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Abstract
The significant communication overhead and
client data heterogeneity have posed an im-
portant challenge to current federated learning
(FL) paradigm. Existing compression-based and
optimization-based FL algorithms typically focus
on addressing either the model compression chal-
lenge or the data heterogeneity issue individually,
rather than tackling both of them. In this paper, we
observe that by symbolizing the client model up-
dates to be uploaded (i.e., normalizing the magni-
tude for each model parameter at local clients), the
model heterogeneity, essentially stemmed from
data heterogeneity, can be mitigated, and thereby
helping improve the overall generalization perfor-
mance of the globally aggregated model at the
server. Inspired with this observation, and fur-
ther motivated by the success of Lion optimizer
in achieving the optimal performance on most
tasks in the centralized learning, we propose a
new FL algorithm, called FedSMU, which simul-
taneously reduces the communication overhead
and alleviates the data heterogeneity issue. Specif-
ically, FedSMU splits the standard Lion optimizer
into the local updates and global execution, where
only the symbol of client model updates com-
mutes between the client and server. We theoreti-
cally prove the convergence of FedSMU for the
general non-convex settings. Through extensive
experimental evaluations on several benchmark
datasets, we demonstrate that our FedSMU algo-
rithm not only reduces the communication over-
head, but also achieves a better generalization
performance than the other compression-based
and optimization-based baselines.
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1. Introduction
Federated learning (FL) is a large-scale machine learning
paradigm wherein a multitude of clients, under the orches-
tration of a central server, collaboratively learn a model
without the need of sharing or exchanging any raw client
data (McMahan et al., 2017). This paradigm is commonly
adopted in data-constrained or data-sensitive environments,
such as Internet of things (IoT), healthcare, and finance
(Khan et al., 2021; Rieke et al., 2020; Yang et al., 2019;
Haibo et al., 2023). In essence, FL is distinguished from
the traditional distributed learning in the following three
major challenges. High communication cost. During each
communication round of training, the clients are required
to transmit their local model parameters (or updates) to the
central server for global aggregation. When the number of
model parameters becomes significantly large, this transmis-
sion process may result in a huge bandwidth consumption.
Data heterogeneity. Due to the inherently private and per-
sonalized nature of federated clients, the datasets across
these clients tend to exhibit distinct statistical distributions.
Such a data heterogeneity may introduce significant biases
into the globally aggregated model, consequently impairing
its generalization performance. Partial client participa-
tion. In practical scenarios, clients may join or leave the
FL system at random time intervals. This highly dynamic
behavior results in only a small subset of clients being active
for training during each communication round.

To address these challenges, extensive exploration has been
conducted in the FL community, but from different perspec-
tives. On one hand, compression-based federated algorithms
aim to reduce the amount of data required for model param-
eter (or update) transmission. For instance, quantization
compression, such as signSGD (Bernstein et al., 2018a;b),
QSGD (Alistarh et al., 2017) and FedPAQ (Reisizadeh et al.,
2020), quantize the gradient values into lower-precision inte-
gers, thereby reducing the number of transmitted bits. While
the sparsity compression methods typically sparsify the gra-
dient vector by setting some of its elements to zero or fewer
bits, with the aim of reducing the data transmission cost
(Wangni et al., 2018; Aji & Heafield, 2017; Lin et al., 2017).
However, a direct application of compression methods may
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lead to information loss, resulting in decreased model accu-
racy (Yu et al., 2022) and slower convergence rates, or even
divergence of the training process (Beznosikov et al., 2023).
To mitigate these issues, strategies such as error feedback
(Richtárik et al., 2021) have been developed, which incor-
porate residual errors from previous compression steps into
the optimization process. While many algorithms with the
error feedback require the full participation of the clients,
and if only partial clients are involved, their performance
will degrade (Li & Li, 2023).

On the other hand, several optimization-based federated
algorithms, have been proposed to address the data het-
erogeneity issue. For example, SCAFFOLD (Karimireddy
et al., 2020) aims to mitigate the client variance by design-
ing and iteratively updating the control variates. Though
theoretically effective, it incurs doubling the communication
overhead. FedGen (Venkateswaran et al., 2023) regulates
the local training by transmitting additional generators. Sev-
eral adaptive algorithms (Tong et al., 2020) dynamically
adjust their learning rates based on the divergence between
the local and global models, thereby enhancing the gener-
alization performance in federated settings. Most of these
optimization-based FL algorithms, which mainly aim at
mitigating the data heterogeneity, may incur additional com-
munication overhead of information exchange for further
performance improvement.

In this paper, we aim to design an algorithm capable of si-
multaneously addressing the communication bottleneck and
data heterogeneity, without being constrained by the partial
client participation issue. To achieve this goal, we first re-
visit the fundamental FedAvg algorithm and identify that
heterogeneous magnitudes of model updates may result in
certain clients’ updates being overlooked, thus leading to an
unstable and sub-optimal aggregation of the global model.
Building upon this observation, we then introduce the con-
cept of Magnitude Uniformity (MU) index, which quantifies
the clients’ contribution to the global model’s update. We
empirically validate that this MU index is influenced by the
degree of data heterogeneity in FL, indicating that a more
heterogeneous data distribution causes a greater heterogene-
ity in the magnitudes of client model updates. Furthermore,
heterogeneous client updates may contribute to a decline in
the global model’s generalization performance. To address
this issue and further reduce communication overhead, we
are motivated to symbolize the model updates as an imme-
diate solution, and propose the FedSMU algorithm. Our
contributions can be summarized as follows.

• We develop a compression-based FL method, FedSMU.
It uses the sign operation to achieve 1-bit compression
and thus greatly saves the communication cost. Simul-
taneously, we leverage the design of Lion optimizer
(Chen et al., 2024) to enhance the generalization perfor-

mance while maintaining the benefits of compression.

• We conduct a convergence analysis of FedSMU under
the general non-convex settings, and find its conver-
gence rate as O( 1√

T
), where T is the total number of

communication rounds. This theoretical result matches
with the convergence rates of existing FL algorithms.

• We conduct a series of experiments to demonstrate the
superiority of FedSMU. By comparing FedSMU with
the other compression-based and optimization-based
FL algorithms, we show that our FedSMU achieves a
higher generalization performance while greatly saving
the communication overhead in most cases.

2. Related Works
Compression-Efficient FL. Extensive studies have been
dedicated to reducing the amount of data required for gra-
dient transmission and thus improving the communication
efficiency. Using the unbiased compression method, QSGD
(Alistarh et al., 2017), FedPAQ (Reisizadeh et al., 2020)
and ECQ-SGD (Wu et al., 2018) compress the gradients up-
loaded to the server while keeping the original data integrity
and expectation unchanged to save the communication cost.
For biased compression, by leveraging the sign operation,
signSGD (Bernstein et al., 2018a;b) can compress the gradi-
ents up to 1 bit. While the sparsification-based methods like
TopK (Stich et al., 2018; Alistarh et al., 2018), which only
keeps the largest K gradients, is another communication-
efficiently biased compression method. Other methods, like
FedZip (Malekijoo et al., 2021) and Qsparse-local-SGD
(Basu et al., 2019), incorporate both the quantization and
sparsification. A direct application of biased compression,
however, may lead to performance degradation and slower
convergence rates due to the bias accumulation (Beznosikov
et al., 2023). To address this, optimization techniques have
been introduced to mitigate the negative effects of bias. For
example, FedEF (Li & Li, 2023) and EF21 (Richtárik et al.,
2021) employ error feedback, while MARINA (Gorbunov
et al., 2021) and DIANA (Mishchenko et al., 2024) lever-
age the compression of gradient differences, both of which
enhance the model performance and convergence speed.
However, the performance of these algorithms is limited
by the client participation rate. In this work, we adopt the
sign operation to improve communication efficiency with
partial participation of clients, which also helps enhance the
generalization capability of the globally aggregated model
as shown by Chen et al. (2024; 2021); Foret et al. (2020).

Generalization-Enhanced FL. In the advancement of FL
algorithms, in parallel, various techniques have emerged
to improve the generalization performance. By using mo-
mentum in FL, one can track the historical information of
gradients, suppress the noise and reduce the instability of
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Table 1. Summary of notations.

T , t number, index of communication rounds
K, k number, index of local update step
η, γ1 local, global learning rate
β1,β2 momentum coefficients
γ2 weight decay factor
yi
t,k client i’s model at round t and step k

xt aggregated server model after round t
M,m set of clients with cardinality m
Nt, n set of sampled active clients with cardinality n

model updates. Benefiting from this, methods such as MV-
sto-signSGD-SIM (Sun et al., 2023) and FedAdam (Reddi
et al., 2020) apply momentum instead of directly updating
with gradients, while PR-SGD-Momentum (Yu et al., 2019)
first updates the momentum and then combines the new
gradient with a weight of the momentum. These methods
enhance the model generalization and accelerate conver-
gence in FL. In this work, we employ two sliding average
functions to update momentum after calculating the new
gradient, a technique introduced by Lion (Chen et al., 2024)
to effectively store more historical gradient data. Also, since
weight decay regularization has been shown to outperform
ℓ2 regularization in preventing overfitting and enhancing
generalization (Loshchilov, 2017), we leverage a weight
decay strategy to mitigate the impact of data heterogeneity
and further improve generalization performance. The work
most closely related to ours is distributed Lion (Liu et al.,
2024), which leverages the Lion optimizer to reduce commu-
nication overhead by extending it to the distributed setting
with the full client participation and iid data. However, it
lacks exploration of the partial participation and non-iid data
scenarios, which are the major challenges brought by FL.

3. Proposed Method
3.1. Notations and Preliminaries

The general optimization problem of federated learning (FL)
can be formulated as:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

Fi(x), (1)

where Fi(x)
∆
=Eξ∼Di [Fi(x, ξ)] represents the local loss

function of the i-th client with the data sample ξ drawn from
distribution Di. Under the FL settings, data is typically
heterogeneous, implying that for two clients i and j, the dis-
tributions Di and Dj can be extremely different. Moreover,
the FL systems often operate under a limited bandwidth,
which renders the communication overhead associated with
the exchange of model parameters a significant bottleneck.

Current approaches in FL often prioritize either mitigating
data heterogeneity to enhance generalization or compress-

ing model updates to alleviate communication, rather than
addressing both challenges concurrently. Specifically, most
compression-based FL algorithms (Bernstein et al., 2018a;b;
Li & Li, 2023; Wen et al., 2017) significantly reduce the
communication cost, with a generalization performance typ-
ically comparable to or slightly lower than that of standard
FedAvg (McMahan et al., 2017). On the other hand, most
optimization-based FL strategies (Karimireddy et al., 2020),
which involve exchange of full-precision model updates,
and even additional control variables or informative repre-
sentations, aim to mitigate the data heterogeneity issue, but
at the cost of a huge communication overhead.

The recently proposed SCALLION algorithm (Huang et al.,
2023) integrates the control variable-based SCAFFOLD
framework with incremental variable compression meth-
ods, achieving a comparable performance with SCAFFOLD
while substantially reducing the upload communication cost.
Nonetheless, SCALLION additionally requires to double
the download communication overhead for the transmission
of control variables. CompressedScaffnew (Condat et al.,
2022) and TAMUNA (Condat et al., 2023) also combine
the control variates with the model compression. However,
these methods rely on the permutation-based compression
schemes, which are relatively complex and less flexible.
LoCoDL (Condat et al., 2024) extends these two works by
supporting a broader class of compressors and demonstrat-
ing a convergence acceleration in the convex problems, but
it focuses exclusively on the convex setting. Additionally,
FedComLoc (Yi et al., 2024) and Sparse-ProxSkip (Mein-
hardt et al., 2025) make attempts to explore the client drift
under the non-convex objectives. However, FedComLoc’s
performance may degrade under the compressed communi-
cation due to its reliance on the communication variables,
while Sparse-ProxSkip assumes the full client participation,
which may not always be feasible in the real-world FL sce-
narios. These observation then impose a critical question
for the field of compression-efficient FL: can we design an
approach to effectively mitigate both the communication
bottleneck and data heterogeneity simultaneously with par-
tial participation of clients under the non-convex objectives?

3.2. Symbolizing Client Updates

Before answering this question, we revisit the standard FL
framework, i.e., FedAvg (McMahan et al., 2017). With Fe-
dAvg, clients perform local training using their own datasets
that are distributed over clients and non-iid in nature. The
server then aggregates these locally trained models to up-
date the global model, which subsequently serves as the
initial model for the next round of training. However, due to
the data heterogeneity, clients’ model updates often differ
in both the direction and magnitude. Consequently, when
model updates from different clients with large deviations
are averaged, some updates with relatively small magnitudes
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Figure 1. Magnitude uniformity (MU) index and top validation accuracy of FedAvg and FedSMU (ours) on CIFAR-100 with CNN model.

may be overlooked. For instance, we consider three clients,
i1, i2 and i3, whose model updates along one dimension
are +10, −1, and −1, respectively. In this case, the updates
have opposite directions, while the magnitude of client i1’s
update is much larger than those of clients i2 and i3. Af-
ter averaging at the server (i.e., the global model’s update
becoming +8/3), the contribution of clients i2 and i3 to
the global model’s update will be ignored, since the update
direction is now dominated by client i1. Thus, a direct aver-
aging may neglect contributions from the smaller updates
and potentially compromise the fairness among clients.

To address this, and motivated by the Jain’s fairness in-
dex (Jain et al., 1984), we propose a new metric called the
Magnitude Uniformity (MU) index to reflect clients’ con-
tribution to the global model update. Through empirical
analysis, we explore the relationship between this MU index
and the local data heterogeneity, which in turn impacts the
generalization performance of globally aggregated model.

Definition 3.1. (Magnitude Uniformity). We define the
magnitude uniformity across m clients at the t-th communi-
cation round as:

Φt ≜
d∑

j=1

(∑
i∈M ĝi,jt

)2

∥M∥
∑

i∈M

(
ĝi,jt

)2 , ĝ
i,j
t = ∥yi,jt,K − yi,jt,0∥,

(2)

where yi,jt,K denotes the j-th dimension (d dimensions in
total) of client i’s model at round t and local step K, and
ĝi,jt denotes the magnitude of client i’s model update in this
dimension j at round t. Similar to the Jain’s fairness index,
a higher value of the magnitude uniformity Φt indicates a
more uniform contribution from the clients, thus suggesting
a more balanced representation of the clients’ data in the
global model. Theoretically, such a uniformity may lead to
a global model better capturing the information from all the
local clients. Consequently, one may raise a question: is
this magnitude uniformity index affected by the data hetero-
geneity across locally distributed clients, and does it further
influence the global model’s generalization performance?

Seeking for an answer to this question, we empirically ex-
amine the correlation between this Magnitude Uniformity
index and the global model’s generalization performance

under varying data heterogeneity on the CIFAR-100 dataset.
The experiment involves 100 clients with a partial participa-
tion rate of 10%. As observed from Figures 1(a) and 1(b),
for FedAvg, an increase in the data heterogeneity leads to a
decrease in the Magnitude Uniformity index, accompanied
by a deterioration in the generalization performance. This
suggests that with FedAvg, data heterogeneity leads to a
significant difference in the magnitude of model updates
across clients, resulting in an unstable global aggregation
and poorer generalization performance. Additionally, as
shown in Figure 1(c), the Magnitude Uniformity index tends
to rise during the FedAvg training, suggesting that the early
stage of an FL system forces a gradual narrowing on the
magnitude difference of model updates across clients.

A straightforward approach to enhance the Magnitude Uni-
formity index for FL is to apply a sign operation to the
local clients’ updates, ensuring that model updates have the
uniform magnitude from all the clients. Specifically, after
this sign operation, the local model updates for the three
clients i1, i2 and i3 in the previous example become +1,
−1, and −1, respectively. This process guarantees that each
client’s model update contributes equally to the globally
aggregated model, thereby reducing the impact of model
heterogeneity and promoting fairness. By converting the
magnitudes of model updates into their respective signs, we
actually emphasize the directions of their updates rather than
the magnitudes, which could help balance the contributions
from different clients’ model updates and lead to a more
representative and informative global model. Moreover, by
symbolizing the updates we can reduce the communication
cost to 1 bit per dimension, offering a potential solution to
enhancing generalization while saving the communication.

In fact, numerous sign-based compression methods (Bern-
stein et al., 2018a;b; Wen et al., 2017) have been applied in
FL. While theoretically performant, their empirical results
often show only marginal improvements or comparable per-
formance to FedAvg. Thus, effectively leveraging the sign
operation to simultaneously mitigate the communication
overhead and enhance generalization in federated learning
remains a challenging and unresolved issue. On the other
hand, many optimization techniques have been proposed
to improve generalization for the centralized learning, such
as momentum, Adam, and weight decay. A brute force ap-
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proach could be directly incorporating the sign operations
with these optimization strategies in FL, formulating the
algorithm design as a program search to identify federated
optimization algorithms that can incorporate sign compres-
sion. However, this approach is computationally expensive.

Fortunately, in the context of centralized learning, Lion
(EvoLved Sign Momentum) optimizer (Chen et al., 2024)
employs the sign operation to compute the updates while
tracking momentum, which has demonstrated an overall
outstanding performance across various models and tasks.
Compared to the simple signSGD (Bernstein et al., 2018a;b),
Lion leverages the dual momentum tracking and weight de-
cay, significantly improving generalization ability of the
trained models. Inspired with our observation on the im-
pact of Magnitude Uniformity index on FL’s generaliza-
tion performance, and further motivated by the success of
Lion in centralized learning, we thus propose a new fed-
erated optimization algorithm aiming at both reducing the
communication overhead and enhancing the generalization
performance, through symbolizing the client model updates.

3.3. Proposed FedSMU

To leverage the structured design of Lion optimizer and
minimize the communication overhead, we propose our
FedSMU algorithm for federated learning, which splits the
Lion optimizer’s framework of momentum tracking and
weight decay to be carried out independently at the server
and each client, respectively, as summarized in Algorithm 1.

Specifically, at each communication round t, our proposed
FedSMU implements the following steps:

1. Participating clients initialize their local models, de-
noted as yit,0, based on the current global model xt.

2. Each client conducts K steps of local stochastic gradi-
ent descent (SGD) to compute the model update git.

3. Each client symbolically represents its model updates
by using the momentum and the sign operations.

4. The server receives and aggregates these symbolic up-
dates, denoted as uit, to update the global model xt+1

by incorporating the weight decay.

Such a design offers two significant advantages to our
FedSMU algorithm. First, it fully leverages the structure
of the Lion optimizer, thereby enhancing the generalization
performance of the global model. It is also worth noting
that in the special case where the number of local update
steps and clients are set to 1, our optimizer essentially re-
verts to the standard Lion. Second, by transmitting only
1-bit update for each dimension of the model parameters
between the clients and server, we substantially reduce the
communication overhead in the FL systems.

We also notice that inspired by advantages of the Lion op-
timizer in the centralized learning, there has been other
works, e.g., FedLion proposed by Tang & Chang (2024), in-
corporating Lion into the local updates of federated learning.
However, FedLion simply uses the vanilla Lion algorithm
for the local updates to replace SGD, resulting in a com-
munication cost that is even significantly higher than that
of FedAvg, as the extra momentum terms need to be trans-
mitted. Compared to FedLion, our FedSMU out-stands
as follows. 1) Effective utilization of Lion framework.
FedSMU divides the execution of Lion optimizer across the
clients and server. In contrast, FedLion merely executes the
Lion algorithm locally in parallel as a local optimization
strategy, failing to exploit the complete structure of Lion.
2) Communication cost saving. In addition to the model
updates, FedLion requires an additional transmission of the
full-precision momentum terms, resulting in a significantly
higher communication cost compared to FedSMU, which
only necessitates a 1-bit communication for each dimension
of model updates. This substantial reduction in communica-
tion overhead is another key advantage of our FedSMU.

4. Theoretical Results on Convergence
We now present the convergence analysis of our proposed
FedSMU for the general non-convex functions. In general,
our analysis is based on the following three standard as-
sumptions, which are commonly satisfied by a range of
non-convex objective functions.

Assumption 4.1. (Lipschitz Gradient). For all i ∈ M,
the function Fi(x) is L-smooth: ||∇Fi(x) − ∇Fi(y)|| ≤
L||x− y|| for all x, y ∈ Rd.

Assumption 4.2. (Bounded Variance). For all i ∈ M,
the function Fi(x, ξ) has a locally-bounded variance σ2

l :
E[||∇Fi(x, ξ)−∇Fi(x)||]2 ≤ σ2

l for all x ∈ Rd.

Assumption 4.3. (Bounded Gradients). For all i ∈ M, the
function Fi(x, ξ) has a bounded gradient: ||∇Fi(x, ξ)|| ≤
G for all x ∈ Rd.

For the non-convex optimization problem, Assumptions 4.1
and 4.2 are standard and widely adopted in various literature
of FL (Reddi et al., 2020; Bottou et al., 2018; Reddi et al.,
2016; Ghadimi & Lan, 2013; Li & Orabona, 2019). Assump-
tion 4.3 is commonly used in the convergence analysis of
sign-based methods, such as the distributed signSGD (Sun
et al., 2023; Jin et al., 2020).

Theorem 4.4. Under Assumptions 4.1, 4.2, and 4.3, when
0 < η ≤ 1

4LK , γ1 = O( 1
L
√
T
) and 1 − β1 = O( 1√

T
), we
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Algorithm 1 Federated learning through Symbolic Model
Updates (FedSMU) algorithm.
Server Initialization: x1;
Client Initialization: mi

0 = 0;
for each round t = 1, 2, ...T do

sample clients Nt ⊆ M
for each client i ∈ Nt in parallel do

receive and initialize local model yit,0 = xt
for each local step k = 1, 2, . . . ,K do

yit,k = yit,k−1 − η∇Fi(y
i
t,k−1, ξ

i
t,k−1)

end
git = yit,K − yit,0
uit = Sign(β1m

i
t−1 + (1− β1)g

i
t)

mi
t = β2m

i
t−1 + (1 − β2)g

i
t (for i /∈ Nt, mi

t =
mi

t−1)
send uit to server

end
// at server:
xt+1 = xt + γ1(

1
n

∑n
i=1 u

i
t − γ2xt)

broadcast xt+1

end

have:

Ψ ≤ L(f(x0)−min f)√
T

+
3G

√
dϕ

nT (1− β2)
+

6ηdτmax

LT (1− β2)

+
12η

T

√
d(2Kσ2

l + 4K2σ2
l + 4K2G2)

1− β2

+
6Gd√
n

+
2d√
T
,

(3)
where Ψ = 1

T

∑T
t=1 E[||∇f(xt)||1], ϕ =∑m

i=1 ∥
1
G∇Fi(x0)∥, d denotes the dimensions of pa-

rameters, τmax = max{τ i}1≤i≤m,1≤t≤T and τ i denotes
client i’s participation interval.

Proof. See Appendix B for the detailed proof.

Remark 4.5. The convergence rate of our FedSMU is
O( 1√

T
) when T is sufficiently large, matching with the

convergence rates of existing FL algorithms, such as Fe-
dAvg and FedPAQ (Reisizadeh et al., 2020). Note that τmax

represents the maximum participation interval among all the
clients, indicating that larger participation intervals result in
a slower convergence. Note that d represents the model di-
mension and directly influences the rate of convergence, i.e.,
a larger model dimension results in a slower convergence.
Increasing the number of workers n leads to a tighter error
bound. Further in Appendix C.5, we show that though a
higher precision quantization can reduce the quantization
error, it may slow down the overall convergence rate in
some cases. We also verify the relationship between the

convergence speed and τmax and d through experiments in
Appendix C.6.
Remark 4.6. The original work of Lion (Chen et al., 2024)
does not include a convergence analysis. Our theoretical
analysis provides the relevant convergence rate for the Lion
optimizer. Specifically, by setting n = 1, τmax = 1 and
K = 1, the convergence rate of our FedSMU reduces to
that of the Lion optimizer. However, FedLion (Tang &
Chang, 2024) cannot be reduced to a standard Lion opti-
mizer, because it merely parallelizes the execution of Lion
optimizer at the client side and incorporates multi-precision
quantization for communication compression.

5. Experiments
We conduct comprehensive comparative experiments to
validate the superior performance of FedSMU in sce-
narios involving different partial participation rates and
data heterogeneity degrees. The additional experi-
ments across more scenarios and ablation studies are
provided in Appendix C, and the implementable code
of our proposed FedSMU algorithm is available at
https://github.com/lxy66888/fedsmu.git.

5.1. Experimental Setup

Models and Dataset. We evaluate our FedSMU and the
other baseline algorithms on three real-world visual and lan-
guage datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and neural machine translation on Shakespeare, with
the same train/test splits as in (Acar et al., 2021). Each
client is assigned an uncertain number of classes, and the
data within each class varies widely, with the labels of client
samples generated according to a Dirichlet distribution. For
instance, using Dirichlet-0.25 on CIFAR-10, there are ap-
proximately 80% of each client’s samples belonging to
around three or four different classes. We employ the CNN
model with LeNet architecture and RNN model both similar
to previous studies (McMahan et al., 2017). Furthermore, to
demonstrate the applicability of our method to more com-
plex models and datasets, we evaluate the performance of
different FL algorithms using a larger model, ResNet18
(He et al., 2016) and ViT-S (Dosovitskiy et al., 2021), and a
more challenging dataset, Tiny-ImageNet, a reduced version
of the ILSVRC (ImageNet Large Scale Visual Recognition
Challenge) (Russakovsky et al., 2015) classification dataset.
For additional details on the experimental setup, please refer
to Appendix A.

Comparison Algorithms. We compare the validation (test)
performance of our FedSMU with several other baselines,
including the optimization-based FL algorithms such as Fe-
dAvg (McMahan et al., 2017), FedLion (Tang & Chang,
2024), and SCAFFOLD (Karimireddy et al., 2020), as well
as the compression-based FL algorithms such as FedEF-HS
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Table 2. Performance comparison under various settings, where a smaller Dirichlet parameter indicates a higher data heterogeneity, and L
and H indicate low and high participation rates, respectively. For CIFAR-10 and CIFAR-100, a LeNet model is used, and for Shakespeare,
an RNN model is employed. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-
100

Dir (0.25)-L 41.44 41.28 42.68 38.31 44.29 37.79 45.09 51.87
Dir (0.6)-L 41.36 45.04 43.28 38.63 44.41 40.34 47.19 53.79

Dir (0.25)-H 42.29 50.49 45.24 37.03 42.69 36.12 48.33 52.35
Dir (0.6)-H 43.44 50.02 45.84 36.09 42.72 38.99 48.85 54.2

CIFAR-
10

Dir (0.25)-L 80.95 81.6 80.91 78.35 80.11 77.87 79.04 80.12
Dir (0.6)-L 82.42 82.36 81.18 79.29 81.73 79.68 80.94 82.48

Dir (0.25)-H 80.6 83.31 81.42 78.17 79.92 78.34 81.61 80.74
Dir (0.6)-H 81.43 84.12 81.75 78.75 81.42 79.38 83.15 82.66

Shakespeare noniid-H 47.58 51.28 47.86 45.79 46.21 45.00 47.11 47.81
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Figure 2. Convergence performance vs. number of uplink communication bits on CIFAR-10, CIFAR-100 and Shakespeare, with 100
clients and 10% participation. For CIFAR-10 and CIFAR-100, a LeNet model is used, and for Shakespeare, an RNN model is employed.

(Li & Li, 2023), FedEF-TopK (Li & Li, 2023), FedEF-Sign
(Li & Li, 2023), and SCALLION (Huang et al., 2023). It is
worth noting that FedLion (Tang & Chang, 2024) involves a
parallel execution of the Lion optimizer on the local clients,
requiring the upload of full-precision momentum updates in
addition to the compressed model updates. Consequently,
the communication overhead of FedLion is higher than Fe-
dAvg, even when the model updates are compressed. Ad-
ditionally, SCAFFOLD needs twice of the communication
cost compared to FedAvg. Though SCALLION uploads the
compressed incremental updates, it still results in doubling
the communication overhead during the download phase.
Since the distributed Lion (Liu et al., 2024) can only be
applied under the full client participation, we include a com-
parison with it in Appendix C.9, which also demonstrates
the advantages of our FedSMU.

Implementation. We evaluate the performance of the global
model on the CIFAR-10, CIFAR-100 and Shakespeare
datasets, by utilizing 100 clients with high (H) and low
(L) client participation rates of 10% and 3%, respectively.
For the ResNet18 and ViT-S model, we adopt the client
number of 10 and the participation rate of 30%. Clients
are uniformly sampled at random without replacement at
each round. The learning rates and hyperparameters for all
approaches are individually tuned via a grid search. For
additional details on hyperparameter settings, please refer

to Appendix A.

5.2. Experimental Results

5.2.1. PERFORMANCE EVALUATION

Experimental results for all the comparison methods under
three datasets are shown in Table 2 and Figure 2. In most
cases, our FedSMU demonstrates a superior performance
compared to the other baselines (especially compression-
based methods) with varying data distributions and client
participation rates. The results effectively demonstrate that
our FedSMU performs well on both image classification and
text prediction tasks. We attribute this improvement to our
design, which mimics the Lion optimizer and incorporates
symbolic updates, momentum tracking, and weight decay.
In contrast, other compression-based methods, such as TopK
and group sign employed by FedEF-TopK and FedEF-Sign,
compress the communication traffic but consistently exhibit
a poorer generalization performance.

Note that our FedSMU generally presents a more signifi-
cant performance gain on CIFAR-100 for image classifica-
tion. For CIFAR-10, though our FedSMU outperforms the
compression-based FL algorithms, it is still less effective
than the optimization-based algorithms, such as FedAvg and
SCAFFOLD. Here, we discuss about the possible reason for
this slight degradation on CIFAR-10. In a federated hetero-
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Table 3. Performance comparison under various settings with the ResNet18 network model. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-10 Dir (0.25) 81.74 85.62 83.75 80.43 82.54 83.93 82.44 83.54

CIFAR-100 Dir (0.25) 47.41 48.76 48.15 47.24 48.07 49.03 43.75 49.76

Tiny-ImageNet Dir (0.25) 29.79 33.35 31.91 31.68 31.05 31.17 28.36 33.53

Table 4. Performance comparison under various settings with the ViT-S network model. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-10 Dir (0.25) 74.24 76.26 75.12 74.11 74.15 74.08 71.75 76.71

CIFAR-100 Dir (0.25) 41.72 48.27 46.37 51.79 45.28 44.02 43.66 53.24

geneous scenario involving CIFAR-100, which comprises
100 categories as compared to 10 categories for CIFAR-10,
each client typically handles a subset of 13-16 (or 20-25) cat-
egories when setting Dirichlet-0.25 (or Dirichlet-0.6). Thus,
with such a high degree of heterogeneity incurred on CIFAR-
100, the model updates from clients are more deviated, al-
lowing our FedSMU to be more effective and demonstrate a
more significant improvement than on CIFAR-10.

To confirm that our algorithm can maintain a good perfor-
mance in larger network models, we also conduct evalua-
tions on the ResNet18 and ViT-S models. Due to limited
computing resources, we set 10 clients in total with a partic-
ipation rate of 30%, and show results in Table 3 and Table 4.
It can be observed that FedSMU outperforms most base-
line methods with ResNet18 and ViT-S models. Though it
remains slightly inferior to SCAFFOLD on the CIFAR-10
dataset with ResNet18 model, it achieves a superior perfor-
mance with ViT-S model, further demonstrating its greater
advantages in complex network architectures.

To further evaluate the generalization performance, we de-
fine generalization as the test accuracy that an algorithm can
achieve at the same level of training accuracy. We show that
FedSMU continues to demonstrate the best generalization
performance, with detailed analysis given in Appendix C.1.

5.2.2. GENERALIZATION VS. PARTICIPATION RATE

We then evaluate the effect of different participation rates on
all the algorithms, while keeping the number of participating
clients consistent at each communication round. Results in
Table 5 indicate that FedSMU achieves the highest accuracy
in most cases. Specifically, when the number of participat-
ing clients is maintained at 10, and when the participation
rate decreases from 0.2 to 0.05, FedAvg (McMahan et al.,
2017), SCAFFOLD (Karimireddy et al., 2020), SCALLION
(Huang et al., 2023), FedEF-HS, FedEF-TopK and FedEF-
Sign (Li & Li, 2023)would experience a severe performance

Table 5. Top validation accuracy (%) under different participation
rate with Dirichlet-0.25 on CIFAR-100 dataset and LeNet model,
where NTC indicates the number of total clients, and PR indicates
the participation rate. Bold numbers indicate the best performance.

NTC / PR 50 / 0.2 100 / 0.1 150 / 0.066 200 / 0.05

FedSMU 52.39 52.35 51.75 50.22

FedAvg 46.62 42.29 40.93 39.44

SCAFFOLD 52.52 50.49 39.39 37.31

SCALLION 48.07 45.24 36.54 35.49

FedEF-HS 42.68 37.03 34.37 31.71

FedEF-TopK 47.25 42.69 40.23 37.41

FedEF-Sign 42.68 36.12 33.94 31.04

FedLion 48.41 48.33 47.81 48.74

deterioration of 7.18%, 15.21%, 12.58%, 10.97%, 9.84%
and 11.64%, respectively. In contrast, FedSMU maintains a
more stable and superior performance, with only a 2.17%
deterioration. These results indicate that our algorithm is
minimally impacted by client participation rates and demon-
strates greater stability under partial client participation. We
attribute this to the use of symbolic operations for the client
updates, which effectively leverages each client’s update
even at very low participation rates. Specifically, when the
client participation rate is low, data heterogeneity may cause
the update of certain clients to dominate due to larger magni-
tudes. Symbolic operations can mitigate this by normalizing
the update amplitudes, ensuring that the contributions of all
clients are fully considered.

5.2.3. GENERALIZATION VS. DATA HETEROGENEITY

We further study the influence of data heterogeneity on the
generalization performance of our FedSMU vs. FedAvg
and SCAFFOLD. From Table 6, it is evident that FedSMU
outperforms the other two algorithms. By computing the
top accuracy difference between the iid and Dirichlet-0.25
settings in Table 6, we observe a degradation of 3.57%,
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Table 6. Top validation accuracy (%) under different data hetero-
geneity with 100 clients and 10% participation rate on CIFAR-100
dataset and LeNet model, where Dirichlet-0.25 indicates the high-
est heterogeneity and iid indicates the lowest heterogeneity.

Algorithm Dirichlet-0.25 Dirichlet-0.6 Dirichlet-0.8 iid

FedSMU 52.35 54.2 54.92 55.92

FedAvg 41.44 43.44 44.21 48.05

SCAFFOLD 50.49 50.02 53.89 54.78

6.61% and 4.29% in the top accuracy for FedSMU, FedAvg
and SCAFFOLD, respectively. Thus, FedSMU is affected
less significantly by the degree of data heterogeneity.

Besides, with a horizontal comparison, the improvement
of FedSMU over FedAvg is 10.91%, 10.76%, 10.71% and
7.87% for Dirichlet-0.25, Dirichlet-0.6, Dirichlet-0.8, and
iid distributions, respectively. This indicates that FedSMU
achieves a higher performance gain with the increasing de-
gree of data heterogeneity. These results also validate that in
highly heterogeneous data scenarios, where the difference
between clients’ model updates becomes greater, FedSMU
can alleviate the local model heterogeneity through sym-
bolic updates. This promotes the aggregation stability and
improves generalization performance of the global model.

5.2.4. LIMITATIONS

Though our FedSMU effectively enhances the generaliza-
tion performance while reducing the communication over-
head, it may still have some limitations. First, our com-
pression relies on the fixed-precision symbol quantization,
which might not be optimal for the adaptive scenarios. Ex-
ploring adaptive bit quantization further in our future inre-
search is promising to address this limitation. Second, due
to the partial participation inherent in federated learning,
the server must broadcast the new global model to initial-
ize the newly participating clients at each communication
round. This constraint prevents the direct application of our
compression techniques to the downloaded global model in
FedSMU. We will consider some model lightweight tech-
niques, such as mixed-precision model compression, as a
promising future research to compress the server-to-client
communication in our FedSMU algorithm. Third, though
our FedSMU reduces communication costs, it does not
necessarily offer an advantage in reducing the communi-
cation rounds. This may be due to the noise introduced by
the sign operation, which enhances the model’s generaliza-
tion but meanwhile slows down its convergence. From a
theoretical perspective, though the generalization proper-
ties (Venkateswaran et al., 2023) of FedAvg under various
assumptions have been extensively examined, such guaran-
tees for the compression-based FL approaches remain an
open problem. Last, our current focus is only on symbolized
local updates with SGD optimizer. However, integrating
adaptive optimizers like AdamW to replace SGD (Douillard

et al., 2024) may further enhance the performance on the
modern large language models.

6. Conclusion
In this paper, we have proposed the FedSMU algorithm that
could effectively alleviate both the communication cost and
data heterogeneity issues of federated learning. The key
design was the symbolization of local client updates which
were introduced to balance the contribution of each client
and avoid the dominance by some relatively large update
values. We carried out theoretical convergence analysis,
and empirically showed that FedSMU converged faster to
a higher top accuracy under the same communication cost.
Under the condition of a very small partial client participa-
tion rate and relatively high data heterogeneity, FedSMU
still demonstrated a better performance.
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Appendix

A. Detailed Experimental Setup
We utilize the visual datasets including CIFAR-10, CIFAR-100 and Tiny-ImageNet. CIFAR-10 and CIFAR-100 are two
classic image classification datasets created by the Canadian Institute for Advanced Research (CIFAR). The CIFAR-10
dataset consists of 10 classes of images, with each class containing 6000 32x32-pixel color images. The CIFAR-100 dataset
is an extension of CIFAR-10, containing 100 classes of images. These 100 classes are divided into 20 superclasses, each
containing 5 subclasses. Each subclass contains 600 32 × 32-pixel color images. Both of them comprise 50,000 images
for training and 10,000 images for testing. The Tiny-ImageNet dataset is a reduced version of the ILSVRC classification
dataset. It consists of 200 distinct object categories with 64 × 64-pixel color images of 3 channels. Each category includes
500 images for training and 50 for testing.

For CIFAR-10 and CIFAR-100, we employ a LeNet model comprising two convolutional layers with sixty four 5× 5 filters,
two 2 × 2 max pooling layers, two fully connected layers with 384 and 192 neurons, and a softmax layer. We also use
a larger network, ResNet18, to confirm that our algorithm still performs well in a larger network. ResNet18 contains 16
convolutional layers. These convolutional layers are distributed across several residual blocks, each containing two 3× 3
convolutional layers. Additionally, there is a 7× 7 convolutional layer at the beginning of the network. At the end of the
network, there is a fully connected layer for output. Vision Transformer (ViT) adapts the Transformer architecture from
natural language processing to image classification tasks. In this work, we employ the ViT-Small (ViT-S) variant, which
incorporates image patching, positional encoding, and a 12-layer Transformer structure.

For Shakespeare dataset, we employ an RNN model. It consists of the input layer (receiving the input at the current time
step), hidden layer (receiving the hidden state from the previous time step along with the input at the current time step to
compute the new hidden state) and output layer (outputting a result based on the current state of the hidden layer).

All approaches are implemented in PyTorch 1.4.0 and CUDA 9.2, with GEFORCE GTX 1080 Ti throughout our experiments.

In most federated learning scenarios, the total number of clients is set to 100 with the participation rate of 0.1, which is a
classical experimental setting, like what FedLion (Tang & Chang, 2024) and FedAvg(McMahan et al., 2017) do. Therefore,
with the LeNet model, we set 100 clients with participation rates of 0.1 and 0.03 to verify the performance of our algorithm.

However, our computing resources (i.e., GEFORCE GTX 1080 Ti) are insufficient to support an experimental setting of 100
clients on the larger network model, we thus can reduce the number to 10 clients and set the participation rate to 0.3.

We tune the hyper-parameter over a grid to compare the performance of different methods. For local update in all methods,
we tune the local learning rate over {1, 0.1, 0.01, 0.001} and set up 5 epochs of local updates with the minibatch B = 50.

For our proposed method FedSMU, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and set them
both to 0.9 for CIFAR-10, CIFAR-100 and Tiny-ImageNet, and 0.95 for Shakespeare. We tune the parameter γ1 and γ2 over
{1, 0.1, 0.02, 0.018, 0.015, 0.013, 0.01, 0.005, 0.001}, respectively, since they are so sensitive, and set them to 0.015, 0.01
for CIFAR-10, 0.018, 0.01 for CIFAR-100, 0.01, 0.01 for Tiny-ImageNet, and 0.03, 0.01 for Shakespeare.

For FedSMUMC, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and set them both to 0.9 for CIFAR-
100. We tune the parameter γ1 and γ2 over {1, 0.1, 0.01, 0.001}, respectively, and set them both 0.01 for CIFAR-100.

For Fed-LocalLion and Fed-GlobalLion, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and set
them to 0.9 and 0.99 for CIFAR-100. We tune the parameter γ1 and γ2 over {1, 0.1, 0.01, 0.001}, respectively, and set them
to 0.001, 0.01 for CIFAR-100. We tune the parameter ηg in Fed-LocalLion over {1, 0.1, 0.01, 0.001} and set them to 1 for
CIFAR-100.

B. A Proof of Theorem 4.4
Proof. We set ∆t = 1

n

∑n
i=1 u

i
t = 1

n

∑n
i=1 Sign[β1m

i
t−1 + (1 − β1)g

i
t] and ||∆t||2 =

∑d
j=1 |∆

j
t |2, where d is the

dimensions of parameters.

Since γ2 is adjustable, so for each coordinate j, we can assume |γ2xjt | ≤ 1 (∥γ2x∥∞ ≤ 1 ). It has been clarified by Chen
et al. (2023) in the Abstract that “Lion is a theoretically novel and principled approach for minimizing a general loss
function f(x) while enforcing a bound constraint ||x||∞ ≤ 1

γ2
.” Here γ2 is the weight decay coefficient and xt is the model.
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Such an assumption has also been used in another algorithm (Liu et al., 2024) based on Lion optimizer. Thus we have
|∆j

t − γ2x
j
t | ≤ |∆j

t |+ |γ2xjt | ≤ 2, and then ||∆t||2 ≤ d and ||∆t − γ2xt||2 ≤ 4d.

With Assumption 4.1, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
||xt+1 − xt||2

= f(xt) + ⟨∇f(xt), γ1∆t − γ1γ2xt⟩+
L

2
||γ1∆t − γ1γ2xt||2

= f(xt)− ⟨∇f(xt), γ1 Sign(∇f(xt))⟩+ ⟨∇f(xt), γ1∆t − γ1γ2xt + γ1 Sign(∇f(xt))⟩

+
L

2
||γ1∆t − γ1γ2xt||2

= f(xt)− γ1||∇f(xt)||1 + γ1 ⟨∇f(xt),∆t − γ2xt + Sign(∇f(xt))⟩︸ ︷︷ ︸
A

+2Lγ21d.

(4)

Considering the calculation of A:

A = ⟨∇f(xt),∆t − γ2xt + Sign(∇f(xt))⟩

= ⟨∇f(xt),
1

n

n∑
i=1

uit − γ2xt + Sign(∇f(xt))⟩.
(5)

For any dimension j , assume |γ2xjt | < 1, and with Assumption 4.3, then we have ∇f(xjt )( 1n
∑n

i=1 u
i,j
t − γ2x

j
t +

Sign(∇f(xjt ))) ≤ 3|∇f(xjt )| = 3G| 1G∇f(xjt )| < 3G|Sign(∇f(xjt ))| < 3G|γ1η
G ∇f(xjt ) + Sign(∇f(xjt ))|.

So,

A < 3G||γ1η
G

∇f(xt) + Sign(∇f(xt))||1

≤ 3
√
dG||γ1η

G
∇f(xt) + Sign(∇f(xt))||.

(6)

Substitute Eq. (6) into Eq. (4), we further have

f(xt+1)− f(xt) ≤ −γ1||∇f(xt)||1 + γ1 ⟨∇f(xt),∆t − γ2xt + Sign(∇f(xt))⟩︸ ︷︷ ︸
A

+2Lγ21d

≤ −γ1||∇f(xt)||1 + 3Gγ1
√
d ||γ1η

G
∇f(xt) + Sign(∇f(xt))||︸ ︷︷ ︸

B

+2Lγ21d.
(7)

Taking the expectation of B, with Assumption 4.3 we have

E(B) ≤ E(|| γ1η
G

∇f(xt) +
γ1

nKG

n∑
i=1

vit︸ ︷︷ ︸
ϵt

||) + E(||Sign(∇f(xt))−
γ1

nKG

n∑
i=1

vit||)

≤ E(||ϵt||) +

√√√√E(
1

n2

n∑
i=1

||Sign(∇f(xt))−
γ1
KG

vit||2)

= E(||ϵt||) +

√√√√E(
1

n2

n∑
i=1

d∑
j=1

|Sign(∇f(xjt ))−
γ1
KG

vi,jt |2)

≤ E(||ϵt||) + 2

√
d

n
.

(8)
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Taking the expectation of Eq. (8), we have

E(f(xt+1))− E(f(xt)) ≤ −γ1E(||∇f(xt)||1) + 3Gγ1
√
dE(||ϵt||) + 6Gγ1

d√
n
+ 2Lγ21d. (9)

Decomposing ϵt, we have

ϵt =
γ1η

G
∇f(xt) +

γ1
nKG

n∑
i=1

vit

=
γ1η

Gn

n∑
i=1

∇Fi(xt) +
γ1

nKG

n∑
i=1

vit

=
1

n

n∑
i=1

(
γ1η

G
∇Fi(xt) +

γ1
KG

vit)

=
1

n

n∑
i=1

ϵit.

(10)

We further define hit = − 1
KG

∑K−1
k=0 ∇Fi(y

i
t,k; ξ

i
t,k), δ

i
t = hit +

1
G∇Fi(xt).

Referring to Algorithm 1, we have vit = β2v
i
t−τ i + (β1 − β2)g

i
t−τ i + (1− β1)g

i
t.

For each client i, we have

γ1
KG

vit =
γ1
KG

β2v
i
t−τ i + γ1η(β1 − β2)h

i
t−τ i + γ1η(1− β1)h

i
t

= β2(ϵ
i
t−τ i −

γ1η

G
∇Fi(xt−τ i)) + γ1η(β1 − β2)(δ

i
t−τ i −

1

G
∇Fi(xt−τ i))

+ γ1η(1− β1)(δ
i
t −

1

G
∇Fi(xt)).

(11)

Converting the form of Eq. (11), we have

ϵit = β2ϵ
i
t−τ i + γ1η(β1 − β2)δ

i
t−τ i + γ1η(1− β1)δ

i
t +

γ1ηβ1
G

∇Fi(xt)−
γ1ηβ1
G

∇Fi(xt−τ i)︸ ︷︷ ︸
sit

.
(12)

Taking the ℓ2 norm of sit, with Assumption 4.1, we have

||sit|| =
γ1ηβ1
G

||∇Fi(xt)−∇Fi(xt−τ i)||

≤ γ1η

G
||∇Fi(xt)−∇Fi(xt−τ i)||

≤ Lγ1η

G
||xt − xt−τ i ||

≤ 2Lτ iγ21η
√
d

G
.

(13)
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Taking the expectation of ||δit||2 and using the Lemma B.1, we have

E(||δit||2) = E(|| − 1

KG

K−1∑
k=0

∇Fi(y
i
t,k; ξ

i
t,k) +

1

G
∇Fi(xt)||2)

≤
K

∑K−1
k=0 E||∇Fi(y

i
t,k; ξ

i
t,k)−∇Fi(xt)||2)

K2G2

≤
L2K

∑K−1
k=0 E||yit,k − xt||2

K2G2

≤ L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

G2
.

(14)

Taking the ℓ2 norm of Eq. (12) and using Eq. (13), let τ i0 = 0, τ i1 = τ i,
∑c

j=0 τ
i
j = τci ,max{τ ij}1≤j≤c+1 = τ imax, τci >

t− 1, c = ci ≤ t− 1 and we have

||ϵit|| ≤ ||β2ϵit−τ i ||+ ||sit||+ ||γ1(β1 − β2)δ
i
t−τ i ||+ ||γ1(1− β1)δ

i
t||

= ||βci+1
2 ϵi0||+ ||

ci∑
j=0

βj
2s

i
t−τj ||+ ||γ1(β1 − β2)

ci∑
j=0

βj
2δ

i
t−τj+1

||+ ||γ1(1− β1)

ci∑
j=0

βj
2δ

i
t−τj ||

≤ βci+1
2 ||ϵi0||+

2Lτ imaxγ
2
1η

√
d

G

ci∑
j=0

βj
2 + γ1(β2 − β1)||

ci∑
j=0

βj
2δ

i
t−τj+1

||+ γ1(1− β1)||
ci∑

j=0

βj
2δ

i
t−τj ||

≤ βci+1
2 ||ϵi0||+

2Lτ imaxγ
2
1η

√
d

G(1− β2)
+ γ1(β2 − β1)||

ci∑
j=0

βj
2δ

i
t−τj+1

||+ γ1(1− β1)||
ci∑

j=0

βj
2δ

i
t−τj ||.

(15)

Notice that the random variables
(
δit
)
1≤t≤T

are independent, so E
〈
δit1, δ

i
t2

〉
= 0. Taking the expectation of

||
∑ci

j=0 β
j
2δ

i
t−τj ||, ||

∑ci

j=0 β
j
2δ

i
t−τj+1

|| and using Eq. (14), we have

E||
ci∑

j=0

βj
2δ

i
t−τj || = E||

ci∑
j=0

βj
2δ

i
t−τj+1

|| ≤

√√√√E(||
ci∑

j=0

βj
2δ

i
t−τj ||2)

=

√√√√E(
ci∑

j=0

β2j
2 ||δit−τj ||2)

≤

√
1

1− β2

L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

G2
.

(16)

Taking the expectation of Eq. (15) and substituting Eq. (16) in it, we further have

E||ϵit|| ≤ βci+1
2 ||ϵi0||+

2Lτ imaxγ
2
1η

√
d

G(1− β2)
+ 2γ1(1− β1)

√
1

1− β2

L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

G2
. (17)
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Recursively iterating it from t = 0 to t = T and substituting Eq. (17) into Eq. (10), we have

1

T

T∑
t=1

E(||∇f(xt)||1) ≤
f(x0)−min f

γ1T
+ 3G

√
dE(||ϵt||) + 6G

d√
n
+ 2Lγ1d

≤ f(x0)−min f

γ1T
+ 3G

√
d

∑T
t=1

∑n
i=1 E||ϵit||
nT

+ 6G
d√
n
+ 2Lγ1d

≤ f(x0)−min f

γ1T
+ 3G

√
d

∑T
t=1

∑n
i=1 β

ci+1
2 ||ϵi0||

nT
+

6Lτmaxγ
2
1ηd

1− β2

+ 6G
√
dγ1(1− β1)

√
1

1− β2

L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

G2

+ 6G
d√
n
+ 2Lγ1d

≤ f(x0)−min f

γ1T
+

3G
√
dϕ

nT (1− β2)
+

6Lτmaxγ
2
1ηd

1− β2

+ 12Lγ1η(1− β1)

√
d

1− β2
(2Kσ2

l + 4K2σ2
l + 4K2G2)

+ 6G
d√
n
+ 2Lγ1d,

(18)

where τmax = max{τ imax}1≤i≤m, ϕ =
∑m

i=1 ||ϵi0|| when 1 ≤ t ≤ T .

Finally, when γ1 = 1
L
√
T

and 1− β1 = 1√
T

, we complete the proof that

1

T

T∑
t=1

E(||∇f(xt)||1) ≤
L(f(x0)−min f)√

T
+

3G
√
dϕ

nT (1− β2)
+

6ηdτmax

LT (1− β2)

+
12η

T

√
d(2Kσ2

l + 4K2σ2
l + 4K2G2)

1− β2

+
6Gd√
n

+
2d√
T
.

(19)

Lemma B.1. Let Assumption 4.1, Assumption 4.2 and Assumption 4.3 hold for ξit and ∇Fi(·; ·). Assume node i performs
local SGD as

yit,k = yit,k−1 − η∇Fi(y
i
t,k−1, ξ

i
t,k−1),

with yit,0 = xt. Like the lemma proved in (Sun et al., 2023), since 0 < η ≤ 1
4LK , it holds

E
∥∥yit,k − xt

∥∥2 ≤ 8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2.

Proof. Following the proof in (Sun et al., 2023), note that for any k ∈ {1, . . . ,K}, in client i,

E
∥∥yit,k − xt

∥∥2 = E
∥∥yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)− xt

∥∥2
≤ E∥yit,k−1 − xt − η

(
∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

)
+∇Fi

(
yit,k−1

)
−∇Fi (xt) +∇Fi (xt)

)
∥2.

(20)
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By using the Cauchy’s inequality, we have

E∥a+ b∥2 ≤
(
1 +

1

ψ

)
E∥a∥2 + (1 + ψ)E∥b∥2,

with a = yit,k−1 − xt − η
(
∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

))
, b = η

(
∇Fi

(
yit,k−1

)
−∇Fi (xt) +∇Fi (xt)

)
and

ψ = 2K − 1.

We denote ℜ :=
(
1 + 1

2K−1

)
E∥yit,k−1 − xt − η

(
∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

))
∥2, and ℑ :=

2Kη2E∥∇Fi

(
yit,k−1

)
−∇Fi (xt) +∇Fi (xt) ∥2. The unbiased expectation property of ∇Fi

(
yit,k−1; ξ

i
t,k

)
gives us

ℜ =

(
1 +

1

2K − 1

)(
E
∥∥yit,k−1 − xt

∥∥2 + η2E
∥∥∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

)∥∥2)
≤

(
1 +

1

2K − 1

)(
E
∥∥yit,k−1 − xt

∥∥2 + η2σ2
l

)
.

On the other hand, we have the following bound

ℑ ≤ 4Kη2E
∥∥∇Fi

(
yit,k−1

)
−∇Fi (xt)

∥∥2 + 4Kη2E ∥∇Fi (xt)∥2

≤ 4L2Kη2E
∥∥yit,k−1 − xt

∥∥2 + 4Kη2G2.

When 0 < η ≤ 1
4LK ,

1 +
1

2K − 1
+ 4L2Kη2 ≤ 1 +

1

K − 1
,

and we can obtain

E
∥∥yit,k − xt

∥∥2
≤

(
1 +

1

2K − 1
+ 4L2Kη2

)
E
∥∥yit,k−1 − xt

∥∥2 + 2η2σ2
l + 4Kη2σ2

l + 4Kη2G2

≤
(
1 +

1

K − 1

)
E
∥∥yit,k−1 − xt

∥∥2 + 2η2σ2
l + 4Kη2σ2

l + 4Kη2G2.

The recursion from j = 0 to K yields

E
∥∥yit,k − xt

∥∥2 ≤
K−1∑
j=0

(
1 +

1

K − 1

)j [
2η2σ2

l + 4Kη2σ2
l + 4Kη2G2

]
≤ (K − 1)

[(
1 +

1

K − 1

)K

− 1

]
×

[
2η2σ2

l + 4Kη2σ2
l + 4Kη2G2

]
≤ 8Kη2σ2

l + 16K2η2σ2
l + 16K2η2G2,

where we used the inequality
(
1 + 1

K−1

)K

≤ 5 holds for any K ≥ 1.
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Table 7. Generalization performance comparison under various datasets with the LeNet model. Each table entry gives the average
test accuracy on different training accuracy levels. “/” means it cannot reach the training accuracy. Bold numbers indicate the best
performance.

Top-1 Test Accuracy (%).

Dataset Training Accuracy FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-
10

83-84 75.14 77.49 75.9 75.63 75.48 75.7 77.22 77.1
85-86 76.17 76.37 76.87 76.83 76.83 77.4 78.3 78.39
87-88 78.56 79.24 77.79 77.85 77.74 / 79.23 79.78

CIFAR-
100

66-67 40.08 45.76 40.56 / 41.28 / 45.55 49.03
68-69 40.6 46.16 40.88 / 41.81 / 46.15 50.04
70-71 40.9 46.76 41.23 / 42.34 / 46.56 50.85
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Figure 3. Convergence performance vs. number of communication rounds on CIFAR-10 and CIFAR-100, with 100 clients and 10%
participation, using LeNet model for different algorithms.

C. Additional Experiments
C.1. Measure of Generalization

In the above experimental results in the main text, generalization refers to an algorithm’s ability to achieve top test
accuracy, where the test dataset is different from the training dataset. Furthermore, we consider an additional perspective on
generalization to further evaluate the performance of our FedSMU algorithm. Here, generalization refers to a model’s ability
to achieve test performance at similar training error levels. Based on this definition, we compare the validation performance
at similar training accuracy levels. The results in Table 7 show that on the CIFAR-10 and CIFAR-100 datasets with LeNet
model, the FedSMU algorithm achieves the highest test accuracy and demonstrates the best generalization performance.

C.2. Convergence Performance vs. Communication Rounds

In Section 5.2.1, considering that FedSMU is a compression algorithm, we compare the convergence of different algorithms
in terms of communication bits. However, communication rounds are also important, thus in Figure 3, we show the
convergence performance in terms of communication rounds. Also, we compare the convergence rate using the number of
communication rounds required to achieve the target accuracy and the results are presented in the Table 8.

For Shakespeare, our algorithm does not require more communication rounds compared to most algorithms. However, for
CIFAR-10 and CIFAR-100, it slightly exceeds the number of rounds needed by other algorithms. This may be because the
distribution of image data is more complex, with each sample containing a large amount of pixel information. Training with
such highly heterogeneous data results in the gradients that, after taking the sign, introduce noises in the training process,
thereby slowing down the convergence. However, from a long-term perspective, these noises can lead to an improved model
performance.

C.3. Convergence Performance vs. Wall-Clock Time

We test the wall-clock time needed for each baseline to execute one communication round. Taking CIFAR-100 and
participation rate n

m = 0.1 as an example, the average wall-clock time required to execute a round is as follows: FedSMU
(10.43 seconds), FedAvg (10.15 seconds), FedEF-HS (10.46 seconds), FedLion (10.63 seconds), SCAFFOLD (10.38
seconds). Experiments demonstrate that in a single communication round, our algorithm introduces no significantly
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Table 8. Number of communication rounds to achieve a preset target accuracy with 100 clients and 10% participation. CIFAR-10 and
CIFAR-100 use the LeNet model and Shakespeare uses the RNN network. “/” means it cannot reach the training accuracy. Bold numbers
indicate the best performance.

Number of communication rounds to achieve a preset target accuracy.

Dataset Training Accuracy (%) FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-10
(Dir0.25)

55 26 29 23 41 37 50 21 65
60 43 43 29 62 57 81 33 118
65 57 62 48 108 96 111 50 288

CIFAR-100
(Dir0.25)

35 193 86 286 690 355 794 100 832
40 629 142 730 / 882 / 225 1218
45 / 270 3703 / / / 632 1811

Shakespeare
(noniid)

25 17 12 13 30 20 57 10 11
30 32 19 20 45 36 78 17 20
35 61 27 27 85 68 177 28 48
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Figure 4. Convergence performance vs. number of communication rounds on CIFAR-10, CIFAR-100 dataset and LeNet model, with 100
clients and 10% participation.

additional time overhead compared to other algorithms. Therefore, the results using wall-clock time as a metric are similar
to those measured by communication rounds. We will not include a separate plot here and please refer to Figure 3 and Table
8.

C.4. Convergence Performance Considering Uplink Communications

In Figure 2, we only consider uplink (client-to-server) communication cost and assume the downlink communication
overhead to be the same. Here, we can define the total communication cost per round as presented in (Condat et al., 2022):

Total Communication = Uplink Communication + c · Downlink Communication, c ∈ [0, 1].

In practice, due to the factors such as system asymmetry, caching constraints and protocol limitations, the uplink speed is
often significantly lower than the downlink speed, as discussed in (Condat et al., 2023). Consequently, many communication-
efficient FL studies (Li & Li, 2023; Richtárik et al., 2021) focus merely on minimizing the uplink cost alone.

To have a more comprehensive evaluation of our FedSMU, we followed the setting in (Condat et al., 2023) and set c = 0.1,
and depicted Figure 4 to compare the total communication cost including both the upload and download bits. It shows that
FedSMU remains communication-efficient even when accounting for the downlink overhead, with a significantly lower total
cost compared to the other baselines at comparable accuracy levels.

C.5. Discussion on α-bit

Here, we further discuss the extension from the 1-bit compression to an α-bit one. First, we would like to acknowledge
that for the general quantization-based compression algorithms, a higher precision quantization may often lead to a faster
convergence. However, this may not hold for our FedSMU. This conclusion is based on our analysis, as follows.

1) Both experimentally (Figure 1) and intuitively, the symbolic operation (i.e., 1-bit quantization) helps alleviate the
heterogeneity of model updates, as all updates have uniform magnitude across all dimensions for each client. Furthermore,
reducing model heterogeneity should also intuitively contribute to improving model performance in heterogeneous federated
settings.

20



FedSMU: Communication-Efficient and Generalization-Enhanced FL through Symbolic Model Updates

Table 9. Number of communication rounds to achieve a preset target test accuracy with Dirichlet-0.25 on CIFAR-10 dataset with LeNet
model. ”/” means it cannot reach the test accuracy and bold numbers indicate the smallest rounds.

Number of rounds needed for achieving a target test accuracy.

Test Accuracy(%) 1-bit (FedSMU) 3-bit 8-bit

40 26 65 54
45 33 91 68
50 50 168 119
55 65 285 185
60 118 456 224
65 288 833 342

67.5 399 1260 401
69 507 1967 456

72.3 642 / 643
75 1142 / 1040

77.5 1746 / 1979

Table 10. Number of communication rounds to achieve a preset target test accuracy with Dirichlet-0.25 on CIFAR-10 dataset and different
CNN model. d1 and d2 indicate small and large dimension while L and H indicate low and high participation rates. Bold numbers indicate
the smallest rounds.

Number of rounds needed for achieving a target test accuracy.

Test Accuracy(%) d1, H d2, H d1, L

40 26 30 46
45 33 35 112
50 50 43 193
55 65 65 226
60 118 111 384
65 288 275 899

67.5 399 409 949
69 507 507 1025

72.3 642 769 1752
75 1142 1185 2221

77.5 1746 1745 2878

2) However, such a sign operation (e.g., signSGD) alone does not directly improve generalization in experiments. Inspired by
Lion optimizer (Chen et al., 2024) that incorporates the sign operation and then enhances the convergence and generalization
to learn in central learning, we introduce Lion’s structure into federated learning and verify that this combination can indeed
improve model generalization.

Consequently, we conclude that in our optimized structure, 1-bit quantization outperforms higher-bit quantization, since
multi-bit compression does not guarantee that the update amplitude of each client is consistent. Experimental results in
Table 9 further validate that for our designed optimization algorithm, using a higher-bit compression may not enhance the
algorithm’s convergence or generalization.

C.6. Factors Influencing Convergence Speed

Theoretically, a lower client participation rate (i.e., a larger τmax) leads to a slower algorithm convergence. Similarly, a
higher model dimension d also results in a slower algorithm convergence. To validate this, we have conducted the following
experiments.

All of these experiments are done on CIFAR-10 dataset with Dirichlet-0.25. To illustrate the relationship between the model
dimension and convergence rate, we use two different CNN models (d1 = 797248 and d2 = 1723648) to study the impact
of model dimension. Note that here we modify the size of the convolutional layers, keeping the model depth constant. The

21



FedSMU: Communication-Efficient and Generalization-Enhanced FL through Symbolic Model Updates

Table 11. Top accuracy (%) comparison between ablation experiments on CIFAR-100 dataset (Dirichlet-0.25) with LeNet model, where
NTC indicates the number of total clients, and PR indicates the participation rate.

NTC / PR FedSMU FedSMUMC

100 / 0.1 52.35 52.53

100 / 0.03 51.87 52.14

Table 12. Top validation accuracy (%) on CIFAR-100 dataset with Dirichlet 0.25 and LeNet model, with 100 clients and 10% participation
rate.

Top-1 Test Accuracy (%).

Dataset Setting FedSMU Fed-LocalLion Fed-GlobalLion FedSMU(γ2 = 0) FedSMU(β1 = 0) FedSMU(full-precision)

CIFAR-100 Dir (0.25) 52.35 36.77 47.94 51.34 28.03 42.67
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Figure 5. Convergence performance vs. number of communication bits on CIFAR-100 dataset and LeNet model, with 100 clients and
10% participation rates, Dirichlet-0.25 for different ablation algorithms and FedSMU.

number of clients is 100 with the participation ratio of 0.1. To illustrate the relationship between participation rate and
convergence rate, We use the CNN model with d1 = 797248 and set the number of clients as 100 with different participation
ratio ( n

m = 0.03 and n
m = 0.1, represented in the Table 10 by L and H) to demonstrate the influence of client participation

rate.

The experimental results in Table 10 show that when the participation rate is higher (i.e., the τmax is smaller) and the
dimension is smaller, the convergence speed can be faster, which matches with the Theorem 4.4 and is intuitional.

C.7. Variants Solving Momentum Staleness

While our convergence analysis and experimental results demonstrate that FedSMU’s performance is less affected by the
client participation rate, the momentum of clients may still be extremely stale due to the partial participation in FL. In light
of this, we design a variant, named FedSMUMC, to examine the impact of this momentum staleness on the generalization
performance. For FedSMUMC, clients upload 1-bit model updates along with extra momentum in the full precision. The
server then aggregates that momentum to update the global momentum and broadcasts it at the next round as the initial
momentum for the participating clients. See Appendix D for the detail of this algorithm. Results in Table 11 indicate
that by appropriately completing the momentum, we can marginally enhance the model performance, but it necessitates
additional transmission of momentum with the full precision. Consequently in this sense, the local momentum staleness has
a minimum impact on the global model’s performance.

C.8. Ablation Algorithms

To verify the effectiveness of different FL algorithms built upon the Lion optimizer in terms of the generalization and
compression performance, we design additional variants of FL incorporated with Lion, namely Fed-LocalLion and Fed-
GlobalLion. Specifically, Fed-LocalLion executes the Lion optimizer locally in parallel at clients, with the server performing
model aggregation via a weighted summation. On the other hand, Fed-GlobalLion conducts the vanilla SGD locally, treats
model aggregation as a pseudo-gradient on the server side, and updates the global model through the Lion optimizer. See
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Appendix D for the detail of these two algorithms.

Our FedSMU consistently outperforms the other variants, as illustrated in Figure 5 and Table 12. It is worth noting that
FedSMU also integrates additional model compression, whereas these variants require the same communication overhead as
FedAvg. This suggests that our FedSMU design effectively harnesses the benefits of Lion, enhancing the generalization
while compressing the communication load.

To further assess the necessity of key components in FedSMU, we conduct a systematic ablation study by removing specific
elements and comparing each pruned variant against the full algorithm. In particular, we examine the effect of excluding the
following components: 1) server-side weight decay regularization (γ2), 2) client-side gradient sliding average (β1), and 3)
client-side gradient symbolization.

The experimental results in Table 12 demonstrate that the client-side sliding average plays the most crucial role in achieving
a stable and effective training. Additionally, the model update symbolization mechanism itself proves to be more effective
than using the full-precision updates. This validates our motivation of proposing FedSMU that symbolization balances
contributions of the heterogeneous clients by suppressing some extreme update magnitudes, which thus enhances the
aggregation stability and leads to a better generalization.

C.9. Comparison with Distributed Lion (Liu et al., 2024)

Here, we clarify the differences and advantages of our FedSMU compared to the D-Lion (Liu et al., 2024), as follows.

1) Motivation. Our FedSMU can simultaneously mitigate data heterogeneity and reduce communication compression
through the symbolic operations. The analysis was carried out and verified by experiments (Figure 1). While D-Lion only
considers to compress the communication.

2) Scope of application. Our FedSMU can deal with scenarios involving the partial client participation and multiple local
updates, whereas D-Lion can not. Performing multiple local updates, in the federated settings, can effectively reduce the
communication frequency and thus the overall traffic. Experimental results in Table 13 and Table 14 demonstrate that
D-Lion fails in such scenarios with low client participation rates and multiple local updates, whereas FedSMU remains
robust and performs well under these conditions.

3) Algorithms design. While both algorithms are based on the Lion optimizer, FedSMU fully leverages the structural
advantages of the Lion optimizer, including weight decay in the global aggregation. In contrast, D-Lion primarily
incorporates the momentum sliding averaging and symbolic operations at local update. This comprehensive utilization of
the Lion optimizer structure may explain why the experimental performance of our FedSMU surpasses that of D-Lion.

4) Compatibility with majority vote. We have further extended FedSMU with majority vote, as FedSMU-MV. Experimental
results show that FedSMU-MV achieves an accuracy of 47.66% on CIFAR-100, slightly lower than FedSMU’s 51.79%
under the same settings (number of clients = 100, participation rate = 0.1, Dirichlet = 0.25). This indicates that majority vote
is compatible with our algorithm. The slight accuracy drop may result from FedSMU’s symbolic model updates. Applying
majority vote to the 1-bit results could further suppress some clients’ model update information due to the dominant update
direction.

Below, we provide the details of the hyperparameters used in our experiments.

• To ensure a fair comparison, both algorithms are evaluated on the ClFAR-10 and CIFAR-100 datasets, using non-llD
data (Dirichlet distribution with a parameter of 0.25), with a total of 10 clients anda batch size of 50.

• For FedSMU and FedAvg, we adopt the same parameter settings as outlined in Appendix A.

• For D-Lion, we performed a grid search. The learning rate (ϵ) is selected from {0.00005, 0.0005, 0.005, 0.015} , the
weight decay (λ) is chosen from {0.0005, 0.005, 0.001, 0.01} and β1 β2 are selected from {0.9,0.99}. For Table 13,
the selected values are ϵ = 0.0005, λ = 0.001, β1 = 0.9, β2 = 0.99. For Table 14, the selected values are ϵ = 0.015,
λ = 0.01, β1 = 0.9, β2 = 0.9.

Specifically, from the result in Table 13 and Table 14, we have following observations.

• With full participation and one local update (i.e., K = 1 with F), FedSMU performs slightly worse than D-Lion.
However, in scenarios with a partial participation, FedSMU consistently outperforms D-Lion. This is intuitive, as
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Table 13. Performance comparison on CIFAR-10 and CIFAR-100 datasets with LeNet model, where F and P indicate full and partial
participation rates, and K is the number of local updates.

Top-1 Test Accuracy (%) .

Dataset Setting Algorithm K = 1 with F K = 1 with P K = 5 with F K = 5 with P

CIFAR-10

Dir-0.25
FedSMU 32.47 38.35 77.97 75.14
D-Lion 34.03 24.58 77.62 34.48
FedAvg 79.64 74.99 72.02 71.48

iid
FedSMU 81.84 77.99 82.37 81.71
D-Lion 82 29.06 82.36 44.05
FedAvg 79.53 76.7 76.3 75.84

CIFAR-100

Dir-0.25
FedSMU 14.85 20.41 45.69 42.06
D-Lion 15.42 3.9 45.54 8.03
FedAvg 44.99 39.34 36.55 36.51

iid
FedSMU 50.98 47.18 49.76 49.72
D-Lion 51.46 5.13 50.11 13.07
FedAvg 44.85 41.07 41.38 38.25

Table 14. Performance comparison on CIFAR-10 and CIFAR-100 datasets with LeNet model, where F and P indicate full and partial
participation rates, and K is the number of local updates.

Top-1 Test Accuracy (%) .

Dataset Setting Algorithm K = 100 with F K = 100 with P K = 500 with F K = 500 with P

CIFAR-10 Dir-0.25 FedSMU 82.24 82.32 82.0 82.08
D-Lion 82.19 25.86 81.6 51.23

CIFAR-100 Dir-0.25 FedSMU 50.15 50.62 46.66 48.2
D-Lion 49.84 4.05 46.55 16.21

D-Lion does not maintain a complete global model at the server and only aggregates the global model updates. Thus in
the partial participation settings, asynchronous clients can only save a stale global model. As a result, these clients may
receive the global model updates, which, however, cannot be leveraged to recover the exact global model of the current
round.

• With multiple local updates (i.e., K > 1), FedSMU mostly outperforms D-Lion. This performance improvement can
be attributed to the different approaches to weight decay. Specifically, the hyperparameter γ2 (denoted as λ in D-Lion)
controls the weight decay (or L2 penalty) coefficient. In FedSMU, the regularization is applied to the global model xt,
potentially mitigating overfitting and thus enhancing generalization. In contrast, D-Lion applies this regularization to
the local model xit−1. As a result, when the local updates occur multiple times, D-Lion’s regularization primarily affects
the local model, and does not directly improve the generalization capability of the global model. Consequently, when
finally evaluating the generalization performance of the global model, FedSMU demonstrates a significant advantage
over D-Lion.

• In heterogeneous scenarios, the performance of both FedSMU and D-Lion is poorer than that of FedAvg, especially
when K is small. This is an interesting and somewhat unexpected finding, which we speculate is due to the data
heterogeneity. In the heterogeneous settings, each client samples a mini-batch of data for training and performs only a
single time of update, followed by the application of the sign operation to the model update. Since the local update
occurs only once, it introduces a substantial sampling variance and inter-client variance. The sign operation, which
normalizes the magnitude of updates, may inadvertently amplify this variance between clients, leading to an unstable
or even divergent global model aggregation.
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Table 15. Performance comparison under different datasets with LeNet model, where L and H indicate low and high participation rates.
Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedSMU EF21

CIFAR-10 Dir(0.25)-L 80.12 74.43

Dir(0.25)-H 80.74 81.51

CIFAR-100 Dir(0.25)-H 52.35 50.07

Table 16. Performance comparison under different datasets with 100 clients and 10% participation rates, Dirichlet-0.25, LeNet model.
Bold numbers indicate the best performance.

Top-1 Test Accuracy (%) .

Dataset FedSMU FedAMS FedCAMS

CIFAR-10 80.74 82.47 80.15
CIFAR-100 52.35 47.97 48.3
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Figure 6. Magnitude uniformity (MU) index and top validation accuracy of FedAvg, SCAFFOLD and FedSMU (ours) on CIFAR-100
with LeNet model.

C.10. Comparison with EF21 (Richtárik et al., 2021)

We further explore Error Feedback 2021 (Richtárik et al., 2021) algorithm as a state-of-the-art method for Top-K compression
and make a comparison with it.

Experiments on CIFAR-10 and CIFAR-100 are conducted. We set a total of 100 clients with different participation rate (3%
and 10%, represented in Table 15 by L and H) and use Dirichlet-0.25. The experimental results are shown in Table 15.

On CIFAR-100, FedSMU still shows a high performance. While on CIFAR-10, the accuracy of FedSMU can be higher
than EF21 with a lower participation. These results strongly demonstrate the superiority of FedSMU in complex image
classification tasks, especially under a low client participation rate, which may result from the sign operation promoting the
fair contribution of clients effectively to the global model update.

C.11. Comparison with Adaptive Algorithms

We compare with two adaptive algorithms in (Wang et al., 2022): the optimization-based FedAMS and the compression-
based FedCAMS. FedAMS is designed to accelerate the convergence using momentum, while FedCAMS extends FedAMS
by further compressing the upload communication. Experiments are conducted on CIFAR-10 and CIFAR-100 datasets. We
use a total of 100 clients with a partial participation ratio of 0.1 and employ a Dirichlet distribution with a concentration
parameter of 0.25. The experimental results are presented in the Table 16.

The experimental results demonstrate that on the CIFAR-10 dataset, FedSMU also outperforms FedCAMS but is slightly
inferior to FedAMS, while FedSMU exhibits a superior performance compared to FedAMS and FedCAMS on the CIFAR-
100 dataset. The results strongly demonstrate the superiority of FedSMU in complex image classification tasks, even
comparable to the uncompressed federated adaptive algorithm, which may result from promoting the fair contribution of
clients effectively to the global model update.
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C.12. Magnitude Uniformity Index of More Algorithms

We provide Figure 6 to show the correlation between Magnitude Uniformity (MU), data heterogeneity, and accuracy of
three different algorithms.

The results indicate that with FedAvg, data heterogeneity significantly amplifies the differences in the magnitude of model
updates across clients, leading to unstable global aggregation and poorer generalization performance. While SCAFFOLD
reduces variance to address these differences, FedSMU directly ensures consistency across all model updates through
symbolic operations. Those two approaches enhances Magnitude Uniformity among clients, ultimately improving accuracy.

D. OTHER ALGORITHMS
FedSMUMC, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 2. The basic procedure is
equivalent to FedSMU. At each round t ∈ [T ], a subset of clients Nt ⊆ M are active, and the server transmits its current
model xt and global momentum Mt to these clients. Local clients also additionally transfer mi

t back to the server (Line 13)
and average them to update the momentum for the next round (Line 16).

Algorithm 2 FedSMUMC
Server Initialization: x1,M1;
for each round t = 1, 2, ...T do

sample clients Nt ⊆ M
for each client i ∈ Nt in parallel do

receive and initialize local model yit,0 = xt
receive momentum Mt

for each local step k = 1, 2, . . . ,K do
yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

end
git = yit,K − yit,0
uit = Sign(β1Mt + (1− β1)g

i
t)

mi
t = β2Mt + (1− β2)g

i
t

send uit,m
i
t to server

end
// at server:
Mt+1 = 1

n

∑n
i=1m

i
t

xt+1 = xt + γ1(
1
n

∑n
i=1 u

i
t − γ2xt)

broadcast xt+1,Mt+1

end

Fed-LocalLion, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 3. At each round t ∈ [T ],
a subset of clients Nt ⊆ M are active, and the server transmits its current model xt to these clients. Each active client
then performs SGD (Line 8) and uses the Lion optimizer to further update model. The server aggregates the local model
difference ∆i

t to compute xt+1.

Fed-GlobalLion, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 4. At each round
t ∈ [T ], a subset of clients Nt ⊆ M are active, and the server transmits its current model xt to these clients. Each active
client then updates the local model (Line 8) and sends the model difference git to server. The server aggregates the git as the
global model difference Gt (Line 14) and uses the Lion optimizer to update.
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Algorithm 3 Fed-LocalLion
Server Initialization: x1;
Client Initialization: mi

0 = 0;
for each round t = 1, 2, ...T do

sample clients Nt ⊆ M
for each client i ∈ Nt in parallel do

receive and initialize local model yit,0 = xt
for each local step k = 1, 2, . . . ,K do

yit,k = yit,k−1 − η∇Fi(y
i
t,k−1, ξ

i
t,k−1)

end
git = yit,K − yit,0
uit = Sign(β1m

i
t−1 + (1− β1)g

i
t)

mi
t = β2m

i
t−1 + (1− β2)g

i
t (for i /∈ Nt, mi

t = mi
t−1)

yit = yit,K + γ1(u
i
t − γ2y

i
t,K)

∆i
t = yit − yit,0

send ∆i
t to server

end
// at server:
xt+1 = xt + ηg(

1
n

∑n
i=1 ∆

i
t)

broadcast xt+1

end

Algorithm 4 Fed-GlobalLion
Server Initialization: x1, M0 = 0;
for each round t = 1, 2, ...T do

sample clients Nt ⊆ M
for each client i ∈ Nt in parallel do

receive and initialize local model yit,0 = xt
for each local step k = 1, 2, . . . ,K do

yit,k = yit,k−1 − η∇Fi(y
i
t,k−1, ξ

i
t,k−1)

end
git = yit,K − yit,0
send git to server

end
// at server:
Gt =

1
n

∑n
i=1 g

i
t

Ut = Sign(β1Mt−1 + (1− β1)Gt)
Mt = β2Mt−1 + (1− β2)Gt

xt+1 = xt + γ1(Ut − γ2xt)
broadcast xt+1

end
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