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Abstract

Recent literature has suggested the potential of using large language models (LLMs)1

to make predictions for tabular tasks. However, LLMs have been shown to exhibit2

harmful social biases that reflect the stereotypes and inequalities present in the3

society. To this end, as well as the widespread use of tabular data in many high-4

stake applications, it is imperative to explore the following questions: what sources5

of information do LLMs draw upon when making predictions for tabular tasks;6

whether and to what extent are LLM predictions for tabular tasks influenced7

by social biases and stereotypes; and what are the consequential implications8

for fairness? Through a series of experiments, we delve into these questions9

and show that LLMs tend to inherit social biases from their training data which10

significantly impact their fairness in tabular prediction tasks. Furthermore, our11

investigations show that in the context of bias mitigation, though in-context learning12

and fine-tuning have a moderate effect, the fairness metric gap between different13

subgroups is still larger than that in traditional machine learning models, such14

as Random Forest and shallow Neural Networks. This observation emphasizes15

that the social biases are inherent within the LLMs themselves and inherited from16

their pre-training corpus, not only from the downstream task datasets. Besides,17

we demonstrate that label-flipping of in-context examples can significantly reduce18

biases, further highlighting the presence of inherent bias within LLMs.19

1 Introduction20

Many recent works propose to use large language models (LLMs) for tabular prediction (Slack &21

Singh, 2023; Hegselmann et al., 2023), where the tabular data is serialized as natural language and22

provided to LLMs with a short description of the task to solicit predictions. Despite the comprehensive23

examination of fairness considerations within conventional machine learning approaches applied24

to tabular tasks (Bellamy et al., 2018), the exploration of fairness-related issues in the context of25

employing LLMs for tabular predictions remains a relatively underexplored domain.26

Previous research has shown that LLMs, such as GPT-3 (Brown et al., 2020), GPT-3.5, GPT-27

4 (OpenAI, 2023) can exhibit harmful social biases (Abid et al., 2021a; Basta et al., 2019), which28

may even worsen as the models become larger in size (Askell et al., 2021; Ganguli et al., 2022).29

These biases are a result of the models being trained on text generated by humans that presumably30

includes many examples of humans exhibiting harmful stereotypes and discrimination and reflects31

the biases and inequalities present in society (Bolukbasi et al., 2016; Zhao et al., 2017), which can32

lead to perpetuation of discrimination and stereotype (Abid et al., 2021a; Bender et al., 2021).33

Considering that tabular data finds extensive use in high-stakes domains (Grinsztajn et al., 2022)34

where information is typically structured in tabular formats as a natural byproduct of relational35

databases (Borisov et al., 2022), it is of paramount importance to thoroughly examine the fairness36
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implications of utilizing LLMs for predictions on tabular data. In this paper, we conduct a series of37

investigation centered around this critical aspect, with the goal of discerning the underlying informa-38

tion sources upon which LLMs rely when making tabular predictions. Through this exploration, our39

investigation aims to ascertain whether, and to what degree, LLMs are susceptible to being influenced40

by social biases and stereotypes in the context of tabular data predictions.41

Through experiments using GPT-3.5 to make predictions for tabular data in a zero-shot setting,42

we demonstrate that LLMs exhibit significant social biases (Section 4). This evidence confirms43

that LLMs inherit social biases from their training corpus and tend to rely on these biases when44

making predictions for tabular data. Furthermore, we demonstrate that providing LLMs with few-shot45

examples (in-context learning) or fine-tuning them on the entire training dataset both exhibit moderate46

effect on bias mitigation (Sections 5 and 6). Nevertheless, the achieved fairness levels remain below47

what is typically attained with traditional machine learning methods, including Random Forests48

and shallow Neural Networks, once again underscoring the presence of inherent bias in LLMs.49

Additionally, our investigation further reveals that flipping the labels of the in-context examples50

significantly narrows the gap in fairness metrics across different subgroups, but comes at the expected51

cost of a reduction in predictive performance. This finding, in turn, further emphasizes and reaffirms52

the indication of inherent bias present in LLMs (Section 5). Additionally, we further show that while53

resampling the training set is a known and effective method for reducing biases in traditional machine54

learning methods like Random Forests and shallow Neural Networks, it proves to be less effective55

when applied to LLMs (Section 6).56

These collective findings underscore the significant influence of social biases on LLMs’ performance57

in tabular predictions. These biases significantly undermines the fairness and poses substantial58

potential risks for using LLMs on tabular data, especially considering that tabular data is extensively59

used in high-stakes domains, highlighting the need for more advanced and tailored strategies to60

address these biases effectively. Straightforward methods like in-context learning and data resampling61

may not be sufficient in this context.62

2 Related work63

2.1 Fairness and Social Biases in LLMs64

Fairness is highly desirable for ensuring the credibility and trustworthiness of algorithms. It has65

been demonstrated that unfair algorithms can reflect societal biases in their decision-making pro-66

cesses (Bender et al., 2021; Bommasani, 2021), primarily stemming from the biases present in67

their training data (Caliskan et al., 2017; Zhao et al., 2017). LLMs, pre-trained on vast natural68

language datasets, are particularly susceptible to inheriting these social biases and have been shown69

to exhibit biases related to gender (Lucy & Bamman, 2021), religion (Abid et al., 2021b) and lan-70

guage variants (Ziems et al., 2023; Liu et al., 2023). These social biases can lead to perpetuation71

of discrimination and stereotype (Abid et al., 2021a; Bender et al., 2021; Weidinger et al., 2021).72

While recent literature has made strides in addressing these issues, there still exists a significant gap73

in comprehensively assessing fairness in LLMs and its mitigation strategies for tabular data.74

2.2 Tabular Tasks and LLM for Tabular Data75

Tabular data extensively exist in many domains (Shwartz-Ziv & Armon, 2021). Previous works76

propose to utilize self-supervised deep techniques for tabular tasks (Yin et al., 2020; Arik & Pfister,77

2021), which, however, still underperform ensembles of gradient boosted trees in the fully supervised78

setting (Grinsztajn et al., 2022). Recent approaches by Hegselmann et al. (2023); Slack & Singh79

(2023) suggests serializing the tabular data as natural language, which is provided to LLM along with80

a short task description to generate predictions for tabular tasks. However, tabular data plays a crucial81

role in numerous safety-critical and high-stakes domains (Borisov et al., 2022; Grinsztajn et al.,82

2022), which makes the fairness particularly crucial when employing LLMs for making predictions83

on tabular data, especially considering the inherent social biases present in LLMs. Despite the84

importance, this still remains largely unexplored. To the best of our knowledge, we regard our work85

as one of the most comprehensive investigations into the fairness issues arising when using LLMs for86

predictions on tabular data.87
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3 Experimental Setup88

Models In our work, we focus our experiments on GPT-3.5 (engine GPT-3.5-turbo). Furthermore,89

we also compare its performance with conventional machine learning models in order to gain insight90

into the propagation of biases. For this, we employ two widely used models for tabular data i.e,91

Random Forests (RF) and a shallow Neural Network (NN) of 3 layers. We provide additional92

implementation details for these two models in the Appendix C.93

Datasets and Protected Attributes To explore the fairness of LLMs in making predictions for94

tabular data, we utilize the following widely used tabular datasets for assessing the fairness of95

traditional ML models: Adult Income (Adult) Dataset (Becker & Kohavi, 1996) and Correctional96

Offender Management Profiling for Alternative Sanctions (COMPAS) Dataset (Larson et al., 2016).97

A detailed description for each dataset and each feature of the considered datasets is provided in98

Appendix A.99

Serialization and Prompt Templates To employ the LLM for making predictions on these tabular100

datasets, each data point is first serialized as text. Following previous works on LLM for tabular101

predictions (Hegselmann et al., 2023; Slack & Singh, 2023), we format the feature names and values102

into strings as “f1 : x1, . . . , fd : xd", and prompt to LLM along with a task description.103

Evaluation Metrics To assess fairness in the aforementioned datasets, we examine the disparity104

between different subgroups of protected attributes using the following common fairness metrics:105

accuracy, F1 score, statistical parity and equality of opportunity. We provide the detail for each106

fairness metric in Appendix B107

We run all the experiments 5 times and compute the mean and standard deviation.108

4 Zero-Shot Prompting for Tabular Data109

To explore the fairness of LLMs when making predictions on tabular data, we first conduct experi-110

ments in a zero-shot setting. We assess the fairness metrics of the outcomes and examine whether111

LLMs without any finetuning or few-shot examples would be influenced by social biases and stereo-112

types for tabular predictions. In Tables 1 and 5, we present the evaluation of four fairness metrics, for113

GPT-3.5 (engine GPT-3.5-turbo), RF and NN models on the Adult and COMPAS datasets, respec-114

tively. For the Adult dataset, the subgroups female and male are assessed regarding the protected115

attribute sex, identifying female as a disadvantaged group. In the COMPAS dataset, we evaluate race116

as protected attributes, recognizing African American (AA) as the disadvantaged group.117

It is notable that when utilizing LLMs to make predictions for tabular data directly, without any118

fine-tuning or in-context learning, a significant fairness metric gap between the protected and non-119

protected groups is observed for GPT-3.5 (highlighted in red). For instance, the EoO difference120

between male and female on the Adult dataset reaches 0.483, indicating a substantial disadvantage for121

the female group. Additionally, when compared with traditional methods like RF and NN, the bias in122

zero-shot predictions made by GPT-3.5 is significantly larger for the Adult dataset. This observation123

suggests an inherent gender bias in GPT-3.5. For COMPAS dataset, the racial bias in zero-shot setting124

is comparatively lower than RF and NN but is still effectively high.125

These findings demonstrate the tendency of LLMs to rely on social biases and stereotypes inherited126

from their training corpus when applied to tabular data. This implies that using LLMs for predictions127

on tabular data may incur significant fairness risks, including the potential to disproportionately128

disadvantage marginalized communities as well as exacerbate social biases and stereotypes present in129

society. This is particularly concerning given the widespread application of tabular data in high-stake130

contexts, further magnifying the potential for harm.131

5 Few-Shot Prompting for Tabular Data132

Instead of directly utilizing LLMs for zero-shot tabular predictions, this section explores whether133

including few-shot examples during prompting will reduce or amplify these biases. To delve deeper134
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

f 0.898 0.001 0.711 0.002 0.065 0.001 0.357 0.000
m 0.742 0.002 0.727 0.002 0.464 0.003 0.840 0.004
d 0.157 0.002 -0.016 0.002 -0.399 0.003 -0.483 0.004

Fe
w

-s
ho

t Regular
f 0.899 0.002 0.735 0.003 0.082 0.002 0.429 0.000
m 0.781 0.003 0.749 0.002 0.339 0.003 0.700 0.003
d 0.118 0.004 -0.014 0.004 -0.257 0.005 ↓ -0.271 0.003 ↓

Label-flipping
f 0.682 0.004 0.590 0.003 0.396 0.006 0.800 0.013
m 0.614 0.002 0.605 0.002 0.545 0.001 0.763 0.003
d 0.068 0.004 -0.015 0.004 -0.148 0.006 ✓ 0.037 0.014 ✓

Fi
ne

tu
ni

ng

Regular
f 0.915 0.014 0.773 0.036 0.079 0.002 0.476 0.048
m 0.799 0.005 0.754 0.005 0.269 0.036 0.613 0.053
d 0.116 0.009 0.020 0.039 -0.190 0.035 ↓ -0.137 0.098 ↓

Oversampling
f 0.913 0.016 0.770 0.042 0.081 0.004 0.476 0.067
m 0.813 0.007 0.780 0.003 0.310 0.038 0.702 0.048
d 0.100 0.013 -0.010 0.041 -0.229 0.030 -0.226 0.077

Undersampling
f 0.912 0.015 0.770 0.046 0.086 0.006 0.488 0.084
m 0.794 0.006 0.751 0.001 0.285 0.031 0.631 0.044
d 0.118 0.021 0.018 0.046 -0.200 0.025 -0.143 0.040

R
F

Regular
f 0.914 0.002 0.767 0.006 0.075 0.003 0.457 0.010
m 0.822 0.005 0.783 0.005 0.269 0.004 0.652 0.004
d 0.092 0.004 -0.015 0.005 -0.195 0.003 -0.195 0.012

Oversampling
f 0.912 0.006 0.770 0.011 0.084 0.005 0.486 0.012
m 0.824 0.002 0.785 0.002 0.270 0.003 0.656 0.006
d 0.087 0.005 -0.015 0.01 -0.185 0.004 -0.170 0.011

Undersampling
f 0.917 0.004 0.776 0.011 0.075 0.001 0.471 0.018
m 0.814 0.003 0.771 0.004 0.263 0.002 0.627 0.009
d 0.103 0.005 0.005 0.011 -0.187 0.001 -0.156 0.018

N
N

Regular
f 0.917 0.003 0.778 0.019 0.081 0.016 0.490 0.068
m 0.819 0.006 0.773 0.015 0.250 0.045 0.614 0.079
d 0.098 0.005 0.006 0.009 -0.169 0.032 -0.123 0.033

Oversampling
f 0.916 0.004 0.794 0.013 0.100 0.016 0.562 0.058
m 0.813 0.012 0.774 0.008 0.286 0.044 0.663 0.056
d 0.103 0.011 0.020 0.018 -0.186 0.030 -0.102 0.038

Undersampling
f 0.904 0.005 0.748 0.014 0.084 0.007 0.452 0.030
m 0.813 0.006 0.774 0.005 0.283 0.023 0.659 0.031
d 0.090 0.006 -0.026 0.014 -0.199 0.018 -0.206 0.031

Table 1: Fairness evaluation for Adult dataset. This table depicts the evaluation of accuracy (ACC), F1
score (F1), statistical parity (SP), and equality of opportunity (EoO) metrics for the subgroup - female (f ) and
male (m) as well as the difference (d) between them. We list the protected group first. The significant fairness
disparities are highlighted in red. Both in-context learning and finetuning can lead to bias reduction (indicated
by ↓), and label-flipped in-context learning can further minimize bias (indicated by ✓).

into the influence of few-shot examples, we not only consider the regular in-context learning approach135

in Section 5, but we also experiment by flipping the labels of the few-shot examples in Section 5.136

Regular In-Context Learning Previous works have demonstrated that LLMs can learn the input-137

label mappings in context (Akyürek et al., 2022; Xie et al., 2022; Von Oswald et al., 2023). However,138

the influence of in-context learning on the fairness has not been thoroughly examined. For in-context139

learning, the test example and task description, along with a few-shot examples, are provided to140

the LLMs for generating the final predictions. The few-shot examples are inserted before the test141

example in the prompt, as outlined in Section 3. We set the number of in-context examples as 50. For142

each dataset, we randomly select the in-context examples from the training set for each test example.143

In Tables 1, we demonstrate that the incorporation of few-shot examples brings about performance144

improvements. Additionally, we observe that incorporating few-shot examples into prompting reduces145

the fairness metric gap between different subgroups. However, a significant fairness issue still persists.146

Moreover, the disparity in fairness metrics of in-context learning is more notable when compared to147

traditional models, such as RF and NN. This highlights the inherent biases embedded within LLMs,148

which are not solely derived from the task datasets.149

4



Label Flipping To delve deeper into the sources of biases within LLMs, we further examine the150

impact of the labels of in-context examples on fairness. As depicted in Tables 1 and 5, label flipping151

significantly reduces biases across all evaluated datasets. And for all evaluated datasets, the difference152

in statistical parity (SP) and equality of opportunity (EoO) is minimized with label-flipped in-context153

learning. For example, the absolute gap of EoO on the Adult dataset decreases from 0.483 in zero-shot154

prompting to 0.037, almost completely eliminating the bias. These findings further corroborates the155

existence of inherent biases in LLMs.156

However, flipped labels lead to a significant drop in predictive performance. Though previous research157

suggests that the effectiveness of in-context learning predominantly stems from semantic priors,158

rather than learning the input-label mappings (Min et al., 2022; Wei et al., 2023) and demonstrate159

that the performance of in-context learning is barely affected even with flipped or random labels for160

in-context examples, the focus of these works lies mainly on traditional natural language processing161

tasks. In contrast, we observe that the labels of in-context examples hold substantial influence over162

predictive performance in our unique setup, where LLMs are deployed for predictions on tabular data.163

This could be attributed to the limited exposure of these models to tabular data during pre-training,164

thereby amplifying the role of input-label mapping of in-context examples.165

6 Finetuning for Tabular Data166

Finally, we extend our investigation to assess if finetuning the models on the entire training set167

could aid in diminishing the social biases in LLMs. For GPT-3.5, fine-tuning is executed using the168

publicly released API from OpenAI. For RF and NN, we provide the training details in Appendix C.169

In Tables 1 and 5, we show that finetuning effectively reduces unfairness in all datasets, making them170

comparable and sometimes significantly better in terms of SP and EoO when compared to RF and171

NN. For example, the absolute difference in EoO after finetuning on Adult dataset is 0.0714, which is172

lower than 0.123 difference of a NN.173

We further explore the potential of resampling, a method frequently employed to enhance fairness174

in machine learning model training, particularly in scenarios where there is a significant class175

imbalance or bias in the data. To this end, we evaluate two approaches: oversampling the minority176

group and undersampling the majority group. As depicted in Tables 1 and 5, resampling fails to177

mitigate the social biases in LLMs when making tabular predictions, even though we demonstrate178

that oversampling generally reduces social biases for both RF and NN, except for a few instances179

such as, oversampling in NN for adult dataset worsens the fairness.180

Our finetuning experiments show that the social biases inherited from LLM’s pre-training data which181

are evident when making predictions on tabular data, can sometimes be mitigated through finetuning.182

Nevertheless, unlike the consistent outcomes typically seen in traditional machine learning models,183

like RF and NN, data resampling does not consistently produce similar results for finetuning LLMs.184

7 Conclusion185

In this work, we thoroughly investigate the under-explored problem of fairness of large language186

models (LLMs) for tabular tasks. We assess the inherent fairness displayed by LLMs, comparing187

their performance in zero-shot learning scenarios against traditional machine learning models like188

random forests (RF) and shallow neural networks (NN). Furthermore, we investigate how LLMs learn189

and propagate social biases when subjected to few-shot in-context learning, label-flipped in-context190

learning, fine-tuning, and data resampling techniques.191

We find that LLMs tend to heavily rely on the social biases inherited from their pre-training data192

when making predictions, which is a concerning issue. Moreover, we observe that few-shot in-context193

learning can partially mitigate the inherent biases in LLMs, yet it cannot entirely eliminate them.194

A significant fairness metric gap between different subgroups persists, and exceeds that observed195

in RF and NN. This observation underscores the existence of biases within the LLMs themselves,196

beyond just the task datasets. Additionally, label-flipping applied to the few-shot examples effectively197

reverses the effects of bias, again corroborating the existence of inherent biases in LLMs. However,198

as expected, this leads to a loss in predictive performance. Besides, our work reveals that while199

fine-tuning can sometimes improve the fairness of LLMs, data resampling does not consistently yield200

the same results, unlike what is typically observed in traditional machine learning models.201
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A Description for each Feature in each Dataset325

We provide a detailed description of each dataset evaluated in our paper.326

A.1 Adult327

The Adult Income dataset (Adult) is extracted from the 1994 U.S. Census Bureau database. The task328

is to predict whether a person earns more than $50,000 per year based on their profile data (greater329

than 50K or less than or equal to 50K). The original Adult Income Dataset contains 14 features, as330

described in Table 2. Following previous work (Slack & Singh, 2023), we retain only 10 features:331

“workclass", “hours per week", “sex", “age", “occupation", “capital loss"", “education", “capital332

gain", “marital status", and “relationship". Our analysis on Adult primarily focuses on sex as the333

protected attribute, and female is acknowledged as a disadvantaged group.334

Feature Type Description
Age Continuous Represents the age of an individual.

Workclass Categorical Indicates the type of employment, such as pri-
vate, self-employed, or government.

Fnlwgt Continuous Stands for “final weight" and is a numerical
value used in sampling for survey data.

Education Categorical Specifies the highest level of education attained
by the individual, such as high school, bachelor’s
degree, etc.

Education-Num Continuous Represents the numerical equivalent of the edu-
cation level.

Marital-Status Categorical Describes the marital status of the individual,
including categories like married, divorced, or
single.

Occupation Categorical Indicates the occupation of the individual, such
as managerial, technical, or clerical work.

Relationship Categorical Specifies the individual’s role in the family, such
as husband, wife, or child.

Race Categorical Represents the individual’s race or ethnic back-
ground.

Sex Categorical Indicates the gender of the individual, either
male or female.

Capital-Gain Continuous Refers to the capital gains, which are profits
from the sale of assets, of the individual.

Capital-Loss Continuous Represents the capital losses, which are losses
from the sale of assets, of the individual.

Hours-Per-Week Continuous Denotes the number of hours worked per week
by the individual.

Native-Country Categorical Specifies the native country or place of origin of
the individual.

Income (target) Binary The target variable indicating whether an indi-
vidual’s income exceeds a certain threshold, typ-
ically $50,000 per year.

Table 2: Features in the original Adult dataset. Those not used in our work are shown in italics.

A.2 COMPAS335

The COMPAS dataset comprises the outcomes from the Correctional Offender Management Profiling336

for Alternative Sanctions commercial algorithm, utilized to evaluate a convicted criminal’s probability337

of reoffending. Known for its widespread use by judges and parole officers, COMPAS has gained338

notoriety for its bias against African-Americans. The raw COMPAS Recidivism dataset contains339

more than 50 attributes. Following the approach of Larson et al. (2016), we perform necessary340

preprocessing, group “race" into African-American and Not African-American, and only consider341

the features “sex", “race", “age", “charge degree", “priors count", “risk" and “two year recid"342

(target). We frame the task as predicting whether an individual will recidivate in two years (Did Not343

Reoffend or Reoffended) based on their demographic and criminal history. For the COMPAS dataset,344
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we consider race as the protected attribute. Due to page limitations, we provide descriptions for only345

the features used in our work in Table 3.346

Feature Type Description
Sex Categorical The gender of the individual.

Race Categorical The race of the individual, grouped into African-
American and Not African-American.

Age Continuous The age of the individual.
Charge Degree Categorical The degree of the charge against the individual.
Priors Count Continuous The number of prior convictions or charges.

Risk Categorical The risk assessment for recidivism.
Two-Year Recid (target) Binary The target variable indicating whether an indi-

vidual recidivated within two years.
Table 3: Features in the COMPAS Recidivism Dataset (Preprocessed).

B Evaluation Metrics347

Here, we briefly explain each evaluation metric for the fairness we consider in our work.348

Accuracy and F1 As the most basic metric, assessing accuracy among different subgroups ensures349

that the model delivers consistent performance across all groups, without undue favor to any particular350

subgroups. Considering that the evaluated datasets may be imbalanced, especially among different351

subgroups, the F1 Score computes the harmonic mean of precision and recall, offering a balanced352

perspective between these two metrics.353

Statistical Parity Statistical parity is attained when positive decision outcomes (e.g., being pre-354

dicted as a good credit risk) are independent of the protected attributes. This metric assesses whether355

different subgroups receive similar treatment from the model. For each subgroup zi of each protected356

attribute Z, we calculate357

P (Ŷ = 1|Z = zi).

Then we calculate the Statistical Parity Difference (SPD) of this protected attribute as358

SPD = P (Ŷ = 1|Z = z1)− P (Ŷ = 1|Z = z2),

where z1 is the minority group and z2 is the majority.359

Equality of Opportunity Equality of opportunity requires that qualified individuals have an equal360

chance of being correctly classified by the model, regardless of their membership in a protected361

group. This metric ensures equal true positive rates between different subgroups, providing equal362

opportunities for each subgroup. Similar as statistical parity, for equality of opportunity, we calculate363

the Equal Opportunity Difference (EOD) as364

EOD = P (Ŷ = 1|Y = 1, Z = z1)− P (Ŷ = 1|Y = 1, Z = z2).

Each of these metrics offers a different perspective on fairness. For each subgroup from each protected365

attribute, we will compute every aforementioned metric. A model demonstrating good fairness should366

show minimal gaps in these fairness metrics between different subgroups. Considering them together367

can provide a more comprehensive evaluation of the model’s fairness across different subgroups,368

ensuring that individuals are not unfairly disadvantaged based on their membership in a protected369

group.370

C RF and NN hyperparameters371

For RF, we fix number of trees to 100 for all datasets as well as models. For NN, we use a 3372

hidden-layered network with hyperparameters described in Table 4.373

10



h1 h2 h3 lr batch size epochs
Adult 16 64 16 0.07 128 300

German Credit 64 64 32 0.07 128 300
COMPAS 64 128 64 0.09 128 300

Table 4: Hyperparameters for all datasets for a 3 layer neural network, where h1, h2 and h3 represent
the number of neurons in first, second and third hidden layers respectively, lr represents the learning
rate, and is followed by the batch size and number of epochs the models are trained for.

D Prompt Templates for each Dataset374

In this section, we provide the prompt templates we used in our work. The example below is from375

Adult dataset, where text in blue represents the task description, text in green denotes optional376

few-shot examples (only used in in-context learning), and text in red indicates the test example.377

You must predict if income exceeds $50K/yr. Answer with one of the following:
greater than 50K | less than or equal to 50K.
Example 1 -
workclass: Private
hours per week: 20
sex: Male
age: 17
occupation: Other-service
capital loss: 0
education: 10th
capital gain: 0
marital status: Never-married
relationship: Own-child
Answer: less than or equal to 50K
...

workclass: Private
hours per week: 40
sex: Female
age: 24
occupation: Sales
capital loss: 0
education: Some-college
capital gain: 0
marital status: Never-married
relationship: Own-child
Answer:

Figure 1: Prompt Template for Adult Dataset.

Beyond the Adult dataset, we provide the serialization and prompt template utilized in our work for378

the COMPAS dataset, as following.379

D.1 COMPAS380

E COMPAS Results381

References382

11



Predict whether an individual will recidivate with in two years based on demographic
and criminal history. Answer with one of the following: Did Not Reoffend |

Reoffended.
Example 1 -
sex: Male
race: African-American
age cat: 25 - 45
c charge degree: F
priors count: 0
risk: Low
Answer: Did Not Reoffend

sex: Male
race: African-American
age cat: 25 - 45
c charge degree: M
priors count: 13
risk: High
Answer:

Figure 2: Prompt Template for COMPAS Dataset.
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ACC F1 SP EoO

G
PT

-3
.5

-t
ur

bo

Z
er

o-
Sh

ot

AA 0.657 0.005 0.656 0.004 0.395 0.001 0.560 0.002
nAA 0.663 0.002 0.588 0.003 0.817 0.002 0.893 0.001

d -0.006 0.005 0.068 0.006 -0.423 0.003 -0.334 0.002

Fe
w

-s
ho

t Regular
AA 0.633 0.002 0.626 0.002 0.362 0.003 0.495 0.004
nAA 0.642 0.001 0.623 0.002 0.614 0.002 0.709 0.002

d -0.008 0.003 0.003 0.003 -0.252 0.003 ↓ -0.214 0.005 ↓

Label-flipping
AA 0.482 0.004 0.482 0.004 0.499 0.003 0.481 0.004
nAA 0.412 0.003 0.408 0.003 0.471 0.002 0.404 0.003

d 0.070 0.005 0.074 0.005 0.028 0.005 ✓ 0.077 0.007 ✓

Fi
ne

tu
ni

ng

Regular
AA 0.611 0.016 0.610 0.016 0.464 0.031 0.576 0.034
nAA 0.616 0.013 0.586 0.016 0.657 0.032 0.724 0.029

d -0.005 0.017 0.024 0.024 -0.193 0.030 ↓ -0.148 0.027 ↓

Oversampling
AA 0.609 0.007 0.608 0.007 0.494 0.071 0.605 0.066

nAA 0.625 0.020 0.583 0.024 0.706 0.037 0.771 0.036
d -0.016 0.016 0.025 0.018 -0.212 0.037 -0.166 0.046

Undersampling
AA 0.591 0.010 0.591 0.012 0.513 0.053 0.605 0.047
nAA 0.641 0.008 0.612 0.009 0.663 0.035 0.749 0.037

d -0.050 0.016 -0.021 0.022 -0.150 0.033 -0.144 0.039

R
F

Regular
AA 0.662 0.004 0.662 0.004 0.496 0.006 0.660 0.007
nAA 0.671 0.004 0.617 0.002 0.767 0.008 0.859 0.009

d -0.009 0.007 0.045 0.005 -0.271 0.011 -0.199 0.014

Oversampling
AA 0.660 0.005 0.660 0.005 0.493 0.010 0.655 0.013
nAA 0.671 0.002 0.624 0.002 0.743 0.003 0.839 0.004

d -0.010 0.006 0.037 0.006 -0.250 0.012 -0.184 0.016

Undersampling
AA 0.648 0.002 0.647 0.002 0.491 0.004 0.639 0.004

nAA 0.667 0.005 0.614 0.007 0.761 0.006 0.851 0.006
d -0.020 0.007 0.033 0.008 -0.270 0.009 -0.211 0.008

N
N

Regular
AA 0.666 0.003 0.665 0.002 0.462 0.034 0.630 0.034
nAA 0.662 0.003 0.613 0.006 0.742 0.019 0.831 0.017

d 0.005 0.006 0.052 0.007 -0.280 0.019 -0.201 0.018

Oversampling
AA 0.656 0.001 0.653 0.012 0.507 0.090 0.665 0.101
nAA 0.643 0.013 0.580 0.034 0.757 0.107 0.828 0.091

d 0.013 0.014 0.073 0.043 -0.249 0.049 -0.163 0.046

Undersampling
AA 0.660 0.019 0.657 0.023 0.477 0.078 0.638 0.097

nAA 0.657 0.013 0.602 0.026 0.757 0.051 0.839 0.040
d 0.003 0.024 0.055 0.043 -0.280 0.041 -0.202 0.064

Table 5: Fairness evaluation for COMPAS dataset for the subgroup - African American (AA), and
Non African American (nAA) as well as the difference (d). The significant fairness disparities are
highlighted in red. Both in-context learning and finetuning can lead to bias reduction (indicated by ↓),
and label-flipped in-context learning can further minimize bias (indicated by ✓).
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