
Under review as a conference paper at ICLR 2021

UNSUPERVISED PROGRAM SYNTHESIS FOR IMAGES
BY SAMPLING WITHOUT REPLACEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Program synthesis has recently emerged as a promising approach to the image
parsing task. Most prior work has followed a two-step pipeline that involves
supervised pretraining of a sequence-to-sequence model on synthetic programs,
followed by reinforcement learning to fine-tune the model on real reference images.
A purely RL-driven approach without supervised pretraining has never proven
successful, since useful programs are too sparse in the program space to sample
from. In this paper, we present the first purely unsupervised learning algorithm
that parses constructive solid geometry (CSG) images into context-free grammar
(CFG) without pretraining. The key ingredients of our approach include entropy
regularization and sampling without replacement from the CFG syntax tree, both
of which encourage exploration of the search space, and a grammar-encoded tree
LSTM that enforces valid outputs. We demonstrate that our unsupervised method
can generalize better than supervised training on a synthetic 2D CSG dataset.
Additionally, we find that training in this way naturally optimizes the quality of
the top-k programs, leading our model to outperform existing method on a 2D
computer aided design (CAD) dataset under beam search.

1 INTRODUCTION

Image generation has been an extensively studied topic in machine learning and computer vision. Vast
numbers of papers have explored generating images through low-dimensional latent representations
(Goodfellow et al., 2014; Arjovsky et al., 2017; Li et al., 2017; Kingma & Welling, 2013; van den
Oord et al., 2017; Oord et al., 2016). However, it is challenging to learn disentangled representations
which allows us to better control the generative models (Higgins et al., 2017; Kim & Mnih, 2018;
Locatello et al., 2018; Chen et al., 2016). In this paper, we will explore generating CFG programs from
constructive solid geometry (CSG) images (Hubbard, 1990). We can consider these programs as an
alternative to the low-dimensional representation of the image. We can view the model for extracting
the programs as an encoder and the renderer that reconstructs the image as a decoder. Parsing an
image of geometric shapes into programs enables us to manipulate only the desired components of
the image while reconstruct the rest. In this paper, we assume access to a non-differentiable renderer.
They are more common than differentiable ones, but more challenging to work with neural network
because the gradient w.r.t. the input is inaccessible.

The standard pipeline to parse an image (e.g. CSG image) into programs (e.g. CFG programs) with
non-differentiable renderer is supervised pretraining followed by REINFORCE fine-tuning (Sharma
et al., 2018; Ellis et al., 2019). Sampling programs directly from a specified grammar provides data
sufficient for supervision. However, Bunel et al. (2018) points out a limitation of supervised training
with MLE – it maximizes the likelihood of a single reference program while penalizing many other
valid programs. This observation is summarized as program aliasing. Ellis et al. (2019) incorporated
REINFORCE to learn a value function in order to prune unpromising partial programs evaluated in
the image space. Sharma et al. (2018) utilizes REINFORCE fine-tuning to accustom the program
synthesizer to approximate CAD images not generated by grammar. While supervised methods
optimize the objective in the string space, RL methods directly optimizes in the image space. Despite
these benefits, a pure RL approach was not preferred because correct programs are too sparse in
the program space to be sampled frequently enough to learn. We focus on improving the sample
efficiency of the REINFORCE algorithm and show that a pure RL approach can achieve comparable
result as a two-step model. We further demonstrate that our method generalizes better on a synthetic

1

Under review as a conference paper at ICLR 2021

2D CSG dataset than a supervised method and yields superior results under beam search on a CAD
dataset than a supervised pretrained RL fine-tuned model.

Here are the key components to successfully learn to parse an image without program supervision:
• We use REINFORCE (Williams, 1992) as our main building component because direct

gradient information from the non-differentiable renderer is inaccessible.
• We incorporate a grammar-encoded tree LSTM to impose a structure on the search space

such that the algorithm is essentially sampling a path in the CFG syntax tree top-down. This
guarantees the validity of the output program.
• We propose an entropy estimator suitable for sampling top-down from a syntax tree for

entropy regularization to encourage exploration of the search space.
• Instead of using simple Monte Carlo sampling, we perform sampling without replacement

from the syntax tree to optimize over top-k programs simultaneously. This leads to faster
convergence during training and more effective beam search during testing.

2 RELATED WORK
Our work is related to program synthesis, vision-as-inverse-graphics, as well as generating images
with stroke-based rendering (SBR) systems.

Program synthesis has been a growing interest to researchers in machine learning. Supervised training
is a natural choice when it comes to input/output program synthesis problems (Parisotto et al., 2016;
Chen et al., 2018a; Devlin et al., 2017; Yin & Neubig, 2017; Balog et al., 2017; Zohar & Wolf, 2018).
Shin et al. (2018) uses the input/output pairs to learn the execution traces. (Bunel et al., 2018) uses
RL to address program aliasing, however supervised pretraining is still necessary to reap its benefits.
Approaches to ensure valid outputs involve syntax checkers (Bunel et al., 2018) or constructions of
abstract syntactic trees (AST) (Parisotto et al., 2016; Yin & Neubig, 2017; Kusner et al., 2017; Chen
et al., 2018b). A graph can also model the information flow in a program (Brockschmidt et al., 2018).

Research on converting images to programs are more directly related to our work (Sharma et al.,
2018; Ellis et al., 2019; Tian et al., 2019; Ellis et al., 2018; Liu et al., 2018). The setup of our work
closely follows Sharma et al. (2018)’s on program synthesis by supervised pretraining before RL
fine-tuning to generalize to a CAD dataset. Ellis et al. (2019) pretrains a policy with supervision
from generated data and learns a value function by REINFORCE. Both are deployed to prune out
unpromising candidates during test time. Their reward function is binary and is not designed for data
that is not an exact match of the action space. Our model can approximate images not generated
with the specified grammar. Tian et al. (2019) incorporates a differentiable renderer into the learning
pipeline while we treat our renderer as an external procedure independent from the learning process.
We cannot propagate gradient from the reward to the model. Ellis et al. (2018) uses neural network
to extract the shapes from hand-drawn sketches, formulates the grammatical rules as constraints
and obtains the final program by solving a constraint satisfaction problem. This process can be
computationally expensive compared to neural network’s performance in test time.

Vision-as-inverse-graphics concerns parsing a scene into a collection of shapes or 3D primitives, e.g.
cars or trees, with parameters, e.g. colors or locations, that imitates the original scene (Tulsiani et al.,
2017; Romaszko et al., 2017; Wu et al., 2017). Yao et al. (2018) further manipulates the objects
de-rendered, such as color changes. Stroke-based rendering creates an image in a way natural to
human. Some of the examples are recreating paintings imitating a painter’s brush stroke by Huang
et al. (2019), drawing sketches of objects by Ha & Eck (2017). SPIRAL by Ganin et al. (2018)
is an adversarially trained deep reinforcement learning agent that can recreate MNIST digits and
Omniglot characters. Stroke-based rendering behaves in an additive way. The action is usually a line
with continuous parameters such as width and length. A grammar structure is unnecessary to both
vision-as-inverse-graphics and stroke-based rendering.

3 PROBLEM DEFINITION
We use CSG (Hubbard, 1990) to form an image. The input of our model are images constructed
from basic shapes such as square, circle or triangle, each with a designated size and location (see
Figure 7). The outputs of the model are CFG programs.

CFG contains terminals and non-terminals. S, T , and P are non-terminals for the start, operations,
and shapes. The rest are terminals, e.g. + (union), ∗ (intersection), − (subtraction), and c(48, 16, 8)

2

Under review as a conference paper at ICLR 2021

Figure 1: This is an example of grammar encoded tree LSTM at work. The top layer of canvases demonstrates
the image stack and the bottom layer demonstrates the grammar stack. The blue, orange, yellow and green
colored LSTM cell generates grammatical tokens according to the CFG rule 1, 2, 3 and 4 respectively. In
implementation, we can constrain the output space by adding a mask to the output of the LSTM and render the
invalid options with close to zero probability of being sampled.

stands for a circle with radius 8 at location (48, 16) in the canvas. Please refer to Figure 3 for some
examples of CSG images with their corresponding programs. Each line below is a production rule or
just rule for simplicity:

S → E (1)
E → EET |P (2)
T → +| − |∗ (3)
P → SHAPE1|SHAPE2| · · · |SHAPEn. (4)

4 PROPOSED ALGORITHM
Our model consists of a CNN encoder for canvases, an embedding layer for the actions, and an RNN
for generating the program sequences (see Figure 1 for demonstration). The model is trained with
entropy regularized REINFORCE (Williams, 1992). Let H(s) and f(s) be the entropy (we will
define this later) and reward function of the sequence s respectively. θ is the parameters of our model.
The objective is optimized as follows:

∆θ ∝ Es∼Pθ(s)[∇θ logP (s)f(s)] + α∇θH(s), (5)
The output program s is converted to an image y by a non-differentiable renderer. The image is
compared to the target image x and receives a reward R(x,y), which is our definition of f(s). We
adopt Chamfer distance as part of the reward function as in Sharma et al. (2018). Chamfer distance
calculates the average matching distance to the nearest feature. Let x ∈ x and y ∈ y be pixels in
each image respectively. Chamfer distance is described formally as follows:

Ch(x,y) =
1

|x|
∑
x∈x

min
y∈y
||x− y||2 +

1

‖y‖
∑
y∈y

min
x∈x
||x− y||2 (6)

The Chamfer distance is scaled by ρ, which is the length of the image diagonal, such that the final
value is between 0 and 1. Under the setting of this problem, the reward 1− Ch(x,y) mostly falls
between 0.9 and 1. We exponentiate 1 − Ch(x,y) to the power of γ = 20 to achieve smoother
gradients (Laud, 2004). We add another pixel intersection based component to differentiate shapes
with similar sizes and locations. The final reward function is:

R(x,y) = max(δ, (1− Ch(x,y)

ρ
)γ +

∑
x∈x∩y 1∑
x∈x 1

) (7)

The first and second part of the reward function provide feedback on the physical distance and
similarity between the prediction and the target respectively. We clip the reward below δ = 0.3 to
simplify it when the quality of the generated images are poor. A low reward value provides little
insight on its performance and is largely dependent on its target image. Similar reward clipping idea
was proposed in DQN (Mnih et al., 2013) and was used to unify the reward ranges across different
games to [−1, 1].

A model trained with REINFORCE objective (Sharma et al., 2018) only is unable to improve beyond
the lowest reward (Figure 4 (green)). We introduce three crucial designs to improve learning. Firstly,

3

Under review as a conference paper at ICLR 2021

we propose an entropy estimator for a tree model to encourage exploration; Secondly, we perform
sampling without replacement in the program space to facilitate optimization and further encourage
exploration; and lastly, we adopt a grammar-encoded tree LSTM to ensure valid output sequences
with an image stack to provide intermediate feedbacks.

Algorithm 1 Sampling w/o Replacement Tree LSTM
Input: Target Image x, Number of beams k
Initialize: Grammar stack S, Image stack I , Beam set B

Encode the target image T̃ ← Encode(T)
B = {si|si = ∅} for i ∈ 1, 2, · · · k + 1 and H(v) = 0
for j := 1 to n do

Φ:,j ,Hi,j ← TreeLSTM(S, I,B,x) (Algorithm 2)
B← Sample_w/o_Replacement(Φ:,j ,B, k) (See Kool et al. (2019b) and Algorithm 3)

ĤD ← ĤD +
∑n
j=1

1
Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
Hi,j (Equation 14 and Appendix B)

if sij+1 ∈ G then Si.push(sij+1) else Ii.push(sij+1),∀si ∈ B
end for
yi = Render(si) for i ∈ 1, 2, · · · k
Maximize E[

∑k
i=1R(x,yi)] + αĤD

4.1 EXPLORATION WITH ENTROPY REGULARIZATION

Entropy regularization in reinforcement learning is a standard practice for encouraging exploration.
We present an entropy estimation suitable for sampling top-down from a syntax tree.

Let S be the random variable of possible programs. The entropy is denoted asH(S) = E[− logP (S)]
1. Because the possible outcomes of S can be exponentially large and we cannot enumerate all of
them to estimate the expectation. The entropy can be estimated naively via

Ĥ = − 1

K

K∑
i=1

logP (si), (8)

with finite samples {si}Ki=1. Without further assumption, we are not able to improve Ĥ. However,
we can decompose program into S = X1 . . . Xn, where each Xj is the random variable for the token
at position j in the program. Under autoregressive models (e.g. RNN), we can further access the
conditional probability. Therefore, we propose a decomposed entropy estimator ĤD as

ĤD =
1

K

K∑
i=1

n∑
j=1

H(Xj |X1 = xi1, · · · , Xj−1 = xij−1), (9)

where si = xi1, . . . , x
i
n, andH(Xj |X1 = xi1, · · · , Xj−1 = xij−1) is the conditional entropy.

Lemma 4.1. The proposed decomposed entropy estimator ĤD is unbiased with lower variance, that
is E[ĤD] = H(S) and Var(ĤD) ≤ Var(Ĥ).

The proof is simple by following Cover & Thomas (2012) and we leave it in Appendix C and D.

4.2 EFFECTIVE OPTIMIZATION BY SAMPLING WITHOUT REPLACEMENT

After establishing our REINFORCE with entropy regularization objective, now we show the intuition
behind choosing sampling without replacement (SWOR) over sampling with replacement (SWR)
with a synthetic example (Figure 2). We initialize a distribution of m = 100 variables with three
of them having significantly higher probability than the others (Figure 2 (2)). The loss function is
entropy. Its estimator is 1

m

∑m
i=1 log pi for SWR and

∑m
i=1

pi
qi

log pi for SWOR. In both cases, pi is
the i-th variable’s probability. qi is the re-normalized probability after SWOR. piqi is the importance
weighting. The increase in entropy by sampling 20 variables without replacement is more rapid than
40 variables with replacement. At the end of the 700 iterations, the distribution under SWOR is
visibly more uniform than the other. SWOR would achieve better exploration than SWR.

1Here we overload S and P as used in equation 1 and equation 2 to follow the convention.

4

Under review as a conference paper at ICLR 2021

‘

Figure 2: The left most image demonstrates the entropy value increases over 700 iterations by sampling 20
distinct samples with and without replacement as well as sampling 40 samples with replacement. The second
image shows the initial distribution. The third and fourth images show the final distributions.

To apply SWOR to our objective, both of the REINFORCE objective and the entropy estimator
require importance weightings. Let sij denotes the first j elements of the sequence si:

∇θEs∼pθ(s)[f(s)] ≈
∑
si∈S

∇θpθ(si)
qθ(si)

f(si) and, (10)

ĤD ≈
n∑
j=1

∑
si∈S

pθ(s
i
j)

qθ(sij)
H(Xj |X1 = xi1, · · · , Xj−1 = xij−1) (11)

Implementing SWOR on a tree structure to obtain the appropriate set of programs S is challenging.
It is not practical to instantiate all paths and perform SWOR bottom-up. Instead, we adopt a form
of stochastic beam search by combining top-down SWOR with Gumbel trick that is equivalent to
SWOR bottom-up (Kool et al., 2019b). The exact sampling process is described in Algorithm 3. In
Appendix B, we will discuss the implementation of the re-normalized probability qθ(si) as well as
some additional tricks of variance reduction for the objective function.

4.3 GRAMMAR ENCODED TREE LSTM
We introduce a grammar-encoded tree LSTM which encodes the production rules into the model,
thus guaranteed to generate correct programs, and significantly reduce the search space during
the training (Kusner et al., 2017; Alvarez-Melis & Jaakkola, 2016; Parisotto et al., 2016; Yin &
Neubig, 2017). There are 3 types of production rules in the grammatical program generation – shape
selection (P), operation selection (T), and grammar selection (E). Grammar selection in this problem
setting includes E → EET , and E → P and they decide whether the program would expand. We
denote the set of shape, operations and non-terminal outcomes (e.g. EET in equation 2) to be P ,
T and G respectively. A naive parameterization is to let the candidate set of the LSTM output to be
{S, $} ∪ T ∪ P , where $ is the end token, and treat it as a standard language model to generate the
program (Sharma et al., 2018). The model does not explicitly encode grammar structures, and expect
the model to capture it implicitly during the learning process. The drawback is that the occurrence of
valid programs is sparse during sampling and it can prolongs training significantly.

The proposed model can be described as an RNN model with a masking mechanism by maintaining
a grammar stack to rule out invalid outputs. We increase the size of the total output space from
2+|P|+|T | of the previous approach (e.g. Sharma et al. (2018)) to 2+|P|+|T |+|G| by including the
non-terminals. During the generation, we maintain a stack to trace the current production rule. Based
on the current non-terminal and its corresponding expansion rules, we use the masking mechanism to
weed out the invalid output candidates. Take the non-terminal T for example, we mask the invalid
outputs to reduce the candidate size from 2 + |P|+ |T |+ |G| to |T | only. In this process, the model
will produce a sequence of tokens, including grammatical, shape and operation tokens. We only keep
the terminals as the final output program and discard the rest. The resulting programs are ensured to
be grammatically correct. During the generation process, grammatical tokens are pushed onto the
grammar stack while intermediate images and operations are pushed onto an image stack. Images
in the image stack are considered observations and are part of the input to the LSTM to aid the
inference in the search space. A step-by-step guide through the tree LSTM for better understanding
is in Appendix A and Figure 1 is a visual representation of the process.

5 EXPERIMENTS
We are going to investigate how each design feature affects learning and how our algorithm compares
to a supervision based method. Firstly, we utilize a synthetic dataset generated by the CFG specified

5

Under review as a conference paper at ICLR 2021

(a) Example output of each method (b) Example output of each beam

Figure 3: (a) We show a target image from each dataset and attach its correct program below. To the right of
the target program are the reconstructed output programs from our algorithm and three variants each missing
one design feature. The reward is on top of the reconstructed images. (b) Some reconstructed example output
programs of our algorithm. Each row represents one data point. The leftmost images of the five columns are the
target images and the four columns to their right are the reconstructed outputs of four samples. The final output
is the program of the reconstruction with the highest reward (highlighted in red).

Figure 4: From left to right, we have reward per batch for programs of length 5, 7 and 9. It demonstrates
the performance of our algorithm and controlled comparison in performance with alternative algorithms by
removing one component at a time.

in Section 3 to perform ablation study. Next, we use a 2D CAD furniture dataset as input and show
that the programs our algorithm generate can approximate them despite not having an exact match.
We train supervised models on both datasets and our method is able to achieve comparable, and
in some case – superior, result. Lastly, we show empirically that the stepwise entropy estimator
(Equation 9) has smaller variance than the naive estimator (Equation 8).

5.1 ABLATION STUDY OF DESIGN FEATURES

We use three synthetic datasets to test our algorithm. The action space includes 27 shape (Figure 7),
3 operation and 2 grammar to create images on a 64 by 64 canvas. The search space for an image up
to 3 shapes (or program length 5) is around 1.8 × 105 and it gets up to 1.1 × 109 for 5 shapes (or
program length 9). We separate our dataset by the length of the program to study the effect of image
complexity. Our synthetic dataset is created by generating all combinations of shape and operation
actions in text for each length of program and filtering out the duplicates and empty images. Images
are considered duplicates if only 120 pixels are different between the two and are considered empty
if there are no more than 120 pixels on the canvas. Table 1 contains the dataset size information. For
these 3 datasets, we sampled 19 programs without replacement for each target image. The negative
entropy coefficient is 0.05 and the learning rate is 0.01. We use SGD with 0.9 momentum.

Type Length 5 Length 7 Length 9 2D CAD
Training set size 3600 4800 12000 10000
Testing set size 586 789 4630 3000

Table 1: Dataset statistics.

6

Under review as a conference paper at ICLR 2021

Figure 5: The four examples on the right are from the test set, and the rest on the left are from the training set.
The target images are on top and the reconstruction from the output programs are at the bottom.

Test Metric Length 5 Length 7 Length 9
Chamfer 0.985 0.960 0.969

IoU 0.996 0.964 0.969

Chamfer length 5 length 7 length 9
Training 0.997 0.996 0.994
Testing 0.987 0.906 0.833

Table 2: (Left) The performance of the converged model of our algorithm on the test set measured with Chamfer
distance to the power of 20 and IoU. (Right) Supervised training results.

Removing either one of the three design features has reduced the performance of our algorithm.
Under sampling with replacement setting, the model is quickly stuck at a local optimum (Figure 4
(yellow)). The starting reward is lower comparing to sampling without replacement because its final
reward is the maximum reward of all distinct programs. Without the entropy term in the objective
function, the reward function is able to improve on the length 5 dataset but fails to do so on longer
programs. With the tree structure removed, the reward stays around the lowest reward (Figure 4
(green)) because the program is unable to generate valid programs to render. All these design features
are crucial to learning increasingly complex images.

We allow variations in the generated programs as long as the target images can be recovered, thus we
evaluate the program quality in terms of the reconstructed image’s similarity to the target image. We
measure our converged algorithm’s performance (Table 2 (Left)) on the three test sets with Chamfer
and IoU reward metrics (Equation 7 first and second term). The perfect match receives 1 in both
metrics. Figure 3 provides some qualitative examples on the algorithms in Figure 4.

5.2 EXPERIMENT ON 2D CAD FURNITURE DATASET

The dataset used in this experiment is a 2D CAD dataset (Sharma et al., 2018) that contains binary
64× 64 images of various furniture items. We apply our algorithm to this problem with an action
space of 396 basic shapes plus the operations and grammatical terminals described in Section 3. We
limit the number of LSTM iterations to 24 steps, which corresponds to a maximum of 6 shapes. For
an image up to 6 shapes the search space is 9.4 × 1017. If we remove the grammar-encoded tree
structure, the search space is 3.8× 1028. The learning rate and entropy values used are 0.01 and 0.7
respectively. We train the model with only the Chamfer reward (first part of the Equation 7) because
these images are not generated by CFG and exact match solutions do not exist. During training, the
reward converges to 0.7. Qualitative results are reported from the training and test set (Figure 5). The
program reconstructions are able to capture the overall profile of the target images. However, the
cutouts and angles deviate from the original because the shape actions consist solely of unrotated
squares, perfect circles and equilateral triangles.

5.3 COMPARISON WITH SUPERVISED LEARNING METHOD

We compare the training and testing results using a supervised learning method with the same neural
network model to the unsupervised method on the synthetic dataset. The input at each step is the
concatenation of the embedded ground truth program and the encoded final and intermediate images.
We use the same synthetic dataset and the Chamfer reward (Equation 7 first term) metric in Table 2
(Left) to measure the quality of the output programs. The testing results of the supervised method
worsen with the increasing complexity (program length) while the training results are almost perfect
across all three datasets. The unsupervised method receives consistently high scores. This shows that
the supervised training method does not generalize well to new data in comparison to the unsupervised
method (Table 2 (Right)). This may be explained by program aliasing described by Bunel et al.
(2018). Our conjecture is that the supervised learning optimizes over the loss function in the program
space while the unsupervised learning directly optimizes over the reward function in the image space.

We also took the model pretrained on 1.2M ground truth programs from Sharma et al. (2018) to
compare with our performance on the CAD dataset. We allow our models to generate up to 6 shapes
and measure the image similarity in Chamfer Distance (Equation 6). We further fine-tuned the

7

Under review as a conference paper at ICLR 2021

CD k = 1 k = 10 k = 50 k = 100
Pretrained Model 4.62 1.89 1.39 1.31
Fine-tuned Model 1.43 1.27 1.20 1.18

Our Model 1.57 1.07 0.83 0.82
Table 3: Empirical comparison of pretrained model, fine-tuned model and our model on 2D CAD dataset with
Chamfer distance

Figure 6: Compare the entropy estimation following the Equation 14 as a weighted sum of stepwise entropy
versus taking the average of the sequence log probability. The number of samples, or beam size, varies from 2 to
80 on the x-axis. The shaded area represents the standard deviation of each estimator. From left to right, we
demonstrate the result on datasets of three program lengths.

pretrained model on CAD dataset. Our model was trained directly on the CAD dataset without
supervision. We report the result of the pretrained model, fine-tuned model and our model by beam
search with k = 1, 10, 50, 100 in Table 3. The pretrained model is not able to directly generalize
to the novel dataset. The fine-tuned model perform better than our model at k = 1. But beam
search benefits our model significantly more than a model fine-tuned by vanilla REINFORCE. Our
hypothesis is sampling without replacement, or stochastic beam search, during training also teaches
the model to use beam search more effectively in test time (Negrinho et al., 2018). The least Chamfer
distance is achieved at 0.82 with k = 100 by our model.

5.4 VARIANCE STUDY OF ENTROPY ESTIMATION

This study (Figure 6) shows that the estimator ĤD achieves a lower variance than Ĥ (Section 4.1).

We take a single model saved at epoch 40 during the training time of the length 5, 7, and 9 dataset and
estimate the entropy with ĤD (Equation 9) and Ĥ (Equation 8). We consider two sampling schemes:
with and without replacement. We combine both entropy estimation methods with the two sampling
schemes creating four instances for comparisons. The x-axis of the plot documents the number of
samples to obtain a single estimation of the entropy. We further repeat the estimation 100 times to get
the mean and variance. The means of SWR method act as a baseline for the means of the SWOR
while we compare the standard deviations (the shaded area) of the two entropy estimation methods.

Across all three datasets, ĤD (green) shows significantly smaller variance with the number of samples
ranges from 2 to 80. But we notice that longer programs, or more complex images, require much more
samples to reduce the variance. This makes sense because the search space increases exponentially
with longer program length. The initial bias in the SWOR estimation dissipates after the number of
samples grows over 10. The initial bias is greater in dataset with longer program length.

6 DISCUSSION
Our algorithm is the first to parses a CSG image, created by a non-differentiable renderer, into CFG
programs without supervision. Instead of relying on supervised pretrainig, we work on improving the
sample efficiency of the REINFORCE-based algorithm applied in this task. To simplify the parsing
pipeline, we first augment the REINFORCE objective with an unbiased and low-variance entropy
estimator of the model to encourage exploration, then we optimize the new objective by sampling
without replacement from the CFG syntax tree enforced by a grammar-encoded tree LSTM. Our
experiments have demonstrated the importance of each design feature qualitatively and quantitatively.
We also show that our unsupervised model generalizes better given the same amount of synthetic
data and it outperforms the supervise-pretrained RL fine-tuned model under beam search on the 2D
CAD dataset.

8

Under review as a conference paper at ICLR 2021

REFERENCES

David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent neural
networks. 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In International Conference on Representation Learning
(ICLR), 2017.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in neural information processing systems, 2016.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. 2018a.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation. In
Advances in neural information processing systems, pp. 2547–2557, 2018b.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 990–998. JMLR. org, 2017.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics
programs from hand-drawn images. In Advances in neural information processing systems, pp.
6059–6068, 2018.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl, 2019.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. arXiv preprint arXiv:1804.01118, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

David Ha and Douglas Eck. A Neural Representation of Sketch Drawings. ArXiv e-prints, April
2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR, 2017.

Zhewei Huang, Wen Heng, and Shuchang Zhou. Learning to paint with model-based deep reinforce-
ment learning. arXiv preprint arXiv:1903.04411, 2019.

Philip M Hubbard. Constructive solid geometry for triangulated polyhedra. 1990.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. arXiv preprint arXiv:1802.05983,
2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

9

Under review as a conference paper at ICLR 2021

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019a.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference on
Machine Learning, pp. 3499–3508, 2019b.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1945–
1954. JMLR. org, 2017.

Adam Daniel Laud. Theory and application of reward shaping in reinforcement learning. Technical
report, 2004.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan:
Towards deeper understanding of moment matching network. In Advances in Neural Information
Processing Systems, pp. 2203–2213, 2017.

Yunchao Liu, Zheng Wu, Daniel Ritchie, William T Freeman, Joshua B Tenenbaum, and Jiajun Wu.
Learning to describe scenes with programs. 2018.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
gled representations. arXiv preprint arXiv:1811.12359, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Renato Negrinho, Matthew Gormley, and Geoffrey J Gordon. Learning beam search policies via
imitation learning. In Advances in Neural Information Processing Systems, pp. 10652–10661,
2018.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Lukasz Romaszko, Christopher KI Williams, Pol Moreno, and Pushmeet Kohli. Vision-as-inverse-
graphics: Obtaining a rich 3d explanation of a scene from a single image. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 851–859, 2017.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:
Neural shape parser for constructive solid geometry. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5515–5523, 2018.

Richard Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis with inferred
execution traces. In Advances in Neural Information Processing Systems, pp. 8917–8926, 2018.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T Freeman, Joshua B Tenenbaum,
and Jiajun Wu. Learning to infer and execute 3d shape programs. arXiv preprint arXiv:1901.02875,
2019.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2635–2643, 2017.

Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances in
Neural Information Processing Systems, pp. 6306–6315, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

10

Under review as a conference paper at ICLR 2021

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 699–707, 2017.

Shunyu Yao, Tzu Ming Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Freeman, and Josh
Tenenbaum. 3d-aware scene manipulation via inverse graphics. In Advances in Neural Information
Processing Systems, pp. 1887–1898, 2018.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a learned garbage
collector. In Advances in Neural Information Processing Systems, pp. 2094–2103, 2018.

11

Under review as a conference paper at ICLR 2021

A GRAMMAR TREE LSTM GUIDE

This section provides a guide for the tree-LSTM illustration in Figure 1. This guide follows the
arrows in the illustration (Figure 1) from left to right:

Algorithm 2 TreeLSTM Model

Input: Grammar Stack S, Image Stack I , Target Image x, Sample Set B

function TREELSTM(S, I,B,x)
x̃← Encode(x)
for si ∈ B do

gi ← Si.pop()
g̃i ← Embed(gi)

Ĩi ← Encode(Ii)

Hi,j ← LSTM(g̃i, Ĩi, x̃, Hi,j−1)
pi,j ← softmax(f(Hi,j) + Mask(gi))
Estimate entropy at this node vi,j :
Hi,j = p̃i,j · log p̃i,j

Update the log probabilities of partial sequences
~φi,j = 1 · φsij−1

+ log pi,j

end for
return Φ:,j+1,Hi,j

end function

• A grammar stack with a start token S and an end token $ as well as an empty image stack is
initialized.

• In the first iteration, the token S is popped out. Following Rule equation 1, all other options
will be masked except E, the only possible output. E token is added to the stack.

• In the second iteration, or any iteration where the token E is popped, the input for all
examples and all softmax outputs are masked except the entries representing EET and P
according to Rule equation 2. If EET is sampled, T , E and E tokens will be added to the
stack separately in that exact order to expand the program further. If P is sampled, it will be
added to the stack and the program cannot expand further.

• If T is popped out of the stack, the output space for that iteration will be limited to all the
operations (Rule equation 3). Similarly, if P is popped out, the output space is limited to all
the geometric shapes (Rule equation 4).

• When a shape token is sampled, it will not be added to the grammar stack as they do not
contribute to the program structure. Instead, the image of the shape will be pushed onto the
corresponding image stack.

• When an operation token is sampled, it also will not be added to the grammar stack. Instead,
we pop out the top two images to apply the operation on them and push the final image onto
the image stack again.

• When the stack has popped out all the added tokens, the end token $ will be popped out in
the last iteration. We then finish the sampling as standard RNN language models.

In practice, we implement the masking mechanism by adding a vector to the output before passing
into softmax layer to get the probability. The vector contains 0 for valid output and large negative
numbers for invalid ones. This makes sure that invalid options will have almost zero probability of
being sampled. The input of the RNN cell includes encoded target image and intermediate images
from the image stack, embedded pop-out token from grammar stack and the hidden state from the
RNN’s last iteration. The exact algorithm is in Algorithm 2.

12

Under review as a conference paper at ICLR 2021

B SAMPLING WITHOUT REPLACEMENT

This section describes how we achieve sampling without replacement with the help of stochastic
beam search (Kool et al., 2019b).

At each step of generation, the algorithm chooses the top-k beams to expand based on the ~Gφi,j

score at time step j. Let A be all possible actions at time step j, ~φi,j ∈ RA is the log probability of
each outcomes of sequence i at time j plus the log probability of the previous j − 1 actions.

~φi,j =
[

logP (a1), logP (a2), . . . , logP (aA)
]

+ logP (at1 , at2 , atj) · 1

For each beam, we sample a Gumbel random variable Gφi,j,a = Gumbel(φi,j,a) for each of the
element a of the vector ~φi,j . Then we need to adjust the Gumbel random variable by conditioning on
its parent’s stochastic score Gsij−1

= Gumbel(logP (at1 , at2 , atj−1)) being the largest (Equation 12)

in comparison to all elemtns in ~Gφi,j , the resulting value ~̃Gφi,j ∈ RA is the adjusted stochastic score
for each of the potential expansions.

~̃Gφi,j = − log(exp (−1 ·Gsij−1
))− exp (−1 · Zi,j) + exp (−Gφi,j) (12)

Here Zi,j is the largest value in the vector ~Gφi,j and Gsij−1
is the stochastic score of i-th beam at

step j − 1. Conditioning on the parent stochastic score being the largest in this top-down sampling
scheme makes sure that each leaf’s stochastic score Gφi,j ∼ Gumbel(φi,j) is independent, equivalent
to sampling the sequences bottom up (Kool et al., 2019b). Once we have aggregated all the stochastic
scores in all k+1 beams, we select the top-k+1 scored beams from (k+1)∗A scores for expansions.
Note that the reason that we maintain one more beam than we intended to expand because we need the
k + 1 largest stochastic score to be the threshold during estimation of the entropy and REINFORCE
objective. This is explained next. Please refer to Algorithm 3 for details in the branching process.

Algorithm 3 Sampling_w/o_Replacement

Input: Log probability at time j φ:,j Beam Set B, Number of beams k

function SAMPLING_W/O_REPLACEMENT(Φ:,j ,B, k)
G̃← ∅
for si ∈ B do

~G~φi,j
∼ Gumbel(~φi,j)

Zi,j ← max(~Gφi,j)

Calculate ~̃Gφi,j (Equation 12)
Aggregate the values in the vector G̃φi,j

G̃← G̃ ∪ G̃φi,j
end for
Choose top k + 1 values in G̃ ∈ R(k+1)·A and form the new beam set
B̃ = {s̃i|s̃i ∪ s̃ij , }where i ∈ 1, 2, · · · , k + 1

return B̃
end function

The sampling without replacement algorithm requires importance weighting of the objective functions
to ensure unbiasness. The weighting term is pθ(s

i)
qθ,κ(si)

. pθ(si) represents the probability of the sequence
si and S represents the set of all sampled sequences si for i = 1, 2, · · · , k. qθ,κ(sij) = P (Gsij > κ)

where κ is the (k + 1)-th largest Gsij score for all i. It acts as a threshold for branching selection.
During implementation, we need to keep an extra beam, thus k + 1 beams in total, to accurately
estimate κ in order to ensure the unbiasness of the estimator.

13

Under review as a conference paper at ICLR 2021

To reduce variance of our objective function, we introduce additional normalization terms as well as
a baseline. However, the objective function is biased with these terms. The normalization terms are
W (S) =

∑
si∈S

pθ(s
i)

qθ,κ(si)
and W i(S) = W (S)− pθ(s

i)
qθ,κ(si)

+ pθ(s
i).

Incorporating a baseline into the REINFORCE objective is a standard practice. A baseline term is
defined as B(S) =

∑
si∈S

pθ(s
i)

qθ,κ(si)
f(si).

To put everything together, the exact objective is as follows (Kool et al., 2019a):

∇θEs∼pθ(s)[f(s)] ≈
∑
si∈S

1

W i(S)
· ∇θpθ(s

i)

qθ,κ(sin)
(f(si)− B(S)

W (S)
) (13)

Entropy estimation uses a similar scaling scheme as the REINFORCE objective:

ĤD(X1, X2, X3, · · · , Xn) ≈
n∑
j=1

1

Wj(S)

∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = xi1, · · · , Xj−1 = xij−1)

(14)

where Wj(S) =
∑
si∈S

pθ(s
i
j)

qθ,κ(sij)
and sij denotes the first j elements of the sequence si. The estimator

is unbiased excluding the 1
Wj(S)

term.

C PROOF OF STEPWISE ENTROPY ESTIMATION’S UNBIASNESS

Entropy of a sequence can be decomposed into the sum of the conditional entropy at each step
conditioned on the previous values. This is also called the chain rule for entropy calculation. Let
X1, X2, · · · , Xn be drawn from P (X1, X2, · · · , Xn) Cover & Thomas (2012):

H(X1, X2, · · · , Xn) =

n∑
j=1

H(Xj |X1, · · · , Xj−1) (15)

If we sum up the empirical entropy at each step after the softmax output, we can obtain an unbiased
estimator of the entropy. Let S be the set of sequences that we sampled and each sampled sequence
si consists of X1, X2, · · · , Xn:

EX1,X2,...,Xj−1(ĤD) = EX1,X2,...,Xj−1(
1

|S|
∑
i∈|S|

n∑
j=1

H(Xj |X1 = xi1, . . . , Xj−1 = xij−1))

=
1

|S|
· |S|

n∑
j=1

H(Xj |X1, · · · , Xj−1)

= H(X1, X2, · · · , Xn)

In order to incorporate the stepwise estimation of the entropy into the beam search, we use the similar
reweighting scheme as the REINFORCE objective. The difference is that the REINFORCE objective
is reweighted after obtaining the full sequence because we only receive the reward at the end and
here we reweight the entropy at each step. We denote each time step by j and each sequence by i,
the set of sequences selected at time step j is Sj and the complete set of all possible sequences of
length j is Tj and Sj ∈ Tj . We are taking the expectation of the estimator over the Gφi,j scores.
As we discussed before, at each step, each potential beam receives a stochastic score Gφi,j . The
beams associated with the top-k + 1 stochastic scores are chosen to be expanded further and κ is
the k + 1-th largest Gφi,j . κ can also be seen as a threshold in the branching selection process

14

Under review as a conference paper at ICLR 2021

and qθ,κ(sij) = P (Gsij > κ) = 1 − exp(− exp(φi,j − κ)). For details on the numerical stable
implementation of qθ,κ(sij), please refer to Kool et al. (2019b).

EGφ(

n∑
j=1

∑
sij∈Sj

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = xi1, X2 = xi2, · · · , Xj−1 = xij−1))

=

n∑
j=1

EGφ(
∑
i∈|Tj |

pθ(s
i
j)

qθ,κ(sij)
H(Xj |X1 = xi1, X2 = xi2, · · · , Xj−1 = xij−1))1{xi1,··· ,xij}∈Sj)

=

n∑
j=1

∑
i∈|Tj |

pθ(s
i
j)H(Xj |X1 = xi1, X2 = xi2, · · · , Xj−1 = xij−1)EGφ(

1{sij=xi1,··· ,xij}∈Sj

qθ,κ(sij)
)

=

n∑
j=1

H(Xj |X1, X2, · · · , Xj−1) · 1

= H(X1, X2, · · · , Xn)

For the proof of EGφ(
1{si

j
∈Sj

qθ,κ(sij)
) = 1, please refer to Kool et al. (2019b), appendix D.

D PROOF OF LOWER VARIANCE OF THE STEPWISE ENTROPY ESTIMATOR

We will continue using the notations from above. We want to compare the variance of the two entropy
estimator Ĥ and the stepwise entropy estimator ĤD and show that the second estimator has lower
variance.

Proof. We abuse EXj to be EXj |X1,...,Xj−1
and VarXj to be VarXj |X1,...,Xj−1

to simplify the
notations.

VarX1,X2,··· ,Xn(
1

|S|
∑
i∈|S|

n∑
j=1

H(Xj |X1 = xi1, . . . , Xj−1 = xij−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

VarX1,X2,··· ,Xn(H(Xj |X1 = xi1, . . . , Xj−1 = xij−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(E(H2(Xj |X1 = xi1, . . . , Xj−1 = xij−1))

− E2(H(Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(EX1,··· ,Xj−1
E2
Xj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

− E2
X1,··· ,Xj−1

EXj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

=
1

|S|2
∑
si∈S

n∑
j=1

(EX1,··· ,Xj−1
(EXj (log2 P (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

−VarXj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

− E2
X1,··· ,Xj−1

EXj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(EX1,··· ,Xj (log2 P (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

− E2
X1,··· ,Xj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1)))

15

Under review as a conference paper at ICLR 2021

‘

Figure 7: Each shape encoding is on top of the image it represents.

− EX1,··· ,Xj−1
VarXj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

=
1

|S|2
∑
i∈|S|

n∑
j=1

(VarX1,··· ,Xj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

− EX1,··· ,Xj−1VarXj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

≤ 1

|S|2
∑
i∈|S|

n∑
j=1

VarX1,··· ,Xj (logP (Xj |X1 = xi1, . . . , Xj−1 = xij−1))

= VarX1,X2,··· ,Xn(
1

|S|
∑
i∈|S|

logP (si))

The fifth equation holds from the fact that E2
XEY |X [f(X,Y)] = E2

X,Y [f(X,Y)]. The result still
stands after applying reweighting for the beam search.

E SHAPE ENCODING DEMONSTRATION

In Figure 7, we show the code name on top of the image that it represents. c, s, and t represent circle,
square and triangle respectively. The first two numbers represent the position of the shape in the
canvas and the last number represents the size.

F ADDITIONAL TEST OUTPUT EXAMPLES FOR THE 2D CAD DATASET

In this section, we include additional enlarged test outputs (Figure 8). We add the corresponding
output program below each target/output pair. We observe that the algorithm approximates thin lines
with triangles in some cases. Our hypothesis for the cause is the Chamfer distance reward function,
which is a greedy algorithm and finds the matching distance based on the nearest features.

16

Under review as a conference paper at ICLR 2021

‘

Figure 8: Additional test output with corresponding programs. The odd-numbered columns contain the target
images and the images to their right are example outputs.

17

	Introduction
	Related Work
	Problem Definition
	Proposed Algorithm
	Exploration with Entropy Regularization
	Effective Optimization By Sampling Without Replacement
	Grammar Encoded Tree LSTM

	Experiments
	Ablation Study of Design Features
	Experiment on 2D CAD Furniture Dataset
	Comparison with Supervised Learning Method
	Variance Study of Entropy Estimation

	Discussion
	Grammar Tree LSTM Guide
	Sampling Without Replacement
	Proof of Stepwise Entropy Estimation's Unbiasness
	Proof of Lower Variance of the Stepwise Entropy Estimator
	Shape Encoding Demonstration
	Additional Test Output Examples for the 2D CAD Dataset

