
Dynamic Self-Consistency: Leveraging Reasoning Paths for Efficient LLM
Sampling

Guangya Wan1*, Yuqi Wu2*, Jie Chen2, Sheng Li1
1School of Data Science, University of Virginia

2Department of Electrical and Computer Engineering, University of Alberta
{wxr9et,shengli}@virginia.edu, yuqi14@ualberta.ca, jc65@ualberta.ca

Abstract

Self-Consistency (SC) is a widely used method
to mitigate hallucinations in Large Language
Models (LLMs) by sampling the LLM multiple
times and outputting the most frequent solution.
Despite its benefits, SC results in significant
computational costs proportional to the number
of samples generated. Previous early-stopping
approaches, such as Early Stopping Self Con-
sistency and Adaptive Consistency, have aimed
to reduce these costs by considering output con-
sistency, but they do not analyze the quality of
the reasoning paths (RPs) themselves. To ad-
dress this issue, we propose Reasoning-Aware
Self-Consistency (RASC), an innovative early-
stopping framework that dynamically adjusts
the number of sample generations by consider-
ing both the output answer and the RPs from
Chain of Thought (CoT) prompting. RASC
assigns confidence scores sequentially to the
generated samples, stops when certain criteria
are met, and then employs weighted majority
voting to optimize sample usage and enhance
answer reliability. We comprehensively test
RASC with multiple LLMs across varied QA
datasets. RASC outperformed existing meth-
ods and significantly reduces sample usage by
an average of 80% while maintaining or im-
proving accuracy up to 5% compared to the
original SC 1.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive performance across various
tasks, such as question-answering (QA) (Tan et al.,
2023; Arefeen et al., 2024; Li et al., 2024c),
common-sense reasoning (Kojima et al., 2022a;
Krause and Stolzenburg, 2023; Zhao et al., 2024),
and math reasoning (Ahn et al., 2024; Imani et al.,
2023; Zhang et al., 2024). However, the reliability

*These authors contributed equally to this work.
1Code available at: https://anonymous.4open.

science/r/SC_conf-2D4B/README.md

and faithfulness of LLMs’ Reasoning Paths (RPs)
remain questionable due to the phenomenon known
as hallucination (Huang et al., 2023; Zhang et al.,
2023). Consequently, many researchers have pro-
posed different prompting methods to mitigate hal-
lucination and improve overall performance. A
widely used method is Self-Consistency (SC), a
majority voting technique where multiple output
samples (e.g., 64 samples) are generated for a given
input, and the final decision is the mode among the
samples (Wang et al., 2022b).

Despite its effectiveness, the SC strategy has sig-
nificant computational overhead proportional to the
number of sampled outputs, assuming these out-
puts are of equal length. For example, testing the
entire MATH dataset with SC costs about $2,000
using the GPT-4 API with a sampling size of 64,
posing a substantial burden for many researchers
and organizations (Lewkowycz et al., 2022). Thus,
it is essential to minimize the cost of SC while
maintaining performance. Various early-stopping
mechanisms have been proposed to address this
issue, showing significant reductions in sampling
cost while preserving the original SC accuracy im-
provement (Li et al., 2024b; Aggarwal et al., 2023).

In the original Self-Consistency (SC) and pre-
viously proposed early-stopping variations, only
the final answers derived from the sampled RPs
were considered for improving QA accuracy or de-
termining stop conditions due to the intuition that
different ways of thinking lead to a unique correct
answer in complex reasoning tasks (Wang et al.,
2022b). However, these approaches neglect the
quality and content of the RPs themselves, leading
to the loss of critical information regarding poten-
tial hallucinations in the RPs. Additionally, studies
by Wang et al. (2022a) and Jin et al. (2024) suggest
that CoT reasoning is possible even with invalid
demonstrations—prompting with invalid reasoning
steps can achieve over 80-90% of the performance
obtained using CoT under various metrics. This

1

ar
X

iv
:2

40
8.

17
01

7v
1

 [
cs

.C
L

]
 3

0
A

ug
 2

02
4

https://anonymous.4open.science/r/SC_conf-2D4B/README.md
https://anonymous.4open.science/r/SC_conf-2D4B/README.md

Figure 1: Comparison between original self-consistency method and our reasoning-aware self-consistency method.

implies that even if the output answer of a RP is
correct, the RP’s contents may still be neither faith-
ful nor logical. Moreover, previous SC approaches
use a simple majority voting mechanism to deter-
mine the final answer, assigning equal weight to
each sampled RP, which allows unfaithful outputs
to influence the final decision. Therefore, a larger
number of samples is required to achieve a more
robust consensus.

To address these limitations, we propose
Reasoning-Aware Self-Consistency (RASC) as
shown in Fig. 1, which assigns an individual con-
fidence score to each sampled RP based on its RP
quality and output consistency, and then performs
early-stopping based on the distribution of confi-
dence scores. By utilizing weighted majority vot-
ing with the confidence score, we can optimally
determine the minimum number of samples needed
to generate a more reliable answer. RASC intro-
duces a novel early-stopping mechanism for large
language models that dynamically adjusts the num-
ber of sample evaluations, aiming to reduce redun-
dant computational expense by considering both
the quality of sample content and the consistency
of RPs. We incorporate RASC to three different
LLMs and evaluate the performance on five di-
verse datasets, including elementary math, com-
monsense, and challenging math problems. Our
approach consistently outperforms fixed-budget
and state-of-the-art early-stopping strategies, re-

ducing sample usage by an average of 80% with-
out compromising accuracy. Additionally, increas-
ing the budget allows our confidence score-driven
weighted majority voting to improve QA accuracy
by an average of 6%. We validated RASC on 14
out-of-domain QA datasets, demonstrating consis-
tent significant improvements. In summary, our
contributions are:

• Reasoning-Aware Self-Consistency (RASC)
Framework: We propose an innovative early-
stopping framework that dynamically modu-
lates sample evaluations by considering both
RP quality and output consistency.

• Development of a Confidence Score Ap-
proximator: We design seven lightweight tex-
tual indicators to evaluate content quality and
faithfulness, combining with a weighted ma-
jority voting system that enhances sampling
efficiency and accuracy.

• Robust Evaluation: RASC’s effectiveness
and robustness are demonstrated across differ-
ent LLMs and datasets, achieving significant
improvements in both efficiency and accuracy.

2 Related Work

Chain-of-Thoughts (CoT) Prompting: Intro-
duced by Wei et al. (2022), CoT prompting en-
hances the performance of Large Language Models

2

(LLMs) by guiding them through step-by-step rea-
soning, simplifying complex problems into man-
ageable steps. This technique allows models to
generate intermediate Reasoning Paths (RPs) and
achieve more accurate conclusions. Several studies
have built upon the original CoT concept (Zhou
et al., 2023; Yao et al., 2023; Besta et al., 2024;
Brown et al., 2020). In this work, we specifically
focus on zero-shot CoT prompting (Kojima et al.,
2022b) to construct RPs within our framework.
This approach is notable for its straightforward
prompt design, which requires no specific prepara-
tory work or examples.
Self-Consistency: Wang et al. (2022b) introduced
Self-Consistency (SC), which enhances the perfor-
mance of Chain-of-Thought (CoT) prompting by
sampling multiple diverse reasoning chains and ag-
gregating their outcomes through a simple majority
voting mechanism. While this approach achieves
higher accuracy, it also incurs increased computa-
tional costs. Furthermore, the original SC settings
employ a fixed number of samples for each ques-
tion, and such a fixed sampling strategy becomes
redundant and cost-inefficient, particularly for sim-
pler questions. Addressing this inefficiency and
redundancy is one of the main goals of our work.
Self-Consistency Early Stopping: To address
the computational demands of traditional Self-
Consistency (SC), innovative early stopping strate-
gies have been developed. Li et al. (2024b) intro-
duced the Early Stopping Self-Consistency (ESC),
which halts RP sampling once the outputs within a
fixed window are consistent. Similarly, Aggarwal
et al. (2023) proposed the Adaptive Consistency
(ASC), stopping sampling once a predefined prob-
ability threshold is reached, based on the distribu-
tion of sampled outputs. While both methods sig-
nificantly reduce sampling costs by fourfold with
minimal performance loss, they primarily focus on
output consistency and neglect the quality of the
RPs—a central aspect of our research.

3 Reasoning-Aware Self-Consistency

Reasoning-Aware Self-Consistency (RASC) is an
early-stopping framework for Self-Consistency
prompting that reduces redundant sampling costs
while maintaining accuracy improvements. Unlike
previous methods that consider only the final an-
swer sequences, RASC determines stopping condi-
tions by evaluating both the Reasoning Paths (RPs)
and the output answers. In Fig. 1, we illustrate

the differences between traditional SC and RASC.
Traditional SC improves accuracy by sampling a
fixed number of RPs and determining the final an-
swer based on the mode of these output answers.
Our method, however, evaluates both the quality of
the CoT RPs and the output answers. Each sample
is assigned an individual confidence score based
on these evaluations. The cumulative confidence
score determines the stopping point. Finally, a
confidence score-driven majority voting is used to
decide the final answer.

3.1 Reasoning-Aware Quality Features

To determine the content quality and answer con-
sistency of sampled RPs, we establish a set of
7 quality features to calculate their confidence
scores. The individual confidence score CSi can
be viewed as a soft measurement of hallucination,
where higher confidence suggests less uncertainty
in LLM’s generation. Since we aim for lightweight
indicators requiring minimal feature extraction, we
only consider textual features that do not require
computationally intensive models or external tools.
We classify these features into individual quality
features and relative quality features (See Fig.2).
Individual Quality Features: We include 4 indi-
vidual quality features, including content length
Li, input coherence Ci, format error Fi, and error-
admitting Ei, to extract intrinsic information re-
garding each sampled RP xi. We begin with factors
identified by Jin et al. (2024) and Li et al. (2024a),
who discuss the importance of RP textual length
in terms of QA accuracy and human preference.
Generally, lengthening the reasoning steps consid-
erably enhances LLM’s reasoning abilities, and
humans typically prefer longer reasoning chains. A
common type of hallucination, instructional viola-
tion, occurs when LLMs do not follow user-defined
instructions, implying a higher chance of halluci-
nation and lower overall RP quality (Zhang et al.,
2023; Huang et al., 2023; Hosking et al., 2023).
The most obvious and easy-to-detect instructional
violation is the RP format Fi. In QA tasks, users ex-
pect LLMs to respond in a clearly structured format
to parse the necessary information. Additionally,
consistency between the RP solution and the user
question is crucial for instruction-following, im-
plying coherence Ci between the input question
and the output solution (Li et al., 2024a). Hence,
we include instructional violations, such as format
errors (parsing errors) and input coherence (devia-
tion from input question), as quality features. With

3

advancements in LLM research, most LLMs can
now detect errors in RP during generation. For
instance, GPT-4 might acknowledge incorrect rea-
soning by stating, "There seemed to be a mistake
in the previous calculations." Such admissions Ei

typically imply that the RP quality is doubtful and
the answer unreliable (Li et al., 2024a). Therefore,
we identify common error-admitting terms to eval-
uate the quality and faithfulness of sampled RPs.
We include detailed methods on individual feature
extraction strategy in Appendix D.
Relative Quality Features: To reduce SC sample
cost, the relative quality between additional sam-
ples and previous samples is essential to determine
the stop condition. We design 3 features to cap-
ture relative relationships. Originating from Bang’s
(2023) study, semantically similar RPs are more
likely to generate similar answers. Inspired by Tu
et al. (2020), we adopt semantic similarity Si as
a relative quality indicator. For each sampled RP
RPi, we compare the semantic similarity between
this additional RP and all previously sampled RPs
RP1, . . . , RPi−1. For answers, similarity refers to
consistency between additional answer yi and pre-
vious answers y1, . . . , yi−1. In this study, we adopt
three similarity computation mechanisms: aggre-
gation similarity Sa

i , pairwise similarity Sp
i , and

bi-gram similarity Sb
i , as illustrated in Fig. 2. The

selection of mechanisms depends on the nature of
the target. For CoT RPs, which generally contain
more vocabulary, aggregation similarity is more
suitable due to its robustness. For answers with
limited vocabulary (e.g., multiple-choice questions
with four options), aggregation similarity becomes
trivial. Pairwise comparison fits better for answers
due to its high sensitivity. Detailed mathematical
robustness and sensitivity proofs of aggregation
and pairwise similarity are included in Appendix
E.2 Theorem E.2, in which we prove that the aggre-
gation similarity mechanism is more robust to noise
while pairwise is more sensitive for large vocabu-
lary documents. Bigram similarity Sb

i is defined
as the similarity between the additional RP/answer
and the preceding RP/answer. This mechanism en-
sures we capture local relative information since
both aggregation and pairwise mechanisms capture
global relationships. The validity of these newly
proposed relative quality features is confirmed both
theoretically through mathematical proof and em-
pirical results. We also compared common similar-
ity algorithms such as Euclidean distance and Co-
sine Similarity combined with various tokenizers,

Figure 2: Reasoning-Aware quality features. Different
colour corresponds to different feature visualizations.
Ans: Output Answer; RP: Reasoning Path.

Jaccard similarity coefficient J , and Levenshtein
distance (see Appendix E.1). Our empirical results
indicate they have similar performance in semantic
similarity (see Fig. 20 in Appendix E.1). Hence,
we adopt Jaccard to compute similarity due to its
lightweight and low computational overhead.

3.2 Confidence Score and Stop Condition

Confidence Score Computation: Consider a
dataset D = {(xi, yi)}Mi=1, where each xi ∈ Rd is
a feature vector representing the quality features of
the i-th RP, and yi ∈ {0, 1} is a binary label indicat-
ing the correctness of the answer. We seek to learn
a confidence scoring function f : Rd → [0, 1] from
a family of parameterized functions F , where each
function is denoted as f(θ) for parameters θ. The
optimal parameters θ∗ are obtained by minimizing
the following objective:

θ = argmin
θ

(
1

M

M∑
i=1

L(fθ(xi), yi)

)
. (1)

4

Here, L represents the loss function (e.g., cross-
entropy) and λ is a hyperparameter that controls
the regularization strength. We explore several
lightweight classic classification models such as lo-
gistic regression (LR), Naive Bayes (NB), random
forest (RF), and pre-trained deep learning models
to represent F . Specifically, the input to the con-
fidence scoring function f(θ) is a feature vector
xi = [Li, Ci, Fi, Ei, S

a
i , S

p
i , S

b
i] representing the

individual quality features (content length Li, input
coherence Ci, format error Fi, and error-admitting
Ei) and relative quality features (aggregation simi-
larity Sa

i , pairwise similarity Sp
i , and bi-gram simi-

larity Sb
i) of the i-th sampled RP. The output of the

confidence scoring function f(θ) is a confidence
score CSi ∈ [0, 1] assigned to the corresponding
RP. For the Stop Condition, let {RPi}Ki=1 be a
sequence of K sampled RPs, with corresponding
confidence scores {CSi}Ki=1 computed using the
optimized confidence scoring function fθ∗ . We de-
fine a buffer B to store RPs with confidence scores
above a predefined threshold T :

B = RPi | CSi ≥ T . (2)

The sampling process terminates when the buffer’s
size meets a predefined capacity N (|B| ≥ N).

Upon reaching the stop condition, the final an-
swer is determined through weighted majority vot-
ing. The weights applied are the confidence scores
of the RPs in B. Mathematically speaking, this is:

Answer = argmax
a∈A

 ∑
RPi∈B

Answer(RPi)=a

CSi

 , (3)

where A represents the set of all possible answers.
This summation calculates the total confidence
score for each possible answer a, accumulating
scores only from those RPs in the buffer B whose
answers match the answer candidate a.

In this framework, the confidence scoring func-
tion fθ∗ assigns a score to each sampled RP based
on its quality. Sampling proceeds until the buffer B,
filled with RPs exceeding the threshold T , reaches
the capacity N . The final answer is determined
through weighted majority voting based on the con-
fidence scores in B. For details, see Algorithm 1.

4 Experiments

Models: In our experiments, we focus on
three state-of-the-art language models: LLAMA3-8B

Algorithm 1 RASC Early Stopping

1: Input: Query Q, threshold T , max size N
2: Output: Best Answer A
3: buffer ← {Ans : [], CS : []}
4: stop← False
5: while not stop do
6: Ai, RPi ← LLM(Q)
7: CSi ← compute_CS(Ai, RPi)
8: if CSi ≥ T then
9: Append Ai to buffer[Ans]

10: Append CSi to buffer[CS]
11: if size(buffer[Ans]) ≥ N then
12: stop← True
13: end if
14: end if
15: end while
16: A←Weighted_Majority_Vote(buffer)
17: return A

(Meta, 2024), GPT3.5-turbo (OpenAI, 2024), and
Claude-3-Haiku (Anthropic, 2024). Details about
the number of parameters, computational budget,
and computing infrastructure used in our experi-
ments can be found in Appendix A.
Baseline Methods: We compare RASC against
three established baseline methods: SC (Wang
et al., 2022b), ASC (Aggarwal et al., 2023), and
ESC (Li et al., 2024b). Please refer to Section 2 for
more details on these methods
Datasets: Our evaluation leverages five Ques-
tion Answering datasets. For Math Reason-
ing, we collected data from GSM-8K (Cobbe
et al., 2021) and MathQA (Amini et al., 2019),
focusing on specific subsets within these
datasets, including GSM-8K-hard, GSM-8K-test,
MathQA-challenge, and MathQA-dev, to test our
models against both nuanced and direct queries.
We also collected data from BiGBench (bench
authors, 2023) to assess the versatility of our
methods across different reasoning domains. We
stratified the data based on categories and models
to build confidence scoring models using the
training segments, with subsequent evaluations
performed on the test data. All presented results
pertain to the test data unless otherwise specified.
To test generalizability, we incorporated data from
previous works involving ESC and ASC, evaluating
our pipeline using unseen domains and diverse
prompts (See Appendix G for more details).
Evaluation Metrics: We focus on the trade-off be-
tween accuracy and the number of generated sam-

5

ples required to achieve a target reasoning accuracy
that exceeds all baseline methods while minimizing
the number of samples generated. To quantitatively
assess this trade-off, we adopted a customized met-
ric that balances the contributions of accuracy and
cost in our evaluations. This metric considers both
the normalized accuracy and the normalized cost
of generating predictions compared to the SC base-
line. The details of this metric are provided in the
Appendix F. Note that this metric is primarily used
for evaluating our pipeline and selecting the best
hyperparameters. For the main results, we will fo-
cus on presenting the accuracy and the number of
generated samples.
Implementation Details: After extensive exper-
iments (See Figure 3 and Figure 4), we deter-
mined that using three individual models (N = 3)
and a confidence threshold of 0.1 optimizes our
customized metric. LR was selected as the con-
fidence scoring model due to its superior perfor-
mance on the test set. For generating predictions
from language models, we employed a zero-shot
CoT prompting approach. Details about the spe-
cific prompts used can be found in Appendix C.
We adhered to the standard practices established
in the SC methodology, setting the temperature pa-
rameter to 0.7 for all models, and the baseline
method of SC utilizes a default of 40 samples. Due
to budget constraints, we collected 500 samples per
category per model, resulting in a total sample size
of 9,000 in the final data.We also adopted a parser
from Langchain and obtained the correctness label;
please refer to Appendix D for details.

4.1 Main Results
Quantitative Analysis: The step reduction of dif-
ferent methods across various benchmarks is sum-
marized in Table 1. RASC consistently outper-
forms other methods, reducing the number of sam-
ples required by up to 87.5% while simultaneously
preserving comparable reasoning accuracy (refer
to Figure 8 in Appendix B.2. for more information)
across all datasets. This success can be attributed
to RASC’s unique approach of leveraging infor-
mation from both the generated answers and the
reasoning paths (RPs) from the CoT prompting to
determine the extent of hallucination in the gen-
erated contents. Such dynamic stopping criteria
allow RASC to achieve superior performance in
terms of both sample efficiency and reasoning ac-
curacy across a wide range of datasets and models.
The robustness and consistency of RASC’s perfor-

mance across different random seeds are further
demonstrated in Tables 4 and 5 in Appendix B.1.
Note that the tradeoff between sample efficiency
and accuracy may vary across different categories
and datasets. This is because the hyperparameters,
such as the number of individual models (N) and
the confidence threshold (T), are tuned based on
the overall performance instead for individual mod-
els or categories. In our experiments, we adopted
a consistent setting of N=3 and T=0.1 across all
categories and datasets to maintain comparability.
Cost Analysis: Table 2 compares the accuracy and
API cost of different methods when applied to GPT-
3.5-TURBO, using SC as the baseline. This com-
parison highlights RASC’s significant reduction in
API costs by 84.6%, alongside a 7.9% improvement
in accuracy. These results demonstrate the main
contribution of our pipeline: reducing cost as a re-
sult of reducing the number of samples generated
while preserving the accuracy of the original SC
method. Refer to the table 6 in the appendix B.2
for details on analysis on other models.

4.2 Analysis

Controlling Accuracy-Samples Generation
Tradeoff: Our ablation study, illustrated in Figures
3 and 4, explores the impacts of hyperparameters
(N) and the confidence threshold (T) on the
performance of the RASC method. These results
provide valuable insights for fine-tuning RASC
to achieve optimal performance by balancing
accuracy and computational cost.

Figure 3: Effects of varying N on performance tradeoffs,
illustrating how changes in N impact both accuracy and
the average number of samples generated.

Figure 3 shows the effect of varying the number
of individual models (N) on the accuracy and the
average number of samples generated by RASC.
As N increases, the accuracy improves, but at the
cost of generating more samples. This is because a
larger N allows for more diverse predictions and a
higher chance of reaching consensus for improved

6

Table 1: Num. Generated Sample of Different Methods and Models on Various Benchmarks.

Model Method
Benchmark Category

MathQA_Challenge MathQA_dev BigBench GSM8K_hard GSM8K_test

G
PT

3.
5a SC 40 40 40 40 40

ESC 18.4 (-54.0%) 17.6 (-56.0%) 13.8 (-65.5%) 22.8 (-43.0%) 13.4 (-66.5%)
ASC 16.0 (-60.0%) 14.7 (-63.2%) 12.3 (-69.2%) 19.0 (-52.5%) 10.9 (-72.8%)

RASC 7.6 (-81.0%) 8.4 (-79.0%) 5.1 (-87.3%) 4.3 (-89.2%) 6.3 (-84.2%)

C
la

ud
e3

b SC 40 40 40 40 40
ESC 17.2 (-57.0%) 15.4 (-61.5%) 11.5 (-71.2%) 17.2 (-57.0%) 11.5 (-71.2%)
ASC 15.0 (-62.5%) 12.9 (-67.8%) 10.8 (-73.0%) 14.4 (-64.0%) 8.7 (-78.2%)

RASC 12.0 (-70.0%) 6.7 (-83.2%) 5.2 (-87.0%) 3.3 (-91.8%) 4.1 (-89.8%)

L
la

m
a3

c SC 40 40 40 40 40
ESC 10.5 (-73.8%) 11.0 (-72.5%) 16.1 (-59.8%) 29.5 (-26.2%) 16.1 (-59.8%)
ASC 9.2 (-77.0%) 8.8 (-78.0%) 13.7 (-65.8%) 25.9 (-35.2%) 12.3 (-69.2%)

RASC 8.7 (-78.2%) 6.1 (-84.8%) 11.8 (-70.5%) 4.2 (-89.5%) 6.0 (-85.0%)
agpt-3.5-turbo bclaude-3-haiku cllama3-7B

Table 2: Cost Analysis of Methods on GPT-3.5 Turbo
on Average per one thousand questions

Method Accuracy (%) Cost 1k samples ($)

SC 50.7 4.23
ESC 50.3 (-0.8%) 1.76 (-58.4%)
ASC 50.6 (-0.2%) 1.50 (-64.5%)
RASC 54.7 (+7.9%) 0.65 (-84.6%)

accuracy. However, this also requires more compu-
tational resources. The optimal value of N should
be chosen based on the desired balance between ac-
curacy and computational cost. In our experiments,
we found that N = 3 provides a good trade-off.

Figure 4: Effects of varying the confidence threshold
(T) on performance tradeoffs, illustrating how changes
in T impact both accuracy and the average number of
samples generated.

Figure 4 shows how changing the confidence
threshold (T) affects the accuracy and average num-
ber of samples generated by RASC. As T increases
from 0.1 to 0.5, accuracy improves, but more sam-

ples are needed, thus increasing computational cost.
However, when T exceeds 0.5, accuracy drops.
This is because a high threshold makes RASC too
selective, thus rejecting correct samples that don’t
meet the strict confidence requirement. This can
lead to difficulty reaching consensus and may bias
towards common answers. The optimal threshold
aims to balance accuracy and inclusivity. In our ex-
periments, a threshold of 0.1 struck a good balance
between accuracy and efficiency.

These ablation studies demonstrate the flexibility
of the RASC method in controlling the trade-off
between accuracy and computational cost by ad-
justing the hyperparameters N and T . By carefully
tuning these parameters, RASC can be optimized
for different scenarios and requirements, depending
on the priority given to accuracy or efficiency.
Impact of Confidence Scoring Model: The per-
formance of different confidence scoring models,
as summarized in Table 3, identifies Logistic Re-
gression as the most effective model in terms of ac-
curacy and sample utilization. This finding shows
the importance of selecting an appropriate confi-
dence scoring model to maximize the benefits of
the RASC approach. These results are obtained
by training the confidence scoring models on the
training set and then fine-tuning the best set of
hyperparameters (N and T) using the customized
metrics. The final evaluation is performed on the
test set to ensure the robustness of the model.

Among the confidence scoring models evaluated
Logistic Regression achieves the highest accuracy

7

Table 3: Performance Comparison on Different Individ-
ual Confidence Scoring Models

Model Accuracy (%) Num. Samples

Random 41.9 7.77
NB 45.9 5.91
LR 46.0 5.87
RF 45.8 6.38
HHEM1 42.4 7.52

1Hallucination Detector Model based on
microsoft/deberta-v3-base and is trained initially
on NLI data

of 46.0% while requiring the lowest average num-
ber of samples (5.87) compared to other models.
This indicates that it effectively captures the rela-
tionship between the features extracted from the
RP and the likelihood of hallucination, which al-
lows RASC to make informed decisions during the
weighted majority voting process.

The accuracy of Random model drops below
the baseline of Self-Consistency. The poor perfor-
mance of the Random model, which assigns confi-
dence scores randomly, emphasizes the importance
of using a well-designed confidence scoring model
in the RASC approach. Without a meaningful as-
sessment of the generated content’s quality and
consistency, the weighted majority voting process
cannot effectively distinguish between reliable and
unreliable samples, leading to suboptimal results.

The HHEM Model, which is a DeBERTa-based
hallucination detector sourced from Hugging Face
(Honovich et al., 2022), does not perform as well
as the other models in this context. This suggests
that relying solely on a pre-trained model without
considering the specific characteristics and require-
ments of the RASC approach may not yield the
best results. The superior performance of models
like Logistic Regression (LR), Naive Bayes (NB),
and Random Forest (RF), which utilize manual fea-
ture engineering tailored to the RASC framework,
highlights the importance of crafting features that
capture the nuances of the generated content as we
discussed in the method section.
Out-of-Distribution Performance: We evaluate
RASC’s performance on out-of-distribution (OOD)
data to assess its generalizability in unseen queries.

The left panel of Figure 5 presents the results for
the dataset obtained from the work by ASC, show-
casing RASC’s performance on various unseen cat-
egories. Across all categories, RASC consistently

achieves higher accuracy than the SC method while
requiring fewer steps. The right panel of Figure
5 illustrates RASC’s performance on the dataset
obtained from the work by ES, which includes dif-
ferent LLMs and prompts. Once again, RASC
demonstrates superior performance across all cat-
egories, maintaining high accuracy while signif-
icantly reducing the number of steps. These re-
sults underscore RASC’s adaptability to different
language models and its effectiveness in handling
diverse prompts. For more details regarding the
performance comparison, refer to Figure 10, 14,
12, 16, in the Appendix B.2

The results presented in Figure 5 provide strong
evidence for RASC’s ability to maintain high per-
formance and efficiency even when faced with un-
seen data, LLMs, and prompts. Such robustness
and generalizability are crucial for real-world ap-
plications, where the model must adapt to a wide
range of scenarios and challenges without sacrific-
ing accuracy or computational resources.

Figure 5: Performance of models on data with unseen
categories and different prompts, assessing their stability
and reliability across unanticipated scenarios.

5 Conclusion

In this paper, we introduce Reasoning-Aware Self-
Consistency (RASC), a novel approach that en-
hances the reliability and efficiency of large lan-
guage models (LLMs) by dynamically adjusting
the number of samples based on the quality and
consistency of Reasoning Paths (RPs). RASC as-
signs confidence scores to each sampled RP and
employs weighted majority voting, significantly
improving the process of generating reliable an-
swers while reducing computational costs. Our
evaluations demonstrate RASC’s effectiveness in
improving effectiveness and efficiency compared
to traditional Self-Consistency methods, marking

8

a significant step towards optimizing LLMs for
practical applications.

6 Limitations

Despite the demonstrated effectiveness of
Reasoning-Aware Self-Consistency (RASC) in
improving the efficiency and reliability of large
language models (LLMs), several limitations
remain:

• Hyperparameter Sensitivity and Computa-
tional Overhead: RASC’s performance heav-
ily relies on carefully tuned hyperparameters,
which may vary across datasets, models, and
applications. Additionally, the feature extrac-
tion and confidence scoring introduce compu-
tational overhead that could be significant in
large-scale or real-time scenarios.

• Limited Feature Set and Soft Approxima-
tion: The current preliminary feature set may
not capture all nuances of generated content,
potentially affecting the model’s effectiveness.
Moreover, the individual confidence scores
provide a soft approximation of hallucination
likelihood, which may not accurately capture
all instances.

• Potential Bias in Training Data: Biases
present in the training data used to build confi-
dence scoring models could influence RASC’s
outputs, emphasizing the importance of en-
suring data diversity and fairness to mitigate
biases and enhance the fairness of generated
RPs.

These limitations highlight areas for future re-
search and underscore the need for continued im-
provement and adaptation of RASC to ensure its
applicability and effectiveness in diverse settings.

References
Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al.

2023. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with
llms. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 12375–12396.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Available online. Accessed: 2024-06-
01.

Md Adnan Arefeen, Biplob Debnath, and Srimat
Chakradhar. 2024. Leancontext: Cost-efficient
domain-specific question answering using llms. Nat-
ural Language Processing Journal, 7:100065.

Fu Bang. 2023. Gptcache: An open-source semantic
cache for llm applications enabling faster answers
and cost savings. In Proceedings of the 3rd Work-
shop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pages 212–218.

BIG bench authors. 2023. Beyond the imitation game:
Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning
Research.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michał Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, and Torsten Hoefler. 2024. Graph of
Thoughts: Solving Elaborate Problems with Large
Language Models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682–17690.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aris-
totle use a laptop? a question answering bench-
mark with implicit reasoning strategies. Preprint,
arXiv:2101.02235.

9

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235
https://arxiv.org/abs/2101.02235

Or Honovich, Roee Aharoni, Jonathan Herzig, Hagai
Taitelbaum, Doron Kukliansy, Vered Cohen, Thomas
Scialom, Idan Szpektor, Avinatan Hassidim, and
Yossi Matias. 2022. True: Re-evaluating factual con-
sistency evaluation. Preprint, arXiv:2204.04991.

Tom Hosking, Phil Blunsom, and Max Bartolo. 2023.
Human feedback is not gold standard. arXiv preprint
arXiv:2309.16349.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Mingyu Jin, Qinkai Yu, Haiyan Zhao, Wenyue Hua,
Yanda Meng, Yongfeng Zhang, Mengnan Du, et al.
2024. The impact of reasoning step length on large
language models. arXiv preprint arXiv:2401.04925.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022a. Large
language models are zero-shot reasoners. Advances
in neural information processing systems, 35:22199–
22213.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022b. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199–22213.

Stefanie Krause and Frieder Stolzenburg. 2023. Com-
monsense reasoning and explainable artificial intel-
ligence using large language models. In European
Conference on Artificial Intelligence, pages 302–319.
Springer.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Junlong Li, Fan Zhou, Shichao Sun, Yikai Zhang, Hai
Zhao, and Pengfei Liu. 2024a. Dissecting human and
llm preferences. arXiv preprint arXiv:2402.11296.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.
2024b. Escape sky-high cost: Early-stopping self-
consistency for multi-step reasoning. arXiv preprint
arXiv:2401.10480.

Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao
Duan, Bowen Dong, Ning Liu, and Jianyong Wang.
2024c. Flexkbqa: A flexible llm-powered framework
for few-shot knowledge base question answering. In

Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18608–18616.

Meta. 2024. Meetllama3. Blog post. Available: https:
//llama.meta.com/llama3/.

OpenAI. 2024. Introducing gpt-3.5 turbo. Blog post.
Available: https://platform.openai.com/docs/
models/gpt-3-5-turbo.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Stephen Robertson. 2004. Understanding inverse doc-
ument frequency: on theoretical arguments for idf.
Journal of documentation, 60(5):503–520.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. Preprint, arXiv:1811.00937.

Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu,
Yongrui Chen, and Guilin Qi. 2023. Can chatgpt
replace traditional kbqa models? an in-depth analysis
of the question answering performance of the gpt llm
family. In International Semantic Web Conference,
pages 348–367. Springer.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Zhengkai Tu, Wei Yang, Zihang Fu, Yuqing Xie, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2020. Ap-
proximate nearest neighbor search and lightweight
dense vector reranking in multi-stage retrieval archi-
tectures. In Proceedings of the 2020 ACM SIGIR on
International Conference on Theory of Information
Retrieval, pages 97–100.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2022a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. arXiv preprint
arXiv:2212.10001.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

10

https://arxiv.org/abs/2204.04991
https://arxiv.org/abs/2204.04991
https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of Thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
Lu, Kai-Wei Chang, Peng Gao, et al. 2024. Math-
verse: Does your multi-modal llm truly see the di-
agrams in visual math problems? arXiv preprint
arXiv:2403.14624.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023. Siren’s song in the ai ocean:
a survey on hallucination in large language models.
arXiv preprint arXiv:2309.01219.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex
reasoning in large language models. Preprint,
arXiv:2205.10625.

A Computational Details

A.1 Number of Parameters
The language models used in our experiments have
varying numbers of parameters:

• LLAMA3-8B: This model has 8 billion parame-
ters (Meta, 2024).

• GPT3.5-turbo: The exact number of param-
eters for this model is not publicly disclosed
by OpenAI (OpenAI, 2024).

• Claude-3-Haiku: The number of parameters
for this model is not publicly available from
Anthropic (Anthropic, 2024).

A.2 Computational Budget
To generate all the collected data for our experi-
ments using the LLAMA3-8B model, we consumed
a total of approximately 100 GPU hours. This com-
putational budget was used for running the model,
generating CoT samples, and processing the re-
sults.

A.3 Computing Infrastructure
Our experiments were conducted on a computing
infrastructure equipped with the following hard-
ware:

• GPU: NVIDIA GeForce RTX 3070 Ti

• CPU: 16 cores 11th Generation Intel Core i7
Processors

A.4 Used Packages
In this study, several online available Python pack-
ages are used to conduct experiment and analysis,
the packages are as follows:

• NLTK: For calculating Jaccard Similarity,
Ngram, tokenizer.

• statistics: For computing logistic regression.

• PyTorch: For using pre-trained LLM.

• pandas: For data manipulation.

• json: loading and saving json data.

• sklearn: For supervised learning models train-
ing and evaluation.

• adaptive_consistency: For implementing
adaptive consistency algorithm.

• Levenshtein: For computing Levenshtein dis-
tance.

• transformer: For huggingface PTM usage.

• LangChain: For LLM API usage and answer
parser.

B Experiments: Additional Results

B.1 Robustness of RASC Across Different
Seeds

To evaluate the robustness and consistency of
our Reasoning-Aware Self-Consistency (RASC)
method, we conducted experiments using multi-
ple random seeds for data sampling and model
initialization. Tables 4 and 5 present the mean,
standard deviation, and p-values of accuracy and
cost (number of generated samples) of the RASC
method on various benchmark categories across
different models. Table 4 shows the mean accu-
racy of RASC along with the standard deviation
across different random seeds. The small standard
deviations indicate that the performance of RASC

11

https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

remains consistent and stable regardless of the spe-
cific data split or model initialization. Additionally,
the p-values are calculated to test if the accuracy of
RASC is significantly better than the performance
of the Self-Consistency (SC) method. The majority
of the p-values are well below the significance level
of 0.05, suggesting that RASC achieves statistically
significant improvements over SC in most cases.
Similarly, Table 5 presents the mean cost (num-
ber of generated samples) of RASC along with the
standard deviation across different random seeds.
The low standard deviations demonstrate that the
sample efficiency of RASC is robust and consistent
across various data splits and model initializations.
The p-values in this table are calculated to test if
the cost of RASC is significantly smaller than the
fixed budget of 40 samples used in SC. The ex-
tremely low p-values (all below 10−10) provide
strong evidence that RASC significantly reduces
the number of required samples compared to SC,
regardless of the random seed. The results in these
tables highlight the robustness and reliability of our
RASC method. The consistent performance and
sample efficiency across different random seeds
suggest that the improvements achieved by RASC
are not sensitive to specific data splits or model
initializations. This robustness is crucial for the
practical application of RASC in real-world scenar-
ios, where the method needs to perform well under
various conditions and datasets.

B.2 Additional Results on Our Datasets

In this subsection, we present additional experimen-
tal results on our own datasets to further analyze the
performance and cost-effectiveness of the proposed
RASC method compared to other baseline methods.
Table 2 shows a cost analysis of different meth-
ods on the Claude-3-Haiku model, averaged over
one thousand questions. RASC achieves the high-
est accuracy while significantly reducing the cost
compared to the standard Self-Consistency (SC)
method. Figure 6 compares the accuracy of our
RASC method across different categories on our
collected datasets. In most categories, we observe
a performance gain with our method, with a slight
drop in the GSM8K_test category due to a more
significant reduction in sample generation. Fig-
ure 7 presents the accuracy comparison of RASC
across different models on our collected datasets.
We find that the performance either significantly
improves (GPT3.5/llama3) or remains comparable
to the previous method for all models. Figure 8 pro-

vides a complete view of the accuracy comparison
of RASC across different categories and models of
our collected datasets using a heatmap representa-
tion.

B.3 Additional Results on ASC’s Datasets

To further validate the effectiveness of RASC, we
evaluate its performance on the datasets used in
the Adaptive Self-Consistency (ASC) paper (Ag-
garwal et al., 2023). Figure 9 compares the accu-
racy of RASC across different models on ASC’s
datasets. We observe a significant improvement
on the vicuna-13b model but a slight degradation
in performance on the code-davinci-002 model,
which is compensated by a more substantial re-
duction in sample generation, as shown in Figure
11. Figure 10 presents a comprehensive view of
the accuracy comparison of RASC across different
categories and models of ASC’s datasets using a
heatmap representation. Figure 11 compares the
reduction in the number of samples generated by
RASC across different models on ASC’s datasets.
We find a smaller improvement on the vicuna-13b
model but a more significant reduction on the code-
davinci-002 model, despite a slight performance
drop in accuracy, as shown in Figure 9. Figure 12
provides a complete view of the number of samples
generated by RASC across different categories and
models of ASC’s datasets using a heatmap repre-
sentation.

B.4 Additional Results on ESC’s Datasets

We also evaluate the performance of RASC on
the datasets used in the Early-Stopping Self-
Consistency (ESC) paper (Li et al., 2024b). Figure
13 compares the accuracy of RASC across differ-
ent models on ESC’s datasets, showing consistency
with existing methods for all three models they
used. Figure 14 presents a comprehensive view of
the accuracy comparison of RASC across different
categories and models of ESC’s datasets using a
heatmap representation. Figure 15 compares the
number of samples generated by RASC across dif-
ferent models on ESC’s datasets, demonstrating a
significant improvement over existing methods for
all three models they used. Figure 16 provides a
complete view of the number of samples generated
by RASC across different categories and models of
ESC’s datasets using a heatmap representation.

12

Table 4: Mean, Standard Deviation, and p-value (to test if it’s significantly better than the performance of Self-
Consistency) of Accuracy of RASC Method on Various Benchmarks on 10 different seeds

Model Metric
Benchmark Category

MathQA_Challenge MathQA_dev BigBench_easy GSM8K_hard GSM8K_test

G
PT

3.
5a Mean 0.499 0.498 0.276 0.465 0.764

Std (0.037) (0.019) (0.024) (0.023) (0.032)
p-value 2.16× 10−2 8.50× 10−5 7.74× 10−1 3.54× 10−1 2.10× 10−5

C
la

ud
e3

b Mean 0.512 0.529 0.263 0.395 0.801
Std (0.035) (0.029) (0.030) (0.043) (0.024)

p-value 3.70× 10−4 1.83× 10−4 6.53× 10−1 6.57× 10−1 7.11× 10−6

L
la

m
a3

c Mean 0.131 0.161 0.303 0.247 0.708
Std (0.023) (0.023) (0.033) (0.028) (0.028)

p-value 7.39× 10−6 6.35× 10−2 8.81× 10−10 1.63× 10−4 6.68× 10−4

aGPT-3.5-Turbo, bClaude-3-Haiku, cLlama3-7B

Table 5: Mean, Standard Deviation, and p-value (to test if it’s significantly lower than the fixed number of generations,
40, of Self-Consistency) of the number of generated samples of RASC Method on Various Benchmarks on 10
different seeds

Model Metric
Benchmark Category

MathQA_Challenge MathQA_dev BigBench_easy GSM8K_hard GSM8K_test

G
PT

3.
5a Mean 8.900 8.461 4.559 4.061 3.106

Std (1.011) (0.859) (0.293) (0.353) (0.061)
p-value 3.26× 10−15 6.61× 10−16 1.47× 10−20 6.81× 10−20 7.68× 10−27

C
la

ud
e3

b Mean 7.907 7.747 3.004 3.191 3.127
Std (0.974) (1.308) (0.005) (0.132) (0.120)

p-value 1.76× 10−15 2.38× 10−14 6.44× 10−37 7.73× 10−24 3.29× 10−24

L
la

m
a3

c Mean 7.803 7.617 11.569 3.056 3.001
Std (0.739) (0.872) (0.715) (0.033) (0.003)

p-value 1.41× 10−16 5.96× 10−16 3.22× 10−16 3.03× 10−29 6.79× 10−39

aGPT-3.5-Turbo, bClaude-3-Haiku, cLlama3-7B

Table 6: Cost Analysis of Methods on Claude-3-Haiku
on Average per one thousand questions

Method Accuracy (%) Cost 1k samples ($)

SC 55.1 4.23
ESC 54.9 (-0.36%) 1.49 (-64.78%)
ASC 54.9 (-0.36%) 1.28 (-69.74%)
RASC 55.6 (+0.91%) 0.64 (-84.87%)

C Sample Generation Prompt

In this study, we adopt CoT prompting which
explicitly requires LLMs to RP to the question step
by step. Since the OOD test dataset uses few-shot
prompting and budget constrain, we instead
utilize zero-shot prompting to generate RPs in our
own datasets. The prompt is defined as follows:
System Message:You are a professional special-
ized in {subject}. You need to help me answer the
given question. Notice that you need to solve the
question step by step and as detailed as possible.
Do not jump to the answer directly. You must follow
the RP format instructions.
Human Message:{question}

13

Figure 6: Comparison of Accuracy of our method
(RASC) on different categories on our collected datasets.
In most of categories we see a performance gain of our
methods; we saw a drop in GSM8K_test, but this is
mostly due to the more significant reduction in samples
generation in this specific category

D Individual Quality Features Extraction

In this study, we design four individual quality fea-
tures to measure the reliability of each individual
reasoning path. The four individual quality features
are RP length, input coherence, format error, and
error-admitting terms.

D.1 Reasoning Path Length

RP length varies from question category to ques-
tion category. For instance, the required length of
RP for solving a simple math problem (such as
’what is 32 + 42’) is significantly less than solving
partial differential equations. Therefore, we pre-
define some thresholds for different categories. If
the proposed RP length is more than this thresh-
old, we consider it as long (1 as a binary indicator),
otherwise is small. In our RP generation stage, we
explicitly require LLM to state the step number
(Step 1: ...; Step 2: ...). Therefore, in our study,
the threshold is used to compare the number of
proposed steps from RP. In the OOD dataset or in
general cases where this instruction is not provided,
we consider the number of sentences as the length
of PR.

D.2 Input coherence

Since we are aiming for a lightweight feature ex-
traction method, advanced name entity recognition
or similar keyword comparison methods are not
used to compare the RP with the input question.
Instead, semantic similarity with Jaccard is used

Figure 7: Comparison of Accuracy of our method
(RASC) on different models on our collected datasets.
In all models we found that the performance either gain
significantly (GPT3.5/llama3) or stays around the same
as the previous method

to approximate the coherence between the RP and
input questions. The higher the similarity, the RP
is considered to have more input coherence.

D.3 Format Error

The prompt-response nature of LLMs does not al-
low users to explicitly obtain well-structured fields
(such as JSON or dictionary in Python) since the
responses are often in string format. Therefore,
the common practice is asking LLMs to output re-
sponse strings with clear format and then using
regular expressions to parse out these fields of in-
terest. When the testing QA dataset is large and
diverse, it is hard to propose a uniform parser to
extract information. Moreover, instructional fol-
lowing hallucination is another common behaviour
for LLMs. This prevents users from really extract-
ing what they want from responses, especially in
massive test cases.

A common instruction that people use to extract
answers in QA tasks is asking LLMs to explic-
itly end their response with fixed term The Answer
is xxx. Once the LLM varies its expression (for
instance xxx is the answer), the parser fails and
outputs the wrong answer even if the RP is ac-
tually correct. However, this is an unavoidable
problem as long as instruction following halluci-
nation still exists. Therefore, it is considered a
low-quality indicator since it definitely outputs a
false answer (parser fails). In our study, we adopt
parsers provided by LangChain since it contains
well-structured parsing logic. Yet due to the unsta-

14

Figure 8: Comparison of Accuracy of our method (RASC) on different categories and models of our collected
datasets from a complete view via heatmap

ble behaviour of LLMs, this parser fails often as
well.

D.4 Frequent Error-admitting Terms for
Various LLMs

By observing the generated samples, we observe
several common error-admitting terms that LLMs
often use to acknowledge the previous mistakes
they made during the RP. We conduct systemati-
cal evaluation and list out some of the most fre-
quent error-admitting terms used by various LLMs
in Fig.17-19. These error-admitting terms, such
as "There seemed to be a mistake in the previous
calculation" have demonstrated a high risk of sam-
ple hallucination. Therefore, by parsing out these
terms, we obtain an error-admitting quality feature.

E Relative Quality Feature Extraction

In this study, we use semantic similarity to deter-
mine the relative quality features between reason-
ing paths. To further describe the method for ob-
taining semantic similarities, we include a thor-
ough discussion of similairty algorithms and mech-
anisms.

E.1 Similarity Algorithms

The proposed relative quality feature requires com-
puting the semantic similarity between different
sampled RPs. Therefore, it is essential to find (1)
a tokenization method that captures the semantics
of the given text, and (2) an appropriate calcula-
tion to compute similarity between embeddings.
In our experiment, we tested several widely used
tokenization methods, including TF-IDF (Robert-
son, 2004), Count Tokenizer, GloVe (Pennington
et al., 2014), and Sentence Transformer (Reimers
and Gurevych, 2019). For similarity computation,
we tested classic Euclidean distance and cosine
similarity. On the other hand, Jaccard Similarity
and Levenshtein distance are two NLP textual sim-
ilarity algorithms which can be applied directly to
the corpus, they are included in our test as well.
The comparison of some of the tokenizer and com-
putation results is shown in Fig.E.1. Our results
indicate that these combinations can all perform
good semantic similarity calculations. Therefore,
we use the Jaccard Similarity Index as our primary
similarity algorithm in our study due to its com-
putational efficiency (required by our method) and
comparable performance.

15

Figure 9: Comparison of Accuracy of our method (RASC) on different models of ASC’s datasets. we found a
significant improvement on the vicuna-13b model but a slight degration on performance on code-davinci-002 model
(but with a more significant reduction on samples generation as shown in Fig 11

E.2 Similarity Mechanism Robust and
Sensitivity Proof

In this study, we adopt three mechanisms to calcu-
late the semantic similarity between sampled RPs
and the consistency between sampled answers. The
sensitivity and robustness of these mechanisms are
shown in Fig.21. To prove the sensitivity and ro-
bustness of aggregation and pairwise similarity, we
conduct the following proof.

Given that we are using the Jaccard Similarity
Index, the equation to compute similarity is given
by:

J(A,B) =
|A ∩B|
|A ∪B|

(4)

where A and B represent two documents/corpus
and |A| is the cardinality of the document |A|. In
our study, we denote Ct as the document at sam-
pling step t. Before getting into the proof, we have
the following Lemma:

Lemma E.1. Let N(X) be a system follows Gaus-
sian Distribution with X = {X1, X2, ..Xn}, a set
of random variable Xi. The individual sensitiv-
ity of Xi will accumulate and affect the overall
sensitivity of N(X) regardless of the averaging
operation.

Proof. By Chebyshev’s Inequality: P (|X − µ| ≥
kσ) ≤ 1

k2
for any random variable X with mean µ

and variance σ2. For each Xi, it has its own mean
µi and variance σ2

i . The averaging effect of Xi is

given by:

X̄ =
1

t− 1

t−1∑
i=1

Xi

The variance of the average is:

Var(X̄) =
1

(t− 1)2

t−1∑
i=1

σ2
i

Applying Chebyshev’s Inequality to X̄ , we get:

P
(
|X̄ − µ| ≥ kσX̄

)
≤ 1

k2

where σX̄ =
√

Var(X̄) = 1
t−1

√∑t−1
i=1 σ

2
i .

Despite averaging, if the individual Xi have high
variances σ2

i , then σX̄ will also be large. This
implies that:

P

|X̄ − µ| ≥ k · 1

t− 1

√√√√ t−1∑
i=1

σ2
i

 ≤ 1

k2

Thus, X̄ still has a considerable probability of devi-
ating from its mean, indicating persistent sensitivity.
Hence, the individual sensitivity of Xi accumulates
and affects the overall sensitivity of N (X) regard-
less of the averaging operation.

To prove the robustness and sensitivity of the
adopted similarity mechanisms, we introduce the
following theorem:

16

Figure 10: Comparison of Accuracy of our method (RASC) on different categories and models of ASC’s datasets
from a complete view via heatmap

Theorem E.2. Aggregation similarity is more ro-
bust to noise compared to pairwise similarity when
the document Ct vocabulary size is large. Both
aggregation and pairwise similarity are sensitive
when the document vocabulary size is small.

Proof. Let Cagg,t−1 = C1:t−1 =
⋃t−1

i=1 Ci:

Jagg,t = J(Ct, C1:t−1) =
|Ct ∩ C1:t−1|
|Ct ∪ C1:t−1|

• If Ct ⊆ C1:t−1 ⇒ Jagg,t =
|Ct|

|C1:t−1|

• If Ct ∩ C1:t−1 = ∅ ⇒ Jagg,t = 0

• If Ct ∩ C1:t−1 = λ, 0 < λ < |Ct|, λ ∈ Z:

Jagg,t =
λ

|Ct|+ |C1:t−1| − λ

dJagg,t

dλ
=

|Ct|+ |C1:t−1|
(|Ct|+ |C1:t−1| − λ)2

(∗)

For pairwise similarity:

E(Jpww,t) =
1

t− 1

t−1∑
i=1

J(Ct, Ci)

=
1

t− 1

t−1∑
i=1

|Ct ∩ Ci|
|Ct ∪ Ci|

• If Ct ⊆ Ci or Ci ⊆ Ct

⇒ J(Ct, Ci) =
min(|Ct|,|Ci|)
max(|Ct|,|Ci|)

• If Ct ∩ Ci = ∅ ⇒ J(Ct, Ci) = 0

• If Ct ∩ Ci = βi,
0 < βi < min(|Ct|, |Ci|), βi ∈ Z:

J(Ct, Ci) =
βi

|Ct|+ |Ci| − βi

dJ(Ct, Ci)

dβi
=

|Ct|+ |Ci|
(|Ct|+ |Ci| − βi)2

∇E(Jpww,t) =
1

t− 1

t−1∑
i=1

|Ct|+ |Ci|
(|Ct|+ |Ci| − βi)2

(∗∗)

17

Figure 11: Comparison of Number of Samples (steps) Rduction of our method (RASC) on different models of
ASC’s datasets. we found a less improvement on the vicuna-13b model but more on code-davinci-002 model (but
with a slight performance drop on accuracy as shown in Fig 11

From the above derivation, we know that:

dJagg,t

dλ
=

|Ct|+ |C1:t−1|
(|Ct|+ |C1:t−1| − λ)2

∇E(Jpww,t) =
1

t− 1

t−1∑
i=1

|Ct|+ |Ci|
(|Ct|+ |Ci| − βi)2

From the derivative of aggregation similarity, we
can observe that the cardinality of the aggregation
size plays a significant role when it gets large. As
the vocabulary set expands (|C1:t−1| gets larger),
the derivative dJagg,t

dλ gets smaller regardless of the
intersection size λ. Formally speaking:

lim
t→∞

dJagg,t

dλ
→ 0

On the other hand, the individual pairwise sim-
ilarity J(Ct, Ci) is not affected by the size t, and
|Ct| ≪ |C1:t−1| when t gets large. Hence, the
change in the interception size βi dominates the
rate of change, which implies it is very sensitive to
the error due to the additional RP.

In addition, βi has a large variance from RP to
RP since they are i.i.d. This large variance, or
sensitivity will accumulate as t gets larger (as more
individual terms J(Ct, Ci) get in) by Lemma.E.1.

Therefore, from Theorem.E.2, CoT RPs always
contain way larger vocabulary size than answers,
hence we adopt aggregation similarity mechanism
for CoT RPs while pairwise similarity mechanism
for answers.

F Evaluation Metric for Evaluating
Accuracy-Cost Trade-Off

In order to quantitatively assess the trade-off be-
tween accuracy and cost in our evaluations, we
introduce a custom metric function that balances
the contributions of both factors. This metric nor-
malizes the accuracy and cost values and computes
a weighted average to provide a single score repre-
senting the overall performance of a method.

Let acc denote the accuracy of a method, and
cost denote the computational cost, measured as
the number of samples generated. Additionally, let
sc_acc and sc_cost denote the accuracy and cost of
the Self-Consistency (SC) method, respectively,
while single_sample_acc and direct_cost denote
the accuracy obtained from using only the first
sample’s answer and the cost of the direct sampling
method, respectively.

The metric function is defined as:

metric = 0.5×acc_factor+0.5×cost_factor (5)

where acc_factor and cost_factor are normalized
values of accuracy and cost, respectively, calculated
as follows:

acc_factor =


1 if acc ≥ sc_acc
0 if acc ≤ single_acc

acc−single_acc
sc_acc−single_acc otherwise

(6)

18

Figure 12: Comparison of Number of Samples(steps) generations of our method (RASC) on different categories
and models of ASC’s datasets from a complete view via heatmap

cost_factor =


1 if cost ≤ dir_cost
0 if cost ≥ sc_cost

sc_cost−cost
sc_cost−direct_cost otherwise

(7)

The acc_factor is normalized to be between 0
and 1, where 1 corresponds to an accuracy greater
than or equal to the SC method, and 0 corresponds
to an accuracy less than or equal to the accuracy
using just the first sample’s answer. Similarly, the
cost_factor is normalized to be between 0 and 1,
where 1 corresponds to a cost less than or equal to
the direct sampling method, and 0 corresponds to a
cost greater than or equal to the SC method.

The metric function calculates the weighted aver-
age of acc_factor and cost_factor, giving equal im-
portance to both accuracy and cost. A higher value
of the metric indicates a better trade-off between
accuracy and cost. This function enables us to com-
pare different methods and configurations based on
their ability to achieve high accuracy while mini-
mizing computational cost. By balancing the contri-
butions of accuracy and cost, the metric provides a
comprehensive evaluation of each method’s perfor-
mance in the context of the accuracy-cost trade-off.

G Out-of-Domain Datasets

To assess the generalizability and robustness of
our proposed Reasoning-Aware Self-Consistency
(RASC) method, we incorporate out-of-domain
(OOD) data from two seminal works: Early-
Stopping Self-Consistency (ESC) (Li et al., 2024b)
and Adaptive Self-Consistency (ASC) (Aggarwal
et al., 2023).

G.1 Datasets, Prompts, and Models from
Early-Stopping Self-Consistency (ESC)

The ESC methodology (Li et al., 2024b) is evalu-
ated across six benchmark datasets grouped into
three reasoning task categories:

• Arithmetic Reasoning: MATH and GSM8K
(Cobbe et al., 2021).

• Commonsense Reasoning: StrategyQA
(Geva et al., 2021) and CommonsenseQA (Tal-
mor et al., 2019).

• Symbolic Reasoning: Last Letter Concatena-
tion and Coin Flip (Wei et al., 2022).

The prompts used are consistent with those in Wei
et al. (2022), ensuring a fair comparison across
datasets. Three language models of varying scales

19

Figure 13: Comparison of Accuracy of our method (RASC) on different models of ESC’s datasets. we found a
consistency among our method with existing methods for all three models they used

were used for evaluation: GPT-4, GPT-3.5-Turbo,
and LLaMA-2 7B (Touvron et al., 2023).

G.2 Datasets, Prompts, and Models from
Adaptive Self-Consistency (ASC)

The ASC approach (Aggarwal et al., 2023) is tested
using 17 diverse datasets categorized into four dis-
tinct areas:

• Mathematical Reasoning: Includes GSM-
8K, SVAMP , and ASDIV .

• Commonsense Reasoning: StrategyQA,
Date Understanding, Salient Translation,
SNARKS, and RUIN Names.

• Symbolic Reasoning: Encompasses Tracking
Shuffled Objects, Logical Deduction, Boolean
Expressions, Disambiguation QA, and Pen-
guins.

• Code Generation: HumanEval , MBPP,
APPS , and CodeContests .

For tasks in mathematical reasoning and Date Un-
derstanding, prompts from Gao et al. (2023) were
used. For commonsense and symbolic reason-
ing tasks, prompts from Wei et al. (2022) were
employed. Code generation tasks followed were
conducted using three language models: GPT-3.5-
Turbo, VICUNA-13B, and CODE-DAVINCI-002.

By leveraging these datasets, prompts, and mod-
els from these studies as OOD data, we aim to rig-
orously test the adaptability and robustness of our
RASC method across different problem domains,

task types, and datasets. This comprehensive eval-
uation helps illuminate the real-world applicability
and resilience of our approach in varying compu-
tational environments and across diverse language
model architectures.

20

Figure 14: Comparison of Accuracy of our method (RASC) on different categories and models of ESC’s datasets
from a complete view via heatmap

Figure 15: Comparison of Number of Samples(steps) generations of our method (RASC) on different models of
ESC’s datasets. we found a significant improvement among our method with existing methods for all three models
they used

21

Figure 16: Comparison of Number of Samples(steps) generations of our method (RASC) on different categories
and models of ESC’s datasets from a complete view via heatmap

22

Figure 17: GPT-3.5-TURBO error-admitting terms.

Figure 18: CLAUDE-3-HAIKU error-admitting terms.

Figure 19: LLAMA3 error-admitting terms.

Figure 20: Similarity algorithms comparison. The orig-
inal similarity distribution was from 0-1, to separate
them for better visualization, we shifted different meth-
ods by a constant. TF-IDF: TF-IDF tokenizer + cosine
sim; Euclidean: Count tokenizer + Euclidean Distance;
levn: Levenshitein Distance; Jaccard: Jaccard Similarity
Index; GloVe: GloVe tokenizer + cosine sim; Sent_T:
Sentence Transformer tokenizer + cosine sim;

Figure 21: Similarity mechanisms.

23

	Introduction
	Related Work
	Reasoning-Aware Self-Consistency
	Reasoning-Aware Quality Features
	Confidence Score and Stop Condition

	Experiments
	Main Results
	Analysis

	Conclusion
	Limitations
	 Computational Details
	Number of Parameters
	Computational Budget
	Computing Infrastructure
	Used Packages

	Experiments: Additional Results
	Robustness of RASC Across Different Seeds
	Additional Results on Our Datasets
	Additional Results on ASC's Datasets
	Additional Results on ESC's Datasets

	Sample Generation Prompt
	Individual Quality Features Extraction
	Reasoning Path Length
	Input coherence
	Format Error
	Frequent Error-admitting Terms for Various LLMs

	Relative Quality Feature Extraction
	Similarity Algorithms
	Similarity Mechanism Robust and Sensitivity Proof

	Evaluation Metric for Evaluating Accuracy-Cost Trade-Off
	Out-of-Domain Datasets
	Datasets, Prompts, and Models from Early-Stopping Self-Consistency (ESC)
	Datasets, Prompts, and Models from Adaptive Self-Consistency (ASC)

