5-
1.5B-Instruct. The obtained model is the initial model for our Reinforcement Learning.
Base training setting. We perform RL starting from the initial model using the rest of
Goedel-Pset (of around 1.72M problems) as the prompt set with a constant learning rate
1e-6. We use OpenRLHF (Hu et al., 2024) as the training framework and use the async
training mode with async queue size equal to 1. Our base strategy is grpo-hybrid, where
we set the clip ratios as ϵl = 0.2 and ϵh = 0.28 and set the KL coefficient to 0 following
DAPO (Yu et al., 2025), and use an LOO estimation for the advantage following Liu et al.
(2025c). For plpo, we use the sum-type gradient rejection by default, with ϵl = 0.2 and
ϵh = 0.28. For gspo, we follow Zheng et al. (2025) to use ϵl = 0.2, ϵh = 0.27, but still use
the LOO estimation. In each policy iteration, we sample n = 8 samples with a temperature
T = 0.6 for each of the N = 64 prompts in a rollout. For each rollout, we train for 1 epoch,
and each training batch contains B = 8 prompts. The maximum number of tokens for
model response is 3072. All trainings are done on 8 Nvidia RTX 3090 GPUs with 4 GPUs
for sampling and the other 4 are used for 4 policy actors.
Lean and ProofAug setting. We build a lean server based on the Lean REPL v4.20.0
tailored for tactic-wise execution for ProofAug. The server also includes cache systems like
in the Kimina server(Santos et al., 2025) to accelerate the verification process to meet the
need of RLVR training efficiency. During training, there is a 120s timeout for each step in
Lean and a 180s limit for the whole verification process including the first-pass compilation
and the ProofAug stage. Also, for encouraging the tactic diversity, we shuffle the order of
the heuristic tactics to use for ProofAug.

4.2 Results

PLPO enjoys stability and better long-run performance Figure 2 shows both the
pass@1 accuracy curve and the entropy curve for comparing PLPO and GRPO-hybrid in
our setting.
ProofAug+ achieves clear margin over the baseline algorithm. Figure 2 also shows
that the improvement of ProofAug+ comes from both the PLPO algorithm and the condi-
tioned proof repair introduced in Section 3.2. The performance gain compared to the peak
accuracy of GRPO-hybrid is around 4.0%.
Decoupling gradient estimation and update rejection helps with stability. In
Figure 3, the original GSPO algorithm leads to instability and entropy collapse during
training in our task. This is because GSPO is tailored for long-sequence thinking models,
while our task focuses on directly generating proofs of code. In contrast, when using the
sum-type gradient rejection rule described in Equation (5), the GSPO training then goes
well.
For extensive experimental results, see Section D.
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Figure 2: The performance of ProofAug+ compared with baseline algorithm GRPO-hybrid

Figure 3: The original GSPO vs. GSPO with sum-type gradient rejection

5 Conclusion and Limitations

In conclusion, this work proposes practical solutions for the failure of naive direct-
replacement integration of ProofAug into RLVR, guided by the progress guarantee and
variance reduction principles. The proposed PLPO algorithm is a general sequence-level al-
gorithm for LLM RL training, and the ProofAug+ pipeline is inspiring for designing schemes
for integrating inference-time techniques in other domains.
Nevertheless, there are some limitations for this work. First, this work has focused the case
where the sampling strategy of the LLM during training completely matches that in the
evaluation time, to rule out the factors led by train-test sampling mismatch. As to popular
pass@k evaluations, we remain the integration of ProofAug with pass@k training (Walder
& Karkhanis, 2025; Chen et al., 2025) for future work. Second, it is important to try PLPO
on different experimental setups, since the optimization behaviors on thinking models and
other domains might be very different. Finally, this work only includes derivations of the
algorithms according to the guiding principles, lacking rigorous convergence analysis for
them, which we also remain for future work.
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Reproducibility statement

The experiments in this paper are reproducible by following the setup in Section 4.1 and
the reproducibility-related details stated in Section E. The proofs of the lemmas in the main
text can be found in Section C.
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A An introduction to Lean and ProofAug

Lean is one popular proof assistant grounded in dependent type theory, which provides
more powerful features than simply typed systems. Also, Lean (from version 4) itself is a
functional programming language that can serve for general programming tasks and allows
metaprogramming just in the same environment of common usage (which is called reflection)
for users to flexibly build their own syntax and tactics. Moreover, the theory library for
Lean, Mathlib (mathlib Community, 2020), containing theorems from a large range of fields
including Algebra, Combinatorics, Analysis and Probability and is continuously growing.
Nevertheless, there is currently no built-in hammer tools such as Sledgehammer for Lean
yet, making the proof writing in Lean troublesome in some cases. Fortunately, some tactics
provide by Lean, such as simp, bound, omega, linarith and the in-development grind
are also very strong and are keep growing, making Lean an easier-to-use language as the
time goes.
An example of Lean 4 proof generated by Kimina-Prover (Wang et al., 2025), a state-of-the-
art level LLM theorem prover, is shown below:
theorem amc12a_2021_p3 (x y:N) (h0:x + y = 17402) (h1: 10|x) (h2: x/10=y):

↑x-↑y=(14238: Z) := by
have h3: x = 10 * y := by
have h6: x / 10 = y := h2
have h7: x = 10 * (x / 10) := by

omega
rw [h6] at h7
omega

have eq1: 11 * y = 17402 := by
omega

have h8: y = 1582 := by
omega

have h9: x = 15820 := by
omega

omega

It can be seen that the proof is in a hybrid procedural and declarative style, containing rich
hierarchical proof structure that will be very useful in our methods. ProofAug designs a
pre-parser that identify keywords such as by as the indicator of the start of a block and
infer from the number of indents whether a line of Lean code ends the block. Viewing each
block as a subtree, we can then identify the tree structure.
Given the tree structure of a proof, the ProofAug procedure (without their ERP module) is
illustrated in Section A, which is modified from Liu et al. (2025a).

B Related Work

RLVR for theorem provers. The technique reports Lin et al. (2025b); Wang et al. (2025)
use RLVR training pipeline to enhance the performance after data collection. However, they
only provide the weights of models, rather than fully open-source the whole training pipeline
and data. In contrast, Our ProofAug+ method is fully open-sourced and we also release a
Lean server to contribute to the community.
Sequence level Reinforcement Learning algorithms. GSPO (Zheng et al., 2025) is
the most similar algorithm with PLPO among the sequence-level optimization methods.
However, it is not derived from the theory, thus there is no direct guarantee of step progress
for the total return. Team et al. (2025) uses the online mirror descent algorithm for policy
optimization, using the relative entropy as the regularization instead of the loss-clipping
technique or our gradient rejection rule.
Reinforcement Learning with offline policy. Liu et al. (2025b) interpolates the cross-
entropy loss and policy gradient surrogates, but no theoretical guarantee or analysis are
made. Dong et al. (2025) also aims at countering the model capability in RLVR and pro-
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Figure 4: An illustration flow of ProofAug. Each box in the flowchart corresponds to
a proof step. (a) The initial proof encounters an error when proving Conjecture 1-0. (b)
We replace the original proof of Conjecture 1-0 with a sorry and continue, until a syntactic
error occurs at Conjecture 1-1. (c) The proof of Conjecture 1 is replaced by sorry, and we
obtain a semi-proof with two sorry. (d) Automation tools are called to prove Conjecture 0
and Conjecture 1, but failing at the latter one. (e) We resort to a more coarse level of proof.
(f) Finally, this time we successfully find a proof with automation tools.

vides an estimate of the underlying behavior policy for the offline data. In contrast to these
works, ProofAug propose the concept of associate policy, which depends on the environ-
ment feedback, equipping algorithms like PLPO+ProofAug with the potential of steadily
performance boost.

C Proofs of Lemmas

To prove Lemma 1, we first need to prove the sequence-level version of policy advantage
expression:
Lemma 2. For the token-level RL setting introduced in Section 2, i.e. with horizon T ,
γ = 1 and St+1 = St ⊕At, we have

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a), (17)

Proof. On one hand, we have

Eτ∼π̃

[
T−1∑
t=0

Aπ(St, st+1)

]
= Eτ∼π̃

[
T−1∑
t=0

R(st) + Vπ(St+1)− Vπ(St)

]

= Eτ∼π̃

[
Vπ(ST )− Vπ(S0) +

T−1∑
t=0

R(St)

]

= −Es0 [Vπ(s0)] + Eτ |π̃

[ ∞∑
t=0

γtr(st)

]
= −η(π) + η(π̃).

(18)
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Figure 5: ProofAug+ encourages diverse tactic usage

On the other hand, we have

Eτ |π̃

[
T−1∑
t=0

Aπ(st, at)

]
=

∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a), (19)

Proof of lemma Lemma 1. According to Lemma 2, we have

η(π̃)− η(π) =
∑
s

π̃(s)
∑
a

π̃(a|s)Aπ(s, a)

=
∑
s

q(s)
π̃(s)

q(s)

∑
a

q(a|s) π̃(a|s)
q(a|s)

Aπ(s, a)

=
∑
s

ρq(s)
∑
a

q(a|s) π̃(s⊕ a)

q(s⊕ a)
Aπ(s, a)

= Es∼ρq,a∼q

[
π̃(s⊕ a)

q(s⊕ a)
Aπ(s, a)

]
,

(20)

where all summations are taken on the support of π̃. As to the gradient, by exchanging
the expectation and the ∇ (where we have assumed q satisfies regularity conditions that
controls ∥∇π̃

q ∥) and using ∇π̃ = π̃∇ log π̃, we have

∇JLM
π (π̃) = Es∼ρq,a∼q

[
π̃(s⊕ a|x)
q(s⊕ a|x)

∇ log π̃(s⊕ a|x)Aπ(s, a)

]
(21)

as desired.

D Additional Experimental Results

Tactic Usage Statistics. Figure 5 shows that our conservative strategy can efficiently
encourage the usage of more tactics, avoiding policy collapse.
Tactic distribution. We show it here for comparison with Figure 6. It can be seen that
the tactics used by ProofAug come to the top usages.
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(a) Baseline RL

(b) Direct Replacement

(c) Conditioned Proof Repair

Figure 6: Tactic distribution comparison after 10 training steps

Results on miniF2F. We also test the performance of the trained models on the cross-
language benchmark miniF2F (Zheng et al., 2021). It turns out that while PLPO works
well, adding the conservative strategy ProofAug is not beneficial for generalization to out-

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of-distribution data. This result also calls for a more diverse and high-quality open-source
formal statement dataset.

Figure 7: Performance on miniF2F.

More Comparison between PLPO and other algorithms. We show extra experiments
for PLPO comparison in Figure 8.

Figure 8: Comparison of PLPO, GRPO, and GSPO

E Reproducibility Details

Data Processing of Goedel-pset. We download the Goedel-pset from their huggingface
repo3. Then we sample 10k samples for training the initial model for RL and 497 samples
(that has no coverage with the 10k) for evaluation. The remained are used for training. For

3https://huggingface.co/datasets/Goedel-LM/Goedel-Pset-v1
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the training prompt construction, we follow the non-CoT template of DeepSeek-Prover-V2-
7B (Ren et al., 2025) to construct messages and then use the Qwen2.5-Instruct built-in chat
template to translate to a prompt.
OpenRLHF setting. We turn on the use of –full-determination in our experiments and
always use the default seed when using the OpenRLHF train_ppo_ray script for our exper-
iment.
Evaluation and Lean setting. We use evaluate any model/checkpoint three times with
different seeds to provide an error bar at each data point. The result is only reproducible for
the specific Lean and Lean REPL version. We also observe that since some tactics of Lean
such as omega include CPU-heavy searching procedures which may make the verification
result might differ for CPUs of different performance. Nevertheless, since we have set a 120s
timeout for each Lean step, this situation should rarely happen.

F The Usage of Large Language Models

During writing this paper, we have used commercial LLMs in helping polishing the para-
graphs after we first write a draft and detecting grammar errors.
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