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Abstract

Channel permutation is a powerful technique for enhancing the accuracy of N:M
sparse models by reordering the channels of weight matrices to prioritize the re-
tention of important weights. However, traditional channel permutation methods
rely on handcrafted quality metrics, which often fail to accurately capture the true
impact of pruning on model performance. To address this limitation, we propose
PermLLM, a novel post-training pruning framework that introduces learnable chan-
nel permutation (LCP) for N:M sparsity. LCP leverages Sinkhorn normalization to
transform discrete permutation matrices into differentiable soft permutation matri-
ces, enabling end-to-end optimization. Additionally, PermLLM incorporates an
efficient block-wise channel permutation strategy, which significantly reduces the
number of learnable parameters and computational complexity. PermLLM seam-
lessly integrates with existing one-shot pruning methods to adaptively optimize
channel permutations, effectively mitigating pruning-induced errors. Extensive
experiments on the LLaMA series, Qwen, and OPT models demonstrate that
PermLLM achieves superior performance in optimizing N:M sparse models. The
code is available at https://github.com/lanchengzou/PermLLM.

1 Introduction

The rapid advancements in large language models (LLMs) [6, 61, 52, 1] have led to a notable
enhancement in their capabilities across a broad range of domains. However, the growing scale of
LLMs presents substantial challenges for efficient deployment. To address these challenges, model
compression techniques, such as quantization [57, 16, 10, 31, 65] and pruning [15, 50, 62], offer
promising solutions to reduce memory usage and computational overhead.

In this paper, we focus on network pruning [28, 22, 21], particularly semi-structured pruning [46, 42].
The core idea of network pruning is to eliminate redundancies within the model by preserving only
the essential weights while setting the less important ones to zero. Semi-structured pruning takes this
a step further by enforcing N:M sparsity, where N out of every M consecutive elements are set to
zero. The N:M sparsity pattern is natively supported by Sparse Tensor Core in NVIDIA GPUs [45]
to achieve speed-up, which makes semi-structured pruning a practical approach for efficient model
inference.

Recent studies on LLM pruning primarily focus on designing a better pruning metric to obtain
higher-quality masks to improve the accuracy of the sparse models [15, 50, 62]. RIA [62] introduces
a novel pruning metric that avoids channel corruption while accounting for the effect of activations.
Additionally, it proposes a two-stage channel permutation strategy to maximize the sum of retained
weight importance, which serves as the quality metric to evaluate channel permutation solution.
However, it is important to note that a discrepancy may exist between the handcrafted quality metric
and the actual impact on output loss, as illustrated in Figure 1. Moreover, it fails to fully capture the
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Figure 1: Effects of different channel permutation strategies on the outputs. Channel order is in
purple. We use magnitude pruning [21] for 2:4 sparsity in this example. Score S denotes the sum of
retained weight importance, which is used as the quality metric for channel permutation [46, 62]. Loss
is the mean square error between the original output y and the output of the pruned one. The output
loss of direct 2:4 sparsity (i.e., without channel permutation) is 12.375. The results demonstrate that
channel permutation which maximizes the score may lead to performance degradation.

complex inter-layer interactions, thereby missing opportunities to compensate for pruning errors and
improve the overall performance of the sparse model.

To overcome the limitations of prior channel permutation methods, we are the first to present learnable
channel permutation (LCP) for N:M sparsity. Unlike previous approaches that rely on handcrafted
quality metrics as optimization proxies, the proposed post-training framework, PermLLM, directly
minimizes the output errors between the dense model and the sparse model.

However, achieving feasible and practical permutation learning for pruning presents two major
challenges: (1) the discrete nature and strict combinatorial constraints of permutation matrices
render them non-differentiable, hindering effective optimization; (2) the vast solution space of
permutations, particularly in LLMs with high-dimensional weight matrices, results in prohibitively
high computational complexity.

To address these challenges, we first relax hard permutation matrices into soft permutation matrices
using Sinkhorn normalization [48], enabling gradient-based optimization. Then, we introduce an
efficient block-wise channel permutation strategy, which significantly reduces the number of learnable
parameters and computational overhead. PermLLM is fully compatible with existing efficient one-
shot pruning methods, such as Wanda [50] and RIA [62], enabling pruning-aware permutation
learning that adaptively minimizes pruning-induced errors. Moreover, a customized CUDA kernel is
developed to accelerate the channel permutation operation, achieving a significant speedup compared
to the Pytorch implementation. Extensive experiments underscore the effectiveness of PermLLM,
demonstrating its ability to enhance the performance of existing one-shot pruning methods across
various LLMs, particularly for updated models such as LLaMA-3.1 and Qwen-2.5.

2 Preliminaries

2.1 Large Language Models Pruning

The effectiveness of network pruning [28, 22, 20, 21, 23] has garnered significant attention from
researchers, prompting extensive exploration for LLM pruning.

Based on the granularity of pruning, prior works can be categorized into three types: structured
pruning [36, 3, 49, 55, 38, 44], semi-structured pruning [62, 14] and unstructured pruning [15, 50,
4, 11]. Unstructured pruning is the most flexible approach, as it is not constrained by specific
patterns. This flexibility often leads to improved accuracy; however, it comes at the expense
of limited efficiency gains. In contrast, structured pruning removes weights at a coarse-grained
level, such as channels [36], layers [38, 7], or blocks [49, 44], thereby enabling more substantial
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improvements in computational efficiency. However, the structural removal often leads to significant
accuracy degradation, necessitating retraining or fine-tuning to mitigate pruning-induced errors.
Semi-structured pruning serves as an intermediate approach, introducing hardware-friendly patterns,
such as N:M sparsity [42] which retains only N zero values within each group of M values. This
method achieves a compromise between the acceleration benefits of structured pruning and the
flexibility of fine-grained sparsity.

In general, there are three pipelines to obtain a sparse model [8]: pruning before training (PBT) [29,
54], pruning during training (PDP) [13, 32] and post-training pruning (PTP) [28, 22]. PBT and PDP
typically demand substantial training efforts, which makes PTP the widely adopted pipeline for LLM
pruning due to its lower computational cost. The objective of PTP can be formulated as follows:

argmin
M

∥WX− (M⊙W) ·X∥22, s.t. ∥M∥0 ≤ k, (1)

where W ∈ RCout×Cin represents the pre-trained weight with Cout output channels and Cin input
channels. The goal of PTP is to determine a mask M that minimizes the reconstruction error under
the given input X from calibration dataset and specific sparsity constraints (e.g., sparsity ratio and
pruning granularity).

2.2 N:M Sparsity

NVIDIA Ampere architecture [45] leverages Sparse Tensor Core to accelerate model inference
with N:M sparsity [42]. For instance, compressing the model with 2:4 sparsity can theoretically
achieve a 2× increase in compute throughput for sparse matrix multiplication compared to its
dense counterpart. Thus, this approach has garnered significant attention for its ability to improve
computational efficiency while maintaining model accuracy.

RIA [62] introduces a one-shot pruning method based on a handcrafted importance metric for semi-
structured pruning. While one-shot pruning is highly efficient, it relies on handcrafted importance
metrics as proxies for true discrepancy, resulting in a significant gap with the actual pruning-induced
discrepancy. To address this issue, researchers have introduced various methodologies for learnable
N:M masks [64, 34, 24, 26, 14]. Sparse-Refined Straight-Through Estimator (SR-STE) [64] is
proposed by extending original Straight-Through Estimator (STE) [5] to train N:M sparse models
from scratch.

2.3 Channel Permutation

Channel permutation [25, 46, 37] has proven to be an effective technique for improving the accuracy
of pruning with specific sparsity patterns (e.g., N:M sparsity) by reordering the input channels of
the weight matrix. More recently, researchers have explored reordering to enhance quantization
performance [16, 59, 30], highlighting channel permutation as a promising approach that merits
further investigation.

For a linear layer with Cin input channels, there are Cin! possible permutation candidates. Due
to the nature of N:M sparsity, channel permutation can be formulated as the following problem:
distributing Cin distinguishable balls into Cin/M indistinguishable boxes, where each box contains
exactly M balls. In this case, the solution space is reduced to Cin!

(M !)G·G!
, where G = Cin/M denotes

the number of pruning groups. When Cin = 16 and M = 4, the reduced solution space still
contains approximately 2.6 million candidates. The solution space grows rapidly with increasing Cin,
leading to significant computational challenges for large values of Cin. Exhaustive search algorithm
combined with a greedy incremental refinement strategy is applied for channel permutation [46].
However, this approach is primarily suitable for models with a small number of channels and becomes
computationally expensive when applied to LLMs with large hidden dimensions. To address the
computational overhead, RIA [62] adopts a heuristic channel allocation method that iteratively assign
important channels to different blocks efficiently. Subsequently, a refinement process is applied,
formulated as a linear sum assignment problem, to maximize the sum of retained weight importance
scores.

Nevertheless, the handcrafted weight importance metric, used as a quality proxy in previous channel
permutation methods [46, 62], fails to accurately capture the relationship between pruning error
and channel permutation, resulting in suboptimal solutions. As illustrated in Figure 1, channel
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permutation based on maximum importance score does not necessarily reduce pruning error and may
even lead to an increase in error.

To address the aforementioned challenges and limitations, this study pushes the boundaries of post-
training semi-structured pruning for LLMs by learnable channel permutation (LCP). This approach
enables an end-to-end learning of channel reordering, eliminating the need for the handcrafted
quality metrics. The proposed LCP serves as an effective plugin for existing one-shot pruning
methods [50, 62] by identifying appropriate channel reordering to mitigate mask quality limitations
and reduce pruning errors.

3 Learnable Channel Permutation

The objective of channel permutation is to determine a permutation matrix P ∈ RCin×Cin for the
weight matrix W ∈ RCout×Cin , such that the reordered weight matrix, Ŵ = WP, can achieve
improved accuracy after applying N:M sparsity.

However, there are two major challenges to learn the permutation matrix P: (1) P is a binary matrix
containing only 0s and 1s, which makes it inherently discrete and thus non-differentiable. The discrete
nature of P poses a significant challenge for gradient-based learning methods. Moreover, P must
satisfy the properties of a permutation matrix—each row and column must contain exactly one “1"
(with all other entries being “0"). This introduces strict combinatorial constraints that significantly
increase the complexity of the learning process. (2) The number of possible permutation candidates
increases factorially with Cin. In LLMs, Cin typically exceeds one thousand, leading to an extremely
vast solution space and posing a significant challenge for the design of efficient algorithms.

3.1 Relaxation to Soft Permutation Matrix

Some existing mask learning methods assign a learnable score [63] or probability [14] to each mask
candidate to identify the best option. Although permutation learning can also be formulated as a
combinatorial problem, the vast solution space of permutations renders these previously proposed
methods impractical. Consequently, directly learning the permutation matrix tends to be more
feasible.

To address the challenges associated with the discrete nature and properties of permutation matrix, a
common approach is to relax the hard constraints and represent the permutation using a soft permuta-
tion matrix. The soft permutation matrix, denoted as P̂, serves as a continuous and differentiable
approximation of the discrete permutation matrix P, thereby enabling gradient-based learning method.
A doubly stochastic matrix can be used as P̂ [2], where all entries are non-negative and each row
and column sums to 1. This contrasts with P, in which each row and column contains exactly
one “1". By leveraging Sinkhorn normalization [48, 2, 39, 12, 35], a nonnegative square matrix
can be converted into a doubly stochastic matrix through an iterative process of row and column
normalization.

Thus, any square matrix X can be transformed into a doubly stochastic matrix as follows:
S0(X) = exp(X), (2)

Si(X) = Tc
(
Tr(Si−1(X))

)
, (3)

S(X) = lim
l→∞

Sl(X), (4)

where a non-negative square matrix is first obtained by Equation (2). Then iterative row and column
normalization is performed by Equations (3) and (4). Tr(X) = X ⊘ (X1N1⊤

N ) is the row-wise
normalization operation and Tc(X) = X⊘(1N1⊤

NX) is used for column normalization. ⊘ represents
element-wise division and 1N denotes a column vector of one. Thus, the soft permutation matrix P̂
can be obtained by

P̂ = SL(WP /τ), (5)

where WP is a learnable matrix with the same shape as P̂. Since the limit in Equation (4) cannot be
computed exactly in practice, a truncated version with l → L is typically used for implementation [39,
12]. The temperature coefficient τ controls the hardness of the soft permutation matrix: as τ

approaches zero, the entries of P̂ converge to either 0 or 1.
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As P̂ is not a strict permutation matrix, directly using it for channel permutation modifies both the
channel order and the weight values. To avoid its impact on mask selection, P̂ is hardened into a
strict permutation matrix P during the forward pass. This hardening process can be formulated as
a linear sum assignment problem and solved by using Hungarian algorithm [27]. Specifically, this
process identifies the hard permutation matrix P that is closest to the soft permutation matrix P̂. It
achieves this by solving the following optimization problem:

P = argmax
P∈P

Tr(P⊤P̂), (6)

where P represents the set of all valid permutation matrices and Tr(·) denotes the trace operator. The
objective is to maximize the alignment between P and P̂ by selecting the entries of P̂ that yield
the highest overall score. Unfortunately, the hardening process is not differentiable. To address this
limitation, STE [5] is employed to approximate the gradient in the backward pass, i.e., ∂P/∂P̂ = 1.
By propagating gradients through this approximation, the STE preserves gradient flow across the
computational graph, thereby ensuring end-to-end trainability of the permutation learning framework.

3.2 Block-wise Learnable Channel Permutation

Block-wise LCP
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Figure 2: Illustration of learnable channel permuta-
tion with different granularity: (a) full matrix LCP;
(b) block-wise LCP.

According to Equation (5), if channel is allowed
to be permuted flexibly, the learnable param-
eter matrix will be WP ∈ RCin×Cin , which
usually has the similar or same shape with the
weight matrix W. If each weight were to have
its own learnable permutation, the learning bur-
den would become prohibitively large.

To address this, we apply a block-wise learnable
channel permutation that only allows channel
permutation operates within the block to reduce
the training cost. It is inspired by the widely
adopted block-wise operations in model com-
pression [16, 15, 66, 30].

Originally, the number of parameters in WP is
C2

in for full matrix learnable channel permuta-
tion. Let the block size be B. For permutation
for a single block, the number of parameters in
Wi

P is B2. With NB representing the total num-
ber of blocks, the overall number of parameters
is given by NB ×B2 = Cin

B ×B2 = Cin ×B.
By block-wise learnable channel permutation,
we reduce the number of parameters to B

Cin
of the original, achieving significant parameter savings

when B ≪ Cin.

Another advantage of block-wise learnable channel permutation is its enhanced computational
efficiency when hardening the soft permutation matrix. This process is solved using the Hungarian
algorithm [27], which has a time complexity of O(N3). For a full matrix permutation, the time
complexity becomes O(C3

in). In contrast, by adopting block-wise manner, the time complexity
for a single block is O(B3). Given that there are NB blocks in total, the overall complexity is
O(NB · B3) = O(Cin · B2). This demonstrates that it significantly reduces the computational
cost of hardening process by utilizing block-wise learnable channel permutation, particularly when
B ≪ Cin.

To perform block-wise learnable channel permutation for W, each learnable matrix Wi
P is trans-

formed into a hard permutation matrix Pi for the i-th block. Unlike the reordered weight matrix
Ŵ = WP obtained through full matrix permutation, the reordered weight matrix under block-wise
permutation is given by ŴB = WPB , where PB = diag(P1,P2, . . . ,PNB

) represents a block
diagonal matrix and NB is the number of blocks.

As illustrated in Figure 2, an example of block-wise learnable channel permutation with NB = 4 is
shown. In this case, the channels of W are partitioned into four blocks, with each block consisting of
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consecutive Cin/4 channels. Pi only affects the channel permutation within the i-th block. Moreover,
compared to full matrix permutation, only the diagonal blocks are learnable, while all other entries
are fixed to zero, which significantly reduces the training overhead.

Given the advantages of the block-wise manner, it is adopted as the default setting for the proposed
learnable channel permutation in the following sections. The full matrix approach can be considered
a special case when the number of blocks is set to one.

4 PermLLM: Pruning with Learnable Channel Permutation

In this section, we will introduce the proposed novel N:M semi-structured pruning framework
that combines the existing one-shot pruning methods [50, 62] with the proposed learnable channel
permutation (LCP), which can further improve the performance of N:M sparse LLMs.

One-shot pruning eliminates weights by applying a predefined, handcrafted weight importance
metric. For example, the weight importance metric proposed by Wanda [50] is defined as Sij =
|Wij | · ||Xj ||2, where W ∈ RCout×Cin and X is the input from calibration. Subsequently, the
pruning mask M ∈ RCout×Cin is determined to maximize the sum of the retained importance
metrics, which can be formulated as

argmax
M

Cout∑

i=0

Cin/M∑

k=0

∑
(M⊙ S)i,kM :(k+1)M , s.t. ∥Mi,kM :(k+1)M∥0 = M −N, (7)

where Mi,kM :(k+1)M is constructed by setting the entries corresponding to the largest M −N values
in Si,kM :(k+1)M to 1, while all other entries are set to 0. This approach achieves N:M sparsity
by ensuring that N out of every M consecutive elements are set to 0, while preserving the most
important weights based on their importance metrics.

With channel permutation, the order of the channels is rearranged, and consequently, the channels in
the importance matrix S are permuted accordingly. The permuted importance matrix is represented
as Ŝ = SPB , where PB is the permutation matrix. As a result, the mask M varies depending on the
specific permutation solution for the permuted weight Ŵ = WPB :

argmax
M

Cout∑

i=0

Cin/M∑

k=0

∑
(M⊙ Ŝ)i,kM :(k+1)M , s.t. ∥Mi,kM :(k+1)M∥0 = M −N. (8)

However, the non-differentiability of the argmax operation hinders gradient backpropagation, render-
ing it unsuitable for gradient-based learning frameworks. To address this, STE [5] is employed to
approximate the gradients during the backward pass. Specifically, while the forward pass uses the
non-differentiable argmax operation to obtain a discrete hard mask M, the backward pass introduces
a soft mask M̂ to enable gradient computation. The soft mask is defined as:

M̂i,kM :(k+1)M = Softmax(Ŝi,kM :(k+1)M ), (9)

where the softmax function provides a continuous and differentiable approximation. This approach
allows the forward pass to retain the discrete selection behavior of argmax, while the backward pass
leverages the smooth and differentiable properties of softmax to compute gradients effectively.

Existing channel permutation methods [46, 62] are primarily designed to find the optimal permutation
matrix P∗ and the corresponding mask M∗ that maximize the sum of retained importance score, as
defined in Equation (8). However, the handcrafted quality metric used to evaluate channel permutation
solutions often fails to accurately reflect the true effectiveness of the permutation, potentially leading
to suboptimal outcomes or even worse performance as illustrated in Figure 1.

To address the aforementioned issue, PermLLM aims to directly minimize the output discrepancy
between the dense model and the sparse N:M model by incorporating learnable channel permutations.
Specifically, we utilize a cosine similarity loss to encourage alignment between the outputs of the
two models, which is defined as:

Lcosine(y, ỹ) = 1− y · ỹ
||y|| · ||ỹ||

, (10)

6



where y and ỹ represent the outputs of the original dense model and the sparse N:M model.

During the proposed post-training pruning process, only Wi
P for each permutation matrix PB is

learnable, while all weight matrices remain fixed, as illustrated in Figure 2. Additionally, each mask
M is directly obtained from Equation (8), with its values dynamically updated based on changes in
PB . By leveraging the proposed relaxation and gradient approximation techniques, the optimization
of each PB is effectively guided toward solutions that maximize the preservation of the dense model’s
performance while adhering to the N:M sparsity constraint.

After training, weight W will be permuted and pruned by

Ŵ′ = M∗ ⊙ (WP∗
B), (11)

where P∗
B denotes the learned channel permutation matrix and M∗ is the corresponding pruning

mask.

Notably, the channels of the input activations must also be permuted to align with the channel order
of the weight matrix. It can be accomplished by permuting the output channels of the preceding layer.
Let P∗

l,B denote the permutation matrix for the current layer, and let Ŵ′
l−1 represent the permuted

and pruned weight matrix of the preceding layer. The row of Ŵ′
l−1 should be reordered for input

activation permutation of its succeeding layer, which can be expressed as:

Ŵ′′
l−1 = P∗

l,BŴ
′
l−1. (12)

Since it is a row-wise operation, it preserves the N:M sparsity of Ŵ′
l−1. To further reduce the runtime

overhead introduced by channel permutations, we developed a customized CUDA kernel specifically
for the channel permutation operation. Experimental results evaluated on LLaMA-2 7B demonstrate
that this kernel achieves an average speedup of 84× compared to the Pytorch implementation, thereby
making pruning with channel permutations significantly more practical.

5 Experiments

5.1 Setups

We compare with three baselines in N:M sparsity, especially 2:4 sparsity: SparseGPT [15], Wanda [50]
and RIA [62]. Wanda/RIA-CP enables channel permutation for N:M sparsity introduced in RIA.
PermLLMWanda/RIA indicates that Wanda or RIA is employed as the pruning metric in our
PermLLM framework.

The proposed method is evaluated on various open source representative models: LLaMA 7B-
13B [51], LLaMA-2 7B-13B [52], LLaMA-3.1 8B [19], Qwen-2.5 7B [58], and OPT 6.7B [61]. We
randomly select 128 samples from the C4 dataset [47], each comprising 1024 tokens, to serve as the
calibration data for all evaluated models. We utilize five zero-shot evaluation tasks: HellaSwag [60],
ARC-(Easy and Challenge) [9], OpenBookQA [41] and RTE [53] from lm-evaluation-harness [18]
and one language modeling dataset: Wikitext2 [40] to evaluate the performance of the sparse models.

We implement PermLLM with Pytorch [43] and HuggingFace Transformers library [56]. The
experiments of PermLLM are conducted on A100 GPUs. We employ N:M semi-structured pruning
for linear layers, skipping the initial embedding layer and the final classification head. These linear
layers constitute approximately 99% of the total parameters in LLMs.

For the proposed PermLLM framework, we utilize AdamW [33] as the optimizer, with the learning
rate set from {1e-3, 5e-3} for all models. The iteration of Sinkhorn normalization is 5. The
temperature τ is linearly decayed from 1 to 0.1 to control the hardness of the soft permutation
matrix in Equation (5). The block size for block-wise learnable channel permutation is set to 64,
as it offers a balanced trade-off between performance and efficiency. Specifically, a block size of
64 is considered a more practical choice, as increasing the block size to 128 results in a twofold
increase in runtime. This is because a larger block size not only raises computational complexity
but also requires more iterations to achieve convergence due to the significantly expanded solution
space. The pruning duration is about 2.5 hours for the 7B model with 4 GPUs and 5.5 hours for
the 13B model with 8 GPUs, which is considered acceptable given the extremely large-scale nature
of pruning-aware permutation problem. More efficient implementation scheme of PermLLM is
discussed in Appendix A.
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Table 1: 2:4 semi-structured pruning results on Wikitext2 with perplexity as the evaluation metric.
Method OPT 6.7B LLaMA 7B LLaMA 13B LLaMA-2 7B LLaMA-2 13B LLaMA-3.1 8B Qwen-2.5 7B

Dense 10.86 5.68 5.09 5.47 4.89 6.24 7.74

SparseGPT 14.33 11.19 9.17 11.12 9.03 16.62 14.34

Wanda 16.29 11.59 9.60 12.16 9.05 23.42 24.44
Wanda+CP 15.28 11.07 8.69 11.00 8.51 21.09 18.76
PermLLMWanda 14.27 9.41 8.06 9.39 8.20 14.03 13.58

RIA 15.93 11.14 8.96 11.30 8.51 22.62 22.67
RIA+CP 15.13 10.99 8.15 10.26 8.08 19.80 17.58
PermLLMRIA 14.23 9.95 7.81 9.60 7.97 15.79 15.93

Table 2: Zero-shot performance of 2:4 sparse models.

Model Method Weight Update HellaSwag ARC_E ARC_C OBQA RTE Average

OPT 6.7B

Dense - 50.46 65.49 30.12 26.80 55.23 45.62
SparseGPT ! 43.40 60.82 26.62 24.40 52.71 41.59
Wanda % 41.56 57.62 24.83 23.00 53.43 40.09
Wanda+CP % 42.87 59.51 26.02 22.00 52.71 40.62
PermLLMWanda % 44.27 59.43 27.22 24.00 54.15 41.81

LLaMA 7B

Dense - 56.95 75.38 41.89 34.80 65.34 54.87
SparseGPT ! 43.55 61.78 27.90 22.80 58.12 42.83
Wanda % 42.33 61.57 28.07 23.60 51.26 41.37
Wanda+CP % 44.21 63.51 29.86 24.00 58.12 43.94
PermLLMWanda % 47.03 63.30 30.55 25.00 62.45 45.67

LLaMA-2 7B

Dense - 57.13 76.30 43.26 31.60 62.45 54.15
SparseGPT ! 44.11 64.14 31.31 24.20 58.84 44.52
Wanda % 41.59 61.74 30.20 24.00 53.07 42.12
Wanda+CP % 43.40 64.69 30.03 26.00 53.07 43.44
PermLLMWanda % 46.60 65.49 31.14 26.20 63.54 46.59

LLaMA-3.1 8B

Dense - 60.06 81.48 51.28 33.40 70.04 59.25
SparseGPT ! 44.25 63.76 30.55 24.20 53.79 43.31
Wanda % 38.45 58.00 26.37 19.40 52.35 38.91
Wanda+CP % 39.32 62.25 28.92 20.40 52.71 40.72
PermLLMWanda % 45.33 62.58 30.97 24.00 53.79 43.33

Qwen-2.5 7B

Dense - 58.79 79.56 46.08 33.00 76.90 58.87
SparseGPT ! 46.20 71.13 37.46 26.00 75.45 51.25
Wanda % 40.60 67.17 33.45 25.40 72.92 47.91
Wanda+CP % 42.92 70.50 36.09 25.20 72.20 49.38
PermLLMWanda % 47.30 70.58 38.13 27.60 77.26 52.17

5.2 N:M Semi-structured Pruning for LLMs

Language Modeling. In Table 1, we evaluate the language modeling performance of the 2:4 sparse
models on Wikitext2. Perplexity is used as the evaluation metric, with lower values indicating better
language modeling performance. SparseGPT updates the remaining unpruned weights during pruning
to compensate the pruning error. Other pruning methods, including our proposed PermLLM, do not
modify weight values.

Empirical results demonstrate that channel permutations effectively mitigate performance degradation
in pruned models. However, existing channel permutation algorithms rely on handcrafted heuristic
metrics to generate permutations, often yielding suboptimal solutions. In contrast, PermLLM
employs end-to-end learnable optimization to derive superior permutations by directly minimizing
the performance gap between the dense and pruned models. Compared to SparseGPT, both Wanda
and RIA initially demonstrate superior performance on LLaMA and LLaMA-2. The proposed
PermLLM framework further unlocks their potential. On the other hand, for other models, Wanda and
RIA underperform relative to SparseGPT, even with channel permutations. Specifically, significant
performance degradations are observed in LLaMA-3.1 and Qwen-2.5 even using Wanda+CP and
RIA+CP. However, with the incorporation of learnable channel permutations, PermLLM surpasses
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Table 3: Runtime for the different layers and channel permutations in LLaMA-2 7B using 2048
tokens.

Method Q/K/V/O_proj Up/Gate_proj Down_proj CP

Dense 1.513ms 2.607ms 2.614ms -
2:4 sparsity + CP 0.927ms 1.526ms 1.535ms 0.039ms

Speedup 1.632× 1.708× 1.703× -

Table 4: Evaluation on PermLLMwanda for LLaMA-2 7B with different iteration number of Sinkhorn
normalization.

Model # of Iter. HellaSwag ARC_E ARC_C OBQA RTE Average Wikitext2

Qwen-2.5 7B 0 45.28 64.65 29.86 21.20 53.79 42.96 14.12
5 45.33 62.58 30.97 24.00 53.79 43.33 14.03

LLaMA-3.1 8B 0 45.93 71.00 37.88 25.40 65.70 49.18 14.43
5 47.30 70.58 38.13 27.60 77.26 52.17 13.58

SparseGPT due to its accurate and model-wise optimization, demonstrating the effectiveness and
superiority of the proposed framework.

Zero-shot Performance. In Table 2, we report the zero-shot performance of the 2:4 sparse models on
five evaluation tasks. The average accuracy across all tasks is presented in the last column. PermLLM
significantly enhances the effectiveness of channel permutations for pruning, outperforming existing
methods on the majority of tasks and achieving the highest average accuracy. This highlights the
significant potential of channel permutation as an effective tool for semi-structured pruning. We
also evaluate PermLLM for 4:8 sparsity on LLaMA-2 7B in Table 8, which shows PermLLM is not
limited to 2:4 sparsity.

Inference Speedup. Inference runtime evaluation is crucial to validate the practicability of the
proposed framework. In Table 3, we report the runtime speedup of 2:4 sparse LLaMA-2 model using
a batch of 2048 tokens following SparseGPT and RIA. The customized CUDA kernel of channel
permutation reduces the total runtime from 3.288ms to 0.039ms, providing 84× speedup compared to
Pytorch implementation. Thus, the overhead of channel permutations is minimal with the customized
CUDA kernel. The overall acceleration across all linear layers, even with channel permutations, is
approximately 1.67×.

5.3 Ablation Study

We conduct an ablation study on the relaxation of the soft permutation matrix to evaluate its impact
on our framework. A larger iteration number in Sinkhorn normalization allows the soft permutation
matrix to converge more closely to a doubly stochastic matrix (DSM). By default, we set the iteration
number of Sinkhorn normalization to 5, which generally yields satisfactory performance. In Table 4,
we evaluate the pruning performance of PermLLMWanda under different Sinkhorn normalization
iterations. When the iteration number is set to 0, the soft permutation matrix deviates the most from
a DSM. The results demonstrate the benefits of using a DSM as the soft permutation matrix for
permutation learning. It helps to enhance the learning process by providing a more structured and
meaningful representation.

In Table 5, we evaluate PermLLMwanda on the LLaMA-2 7B model using different calibration
datasets: Pile [17], Wikitext2 [40], and C4 [47]. Each dataset consists of 128 randomly selected
samples. The results demonstrate that the learned permutation performs consistently well across
different datasets, which indicates robustness of PermLLM.

Additionally, we conduct experiments to analyze the trade-off between performance and training cost
under varying block sizes. As shown in Table 6, larger block sizes provide a greater optimization
space. However, this increased space comes at the cost of longer exploration and convergence times.
We select a block size of 64 as the default, as it strikes a good balance between pruning performance
and training efficiency.
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Table 5: Evaluation on PermLLMwanda for LlaMA-2 7B with different calibration dataset.

Dataset HellaSwag ARC_E ARC_C OBQA RTE Average Wikitext2

Pile 45.83 64.31 32.08 26.60 54.87 44.74 8.96
Wikitext2 45.42 66.41 32.34 25.80 53.07 44.61 8.31

C4 46.60 65.49 31.14 26.20 63.54 46.59 9.39

Table 6: Evaluation on PermLLMwanda for LlaMA-2 7B with different block size.

Block size HellaSwag ARC_E ARC_C OBQA RTE Average Wikitext2 Time

32 46.13 64.39 29.69 24.60 53.07 43.58 9.50 2h
64 46.60 65.49 31.14 26.20 63.54 46.59 9.39 2.5h
128 46.47 66.08 32.08 27.40 64.43 47.09 9.07 6h

6 Conclusion

This paper introduces PermLLM, a novel pruning framework leveraging learnable channel permuta-
tions (LCP) to optimize N:M sparsity in large language models. By minimizing pruning errors through
end-to-end optimization, PermLLM significantly enhances the performance of N:M semi-structured
pruning. Experimental results validate its superiority over existing methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s primary contribution, which is the proposal of a learnable channel
permutation method to improve N:M sparsity for the first time, is clearly and accurately
articulated in both the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in Appendix D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper dost not involve theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setups and hyperparameters configurations are detailed
in Section 5.1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code in the camera-ready version.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setups and hyperparameters configurations can be found
in Section 5.1 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bar is not used for experimental evaluation in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the sufficient information on the number of GPUs used and runtime
in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conforms the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts of this paper in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: For the existing assets used, we have cited the papers and repos.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementations

Hyperparameters Configurations. The learning rate is set from {1e-3, 5e-3}. Specifically, we use
1e-3 for PermLLMWanda and 5e-3 for PermLLMRIA. The iteration of Sinkhorn normalization is 5.
The temperature τ is linearly decayed from 1 to 0.1 to control the hardness of the soft permutation
matrix in Equation (5). The block size for block-wise learnable channel permutation is set to 64, as it
offers a balanced trade-off between performance and efficiency. We use 50 iterations for permutation
learning.

More Efficient Implementation. PermLLM serves as an effective plugin to improve performance
of existing zero-shot pruning methods. As observed in other studies, different layers have varying
impacts on the output. To further enhance the efficiency of PermLLM, learnable channel permutation
modules can be inserted into only a subset of layers, while the traditional channel permutation method
is applied to the remaining layers. For instance, we apply learnable channel permutations only to the
last six decoder layers of the LLaMA-2-7B model. In this case, only a single GPU is required for
permutation learning, reducing the runtime to 0.4 hours, which is similar to the runtime of traditional
channel permutation method.

The experimental results are shown in Table 7. Although partial PermLLM does not match the perfor-
mance of full PermLLM due to its limited optimization space, it still provides notable improvements
over traditional channel permutation methods. This approach also represents a balanced trade-off
between performance and efficiency, making it particularly suitable for scenarios with relatively
limited computational resources.
Table 7: Experimental results on LLaMA-2-7B with partial PermLLM. We highlight the top-2 results.

Method HellaSwag ARC_E ARC_C OBQA RTE Average Wikitext2

RIA+CP 42.86 64.69 30.29 24.40 54.87 43.42 10.26
PermLLMRIA (partial) 44.46 64.10 31.74 24.80 53.79 43.78 10.10

PermLLMRIA (full) 45.15 64.77 32.25 24.80 54.51 44.30 9.60

B PermLLM for 4:8 Sparsity

In Table 8, we present the detailed results about the 4:8 sparsity on LLaMA-2 model with different
pruning methods. The experimental results demonstrate that PermLLM is not limited to 2:4 sparsity
and can still outperform traditional method for 4:8 sparsity.

Table 8: Evaluation on 4:8 sparse LLaMA-2-7B with different pruning methods.

Method Weight Update HellaSwag ARC_E ARC_C OBQA RTE Average Wikitext2

Dense - 57.13 76.30 43.26 31.60 62.45 54.15 5.47

SparseGPT ! 48.77 67.68 34.81 26.20 53.79 46.25 8.56
Wanda % 46.87 66.92 34.04 26.40 54.87 45.82 8.63
Wanda+CP % 48.61 70.62 35.15 28.60 55.23 47.64 8.26
PermLLMWanda % 49.02 70.20 36.35 29.40 54.87 47.97 7.96

C Visualization of Mask

Figure 3 illustrates the masks of layer.30.down_proj in the pruned LLaMA-2-7B by different methods.
For methods involving channel permutations (e.g., RIA+CP and PermLLMRIA), the channels are
permuted back to their original order for better comparison. We extract a 128×128 portion of the mask
(i.e., mask[:128, :128]) for better visualization. It’s observed that the retained weights differ between
the previous channel permutation method and our proposed learnable channel permutation. This
is because we utilize different strategies: previous one aims at maximizing the sum of the retained
importance metrics and PermLLM is to minimize the output discrepancy between dense model and
the pruned model.
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(a) Wanda (b) Wanda+CP (c) PermLLMWanda

(d) RIA (e) RIA+CP (f) PermLLMRIA

Figure 3: Visualization of mask obtained by different pruning methods. The blue part means the
pruned weights and the white part is the retained weights

D Limitations

This paper introduces a innovative learnable channel permutation method to enhance semi-structured
pruning for the first time. Although the method is tailored for semi-structured pruning, channel
permutation or channel reordering has also been shown to be beneficial in other areas, such as
quantization [30, 59]. This suggests that the broader applicability of the proposed approach to tasks
beyond pruning, such as optimizing quantization performance, remains an open area for future
exploration. Moreover, while the proposed block-wise channel permutation scheme significantly
reduces training overhead compared to the full matrix scheme, the training of PermLLM still requires
more computational resources compared to traditional channel permutation methods. Enhancing the
training efficiency for pruning-aware permutation learning remains an important direction for future
research.

E Broader Impacts

The proposed learnable channel permutation for N:M sparsity is not expected to have any negative
societal impacts. Instead, it has the potential to advance the field of machine learning, particularly in
the area of model compression.
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