
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ProofAug+: Boosting Reinforcement Learn-
ing for LLM Theorem Provers with Condi-
tioned Proof Repair

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement Learning with Verifiable Rewards (RLVR) often suffers from
the scarcity of positive samples on challenging tasks such as formal theorem
proving. In this work, we propose ProofAug+, an RL training pipeline for
LLM theorem provers that improves the training performance by acquir-
ing more positive samples during rollout through ProofAug, a previously
developed inference-time proof repair technique. The design of ProofAug+
is guided by two principles, progress guarantee and variance reduction, to
address the performance degradation and policy collapse issues observed
when integrating ProofAug into GRPO via naive direct replacement. These
principles first lead to a novel LLM RLVR algorithm, Proximal Language
Modeling Policy Optimization (PLPO), where in each iteration we use the
exact objective as the optimization target instead of surrogate objectives
used in TRPO/PPO and employ a gradient rejection mechanism to sup-
press large policy updates. Then, we integrate ProofAug into PLPO in a
constrained way to achieve a balance between the exploitation of additional
positive reward signals and the suppression of distribution shift that could
violate the progress guarantee principle. Experiments show that PLPO
achieves better stability than baseline GRPO-like algorithms while main-
taining higher entropy during training. Building on PLPO, the resulting
ProofAug+ pipeline further yields significant performance gains.

1 Introduction

Reinforcement Learning with verifiable rewards (RLVR) has been viewed as a promising way
towards advanced reasoning LLMs, given the success of DeepSeek-R1(DeepSeek-AI et al.,
2025) in mathematical reasoning and coding tasks. While RLVR is expected to benefit from
the exploration-exploitation mechanism of RL to gain performance improvement, recent
work(Nath et al., 2025; Yue et al., 2025) shows experimental evidence that popular RLVR
algorithms, such as PPO (Schulman et al., 2017b), GRPO (Zheng et al., 2025), and even
the more recent DAPO (Yu et al., 2025) that aims to encourage exploration, tend to gain
performance improvement mainly from self-distillation, rather than from the ‘capability
gain’ measured by the pass@k performance of high k value.
There have been many efforts to address this problem. Among them, one line of work
tries to inject capability into the model by introducing extra offline data into the training
process(Dong et al., 2025; Liu et al., 2025b). Specifically, given a training prompt, an extra
response is provided by an explicit offline policy or from an offline dataset (which can be seen
as sampled from an underlying behavior policy). Such practice can be seen as an extension
of the typical SFT-RL pipeline of the LLM post-training. However, a fundamental drawback
of these methods is that the offline behavior policy can no longer provide much help to the
training when the online one surpasses its ability.
In this work, we show that for formal theorem proving – a task where the model response is
highly structured and the extra info can be obtained during verification – we can efficiently
boost the sample efficiency of RLVR training by exploiting the structural information in the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

model proof. Specifically, we use the ProofAug method (Liu et al., 2025a) to repair part of
the traces that fail to prove the theorems. It can be viewed as injecting the environment
interaction information into the online policy to get an associate policy.
We first conduct a preliminary experiment showing that directly replacing the original
proof with the ProofAug proof in RLVR can hurt performance. Then, we analyze the
possible causes and conclude two principles, progress guarantee and variance reduction,
to guide the algorithm design for applying ProofAug. Our derivations according to the
principles lead to a novel policy optimization method Proximal Language modeling Policy
Optimization (PLPO) that is applicable for training any autoregressive language model.
Next, as for integrating the ProofAug into PLPO, we carefully select the variables to mod-
ify in the gradient update expression and add several conditions for applying the replacement
of ProofAug, in order to avoid large extents of principle breaking.
We call the whole training pipeline described above by ProofAug+, and verify the effective-
ness of it on the Goedel-Pset dataset. Our experimental results show that PLPO outper-
forms the baseline algorithms in stability and performance, and ProofAug+ further boosts
the training efficiency. We conclude this section by emphasizing our contributions:

• We propose a novel RLVR training scheme for formal theorem proving, ProofAug+,
which boosts the training process through integrating ProofAug into the RLVR
pipeline in a conditioned way. ProofAug+ shows a margin of ~4.0% accuracy when
compared with the GRPO-hybrid baseline.

• A novel RLVR training algorithm for LLM, Proximal Language Modeling Proximal
Optimization (PLPO), is proposed as the base algorithm of ProofAug+. Benefiting
from using the exact policy advantage as the optimization target and employing
a gradient rejection mechanism to substitute ratio-clipping, PLPO is superior in
stability and performance than popular PPO variant counterparts.

• The ProofAug+ scheme serves as a theorem-proving domain example of boosting
RLVR training sample efficiency with inference-time techniques. It is hopeful that
it can inspire integration of techniques that share similar properties with ProofAug
in other domains into the RLVR training.

2 Preliminaries

2.1 RLVR algorithms for LLMs

This subsection introduces popular Reinforcement Learning algorithms (with verifiable re-
wards) for LLMs and introduces our notations.
Token-level RL. Following Ouyang et al. (2022); Shao et al. (2024); DeepSeek-AI et al.
(2025), the current mainstream practice of using RL for LLMs employs a token-level setting,
where each token corresponds to an RL step. Tasks can be modeled as T -horizon MDPs
when the number of maximum new tokens allowed to generate for the model is T . The
state space is defined to be V∗, the set of sequences with elements in V, including the null
string. Let St, Rt denote the state and reward at time t, respectively. The specialness
of the language modeling setting for RL lies in that the t + 1 time state St+1 is exactly
the concatenation of the time-t state and action. Thus, a trace τ is determined only by
the states S0, S1, · · · , ST . For integrity, we assume that the LMs always output padding
tokens till time T when it stopped earlier than T . The environment reward is typically
a sequence-level 0-1 reward dependent on a verifier, such as the Lean 4 proof checker in
our case. For a token sequence s ∈ V∗, the verifier outputs a binary value R(s) indicating
whether s completes the task. In the token-level setting, the reward could only be non-zero
at t = T − 1 and equals to R(ST).
When the initial state S0 is drawn from an underlying theorem statement distribution
D ∈ P(V∗), the goal of RL is to learn a parameterized policy πθ (the LLM, with fixed
sampling strategy) to maximize the expected total return

ηD(π) := Ex∼D[ηx(π)], (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where ηx(π) := Vπ(x) := Eτ∼π[
∑T−1

t=0 Rt|S0 = x] is the prompt-wise target (the value for π
at prompt x). To optimize Equation (1), policy gradient methods are the popular choices.
Vanilla policy gradient, or REINFORCE (Sutton et al., 1999), performs gradient ascent
on the target using the Monte-Carlo estimated gradient. Since the vanilla policy gradient
may suffer from large variance and instability, subsequent methods propose to constrain
the policy update in each iteration to address this issue. For example, the Proximal Policy
Optimization (PPO) (Schulman et al., 2017b) method applies ratio-clipping on a surrogate
objective and proposes to optimize the following target

JPPO
π (π̃) = Es∼ρπ,a∼π(·|s) [min (rAπ(s, a), clip(r, 1− ϵl, 1 + ϵh)Aπ(s, a))] , (2)

for each iteration. Here, ρπ(s) :=
∑∞

t=0 γ
tPπ(St = s) denotes the visiting frequency of s

when using the policy π to sample the traces, Aπ(s, a) := Vπ(s⊕a)−Vπ(s) is the advantage
function, and r := π̃(a|s)

π(a|s) is the importance ratio. estimated by generalized advantage
estimation (GAE) (Schulman et al., 2018) method, using an extra parameterized value
model. Recently, Shao et al. (2024) proposes GRPO, where the advantage is estimated by
the group normalized reward (R(Si)−mean({Si}ni))/Std{Si}ni for a group of samples {Si}ni
from the same prompt to obviate the need of an extra value model.
Sequence-level RL. The recent work Zheng et al. (2025) argues for aligning the unit of the
the reward and that of the optimization target, thus proposing the following sequence-level
GSPO target

JGSPO
π (π̃) = Ey∼π(·|x) [min (rAπ(y), clip(r, 1− ϵl, 1 + ϵh)Aπ(y))] , (3)

where r :=
(

π̃(y|x)
π(y|x)

) 1
|y| and y ∼ π(·|x) represents that y is a response sampled from π given

the prompt x. The estimation of the advantage Aπ maintains the same with GRPO.

2.2 Preliminary Experiment: Naive Direct-Replacement

(a) Performance(dotted) and entropy (b) Tactic usage statistics

Figure 1: Results of naive trace replacement using ProofAug

We first briefly introduce Lean and ProofAug here. Lean is an interactive theorem prover
that supports verifying any proof to a statement by inferring whether it can be reduced to
axioms. Given a proof attempt by LLM, if the attempt is not passing the Lean proof check,
ProofAug repairs in by trying a list of tactics on the intermediate conjectures the errors
locate in in a back-tracing way to repair the proof. See Section A for more details.
To integrate ProofAug into the RL pipeline, a naive idea is to replace all the wrong proof
traces with corrected ones, by which we call ‘Direct-Replacement’. We implement this idea
and show the experimental results in Figure 1. The lines with dots are test performance,
and those without dots are entropy curves. It can be seen that adding ProofAug naively not
only is detrimental to both the stability and performance, but also accelerates the entropy
collapse. We also make a statistics on the tactics the models use after 10 steps training

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 PLPO: Proximal Language Modeling Policy Optimization
Require: Max iteration M , Task prompt distribution D, rollout sample size N , sample

batch size B, initial LLM πinit and an optimizer (AdamW)
1: π̃ ← πinit
2: for Iteration k = 1, 2, · · · to M do
3: π ← π̃
4: for Batch b = 1, 2, · · · to ⌊NB ⌋ do
5: Sample a batch of prompts Db of size B
6: For each prompt x, sample n responses yx = {yi}ni=1 according to π
7: Get the rewards {R(yi)}ni=1 from the verifier
8: Calculate gb ← 1

Bn

∑
x∈Db

∑
i∈[n] g

i according to Equation (4)
9: Use the optimizer to update π̃ given the current step gradient gb

10: end for
11: end for
12: Output π̃

in these two settings in Figure 1b. It can be seen that after direct-replacement, the model
tends to use fewer tactics. We call this phenomenon ‘tactic collapse’.
The preliminary experiment suggests that we need some design principles to guide the
integration of inference-time techniques into RLVR.

3 Method

To handle the issues observed in the preliminary experiment, the design of ProofAug+ is
guided by the following two principles: 1)Progress Guarantee. There should be a theoret-
ical guarantee or at least a convincing informal argument that the objective Equation (1) is
expected to increase in each policy optimization iteration. Besides, entropy collapse should
be mitigated to encourage exploration, in order that the training can still make progress in
the long-term. 2)Variance Reduction. The variance of the gradient estimation should
be reduced to increase the stability and accelerate the training. Factors leading to the
overfitting to the data should be suppressed.
In this section, we will first review the derivation of PPO and propose to make several
modifications according to the principles, obtaining our PLPO algorithm tailored for LLM
training, as shown in Algorithm 11. The PLPO sample gradient is:

gi =
(
1− 1ĜRA(y

i;π, π̃)
) π̃(yi|x)
π(yi|x)

Âπ(y
i)∇ log π̃(yi|x), (4)

where we use the LOO advantage estimation Âπ(y
i) = R(yi)−

∑
j ̸=i R(yj)

n−1 , and GRA stands
for the gradient rejection area,

ĜRA(yi;π, π̃) = (Âπ(y
i) > 0 ∧ r(yi) > 1 + ϵh) ∨ (Âπ(y

i) < 0 ∧ r(yi) < 1− ϵl), (5)

where we provide two types of rejection indicator r, ‘sum’ and ‘average’, for more flexible
control of rejection area than ratio-clipping:

r(y) :=


π̃(y|x)
π(y|x) , sum-type,(
π̃(y|x)
π(y|x)

) 1
|y|

, average-type.
(6)

Based on PLPO, given a ProofAug operator O on VT that transforms yi to yiO, we set
a list of conditions for applying O on yi in ProofAug+, represented by a boolean value
function C(yi; yiO, {R(yj)}nj=1), abbreviated by Ci for the ith sample. The sample gradient

1For simplicity, we only describe the algorithm for the case of only 1 epoch in each iteration.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 ProofAug+
Require: Max iteration M , Task prompt distribution D, rollout sample size N , sample

batch size B, initial LLM πinit, an optimizer (AdamW), a ProofAug operator O and a
ProofAug application criteria C (Equation (8))

1: π̃ ← πinit
2: for Iteration k = 1, 2, · · · to M do
3: π ← π̃
4: for Batch b = 1, 2, · · · to ⌊NB ⌋ do
5: Sample a batch of prompts Db of size B
6: For each prompt x, sample n responses yx = {yi}ni=1 according to π
7: Get the rewards {R(yi)}ni=1 from the verifier
8: Apply ProofAug on the samples to get yiO ← O(yi)
9: Get the rewards {R(yiO)}ni=1 from the verifier

10: Calculate Ci ← C(yi; yiO, {R(yj)}nj=1)

11: Calculate yiOC ← CiyiO + (1− Ci)yi

12: Calculate gb ← 1
Bn

∑
x∈Db

∑
i∈[n] g

iOC according to Equation (7)
13: Use the optimizer to update π̃ given the current step gradient gb
14: end for
15: end for
16: Output π̃

in ProofAug+ is:

giOC :=
(
1− 1ĜRA(y

iOC ;π, π̃)
) π̃(yiOC |x)
π(yiOC |x)

∇ log π̃(yiOC |x)Âπ(y
iOC), (7)

where Âπ(y
iOC) = R(yiOC) −

∑
j ̸=i R(yj)

n−1 as before, and yiOC = CiyiO + (1 − Ci)yi. The
specific form of C is:

C(yi; yiO, {R(yj)}nj) =
{

True if d(yiO) ̸= 1 and d(yiO) ≥ d(yi) and ∀j, R(yj) = 0,

False otherwise, (8)

where d(y) is the depth of the proof.
The rest of the section states how PLPO and ProofAug+ are derived and explains the design
choices.

3.1 Derivation of PLPO

As stated above, PLPO is derived from PPO with modifications tailored for LLM under our
two principles. Let us review the derivation of PPO in the token-level setting first.

Reviewing the derivation of TRPO/PPO

The optimization target for TRPO and PPO (before the ratio-clipping operation) is derived
in an RL setting with a discounting factor γ < 1. Given a stochastic policy π, the following
identity (proved in Kakade & Langford (2002)) helps express the expected return η(π̃) of
another policy π̃ in terms of π: η(π̃) = η(π) +

∑
s ρπ̃(s)

∑
a π̃(a|s)Aπ(s, a).

Schulman et al. (2017a) shows a lower bound for the policy advantage η(π̃)− η(π):

η(π̃)− η(π) ≥ JCPI
π (π̃)− 4γ maxs,a |Aπ(s, a)|

(1− γ)2
Dmax

KL (π, π̃),

where the conservative policy iteration (Kakade & Langford, 2002) objective JCPI
π (π̃) =∑

s ρπ(s)
∑

a π̃(a|s)Aπ(s, a) is a quantity that does not include a ρπ̃(·) term and is thus
used as the surrogate objective in TRPO and PPO.
In this work, we point out that for the LM question-response task, where we have a fixed
horizon T and γ = 1, and ρπ(s) = π(s) :=

∏T−1
t=0 π(st+1|s:t), there is no need to use the

surrogate objective JCPI
π (π̃). Instead, we have the following lemma:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 1. Under the token-level LLM RL setting described in Section 2.1, the policy
advantage η(π̃)− η(π) =: JLM

π (π̃) has the following form:

JLM
π (π̃) := η(π̃)− η(π) = Es∼ρq,a∼q

[
π̃(s⊕ a|x)
q(s⊕ a|x)

Aπ(s, a)

]
, (9)

and the corresponding gradient is

∇JLM
π (π̃) = Es∼ρq,a∼q

[
π̃(s⊕ a|x)
q(s⊕ a|x)

∇ log π̃(s⊕ a|x)Aπ(s, a)

]
, (10)

where q(·|·) : V× V∗ → R+ is any sampling LM whose support contains the support of π̃.

We leave the proof of the lemma to Section C. The lemma can immediately lead to a policy
optimization algorithm as long as we take the old policy π as q and determine an advantage
estimation method. Nevertheless, the resulted algorithm could be instable due to the large
updates. Following the variance reduction principle, we seek for a technique for suppressing
large updates.

Gradient Rejection Mechanism

Although clipping the importance ratio is the standard PPO practice, we propose to de-
couple the target gradient estimation and large update suppression via a gradient rejection
mechanism. We show our arguments below.
First note that the ratio-clipping operation equals to setting the sample gradients falling in
the area
{(s, a)|((Aπ(s, a) > 0) ∧ (r(s, a) > ϵhigh)) ∨ ((Aπ(s, a) < 0) ∧ (r(s, a) < ϵlow))}, (11)

to zero, in order to control the policy update in one iteration. In PPO and its variants such
as GRPO, r is the importance ratio π̃(a|s)

π(a|s) . As to the case of Equation (10), if we follow-suit
to use π̃(s⊕a)

q(s⊕a) as the gradient rejection indicator, an obvious issue is that for long sequences
the ratio might accumulate as the number of token increases and could make the rejection
rate higher than expected.2

In this work, we argue that there is no a priori reason to choose a term that serves for the
estimation of the policy advantage as the criteria for large updates rejection. Instead, we
provide two choices for the update rejection criteria, ‘average’ and ‘sum’,

r(s, a) :=

{
π̃(s⊕a|x)
π(s⊕a|x) , sum,

(π̃(s⊕a|x)
π(s⊕a|x))

1
|s|−|x|+1 , average,

(12)

to meet the need of different training scenarios. The ‘average’ choice corresponds to the
length normalized importance ratio used in Zheng et al. (2025), and the ‘sum’ choice de-
grades the target into a ratio-clipping loss.
Thus, the final form of the (expected) token-level PLPO gradient is

∇JPLPO-token
π (π̃) = Es∼ρq,a∼q

[
(1− 1GRAtoken(s, a;π, π̃))

π̃(s⊕ a)

q(s⊕ a)
∇ log π̃(s⊕ a)Aπ(s, a)

]
,

(13)
where the token-level GRA is defined by

GRAtoken(s, a;π, π̃) := (Aπ > 0 ∧ r(s, a) > 1 + ϵh) ∨ (Aπ < 0 ∧ r(s, a) < 1− ϵl).

Transfer to sequence-level setting

In Equation (13), the token-level advantage Ai
π,t(y

i
:t, y

i
t+1) is hard to estimate without a

value model. The group-relative advantage estimation in GRPO and subsequent work such
2A simple ideal experiment is to assume all token-wise ratio subjects to the Gaussian distribution,

thus the random walk makes the sequence ratio explodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

as Dr. GRPO (Liu et al., 2025c) directly use the sequence-level advantage estimations, for
example, the LOO estimation Ri

LOO := R(Si) − 1
n−1

∑
j ̸=i R(Sj), to substitute the token-

level advantage Ai
π,t(y

i
:t, y

i
t+1) = Vπ(y

i
:t+1) − Vπ(y

i
:t) for all t values. Although R(Si) is an

estimation of Vπ(y
i
:t+1) when conditioned on the filtration before t + 1, 1

n−1

∑
j ̸=i R(Sj) is

not correlated to Vπ(y
i
:t) unless the other traces share identical prefix with yi.

As a result, we decide to transfer to the sequence-level setting to avoid this obstacle. To
transfer Equation (13) to the sequence-level setting, it suffices to use the whole response y
to substitute the token action a and the only state s that will be sampled is the initial state
S0 = x. We obtain

∇JPLPO
π (π̃) = Ey∼π(·|x)

[
(1− 1GRA(y;π, π̃))

π̃(y)

π(y)
∇ log π̃(y)Aπ(y)

]
, (14)

with the GRA

GRA(y;π, π̃) := (Aπ(y) > 0 ∧ r(y) > 1 + ϵh) ∨ (Aπ < 0 ∧ r(y) < 1− ϵl) (15)

and r(y) defined in Equation (6). We note that under the sequence-level RL setting, the
LOO estimation is unbiased for the sequence-level advantage Aπ(y) = Vπ(x ⊕ y) − Vπ(x).
The practical algorithm corresponding to Equation (14) is exactly the PLPO algorithm
shown in Algorithm 1.

3.2 Integrating ProofAug into PLPO

We introduce the associate policy notation πO(y) := Pry′∼π(y
′O = y) to represent the

procedure of first using π to sample, then applying O on the sampled proof. The naive
direct-replacement approach introduced Section 2.2 can be interpreted as using πO as the
rollout distribution for estimating the PPO target Equation (2) while directly using π(yi) to
estimate π(yiO), thus causing a distribution shift in the estimation of the importance ratio,
breaking the progress guarantee principle. At the same time, it also results in inappropriate
gradient rejection rule, which could lead to large update breaking the variance reduction
rule. As a result, despite that πO is expected to explore more positive reward traces, the
training performance degrades.
Conditioned proof repair. To mitigate the distribution shift when estimating the PLPO
πO-sample gradient,(

1− 1ĜRA(y
iO;πO, π̃)

) π̃(yiO|x)
πO(yiO|x)

ÂπO
(yiO)∇ log π̃(yiO|x), (16)

we choose to add constraints for applying ProofAug to strike a balance between additional
positive reward signals and distribution shift, i.e. the repaired proofs that we infer do not
benefit the training too much are abandoned. Specifically, we set the following restrictions
for applying the ProofAug operation O on a proof response yi: 1)d(yiO) ̸= 1 and d(yiO) ≥
d(yi). We reject the ProofAug proofs with depth=1, i.e. the single tactic case, and cases
where ProofAug decreases the depth of the original proof. 2)∀j ∈ [n], R(yj) = 0. This
conservative strategy requires we only apply ProofAug when all the original proofs fail. The
boolean value function C(yi; yiO, {R(yj)}nj=1) indicates whether the above conditions are
satisfied. The explicit expression of C is given in Equation (8).
We explain the design of two rules as follows:(1)Depth-decrease proofs discourage the model
to think deep. It only tells the model to use the high-level automated tactic (2)When we
can already sample an R(y) = 1 trace from the prompt, learning from this proof is expected
to inject most of the key knowledge related to the statement to the model. As a result of
the two constraints, we can reduce the frequency of ProofAug application, thus suppressing
the distribution shift and tactic collapse without satisfying the useful positive reward signal
that can teach the model novel proving patterns.
There is another difference between our final ProofAug+ algorithm and the one correspond-
ing to Equation (16). Equation (16) is derived by using πO as the Monte-Carlo estima-
tion sampling distribution. As a result, the LOO estimation of the value baseline uses

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

{R(yjO)}j ̸=i instead of the original reward baseline
∑

j ̸=i R(yj)

n−1 . In order to let π̃ learn not
only from the actions that increase VπO

, but also from what πO can prove while π cannot,
we choose to use the original reward baseline.
Integrating the techniques introduced in this section, including PLPO and conditioned proof
repair, we finally obtain our ProofAug+ pipeline, as described in Algorithm 2.

4 Experiment

4.1 Experimental Setup

Dataset and Base model In this work, we validate our claims by training Qwen2.5-1.5B-
Instruct (Qwen et al., 2025) on Goedel-Pset (Lin et al., 2025a), the largest open-source
Lean 4 statement dataset covering from high school exercises to Olympiad-level problems,
and test the trained model on a subset of 497 samples of Goedel-Pset. We first sample 10k
problems from Goedel-Pset and use Kimina-Prover-1.7B (Wang et al., 2025) to prove them.
Among the 10k samples, 8844 statement-proof pairs (with the thinking process removed)
can be extracted. We use the 8844 data pairs as the cold-start data to fine-tune Qwen2.5-
1.5B-Instruct. The obtained model is the initial model for our Reinforcement Learning.
Base training setting. We perform RL starting from the initial model using the rest of
Goedel-Pset (of around 1.72M problems) as the prompt set with a constant learning rate
1e-6. We use OpenRLHF (Hu et al., 2024) as the training framework and use the async
training mode with async queue size equal to 1. Our base strategy is grpo-hybrid, where
we set the clip ratios as ϵl = 0.2 and ϵh = 0.28 and set the KL coefficient to 0 following
DAPO (Yu et al., 2025), and use an LOO estimation for the advantage following Liu et al.
(2025c). For plpo, we use the sum-type gradient rejection by default, with ϵl = 0.2 and
ϵh = 0.28. For gspo, we follow Zheng et al. (2025) to use ϵl = 0.2, ϵh = 0.27, but still use
the LOO estimation. In each policy iteration, we sample n = 8 samples with a temperature
T = 0.6 for each of the N = 64 prompts in a rollout. For each rollout, we train for 1 epoch,
and each training batch contains B = 8 prompts. The maximum number of tokens for
model response is 3072. All trainings are done on 8 Nvidia RTX 3090 GPUs with 4 GPUs
for sampling and the other 4 are used for 4 policy actors.
Lean and ProofAug setting. We build a lean server based on the Lean REPL v4.20.0
tailored for tactic-wise execution for ProofAug. The server also includes cache systems like
in the Kimina server(Santos et al., 2025) to accelerate the verification process to meet the
need of RLVR training efficiency. During training, there is a 120s timeout for each step in
Lean and a 180s limit for the whole verification process including the first-pass compilation
and the ProofAug stage. Also, for encouraging the tactic diversity, we shuffle the order of
the heuristic tactics to use for ProofAug.

4.2 Results

PLPO enjoys stability and better long-run performance Figure 2 shows both the
pass@1 accuracy curve and the entropy curve for comparing PLPO and GRPO-hybrid in
our setting.
ProofAug+ achieves clear margin over the baseline algorithm. Figure 2 also shows
that the improvement of ProofAug+ comes from both the PLPO algorithm and the condi-
tioned proof repair introduced in Section 3.2. The performance gain compared to the peak
accuracy of GRPO-hybrid is around 4.0%.
Decoupling gradient estimation and update rejection helps with stability. In
Figure 3, the original GSPO algorithm leads to instability and entropy collapse during
training in our task. This is because GSPO is tailored for long-sequence thinking models,
while our task focuses on directly generating proofs of code. In contrast, when using the
sum-type gradient rejection rule described in Equation (5), the GSPO training then goes
well.
For extensive experimental results, see Section D.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: The performance of ProofAug+ compared with baseline algorithm GRPO-hybrid

Figure 3: The original GSPO vs. GSPO with sum-type gradient rejection

5 Conclusion and Limitations

In conclusion, this work proposes practical solutions for the failure of naive direct-
replacement integration of ProofAug into RLVR, guided by the progress guarantee and
variance reduction principles. The proposed PLPO algorithm is a general sequence-level al-
gorithm for LLM RL training, and the ProofAug+ pipeline is inspiring for designing schemes
for integrating inference-time techniques in other domains.
Nevertheless, there are some limitations for this work. First, this work has focused the case
where the sampling strategy of the LLM during training completely matches that in the
evaluation time, to rule out the factors led by train-test sampling mismatch. As to popular
pass@k evaluations, we remain the integration of ProofAug with pass@k training (Walder
& Karkhanis, 2025; Chen et al., 2025) for future work. Second, it is important to try PLPO
on different experimental setups, since the optimization behaviors on thinking models and
other domains might be very different. Finally, this work only includes derivations of the
algorithms according to the guiding principles, lacking rigorous convergence analysis for
them, which we also remain for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement

The experiments in this paper are reproducible by following the setup in Section 4.1 and
the reproducibility-related details stated in Section E. The proofs of the lemmas in the main
text can be found in Section C.

References
Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and

Guang Shi. Pass@k training for adaptively balancing exploration and exploitation of
large reasoning models, 2025. URL https://arxiv.org/abs/2508.10751.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingx-
uan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu
Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong
Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu,
Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong
Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan,
Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue
Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen,
R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia
Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao,
Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu,
Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li,
Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang,
Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan
Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan
Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yun-
fan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie,
Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia
Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu,
Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yihong Dong, Xue Jiang, Yongding Tao, Huanyu Liu, Kechi Zhang, Lili Mou, Rongyu
Cao, Yingwei Ma, Jue Chen, Binhua Li, Zhi Jin, Fei Huang, Yongbin Li, and Ge Li.
Rl-plus: Countering capability boundary collapse of llms in reinforcement learning with
hybrid-policy optimization, 2025. URL https://arxiv.org/abs/2508.00222.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Open-
rlhf: An easy-to-use, scalable and high-performance rlhf framework. arXiv preprint
arXiv:2405.11143, 2024.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learn-
ing. In Proceedings of the nineteenth international conference on machine learning, pp.
267–274, 2002.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li,
Mengzhou Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover: A frontier
model for open-source automated theorem proving, 2025a. URL https://arxiv.org/
abs/2502.07640.

10

https://arxiv.org/abs/2508.10751
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2508.00222
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yi-
han Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu
Yang, Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-
v2: Scaling formal theorem proving with scaffolded data synthesis and self-correction,
2025b. URL https://arxiv.org/abs/2508.03613.

Haoxiong Liu, Jiacheng Sun, Zhenguo Li, and Andrew C Yao. Proofaug: Efficient neural
theorem proving via fine-grained proof structure analysis, 2025a. URL https://arxiv.
org/abs/2501.18310.

Yihao Liu, Shuocheng Li, Lang Cao, Yuhang Xie, Mengyu Zhou, Haoyu Dong, Xiaojun Ma,
Shi Han, and Dongmei Zhang. Superrl: Reinforcement learning with supervision to boost
language model reasoning, 2025b. URL https://arxiv.org/abs/2506.01096.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective, 2025c. URL
https://arxiv.org/abs/2503.20783.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2020, pp. 367–381, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450370974. doi: 10.1145/3372885.3373824. URL https://doi.org/10.1145/
3372885.3373824.

Vaskar Nath, Elaine Lau, Anisha Gunjal, Manasi Sharma, Nikhil Baharte, and Sean
Hendryx. Adaptive guidance accelerates reinforcement learning of reasoning models, 2025.
URL https://arxiv.org/abs/2506.13923.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming
Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui
Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongx-
uan Tang, Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2:
Advancing formal mathematical reasoning via reinforcement learning for subgoal decom-
position, 2025. URL https://arxiv.org/abs/2504.21801.

Marco Dos Santos, Haiming Wang, Hugues de Saxcé, Ran Wang, Mantas Baksys, Mert
Unsal, Junqi Liu, Zhengying Liu, and Jia Li. Kimina lean server: Technical report, 2025.
URL https://arxiv.org/abs/2504.21230.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization, 2017a. URL https://arxiv.org/abs/1502.05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017b. URL https://arxiv.org/abs/1707.06347.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018. URL https:
//arxiv.org/abs/1506.02438.

11

https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2501.18310
https://arxiv.org/abs/2501.18310
https://arxiv.org/abs/2506.01096
https://arxiv.org/abs/2503.20783
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2506.13923
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21230
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in neural
information processing systems, 12, 1999.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao
Zhang, Enming Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai,
Haiqing Guo, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian
Zhao, Haoyu Lu, Haoze Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan,
Jia Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu,
Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang,
Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei Liu, Shengling Ma, Shupeng Wei,
Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin Xiong, Weiran He, Weixiao
Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia, Xingzhe Wu,
Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang Hu,
Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang,
Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li,
Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao
Xu, Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms,
2025. URL https://arxiv.org/abs/2501.12599.

Christian Walder and Deep Karkhanis. Pass@k policy optimization: Solving harder rein-
forcement learning problems, 2025. URL https://arxiv.org/abs/2505.15201.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos San-
tos, Flood Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover pre-
view: Towards large formal reasoning models with reinforcement learning. arXiv preprint
arXiv:2504.11354, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua
Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng
Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui
Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at
scale, 2025. URL https://arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and
Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms
beyond the base model?, 2025. URL https://arxiv.org/abs/2504.13837.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy
optimization, 2025. URL https://arxiv.org/abs/2507.18071.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark
for formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

12

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2505.15201
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2507.18071

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A An introduction to Lean and ProofAug

Lean is one popular proof assistant grounded in dependent type theory, which provides
more powerful features than simply typed systems. Also, Lean (from version 4) itself is a
functional programming language that can serve for general programming tasks and allows
metaprogramming just in the same environment of common usage (which is called reflection)
for users to flexibly build their own syntax and tactics. Moreover, the theory library for
Lean, Mathlib (mathlib Community, 2020), containing theorems from a large range of fields
including Algebra, Combinatorics, Analysis and Probability and is continuously growing.
Nevertheless, there is currently no built-in hammer tools such as Sledgehammer for Lean
yet, making the proof writing in Lean troublesome in some cases. Fortunately, some tactics
provide by Lean, such as simp, bound, omega, linarith and the in-development grind
are also very strong and are keep growing, making Lean an easier-to-use language as the
time goes.
An example of Lean 4 proof generated by Kimina-Prover (Wang et al., 2025), a state-of-the-
art level LLM theorem prover, is shown below:
theorem amc12a_2021_p3 (x y:N) (h0:x + y = 17402) (h1: 10|x) (h2: x/10=y):

↑x-↑y=(14238: Z) := by
have h3: x = 10 * y := by
have h6: x / 10 = y := h2
have h7: x = 10 * (x / 10) := by

omega
rw [h6] at h7
omega

have eq1: 11 * y = 17402 := by
omega

have h8: y = 1582 := by
omega

have h9: x = 15820 := by
omega

omega

It can be seen that the proof is in a hybrid procedural and declarative style, containing rich
hierarchical proof structure that will be very useful in our methods. ProofAug designs a
pre-parser that identify keywords such as by as the indicator of the start of a block and
infer from the number of indents whether a line of Lean code ends the block. Viewing each
block as a subtree, we can then identify the tree structure.
Given the tree structure of a proof, the ProofAug procedure (without their ERP module) is
illustrated in Section A, which is modified from Liu et al. (2025a).

B Related Work

RLVR for theorem provers. The technique reports Lin et al. (2025b); Wang et al. (2025)
use RLVR training pipeline to enhance the performance after data collection. However, they
only provide the weights of models, rather than fully open-source the whole training pipeline
and data. In contrast, Our ProofAug+ method is fully open-sourced and we also release a
Lean server to contribute to the community.
Sequence level Reinforcement Learning algorithms. GSPO (Zheng et al., 2025) is
the most similar algorithm with PLPO among the sequence-level optimization methods.
However, it is not derived from the theory, thus there is no direct guarantee of step progress
for the total return. Team et al. (2025) uses the online mirror descent algorithm for policy
optimization, using the relative entropy as the regularization instead of the loss-clipping
technique or our gradient rejection rule.
Reinforcement Learning with offline policy. Liu et al. (2025b) interpolates the cross-
entropy loss and policy gradient surrogates, but no theoretical guarantee or analysis are
made. Dong et al. (2025) also aims at countering the model capability in RLVR and pro-

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 4: An illustration flow of ProofAug. Each box in the flowchart corresponds to
a proof step. (a) The initial proof encounters an error when proving Conjecture 1-0. (b)
We replace the original proof of Conjecture 1-0 with a sorry and continue, until a syntactic
error occurs at Conjecture 1-1. (c) The proof of Conjecture 1 is replaced by sorry, and we
obtain a semi-proof with two sorry. (d) Automation tools are called to prove Conjecture 0
and Conjecture 1, but failing at the latter one. (e) We resort to a more coarse level of proof.
(f) Finally, this time we successfully find a proof with automation tools.

vides an estimate of the underlying behavior policy for the offline data. In contrast to these
works, ProofAug propose the concept of associate policy, which depends on the environ-
ment feedback, equipping algorithms like PLPO+ProofAug with the potential of steadily
performance boost.

C Proofs of Lemmas

To prove Lemma 1, we first need to prove the sequence-level version of policy advantage
expression:
Lemma 2. For the token-level RL setting introduced in Section 2, i.e. with horizon T ,
γ = 1 and St+1 = St ⊕At, we have

η(π̃) = η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a), (17)

Proof. On one hand, we have

Eτ∼π̃

[
T−1∑
t=0

Aπ(St, st+1)

]
= Eτ∼π̃

[
T−1∑
t=0

R(st) + Vπ(St+1)− Vπ(St)

]

= Eτ∼π̃

[
Vπ(ST)− Vπ(S0) +

T−1∑
t=0

R(St)

]

= −Es0 [Vπ(s0)] + Eτ |π̃

[∞∑
t=0

γtr(st)

]
= −η(π) + η(π̃).

(18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: ProofAug+ encourages diverse tactic usage

On the other hand, we have

Eτ |π̃

[
T−1∑
t=0

Aπ(st, at)

]
=

∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a), (19)

Proof of lemma Lemma 1. According to Lemma 2, we have

η(π̃)− η(π) =
∑
s

π̃(s)
∑
a

π̃(a|s)Aπ(s, a)

=
∑
s

q(s)
π̃(s)

q(s)

∑
a

q(a|s) π̃(a|s)
q(a|s)

Aπ(s, a)

=
∑
s

ρq(s)
∑
a

q(a|s) π̃(s⊕ a)

q(s⊕ a)
Aπ(s, a)

= Es∼ρq,a∼q

[
π̃(s⊕ a)

q(s⊕ a)
Aπ(s, a)

]
,

(20)

where all summations are taken on the support of π̃. As to the gradient, by exchanging
the expectation and the ∇ (where we have assumed q satisfies regularity conditions that
controls ∥∇π̃

q ∥) and using ∇π̃ = π̃∇ log π̃, we have

∇JLM
π (π̃) = Es∼ρq,a∼q

[
π̃(s⊕ a|x)
q(s⊕ a|x)

∇ log π̃(s⊕ a|x)Aπ(s, a)

]
(21)

as desired.

D Additional Experimental Results

Tactic Usage Statistics. Figure 5 shows that our conservative strategy can efficiently
encourage the usage of more tactics, avoiding policy collapse.
Tactic distribution. We show it here for comparison with Figure 6. It can be seen that
the tactics used by ProofAug come to the top usages.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Baseline RL

(b) Direct Replacement

(c) Conditioned Proof Repair

Figure 6: Tactic distribution comparison after 10 training steps

Results on miniF2F. We also test the performance of the trained models on the cross-
language benchmark miniF2F (Zheng et al., 2021). It turns out that while PLPO works
well, adding the conservative strategy ProofAug is not beneficial for generalization to out-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of-distribution data. This result also calls for a more diverse and high-quality open-source
formal statement dataset.

Figure 7: Performance on miniF2F.

More Comparison between PLPO and other algorithms. We show extra experiments
for PLPO comparison in Figure 8.

Figure 8: Comparison of PLPO, GRPO, and GSPO

E Reproducibility Details

Data Processing of Goedel-pset. We download the Goedel-pset from their huggingface
repo3. Then we sample 10k samples for training the initial model for RL and 497 samples
(that has no coverage with the 10k) for evaluation. The remained are used for training. For

3https://huggingface.co/datasets/Goedel-LM/Goedel-Pset-v1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

the training prompt construction, we follow the non-CoT template of DeepSeek-Prover-V2-
7B (Ren et al., 2025) to construct messages and then use the Qwen2.5-Instruct built-in chat
template to translate to a prompt.
OpenRLHF setting. We turn on the use of –full-determination in our experiments and
always use the default seed when using the OpenRLHF train_ppo_ray script for our exper-
iment.
Evaluation and Lean setting. We use evaluate any model/checkpoint three times with
different seeds to provide an error bar at each data point. The result is only reproducible for
the specific Lean and Lean REPL version. We also observe that since some tactics of Lean
such as omega include CPU-heavy searching procedures which may make the verification
result might differ for CPUs of different performance. Nevertheless, since we have set a 120s
timeout for each Lean step, this situation should rarely happen.

F The Usage of Large Language Models

During writing this paper, we have used commercial LLMs in helping polishing the para-
graphs after we first write a draft and detecting grammar errors.

18

	Introduction
	Preliminaries
	RLVR algorithms for LLMs
	Preliminary Experiment: Naive Direct-Replacement

	Method
	Derivation of PLPO
	Integrating ProofAug into PLPO

	Experiment
	Experimental Setup
	Results

	Conclusion and Limitations
	An introduction to Lean and ProofAug
	Related Work
	Proofs of Lemmas
	Additional Experimental Results
	Reproducibility Details
	The Usage of Large Language Models

