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Abstract
Modern artificial intelligence offers a novel and transformative approach to creating digital art across diverse styles and
modalities like images, videos and 3D data, unleashing the power of creativity and revolutionizing the way that we perceive
and interact with visual content. This paper reports on recent advances in stylized 3D asset creation and manipulation with the
expressive power of neural networks. We establish a taxonomy for neural stylization, considering crucial design choices such
as scene representation, guidance data, optimization strategies, and output styles. Building on such taxonomy, our survey first
revisits the background of neural stylization on 2D images, and then presents in-depth discussions on recent neural stylization
methods for 3D data, accompanied by a benchmark evaluating selected mesh and neural field stylization methods. Based on
the insights gained from the survey, we highlight the practical significance, open challenges, future research, and potential
impacts of neural stylization, which facilitates researchers and practitioners to navigate the rapidly evolving landscape of 3D
content creation using modern artificial intelligence.

Keywords 3D stylization · Neural style transfer · Neural stylization

1 Introduction

Digital art and visual design have been prevailing in our
daily living spaces, expressing visually captivating aesthet-
ics, unique tastes, and emotions of human beings. With the
prosperity of artificial intelligence (AI), there emerges a new
generation of toolsets for visual content creation such as
generative image synthesis (Stable Diffusion, DALL·E 3,
Midjourney) (Rombach et al., 2022; OpenAI, 2023; Mid-
journey, 2023), and video synthesis (Sora, RunwayML)
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(OpenAI, 2024; Runway, 2023). AI-based visual content cre-
ation can also be extended to the 3D domain, notably by
lifting images to 3D scenes (LUMA AI) (Luma, 2023), and
creative text-guided 3D generation and design (DreamFu-
sion, Meshy, SplineAI) (Poole et al., 2023; Meshy, 2024;
Spline, 2023).

It’s noteworthy that the nature of visual concepts in our
living space is tied to a critical factor: style. Formally, style
is a way to express individuality and creativity in different
mediums and practices. In relevant industries like animation,
architectural and interior design, gaming, augmented reality,
virtual reality, and artwork creation, assets are often created
in styles such that they altogether harmonize to create an
intended look and feel of the final scenes. A common prac-
tice is to first create the assets, and then post-process them to
match some styles, often known as stylization. The advent of
modern deep learning has led to the emergence of neural styl-
ization, a family of methods that automatically create visual
content in styles, facilitating the exploration of aesthetics in
the creation of visual data. Neural stylization is applicable to
visual data in general, including images, videos, and 3D data.
Unlike image stylization, which has been well developed in
the past decade, neural stylization for 3D data remains an
open area to explore for new creative vistas and practical
applications.
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Fig. 1 The survey delves into the realm of neural stylization on diverse
3D representations, including meshes, point clouds, volume, and neural
fields. The neural stylization with visual, textual and geometric features
retrieved from large-scale neural models empowers artistic, photoreal-

istic, and semantic style transformation of the geometry and appearance
of 3D scenes. Images adapted from Liu et al. (2018), Ma et al. (2023),
X. Cao et al. (2020), Yin et al. (2021), Wang et al. (2023b), Zhang et
al. (2022), Zhang et al. (2023c), Song et al. (2023), Haque et al. (2023)

Fig. 2 A general overview of mesh-based and radiance field-based ren-
dering pipelines. Images adapted from Yin et al. (2021), G. Kim et al.
(2024), Chen and Wang (2024b), Avrahami et al. (2022), Spline (2023)

This report delves into the latest developments in the cre-
ation of 3D digital art using neural stylization methods, as
shown in Fig. 1. Neural stylization can facilitate automated
design and creation of explicit meshes, textures and volumet-
ric assets, which supports seamless usage in the traditional
rendering pipeline, accelerating labor-intensivemanual tasks
such as modeling, texturing, and simulation. Neural styliza-
tion also enables efficient and controllable manipulation or
transformation of neural scenes, which typically utilizes neu-
ral networks instead of shaders to generate images (Fig. 2).
Interestingly, neural stylization has shown practical impor-
tance in various applications, including 3D texture design
and artistic simulation in movie making (Navarro & Rice,
2021; Kanyuk et al., 2023; Hoffman et al., 2023), virtual
production (Manzaneque, 2023), mixed reality experiences
(Tseng et al., 2022; Taniguchi, 2019), and artwork creation
(Guljajeva & Canet, 2022).

Despite its advantages, performing neural stylization in
3D presents new technical challenges such as multi-view
consistency, view sampling and rendering, as well as robust-
ness issues including the relative scarcity of 3D datasets,
and memory consumption for training and inference. This
report provides a comprehensive discussion and summary
of advanced 3D neural stylization techniques that address
these challenges, highlighting the power of neural render-
ing (Tewari et al., 2022), vision-language models (Radford
et al., 2021), and large-scale generative models (Rombach et
al., 2022).

The structure of this report is depicted in Fig. 3, which is
outlined as follows: Sect. 2 reviews fundamentals of 2D neu-
ral stylization and important visual or textural feature priors,
which act as components or backbones of 3D neural styl-
ization techniques. In Sect. 3, we introduce a taxonomy for
neural stylization and discuss advanced stylization methods
on various types of 3D representations in depth with sum-
maries of practical tips to guide future works. In Sect. 4, we
summarize popular datasets and evaluation metrics for 3D
stylization, and particularly, we deliver a benchmark of 3D
neural stylization to serve as a reference for the performance
of selected methods. Sect. 5 introduces diverse applications
of 3Dneural stylization, demonstrating its practical value in a
wide range of domains. Finally, Sect. 6 highlights promising
research directions with practical significance.

1.1 Definition and Terminologies

Definition 1 3D neural stylization refers to the process that
employs deep learning techniques and stylization algorithms
to generate stylized 3D digital assets or the stylized render-
ing from these assets, including the alteration of appearance
and/or geometry.

3D neural stylization is well connected to the following ter-
minologies and techniques.
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Fig. 3 Structure of our survey

• Neural Style Transfer (NST) refers to a class of algorithms
that manipulate digital images, or videos, in order to adopt
the appearance or visual style of target reference while pre-
serving original content features. It can be regarded as a
foundation of 3D neural stylization, as most image-guided
3D stylization methods rely on it. We refer to former surveys
(Jing et al., 2019; Singh et al., 2021; Zhan et al., 2023) and
provide a concise review in Sect. 2.1.
•Neural Rendering is a class of techniques that “learn to ren-
der and/or represent a scene from real-world imagery, which
can be an unordered set of images, or structured, multi-view
images or videos" (Tewari et al., 2022), several works of
which focus on the generation of photorealistic rendering
from the neural representations. Instead, neural stylization
aims at modifying the visual appearance and aesthetic char-
acteristics of existing digital representations and obtaining
artistic or photorealistic rendering results. We refer readers
to existing surveys for insight into neural rendering (Tewari
et al., 2020, 2022), neural fields (Xie et al., 2022) and image
generation (Zhan et al., 2023).
•Non-photorealistic Rendering (NPR) is an area of computer
graphics that enables abstract stylized rendering for either
3D models, 3D images or 2D images, such as toon shading,
Gooch shading (Gooch et al., 1998), stroke-based painterly
rendering (Haeberli, 1990; Hertzmann, 1998), patch-based
texture synthesis and transfer (Efros & Freeman, 2001;
Hertzmann et al., 2001). Mainly leveraging programmable
shaders and image-processing techniques, NPR has been
widely used in the realms of animation making, digital con-
tent creation (Artineering, 2018) and game development
(McGuire et al., 2010). However, these techniques require
creating handcrafted style patterns and rules,which are labor-

intensive and entail domain expertise. In contrast, neural
stylization enables fast production with arbitrary style ref-
erences and has been applied to accelerate cinematic digital
production (Joshi et al., 2017; Navarro & Rice, 2021; Hoff-
man et al., 2023).
• Neural Scene Editing has become more practical in the
recent few years thanks to the contribution of large language
models (LLMs) and vision-language models (VLMs) (Rad-
ford et al., 2021; Li et al., 2023a). Editing methods focus
on adding, modifying, or removing objects in a scene, or
manipulating some regions of interest. By contrast, styliza-
tion methods focus on the transfer of overall appearance and
the adoption of specific aesthetic characteristics. Still, styl-
izationmethods share critical ideaswith editingmethods, and
some of the methods covered in this survey can also apply to
scene editing (Koo et al., 2023; Song et al., 2023; Bao et al.,
2023).

1.2 Related Surveys

In the literature, there exist comprehensive surveys on 2D
neural style transfer (Jing et al., 2019; Singh et al., 2021), sur-
veys on generative imagemodels (Zhan et al., 2023; Croitoru
et al., 2023; Yang et al., 2023), and surveys on neural field
representations (Xie et al., 2022) and rendering (Tewari et
al., 2020, 2022). Our survey aims to explore the potential of
connecting neural stylization techniqueswith both traditional
and advanced 3D representations, thereby offering valuable
resources for style-based 3D digital designs. To the best of
our knowledge, this paper is the first comprehensive review
to summarize neural stylization techniques and applications
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specifically tailored to 3D data, highlighting the immense
capabilities of neural stylization in the 3D domain.

2 Background

In this section, we provide a brief discussion on neural style
transfer for images, which serves as the fundamental building
block for discussing 3D neural stylization (Sect. 2.1). This
covers techniques leveraging visual or textual guidance for
image style transfer and manipulation, as well as insights on
linkages to 3D stylization domain. We also discuss generic
methods for 3D content generation with a focus on the state-
of-the-art diffusion models for 3D generation (Sect. 2.2).

2.1 Neural Style Transfer

The basic idea of neural style transfer is to reproduce the
style of a reference image for an input image, while keeping
the original content of the input. The content representation
of an image can be extracted by predicting its features using
a pre-trained or trainable encoder (Simonyan & Zisserman,
2015; Huang et al., 2018). The style representation can be
represented by a Gram matrix, which is a dot-product matrix
measuring the relevance of each pair of features extracted by
a pre-trained network (Gatys et al., 2016). Alternatively, the
style of an image can also be characterized by the spatially
invariant statistics (i.e. channel-wise mean and variance) of
features (Dumoulin et al., 2017; Huang & Belongie, 2017).
With the rise of vision-language pre-trained models, textual
embeddings have been widely employed to represent content
or style information (Radford et al., 2021; Li et al., 2023a).
In Fig. 4, we provide a high-level pipeline comparison of
different types of neural style transfer methods, including
single-style transfer via optimization, arbitrary style transfer
via feed-forward network, and style transfer via generative
models. We discuss each type of method below.

2.1.1 Single Style Transfer

One simple method for neural style transfer (Fig. 4a) is to
optimize from a white noise image to obtain a new image
that shares the content of a source image and the style of
a reference image (Gatys et al., 2016). Given a content
source image c and a style reference image s, the opti-
mization can be done by minimizing a combined objective:
Ltotal = Lc(c, cs) + λLs(s, cs), where the total loss con-
sists of a content lossLc of the squared-error ofVGG features
between content image c and output stylized image cs, and a
Gram matrix style loss Ls between style image s and output
stylized image. λ is a hyperparameter.

Instead of optimizing an image for each transfer, we can
train a single feed-forward network with a perceptual loss

to perform style transfer for arbitrary content images (John-
son et al., 2016). At inference, real-time stylization can be
performed simply by forwarding an arbitrary content image
through the network. Although performing network infer-
ence is much faster than running an optimization, one still
needs to retrain the network for each different style.

The rise of vision-language models (Radford et al., 2021)
leads to the possibility of performing style transfer using
text prompts as guidance. Given CLIP with a text encoder
and an image encoder sharing the same latent embedding
space (Radford et al., 2021), text-guided image style transfer
can be achieved by maximizing text-image semantic simi-
larity as the style loss, usually formulated by the CLIP loss
defined by

Lclip(cs, ssty) = 1 − sim(EI(cs),ET (ssty)), (1)

where cs and ssty are the stylized image and style text prompt,
EI and ET are the pre-trained CLIP image encoder and
text encoder, respectively. sim(A, B) is the cosine similarity
between two feature vectors. One can also use the directional
CLIP loss (Patashnik et al., 2021; Gal et al., 2022) to achieve
better style transfer quality:

Ldir (c, cs, ssrc, ssty) = 1 − sim(�I ,�T ), (2)

where�I = EI (cs)−EI (c),�T = ET (ssty)−ET (ssrc), c
is the content image, cs is the stylized image, ssrc and ssty are
the source (content) style prompt and target style prompt. An
example of ssrc and ssty can be “Photo” and “Picasso style
painting”, respectively (Kwon&Ye, 2022). Since CLIP does
not support high-resolution image embedding, a patch-wise
version of the directional CLIP loss with augmented patches
can be used for better artistic semantic texture transfer (Kwon
& Ye, 2022).

2.1.2 Arbitrary Style Transfer: AdaIN and LST

To enable the model to transfer arbitrary styles without re-
training, one can employ an autoencoder with style fusion
(Fig. 4b). Particularly, to fuse the content and style fea-
tures, we can use adaptive instance normalization (AdaIN)
that directly regulates the mean and variance of the feature
maps of the content image to match those of the target style
image (Huang & Belongie, 2017):

AdaI N (c, s) = σ(F(s))

(
F(c) − μ(F(c))

σ (F(c))

)
+ μ(F(s)),

(3)

where each VGG feature map F(·) is normalized separately.
The transformed feature maps are fed into a learned decoder
to generate the final output.
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Fig. 4 Pipeline comparisons of 2D neural style transfer. a Single-style
transfer via optimization (Gatys et al., 2016;Kwon&Ye, 2022; Johnson
et al., 2016). b Arbitrary style transfer via feature fusion or transfor-
mation (Huang & Belongie, 2017; Li et al., 2019; Liu et al., 2021). c

Image-to-image translation with style condition via generative models
(Huang et al., 2018; Deng et al., 2022; Wen et al., 2023; Zhang et al.,
2023d)

Alternatively, we can fuse content and style features by
learning an affine feature transformation matrix T from
content features F(c) and style features F(s) through a con-
volutional neural network, as proposedby linear style transfer
(LST) (Li et al., 2019):

LST (c, s) = T · (F(c) − μ(F(c))) + μ(F(s)). (4)

2.1.3 Generative Models for Style Transfer

In addition to optimization-based and feed-forward inference
methods, neural style transfer can be achieved via image
synthesis tasks such as image-to-image translation and gen-
erativemodels. Particularly, image-to-image translation (I2I)
achieves style transfer by translating an image from one
source domain to a target domain using a generative model
such as a generative adversarial network (GAN) (Goodfellow
et al., 2014) (Fig. 4c). Deterministic I2I translation methods
focus on task-specific domain-to-domain translation and do
not require style guidance via reference images (Isola et al.,
2017; Zhu et al., 2017; Liu et al., 2017). Multi-modal I2I
translation models enable translation based on examples or
latent features (Huang et al., 2018; Lee et al., 2018; Chang
et al., 2020; Chen et al., 2022a). While GAN-based I2I mod-
els generate high-fidelity images, they are domain-specific
and resource-consuming for training compared to traditional
methods (Fig. 4a, b).

Recently, diffusion models have demonstrated state-of-
the-art performance for image synthesis (Rombach et al.,
2022). A particular strength of diffusion models that con-
tributes to their wide adoption is their ability to learn across
different data modalities. Similarly to the spirit of CLIP
loss for style transfer, text-guided diffusion models lever-
age textual embedding of the text prompt for conditional
image generation and thus allow style transfer via text-to-
image generation and text-guided I2I translation (Rombach
et al., 2022; Saharia et al., 2022; OpenAI, 2023). Among the
publicly available text-to-image diffusion models, the Sta-
ble Diffusion series (Rombach et al., 2022; Podell et al.,
2023; Esser et al., 2024) is the most representative. They

have inspired a vast amount of research work and a broad
range of downstream applications.

Numerous works explored the potential of text-to-image
diffusion models for style transfer. One track fine-tunes the
diffusion model (usually U-Net) or learns a special textual
embedding using a set of images with target style, including
techniques like Dreambooth (Ruiz et al., 2023), LoRA (Hu
et al., 2022; Frenkel et al., 2024), textual inversion (Gal
et al., 2022; Zhang et al., 2023d), etc. Among them, B-
LoRA (Frenkel et al., 2024) jointly fine-tunes two blocks
of LoRA layers to capture respectively the style and content
of an image, enabling the transfer of this style to unseen con-
tent, or such content to new styles. Textual inversion method
InST (Zhang et al., 2023d) binds a special language mark
with a textual embedding inversed from a style image. This
style can then be transferred to other images by including the
language mark in the prompt during inference.

Another track leverages attention modules in diffusion U-
Nets to embed style information without per-style optimiza-
tion. Spatially invariant feature statistics, as discussed inSect.
2.1.1, represent style effectively. Diffusion in Style (Ever-
aert et al., 2023) pre-computes the mean and variance for
Gaussian noise sampling based on the style feature statis-
tics. StyleID (Chung et al., 2024f) employs AdaIN for noise
initialization and replaces content’s self-attention key, value
with those from the style layers. StyleAlign (Hertz et al.,
2024) further applies AdaIN to the query, key of a sequence
of generated images to ensure style consistency.DEADiff (Qi
et al., 2024) focuses on cross-attention in high-resolution lay-
ers, utilizing Q-Former (Li et al., 2023a) for style extraction
instead of AdaIN. InstantStyle (Wang et al., 2024) isolates
styles for transferring by subtracting content CLIP embed-
dings from their image CLIP embeddings.

Moreover, large pre-trained image editing models such as
Instruct-Pix2Pix (Brooks et al., 2023) showcase good style
transfer capability. Leveraging LLMs, e.g., GPT-3 (Brown
et al., 2020), Instruct-Pix2Pix automates the generation of
diverse text prompts and adopts Prompt-to-Prompt (2023b)
to create corresponding image pairs. Subsequently, a stan-
dard diffusion model is trained on these pairs, with the
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exception of concatenating the source image to the first
network layer as conditional information. However, its per-
formance degrades when intricate styles are difficult to
express in natural language.

2.1.4 Linking 2D to 3D Stylization

The exploration of 2D neural style transfer offered us valu-
able insights into style feature and conversion: spatially
invariant statistics (mean and variance) of visual feature
maps can represent the image style; one can shift such statis-
tics (to align with those of other images) to control the style of
an image. This insight and several other practical skills can
boost 3D stylization research. We briefly exemplify three
directions of 3D stylization below.

1. Loss Function Design. Sect. 2.1.1 revisited the basic ver-
sion of loss functions for 2D style transfer tasks. When it
comes to 3D stylization, it is straightforward to employ
similar optimization losses in a view-by-view manner
while maintaining multi-view consistency via 3D repre-
sentation. For instance, Liu et al. (2018) apply 2D latent
content and style losses (Gatys et al., 2016) to supervise
mesh surface morphing; Chen et al. (2024e) optimize
texture style jointly with semantics-aware target image
features (mean and standard deviation) and textual fea-
tures (Eq. 1-2).

2. Feed-forward Feature Transform. The success of feed-
forward arbitrary style transfer through feature statistics
transformation in the 2D domain inspires feed-forward
3D neural style transfer with 3D-aware feature repre-
sentation. For example, StyleGaussian (Liu et al., 2024)
applies AdaIN (Eq. 3) for VGG (Simonyan & Zisser-
man, 2015) features stored in 3D Gaussians for efficient
3D style transfer. FPRF (Kim et al., 2024) applies a
semantics-aware local AdaIN for features stored with tri-
planes. StyleRF (Liu et al., 2023) proposes a modified
volume-adaptive IN for features obtained from feature
grids.

3. Stylization with Generative Priors. The burgeoning 2D
large generativemodels (Sect. 2.1.3) have been leveraged
to handle the stylization and even address 3D consistency
issues (with geometry priors). A simple yet effective way
is to directly stylize a sampled view as the target using
pre-trained generative models, followed by backpropa-
gation of the 2D error, such as IN2N (Haque et al., 2023)
and IG2G(Vachha & Haque, 2024). A more advanced
approach is score distillation, which leverages the capa-
bility of diffusionmodel to processmulti-modal guidance
for better controllability. Score distillation was first pro-
posed and widely adopted in 3D generation tasks. We’ll
discuss the topic in the next part.

Fig. 5 3D generation architecture with score distillation sampling loss.
A pre-trained denoising U-Net supervises NeRF optimization. Image
adapted from Poole et al. (2023)

2.2 3D Content Generation

Equipped with a background in neural style transfer, let us
now briefly discuss 3D content generation methods, which
serve as the background and provide valuable insights for 3D
neural stylization subsequently.
3D Representations In contrast to image representations,
there are various representations for learning to generate 3D
content. Conventional 3D representations are mostly explicit
representations including triangle and polygonmeshes, point
clouds, and voxel grids (or volumes). The advances in deep
learning have spurred an increasing interest in using neu-
ral networks to represent 3D data as neural fields, notably
neural radiance fields (NeRF) (Mildenhall et al., 2020). Sub-
sequently, there appeared notable hybrid or compact radiance
fields representations, featured by neural graphics primitives
(NGP) (Müller et al., 2022) and 3D Gaussian splats (3DGS)
(Kerbl et al., 2023). Some implicit representations, such as
signed distance functions (SDF) and their truncated versions
(TSDF), also gain popularity to represent implicit shapes.
We refer readers to the existing survey for a comprehensive
overview of neural fields for visual computing (Xie et al.,
2022).
3D Generative Models Existing 3D generative models have
explored different types of 3D representations such as point
clouds, voxel grids, meshes, and implicit fields (Zhao et al.,
2021; Qi et al., 2017; Wu et al., 2015; Masci et al., 2015;
Chen & Zhang, 2019). 3D data-driven generative models are
trained with large-scale 3D assets with diverse appearances
and shapes, which are challenging to collect (Chang et al.,
2015; Deitke et al., 2023; Liu et al., 2019). Inspired by neu-
ral volume rendering, there appeared a group of 3D-aware
image synthesis works learning 3D generation from acces-
sible 2D data (Niemeyer & Geiger, 2021; Nguyen-Phuoc et
al., 2020; Chan et al., 2022; Gu et al., 2022). Since the slow
and resource-intensive nature of volume rendering results
in long training time and low resolution, one can leverage
a reduced 3D representation such as tri-planes in the GAN
framework for efficient and high-quality image and 3D data
generation (Chan et al., 2022).
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3D Generation via Diffusion Priors
In a similar spirit to 3D-aware image synthesis, it is of

great interest to generate 3D data from priors learned by 2D
diffusion models (OpenAI, 2023; Ruiz et al., 2023). Dream-
Fusion (Poole et al., 2023) proposed a 3D generation pipeline
that optimizes a NeRF by leveraging a text-guided diffusion
model as the critic to the NeRF rendered images (Fig. 5).
The gradient function for optimization is a weighted average
of noise residual multiplied by the Jacobian of the rendering
process, also known as score distillation sampling (SDS).

Several variants have been proposed to resolve serious
problems in the SDS loss such as oversaturation, over-
smoothing, and lack of details, generating more realistic
and high-definition 3D objects. Variational score distillation
(VSD) trains a LoRA model to better estimate the data dis-
tribution of rendered images for effective updating (Wang et
al., 2023c). Delta denoising score (DDS) computes the dif-
ference between two SDS scores as guidance (Hertz et al.,
2023a), while posterior distillation sampling (PDS) aligns
the stochastic latents of the source image and the target
image instead of noise variables (Koo et al., 2024). Further
works explore instilling geometric information to score dis-
tillation (Yang et al., 2023; Yeh et al., 2024).

Moreover, 3D datasets are also exploited to provide geo-
metric priors such as canonical coordinates map (Li et al.,
2024a) and normal map (Long et al., 2024) for better multi-
view consistency. Zero-1-to-3 (Liu et al., 2023) proposed the
view-conditioned diffusion that accepts a rotation angle as
an extra condition, which synthesizes novel views based on
any single view of a 3D model. Recent 3D generation works
further improve the visual quality by combining 2D priors
from text-to-image diffusion and 3D-aware priors fromview-
conditioned diffusion (Qian et al., 2024; Sun et al., 2024).

3 3D Neural Stylization

In this section, we first establish a taxonomy for neural styl-
ization and give an example of the categorization of selected
3D neural stylization methods (Sect. 3.1). In the subse-
quent sections, we will discuss state-of-the-art 3D neural
stylization techniques on diverse 3D representations, such
as meshes (Sect. 3.2), neural fields (Sect. 3.3), volumetric
data (Sect. 3.4), point clouds (Sect. 3.5), and implicit shapes
(Sect. 3.6). We then discuss a set of guidelines for practical
implementations of 3D stylization (Sect. 3.7).

3.1 Taxonomy

Our taxonomy for neural stylization methods consists of the
following aspects:

• Representations. We categorize stylization methods
based on data representations such as image, mesh, vol-
ume, point cloud, and neural field.

• Neural Style Feature. We categorize based on image
visual features, textual semantic features, or 3D latent
features derived from pre-trained models, typically neu-
ral classifiers or generative models.

• Optimization. This refers to optimization-based or
prediction-based stylization methods with single, mul-
tiple, or arbitrary styles supported.

• Stylization Genres. This refers to different types of styl-
ization, mainly including geometry stylization operating
on asset shape and surface patterns, and appearance styl-
ization focusing on color, texture and visual patterns to
align with specific styles from artistic paintings to real-
istic concepts.

To guide the reader through the main section of this survey,
we illustrate the taxonomy in Fig. 6, and provide a hierarchi-
cal classification of the 3D stylization methods in Fig. 7. Let
us now discuss 3D neural stylization methods by following
the categorization based on 3D representations below.

3.2 Mesh-Based Stylization

In computer graphics and 3D modeling, a mesh is a collec-
tion of vertices, edges, and faces that define the geometric
structure of an object. Objects represented by meshes can
also store additional appearance attributes, such as ver-
tex colors, materials, UV coordinates, and texture maps.
Additionally, neural networks, such as multi-layer percep-
trons (MLPs), can represent these attributes, including neural
textures (Thies et al., 2019; Oechsle et al., 2019), neural
reflectance field (Baatz et al., 2022), neural visibility field
(Srinivasan et al., 2021), neural vertex (Michel et al., 2022;
Ma et al., 2023; Lei et al., 2022), etc. By using differ-
entiable renderers (Ravi et al., 2020; Laine et al., 2020;
Fuji Tsang et al., 2022), we can optimize these explicit or
implicit attribute representations for 3D geometry manipu-
lation and appearance editing. For example, one can predict
vertex positions and colors (Michel et al., 2022), SVBRDF
parameters and normals (Lei et al., 2022), and synthesize
new texture images (Richardson et al., 2023). The following
sections cover critical techniques for mesh-based stylization,
including geometric deformation (Sect. 3.2.1) and texture
synthesis (Sect. 3.2.2) to align with a provided image, text,
or 3D shape guidance. Table 1 shows a comparison of recent
mesh-based stylization methods.

3.2.1 Surface Geometric Deformation

3D neural stylization enables deforming mesh geometry to
align with artistic visual patterns or a specified shape, guided
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Fig. 6 Taxonomy of neural stylization. Images from Richardson et al. (2023), Aurand et al. (2022), Mildenhall et al. (2020), Liu et al. (2018),
Haque et al. (2023), Yin et al. (2021), Zhang et al. (2022), Liu et al. (2023), Chen et al. (2023a), Pang et al. (2023)

Fig. 7 Hierarchical classification of selected image- and text-guided 3D neural stylization methods

by visual references or textual descriptions. This capability
facilitates creative 3D modeling such as surface engraving
effect (Liu et al., 2018) and geometry morphing (Gao et al.,
2023). Existing works learn geometry variations in the form
of vertex position displacement, e.g., explicit displacement
via differentiable rendering (Liu et al., 2018) and implicit
displacement via neural networks (Michel et al., 2022; Ma
et al., 2023; Gao et al., 2023).

For example, Paparazzi is a neural stylization method
based on differentiable rendering that allows the propaga-
tion of changes in the image domain to changes of the mesh
vertex positions (Liu et al., 2018). It takes a triangle mesh
as input, and applies latent VGG content and style losses
(Sect. 2.1, Gatys et al. (2016)) between rendered image(s)
and gray-scale style image to update vertex positions. After
convergence, themesh surface is stylizedwith artistic strokes
and motifs from the style image.

With CLIP loss (Sect. 2.1.1, Eq. 1), recent works explored
text-guided mesh geometric and/or appearance alteration
(Michel et al., 2022; Ma et al., 2023). Text2Mesh (2022)
and X-Mesh (2023) incorporate Neural Style Field, which is
composed of an MLP network that maps vertex coordinates
to vertex color (offset) and vertex position offset. The styl-
izedmesh, with updated vertex colors and vertex positions, is

rendered into multiple colored and gray-scale images, which
are used for computingCLIP loss against a given text prompt.

Besides updating with the CLIP loss, X-Mesh (Ma et
al., 2023) employs an attention module to directly include
the prompt CLIP embedding as additional input along with
the vertex coordinate embeddings. Accordingly, X-Mesh
achieves fast convergence in a few minutes for high-quality
stylized results. TextDeformer (Gao et al., 2023) upgraded
the local CLIP-guided mesh geometric stylization (Wang
et al., 2022; Michel et al., 2022) through Jacobians for
global and smooth mesh deformation (Aigerman et al.,
2022). Instead of learning position displacement directly,
they assign Jacobians by matrices for each triangle and
solve a Poisson problem (Aigerman et al., 2022) to compute
the corresponding vertex deformation map, which largely
achieves deformation with low-frequency to high-frequency
details.

Alternatively, 3DStyleNet (Yin et al., 2021) learns to per-
form joint geometric and texture style transformation from
one 3D object to another, and interpolation of geometric
and texture style. This method consists of a 3D geomet-
ric part-aware style transfer network and a 2D texture style
transfer network. The authors innovatively abstracted the
geometries of an object with a set of 3D Gaussian ellip-
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soids and employed a learned 3D part-aware semantics affine
transformation field based on Linear Blend Skinning (LBS)
model (Lindholm et al., 2001). Meanwhile, they transfer the
mesh texture using regular image style transfer techniques
(Sect. 2.1 LST (2019)). The two networks are pre-trained
with non-textured mesh models (TurboSquid, 2023; Chang
et al., 2015; Renderpeople, 2023) and images (WikiArt
(2016) and COCO (2014)) respectively. They are then jointly
optimized by part-aware, content and style losses through
rendered multi-views via a differentiable renderer (Laine et
al., 2020).

A recent work (Haetinger et al., 2024) further explores
geometry stylization for dynamic meshes, enabling effi-
cient production of physics simulation and animation. They
employ neural neighbor style transfer (Kolkin et al., 2022)
instead of Gram-matrix to guide the style transfer, which
produces higher quality high-frequency details by replac-
ing each individual feature of the content image with its
closest feature of the style image. The key to an effective
and natural global and local stylization is the multi-level
parameterization of mesh vertex position, which allows the
2D error to propagate in differential rendering sufficiently.
An additional mechanism for vertex displacement interpo-
lation and smoothing across frames is applied to improve
time coherency. These enhancements result in high-quality,
artifact-free mesh stylizations, suitable for creating unique
artistic looks in simulations and 3D asset design.

3.2.2 Texture Synthesis

Mesh textures are essential for representing complex visual
appearance with color and patterns, for which image- or text-
guided neural style transfer are well developed (Sect. 2.1).
Several methods have explored texture transformation and
synthesis using visual features such as VGG features and dif-
fusionpriors (Höllein et al., 2022;Lei et al., 2022;Richardson
et al., 2023; Cao et al., 2023; Yang et al., 2023). We catego-
rize these methods based on their optimization and learning
techniques and discuss them below.

Optimize via 2D Features With an artistic image reference,
StyleMesh (Höllein et al., 2022) proposed a depth- and angle-
aware texture optimization scheme for the 3D reconstructed
indoor room. It optimizes an explicit texture image by back-
propagating gradients computed from 2D content and style
losses (Sect. 2.1, Gatys et al. (2016)) between each view of
the scene and the style reference image. This method lever-
ages depth and normal information from themesh,mitigating
artifacts such as view-dependent stretch and size artifacts that
commonly arise from conventional 2D losses in 3D scenar-
ios, as shown in Fig. 8. Nonetheless, StyleMesh largely relies
on posed images under reconstructed scenes and ground-
truth depths.

Fig. 8 Stretched pattern artifacts from stylization in screen space.
Image adapted from Kato et al. (2018)

Optimizing mesh appearance colors with style descrip-
tions using CLIP is effective but may not always achieve
realistic results (Michel et al., 2022; Lei et al., 2022; Ma
et al., 2023). Recently, text-to-image diffusion models have
gained popularity for their ability to synthesize high-fidelity
images. Therefore, researchers start to explore lifting 2D dif-
fusion priors for 3D generation (Poole et al., 2023; Wang
et al., 2023c; Lin et al., 2023; Chen et al., 2023b) and
stylization (Chen et al., 2023a; Yang et al., 2023; Zeng
et al., 2024; Youwang et al., 2024). Among these, TEX-
Ture (Richardson et al., 2023) is a text-guided 3D texture
painting method that iteratively paints the texture in a view-
by-view manner. To maintain 3D consistency, each view
drawing iteration is guided by a view-dependent trimap that
indicates the “keep", “refine", and “generate" regions to
control the amount of newly generated content for the tex-
ture. Alongside the trimap, a rendered RGB and depth map
are fed into a pre-trained depth-to-image diffusion model
(Sect. 2.1.3, ControlNet (2023b)) to obtain a synthesized
view. This synthesis is finally projected back to the texture
map via optimization. Apart from texturing, TEXTure sup-
ports various tasks such as texture transfer, texture editing,
and multi-view image transfer.

A concurrent work to TEXTure is Text2Tex (Chen et al.,
2023a), which inpaints likewise the texture images from
different views progressively with the help of the confi-
dent trimap and a depth-to-image ControlNet (2023b). This
method presets some axis-aligned viewpoints and alterna-
tively updates the next best view (see Table 4), which follows
a more robust automatic view scheduling strategy address-
ing the blurriness and stretching artifacts. Paint3D (Zeng
et al., 2024) employs coarse-to-fine UV diffusion models
to further refine incomplete areas of multi-view inpainted
texture in high definition. Based on an indoor room sce-
nario, DreamSpace (Yang et al., 2024) synthesizes an indoor
panorama with additional inpainting with diffusion models
(Zhang et al., 2023b) for more consistent texture synthesis.

Optimize in Latent Space While running the entire gen-
erative diffusion process for multi-view painting provides
an efficient approach for texture synthesis, it often results
in inconsistent texture patterns and overall style. Instead,
TexFusion (Cao et al., 2023) updates a 3D consistent latent
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texture at each denoising step from multi-views conditioned
on previous denoising steps. To ensure consistency, the final
texture image is optimized by distilling multi-view images
decoded by a pre-trained depth-conditioned diffusion model
(Sect. 2.1.3, Stable Diffusion (2022)) and with a neural color
field mapping 3D coordinates to RGB values (Müller et al.,
2022). Similarly, Knodt and Gao (2023) updates a latent tex-
ture map from multi-view via MultiDiffusion (Bar-Tal et al.,
2023), a multi-window joint diffusion technique for multi-
view consistency.

Optimize via Score Distillation Inspired by score distilla-
tion sampling (SDS) techniques (Sect. 2.2, Fig. 5), several
works employ SDS and its variants for texture optimiza-
tion, focusing on a single object or a single room (Yang et
al., 2023; Guo et al., 2023; Wu et al., 2023; Chen et al.,
2024a; Yeh et al., 2024). In particular, TextureDreamer (Yeh
et al., 2024) and 3DStyle-Diffusion (Yang et al., 2023)
adopt a neural field representation with BRDF parame-
ters (Lei et al., 2022) to facilitate photorealistic rendering.
Both works (Yang et al., 2023; Yeh et al., 2024) incorpo-
rate geometry-conditioned score distillation fromControlNet
(2023b), leveraging additional inputs such as depth, nor-
mal, and camera pose. Additionally, Decorate3D (Guo et al.,
2023) and HyperDreamer (Wu et al., 2023) utilize super-
resolution diffusion techniques to enhance the synthesis of
textures at higher resolutions.

Optimize with 3D Shape Supervision Point-UV Diffu-
sion (Yu et al., 2023) explores texture synthesis leveraging
the shape attributes such as vertex coordinates, normals, and
segment masks of the mesh model. The proposed coarse-
to-fine texture synthesis framework that combines a point
diffusion network (Liu et al., 2019; Zhou et al., 2021) and
a UV diffusion network enables unconditioned texture syn-
thesis for arbitrary mesh models of each training category in
the ShapeNet dataset (Chang et al., 2015). The pipeline can
also receive additional image or text guidance using the CLIP
encoder. Given a mesh and style visual or textual guidance,
the point diffusion model generates color for sampled points
from the mesh, which are then projected onto 2D UV space
to create a coarse texture image. Subsequently, the UV dif-
fusion model utilizes the coarse texture and additional shape
attributes to predict the high-fidelity texture.

3.3 Neural Field-Based Stylization

A neural field is “a field that is parameterized fully or in part
by a neural network" (Po et al., 2023). The advanced 3D
representations of neural fields, especially neural radiance
fields (NeRFs) (Mildenhall et al., 2020; Sun et al., 2022;
Müller et al., 2022; Kerbl et al., 2023), store scene geom-
etry and appearance in a neural network or explicit data

structure, enabling photorealistic rendering and 3D styliza-
tion in the latent space. Compared to mesh models (Fig. 2),
which rely on texture maps to store various visual infor-
mation like albedo, roughness, metalness, baked lighting,
etc., neural fields store learned features that are mapped to
an RGB image during rendering. Therefore, we can either
stylize novel views during rendering without modifying the
original neural field (Sect. 3.3.1), or stylize the neural field
itself by updating the stored latent features (Sect. 3.3.2).
Methods that stylize novel views learn a universal style trans-
formation module for 3D-aware view features, thus avoiding
additional training for each input style instance. While the
other approaches that stylize neural fields require optimiza-
tion for every single style or input reference set, the stylized
neural field assets allow regular neural rendering, thus sup-
porting seamless usage in related tools and software. Table
2 summarizes neural field-based stylization works, in terms
of taxonomy and technical comparison. Please refer to the
related surveys for a comprehensive review of neural fields
and their applications (Xie et al., 2022; Chen & Wang,
2024b).

3.3.1 Feed-Forward Novel View Stylization

A straightforward approach to stylize a 3D scene is to stylize
its novel views (Huang et al., 2021). However, it is known
that a simple combinationof existing2Dstylization andnovel
view synthesismethodswould lead to blurry and inconsistent
results. Instead, LSNV (Huang et al., 2021) proposed a feed-
forward point cloud feature transformation model that first
reconstructs a 3D point cloud by back-projecting the points
in feature maps extracted from multi-view images following
depth guidance, and then feeds these features into the trans-
formation network (similar to LST (2019) in Sect. 2.1) to
obtain stylized point cloud features, which can be decoded
to render novel views.

Similarly to neural style transfer, one can also perform
arbitrary style transfer for novel views of a NeRF scene
(Chiang et al., 2022c; Huang et al., 2022; Liu et al., 2023;
Kim et al., 2024). This involves a two-phase process con-
sisting of geometry reconstruction training (NeRF training)
and appearance stylization training. Chiang et al. (2022c)
proposed to transfer arbitrary artistic style to novel views on
NeRF++ representation (Zhang et al., 2020) for large outdoor
360◦ unbounded scenes. In the reconstruction phase, they
separate geometry (density output) and appearance (view-
dependent color output) into two branches, as illustrated
in Fig. 9. In the stylization phase, they fix the geometry
branch and use an MLP hypernetwork (Ha et al., 2016) with
style features from a pre-trained VAE encoder to update the
parameters of the appearance branch. Since NeRF++ can-
not support high-resolution image rendering at a fast speed,
they propose to do small-patch sub-sampling (Schwarz et
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Fig. 9 Canonical NeRF with geometry and appearance branches in 3D
stylization

al., 2020) to compute content and style losses (Huang &
Belongie, 2017).

As discussed in Sect. 2.1.2, AdaIN and LST are two
mainstream techniques for arbitrary style transfer, which
are adapted in StylizedNeRF (Huang et al., 2022) and
StyleRF (Liu et al., 2023) respectively. StylizedNeRF applies
a mutual learning strategy between a 2D arbitrary style trans-
fer AdaIN (Huang & Belongie, 2017) model and a NeRF
to achieve multi-view consistency and stylization of NeRF
appearance. Specifically, they pre-train the style transfer
model under the supervision of multi-view content, as well
as style and additional consistency loss. During the mutual
learning, they jointly train the style transfer model and a new
appearanceMLPbranchwithNeRF’s fixed geometry branch.

StyleRF (Liu et al., 2023) employs a similar style transfor-
mationmechanism to LSNV, learning a 3D feature grid lifted
from pre-trained VGG, and then applying linear style trans-
formation on the weighted features of sampled points in the
ray marching process of NeRF (Chen et al., 2022). Finally, a
2D CNN decoder is used to generate stylized views. StyleRF
also conducts two-stage training, the stage of feature grid
learning and reconstruction without viewing direction input
(based on TensoRF (Chen et al., 2022)), and the stage of
stylization training with fixed geometry. Moreover, StyleRF
illustrated its advantage of data-driven style training for style
interpolation and multi-style transfer with a 3D mask.

Later works further explore arbitrary photorealistic style
transfer (Chen et al., 2022b), unbounded urban-scale scene
style transfer (Kim et al., 2024) based on K-Planes rep-
resentation and 2D-to-3D lifted DINO semantic features
(Fridovich-Keil et al., 2023; Caron et al., 2021), and
point cloud or mesh reconstruction of stylized novel views
(Ibrahimli et al., 2024).

3.3.2 Optimization-Based Neural Field Stylization and
Editing

In this section, we explore stylizing a neural radiance field
(NeRF) by updating the scene information and features
stored in neural networks or explicit data structure, rather
than processing in the rendering phase. Most NeRF-based
approaches for appearance optimization follow a two-step
procedure (Zhang et al., 2022; Fan et al., 2022; Zhang et
al., 2023c; Pang et al., 2023). Initially, the scene’s geometry

Fig. 10 A general framework for NeRF stylization through alternating
updates of multi-views (Nguyen-Phuoc et al., 2022; Haque et al., 2023).
Images adapted from Haque et al. (2023)

and appearance are reconstructed frommultiple posed views
before stylization. Subsequently, during the optimization of
the appearance style, the geometry can be either fixed or self-
distilled during stylization, as depicted in Fig. 9. Notably,
some methods incorporate geometry updates during the styl-
ization phase (Nguyen-Phuoc et al., 2022;Wang et al., 2023a;
Haque et al., 2023).
A General Optimization Framework Nguyen-Phuoc et al.
(2022) proposed SNeRF, a general alternating optimization
pipeline for novel view stylization by arbitrary off-the-shelf
2D style transfer methods and any NeRF methods (Fig. 10).
The proposed method follows a sequential process. Firstly,
they reconstruct the NeRF scene with original content multi-
views. Next, they iteratively stylize renderedmulti-views and
use stylized views to fine-tune the NeRF in a loop. Through
several iterations, the entire NeRF representation gradually
becomes 3D-aware stylized.

Haque et al. (2023) further extended the framework for
text-guided NeRF editing and introduced Instruct-
NeRF2NeRF, which edits a NeRF scene by leveraging 2D
diffusion priors. Similar to SNeRF (2022), they adopted an
iterative process to update training views and theNeRF scene
alternatively (Fig. 10). They replace a trainingviewbyediting
a rendered view from a training viewpoint using an off-the-
shelf image-to-image diffusion model, e.g., Instruct-Pix2Pix
(Brooks et al., 2023), then continue NeRF training on the
updated training data.

Extensive experiments validated the flexibility of this
general framework, showcasing its compatibility with off-
the-shelf 2D style transfer methods across a range of NeRF
or NeRF variants. Despite promising results, this frame-
work is limited by its time-consuming iterative nature and
is vulnerable to variations in stylized views, which can
lead to style dilution and inconsistency. To address this
issue, ViCA-NeRF (Dong & Wang, 2023) employs view-
consistency-aware NeRF editing, which establishes explicit
connections between different views and propagates the edit-
ing information from edited to unedited views.
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Image-guided Radiance Field Stylization Image-guided neu-
ral style transfer (Sect. 2.1) has undergone significant devel-
opment over the years and has inspired a multitude of works
focusing on image-guided NeRF stylization. Similarly, most
works follow a two-step optimization process, including
NeRF reconstruction and appearance stylization stages.

Notably, ARF (Zhang et al., 2022) introduced the artistic
radiance field approach, utilizing content loss (Gatys et al.,
2016) and nearest neighbor feature matching (NNFM) style
loss (Eq. 5) to optimize and stylize the appearance of a recon-
structed NeRF scene with an exemplar style image. NNFM
minimizes the cosine distance onVGGfeatures between style
reference and rendered image:

Lnn f m = 1

N

∑
i, j

min
i ′, j ′

D(F(cs)i j , F(s)i ′ j ′), (5)

where F(·)i j denotes the feature vector at pixel location (i, j)
of the featuremap F(·). Experiments validatedNNFMloss in
NeRF stylization yields more visually appealing results than
typical Gram matrix loss (Gatys et al., 2016) or CNNMRF
loss (Li & Wand, 2016).

However, ARF still lacks explicit semantic correspon-
dences. To address this limitation, Ref-NPR (Zhang et al.,
2023c) proposed to first stylize a single view using structure-
preserving 2D-stylization algorithms (Sect. 2.1) or manual
editing, and then use this stylized reference view to construct
a reference voxel dictionary for the scene, which enables
matching of semantics and color features between edited
view and the scene. The follow-up work CoARF (Zhang
et al., 2024b) allows for style transfer with precise control
over specific objects indicated by 2D segmentation masks.
These semantics are also used for calculating theNNFM loss.
Concurrently, ReGS (Mei et al., 2024) enables high-quality
stylization that mimics reference textures while maintaining
real-time rendering capabilities for free-view navigation. It
achieves this by adapting 3DGaussian Splatting (3DGS) and
regularizing with scene depth.

Referring to the disentanglement of content and style rep-
resentations for style transfer (Huang et al., 2018; Lee et
al., 2018), Fan et al. (2022) proposed a generalizable model
consisting of a style MLP and a content MLP to separately
encode the style image and input scene, and an amalgamation
MLP to output both final color and density, fusing style and
content features. Additionally, Pang et al. (2023) considered
semantic style matching and added additional segmentation
output in the geometry branch with an extra segmentation
MLP after the hash encoding process of iNGP (Müller et
al., 2022). Both works proposed to use conditional style rep-
resentations by feeding a one-hot vector or style index to
the neural field, enabling conditional stylization for several
styles (Fan et al., 2022; Pang et al., 2023).

Apart from the artistic style transfer approaches, LipRF
(Zhang et al., 2023d) addressed the challenges in 3Dphotore-
alistic stylization by leveraging aLipschitzMLP to transform
the radiance appearance field during the stylization training
stage. The scene views are first stylized by 2D photorealistic
style transfer methods (Yoo et al., 2019; Wu et al., 2022) and
then used to train the Lipschitz MLP.
Text-guided Radiance Field Stylization The recent increas-
ingly developed vision-language models and text-to-image
diffusion models (Sect. 2.1.3) inspire the community to
develop works on text-guided or text-to-image guided 3D
scene stylization and editing (Wang et al., 2022, 2023a, b;
Song et al., 2023; Bao et al., 2023; Haque et al., 2023; Sella
et al., 2023; Zhuang et al., 2023; Shum et al., 2024). Here we
provide a brief discussion on some advances in text-guided
NeRF stylization, showcasing their potential for rapid proto-
typing and customization of 3D asset designs.

NeRF-Art (Wang et al., 2023a) proposed text-guided
NeRF stylization with profound semantics. Unlike simple
color and shape stylization for objects in CLIP-NeRF (Wang
et al., 2022) using a CLIP-based matching loss (Eq. 1),
NeRF-Art realizes complex stylization on diverse shapes and
scenes, such as turning a human face into a Tolkien elf. This
method proposed to fine-tune the pre-trained NeRF (Yariv
et al., 2021) using relatively direction CLIP loss (Eq. 2),
local and global contrastive CLIP-based loss (Chen et al.,
2020), perceptual loss (Johnson et al., 2016) and a weight
regularization (Barron et al., 2022) for sharper details. The
follow-up work Wang et al. (2023b) further enhances the
semantics-aware stylization with a semantic contrastive loss
and fine-tuned CLIP with ArtBench artwork database (Liao
et al., 2022) for accurate artistic textual embedding.

Instead, SINE (Bao et al., 2023) employs a two-branch
editing field to learn geometric and appearance adjustments.
Given an edited viewof a pre-trainedNeRFscene, themethod
establishes the mesh prior using either DIF (Deng et al.,
2021) for specific object categories or using ARAP (Sorkine
& Alexa, 2007) with depth estimation (Bhat et al., 2021) and
2D feature matching (Jiang et al., 2021), and then composes
the texture prior based on semantic features and structural
self-similarity (Caron et al., 2021; Tumanyan et al., 2022).
To preserve irrelevant areas, it distills a semantic feature field
from DINO (Caron et al., 2021) and clusters features in the
edited region of the edited view. To achieve precise manipu-
lation of specific regions, Blending-NeRF (Song et al., 2023)
leverages CLIPSeg (Lüddecke & Ecker, 2022), a pre-trained
image segmentation model, and employs a region loss for
supervision.

To support editing, DreamEditor (Zhuang et al., 2023)
directly uses 2D diffusion priors to enable precise editing
while keeping irrelevant regions untouched. Specifically, this
method transforms the NeRF into a mesh-based neural field
bymarching cubes (Lorensen&Cline, 1987) and distillation,
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with each mesh vertex assigned geometry and color features.
To localize the edit regions aligned with a text prompt, the
method leveragesDreamBooth (Ruiz et al., 2023) tofine-tune
StableDiffusion (Rombach et al., 2022) using sampled views
from a spherical viewing trajectory centered on the scene,
and then retrieve 2D attention maps (Hertz et al., 2023b) as
viewmasks that are later back-projected to 3D scene forming
the 3D editing mask. Finally, geometry and color features,
as well as mesh vertex positions in the 3D masked region
are jointly optimized by the SDS loss (Sect. 2.2). Similar to
implicit shape deformation methods (Bao et al., 2023; Gao
et al., 2023), DreamEditor employs mesh vertex regulariz-
ers, including Laplacian rigidity losses (Sumner et al., 2007)
among neighbor vertices, for smooth mesh deformation.

Facing the limitation of slow optimization in NeRF edit-
ing, ED-NeRF (Park et al., 2024) proposed to edit a latent
NeRFusing2D latent diffusionpriors (Rombach et al., 2022),
improving editing efficiency. However, multi-view rendering
of latent features lacks geometry consistency. Therefore, they
introduce a novel refinement layer with ResNet blocks and
self-attention layers to refine inconsistent multi-view latent
features. During editing, ED-NeRF employs delta denois-
ing score (DDS) (Hertz et al., 2023a) which is a difference
between two SDS scores conditioned on two different text
prompts, and a masked DDS for the target region segmented
by CLIPSeg (Lüddecke & Ecker, 2022) and SAM (Kirillov
et al., 2023) to keep irrelevant regions unchanged.

Recent advancements in 3DGS-based scene editing offer
new solutions for efficient optimization, fine-grained con-
trol, and high-quality scene segmentation. GaussCtrl (Wu
et al., 2024) and GaussianEditor (Chen et al., 2024d) intro-
duce text-driven editing for 3DGaussianSplatting.GaussCtrl
emphasizes multi-view consistency and depth-conditioned
editing, while GaussianEditor enhances control and pre-
cision using Gaussian semantic tracing and hierarchical
splatting. Gaussian Grouping (Ye et al., 2025) extends Gaus-
sian Splatting by incorporating identity encoding for object
segmentation, enablingfine-grained scene understanding and
versatile editing applications. These methods collectively
enable real-time, high-quality, and efficient 3D scene manip-
ulation across a wide range of applications, such as object
removal, inpainting, and style transfer.

3.4 Volume Stylization

Compared to other representations, volume is an intuitive
representation of 3D data, as naturally extended from 2D
image representation. 3D neural stylization can be per-
formedonavolume representation, e.g., image-guidedneural
style transfer on volumetric simulation, particularly dynamic
smoke (Kim et al., 2019) and fluids (Kim et al., 2020). Table
3 summarizes works for volumetric stylization.

In Kim et al. (2019), they use pre-trained Inception CNN
model (Szegedy et al., 2016) as the single-view feature
extractor and apply content loss and style loss (Sect. 2.1)
for semantics-aware abstract style transfer. They proposed
a transport-based neural style transfer (TNST) method on
grid-based voxels to optimize a velocity field (i.e., voxel
movement) from several multi-views from Poisson sampling
around a small area of the trajectory, and use a differen-
tiable smoke renderer to render grayscale images to represent
pixel-wise volume density. For temporal consistency among
frames during smoke simulation, they compose a linear com-
bination of the recursive aligned velocity fields of neighbor
frames for the velocity field of the current frame. Later in
Kim et al. (2020), they adopt particle-based attributes from
mult-scale grids and optimize attributes of position, den-
sity, and color per particle, which intrinsically ensures better
temporal consistency than recursive alignment of veloc-
ity fields (Kim et al., 2019). It largely improves efficiency
by directly smoothing density gradients in stylization from
adjacent frames for temporal consistency, and by styliz-
ing only keyframes and interpolating particle attributes in
between.

Subsequently, one can use a feed-forward network to
achieve fast volumetric stylization (Aurand et al., 2022),
reaching production-level quality (Kanyuk et al., 2023; Hoff-
man et al., 2023). One can also learn an arbitrary appearance
style transfer model for volumetric simulation via a volume
autoencoder (Guo et al., 2021).

3.5 Point Cloud Stylization

A point cloud is a discrete set of data points in 3D space,
which may represent 3D shapes or objects. Each point can
enclose additional attributes such as colors, normals (Pfister
et al., 2000) and spherical harmonic coefficients (Kerbl et al.,
2023) for rendering, or latent features (Huang et al., 2021)
for 3D stylization.

There are a few works that attempted stylization for point
clouds (Table 3). For example, PSNet (Cao et al., 2020) is
a PointNet-based (Qi et al., 2017) stylization network for
point cloud color and geometry style transfer with a point
cloud example or an image example. Similar to representing
content and style features from a pre-trained model (Gatys
et al., 2016), PSNet uses a PointNet-based classifier with
two separate shared MLPs to extract intermediate outputs as
geometry/content representation and regard theGram-matrix
of these outputs as appearance/style representation. PSNet
utilizes point-cloud-based content and style losses (Gatys et
al., 2016) to optimize the geometry and/or appearance color
of the source point cloud, simply replacing VGG features
with PSNet features. Since the Gram-based style represen-
tation is invariant to the number or the order of the input
points, an example style image treated as a set of points can
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stylize source colored point cloud with only the target color
style without shape deformation. For point clouds generated
by a generative model, one can learn to map a point cloud to
the latent space for editing. PointInverter (Kim et al., 2023)
employed 3D point cloud GAN inversion and introduced an
efficient way to conduct a 3D point cloud mapping to the
latent space of a 3DGANbased onSP-GAN, a sphere-guided
3D point cloud generator (Li et al., 2021). PointInverter
resolves the point ordering issue during 3D point cloud inver-
sion, while preserving point correspondences, which enables
point editing in latent space.

3.6 Implicit Shape Editing

An implicit primitive shape is a 3D surface represented by an
implicit distance function, such as a signed distance function
(SDF) or truncated signed distance function (TSDF). Pow-
ered by learning-based techniques, neural implicit shapes can
represent 3Dgeometry as occupancy networks (Mescheder et
al., 2019; Peng et al., 2020), distance fields (Park et al., 2019),
volumetric radiance fields (Mildenhall et al., 2020), and
Gaussian mixture models (GMMs). These neural continuous
implicit representations have gained significant attention in
the field of 3D shape generation and editing (Table 3).

Particularly, NeuralWavelet (Hu et al., 2024) utilized a
compact wavelet representation consisting of coarse and
detail coefficient volumes and designed a pair of diffusion
generative models for coarse and detail 3D shape genera-
tion. During shape learning, an encoder is jointly trained
to map the coarse coefficient volume to a condensed latent
code. This latent code serves as a controllable condition
for shape generation, inversion, and manipulation. Recent
approaches such as SPAGHETTI (Hertz et al., 2022) and
SALAD (Koo et al., 2023) adopted 3D generative models
equippedwith a hybrid representation that employs part-level
disentanglement, extrinsic approximate shape and intrinsic
geometric details disentanglement. In the hybrid represen-
tation, each part of the 3D shape is characterized by a set
of extrinsic parameters, which form a Gaussian ellipsoid in
3D space (formulated by a 3D position with a covariance),
capturing the approximate shape structure of that particu-
lar part. This part-level extrinsic-intrinsic disentanglement
enables 3D shape generation and implicit shape manipu-
lation such as local adjustment and part mixing. SALAD
further incorporates text-guided shape part segmentation
(Koo et al., 2022) and performs text-guided shape com-
pletion. These methods utilizing hybrid representations and
incorporating text guidance offer promising advancements
in 3D shape generation, editing, and manipulation, allow-
ing for more intuitive and controlled transformations of 3D
shapes.

3.7 Practical Guidelines

This section discusses practical aspects of 3D neural styliza-
tion methods, summarizing several design choices including
3D consistency, controllability, generalization, and effi-
ciency.
3D Consistency. A particular challenge when performing
stylization of 3D data is to ensure that view consistency is
achieved so that the styles appear similar across views. We
discuss common strategies to achieve view consistency, as
follows.
• View Sampling. A reasonable camera sampling strategy is
necessary for multi-view optimization without posed views.
A common strategy is to (randomly) sample around pre-
defined principal cameras or along the camera trajectory, as
summarized in Table 4. Michel et al. (2022) devised a new
training view selection scheme that samples view around an
anchor view with the highest CLIP similarity with the target
prompt. Data augmentation is a common trick as well, such
as randomperspective transformation and random resize plus
crop (Michel et al., 2022;Ma et al., 2023; Chen et al., 2024e),
rendering with random backgrounds (Hwang et al., 2023),
mirroring and rotating subject elements (Aurand et al., 2022).
• Constant Geometry. Appearance-only 3D stylization
requires keeping 3D geometry constant before and after
stylization. The frequently used strategy is to fix geometry
during the stylization stage. Particularly, some neural field
stylization works use hyper MLPs to predict stylized appear-
ance branch parameters for stylization while fixing geometry
branch parameters for 3D geometric consistency (Chiang et
al., 2022c; Chen et al., 2022b; Wang et al., 2023b).
• View-independent Appearance. Some works of appearance
stylization tend to maintain multi-view color consistency.
However, some 3D representations may lead to multi-
viewappearance inconsistency, for example, view-dependent
effects in radiance fields. To preserve multi-view color
consistency, scenes are often optimized without viewing
direction input in radiance fields, sacrificing view-dependent
effects for better multi-view appearance consistency (Zhang
et al., 2022, 2023c; Liu et al., 2023; Pang et al., 2023).
• 2D Priors. With the growing popularity of large-scale
pre-trained vision models including VGG, CLIP, DINO,
and diffusion models (Simonyan & Zisserman, 2015; Rad-
ford et al., 2021; Caron et al., 2021; Rombach et al., 2022;
Zhang et al., 2023b), 3D-aware stylization can be achieved
through multi-view optimization utilizing these 2D visual
priors (Zhang et al., 2022; Wang et al., 2023a; Bao et al.,
2023; Haque et al., 2023; Koo et al., 2024).
• 3D Priors. With numerous well-collected 3D datasets,
pre-trained point cloud priors (Qi et al., 2017; Li et al.,
2021; Nichol et al., 2022) are popular to represent coarse
geometry and facilitate geometric deformation among mesh,
point cloud stylization works (Yin et al., 2021; Cao et al.,
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Table 4 Summary of training view sampling in selected 3D neural
stylization methods on object data. “Cam" refers to camera type such
as orthogonal or perspective camera. “#View” is the sample number

of views for each iteration/frame, unless indicated otherwise. “Aug”
indicates rendered view augmentation

Literature Scene Cam #View Aug Sampling criteria

Mesh Paparazzi (2018) Object Orth 1 ✗ Uniform on offset surface, face vertex normal

Text2Mesh (Michel et al., 2022) Object Pers 5a ✓ Text-guided anchor view, sample around anchor

Text2Scene (Hwang et al., 2023) Object Pers 20b ✓ Random sample, evenly cover whole scene

TEXTure (Richardson et al., 2023) Object Pers 8b ✗ Around object (incld. top/bottom)

Text2Tex (Chen et al., 2023a) Object Pers 6+20b,c ✗ Axis-align, face surface normal

StyleCity (Chen et al., 2024e) City Pers 1k+ ✓ Look at several centroids, sample around scene

Volume TNST (Kim et al., 2019) Object Orth 9 ✗ Look at object, sample around a path

SKPN (Guo et al., 2021) Object Pers 4 ✗ Random sample in a path

ENST (Aurand et al., 2022) Object Pers 1 ✓ Sample in a path

a total views equals views per iteration;
b total views;
c6 views for generation, 20 out of 36 predefined views for refinement

2020; Kim et al., 2023). Some other works leverage addi-
tional geometry guidance, such as depth map, normal map,
and camera pose, for precise control of 3D-aware synthesis
(Höllein et al., 2022; Yu et al., 2023; Guo et al., 2023).
• Multi-view Attention. Temporal attention mechanism is
widely used in video generation methods (Blattmann et al.,
2023), where an attention layer is applied to latent video
frames to improve frame consistency. This concept can be
adapted to the 3D domain. For example, VcEdit (Wang et
al., 2025) inverse-renders the cross-attention maps from all
views onto each Gaussian in the source 3DGS, creating an
averaged 3D map. This 3D map is then rendered back to
2D, serving as the consolidated cross-attention maps for the
originals, resulting in more coherent predictions.
Controllability. Stylization requires diversity and flexibility
for users to design assets. We summarize some common
strategies for different levels of control in 3D stylization.
• Pre-trained Diffusion Models. State-of-the-art diffusion
models provide powerful controllability for content creation.
For example, TextureDreamer (Yeh et al., 2024) uses Dream-
Booth (Ruiz et al., 2023) to distill texture information from
input reference images, and ControlNet (Sect. 2.1.3, 2023b)
to process additional 2D conditions, such as depth, normal,
and edge maps.
• Semantic Alignment.Pre-trained segmentationmodels (e.g.
Segment Anything (2023)), semantic labels or descriptions
can be integrated to empower semantics-aware stylization.
Table 5 shows some semantic matching tricks commonly
used in 3D neural stylization. Some text-guided approaches
rely on deliberate textual descriptions for local stylization
(Michel et al., 2022; Ma et al., 2023; Wang et al., 2023b),
while some approaches consider explicit visual semantic
matching such as Text2Scenewith 3D label inputs (Hwang et
al., 2023). Gao et al. (2023) proposed a regularization term to

preserve identity for smooth deformation. Some approaches
consider using or lifting explicit semantic matching with off-
the-shelf tools (Huang et al., 2022; Zhang et al., 2023c; Pang
et al., 2023; Song et al., 2023; Kim et al., 2024). In addition,
the reviewed works (Wang et al., 2023a, b) demonstrated that
contrastive learning can effectively improve the learning of
directional cues, such as textual semantics, in text-guided
stylization.
• Explicit Representation. An explicit scene representation
allows much easier control and more precise manipulation.
For example, DreamEditor (Zhuang et al., 2023) transforms
the NeRF into a mesh-based neural field with each mesh ver-
tex assignedgeometry and color features;Chen et al. (2024d);
Hertz et al. (2022); Koo et al. (2023) use explicit 3D Gaus-
sians for editing.
• 3D Shape Inversion. A commonly adopted technique for
shape manipulation is 3D shape inversion, which inverts 3D
representation into latent space learned by large-scale pre-
trained 3D generative models (Nichol et al., 2022; Qi et al.,
2017). This approach enables shape editing in latent space
and has been explored in various stylization works such as
NeuralWavelet (2022), SPAGHETTI (2022), PointInverter
(2023), and SALAD (2023).
Efficiency. Efficiency in 3D stylization is influenced by
various factors such as style optimization methods and
3D representations. To enhance efficiency and minimize
resource consumption, we present several tricks for effi-
ciency improvement.
• Optimize in Coarse-to-Fine Manner. Instead of direct styl-
ization in final high resolution, some works operate 3D style
optimization in the low resolution and then apply decod-
ing or super-resolution techniques for higher optimization
efficiency. For example, Cao et al. (2023); Knodt and Gao
(2023) optimize latent features for 3D consistency and effi-
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Table 5 Summary of semantic alignment in selected 3D neural stylization methods

Literature Semantic Matching Technique

Text2Mesh (Michel et al., 2022); X-Mesh (Ma et al.,
2023)

Design a text prompt for part-level localization and stylization

TextDeformer (Gao et al., 2023) Use the identity-preserving term to keep deformation not far from input mesh

Text2Scene (Hwang et al., 2023) 3D instance mesh label for instance-level stylization

TSNeRF (Wang et al., 2023b) Design a text prompt for part-level localization and stylization

StyleRF (Liu et al., 2023) Obtain 3D mask by NeRF-based object segmentation

Ref-NPR (Zhang et al., 2023c) Semantic matched edited view as reference; Propagate style features to other
views

LocalStyleNeRF (Pang et al., 2023) Train NeRF to obtain 3D segmentation from multi-view segmentation maps

SINE (Bao et al., 2023) Extract edited view’s semantic features; Compute pixel-wise feature distance
between edited region and training views

ED-NeRF (Park et al., 2024); BlendingNeRF (Song
et al., 2023)

Off-the-shelf text-guided segmentation model to segment each view for
semantic-aware training

DreamEditor (Zhuang et al., 2023) 2D attention maps in Diffusion as view masks, which are projected to 3D

cient diffusion. Guo et al. (2023); Wu et al. (2023) employ
super-resolution models and Yu et al. (2023); Zeng et al.
(2024) use texture refinement models to obtain high-quality
outputs.
• Scene Representations. For neural fields, there are vari-
ous advanced representations for fast training or rendering,
such as Plenoxels (2022), SNeRG (2021), iNGP (2022),
DVGO (2022), TensoRF (2022), MobileNeRF (2023c) and
3DGS (2024b). Table 2 features neural field stylizationmeth-
ods with applied base reconstruction techniques. Some 3D
representations also tend to use advanced neural fields to rep-
resent style features such as neural style fields for meshes in
Michel et al. (2022); Ma et al. (2023).
• Optimize Rendering and Back-propagation. In NeRF styl-
ization, naiveNeRF-based rendering ismemory-intensive for
a bulk of ray samplings and point queries, but style losses
are based on full images. Therefore, some use patch-based
training (Chiang et al., 2022c), deferred gradient back-
propagation (Zhang et al., 2022), and some separate forward
and back-forward steps with full-res computation and patch-
wise back-propagation (Zhang et al., 2023d; Wang et al.,
2023a, b).
• Feed-forward Networks. Instead of optimizing scene rep-
resentation parameters, some works used feed-forward net-
works for efficient training/inference (Ma et al., 2023; Huang
et al., 2021; Chen et al., 2024c; Aurand et al., 2022).
Generalization. Stylization techniques across different sce-
narios and datasets are crucial for real-world applications,
such as gaming or entertainment industries.We discuss some
designs for generalization here.
• Universal Style Transfer Module. Data-driven 3D neural
stylization models train a universal 3D style transfer module
that can generalize to new styles in a zero-shot manner. This

type of work usually operates on novel view rendering rather
than optimizing the scene features, as discussed inSect. 3.3.1.
• General Optimization Framework. As presented in
Sect. 3.3.2, SNeRF (Nguyen-Phuoc et al., 2022) and Instruct-
NeRF2NeRF (Haque et al., 2023) introduced a general
framework for a single scene optimization with either image
or textual reference. They apply to any scene, any style, either
geometry or appearance stylization.

4 Datasets and Evaluation

In this section, we summarize the frequently used datasets for
3D neural stylization, introduce existing evaluation metrics
and criteria for 2D and 3D stylization, and provide a bench-
mark of state-of-the-art 3D neural stylization works as the
reference for future works.

4.1 Datasets

Datasets are essential for effective training and thorough
validatingof 3Dstylizationmodels in termsof applicable sce-
narios, stylization diversity, etc. Table 6 illustrates selected
popular 3D and 2D datasets for the evaluation of 3D neural
stylization works, identifying their modality, scale, and other
noteworthy features.

4.2 Criteria andMetrics

The stylization and evaluation of 3D assets are commonly
conducted through multi-view renderings, which could be
attributed to the inherent way how people perceive and pro-
cess 3D stuff, and the advancement of 2D large pre-trained
vision models. It is also possible to conduct stylization and
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evaluation directly in 3D space, mainly for the point cloud
representation. For instance, 3DStyleNet (Yin et al., 2021)
utilizes L1-Chamfer distance to guide the 3D shape transfer.
PSNet (Cao et al., 2020) directly extracts style features froma
point cloud using a modified PointNet (Qi et al., 2017) struc-
ture. SpiceE (Sella & Averbuch-Elor, 2023) introduces point
cloud input as 3D shape prior to 3D generation. Achlioptas
et al. (2023) provides a summary for evaluation metrics of
3D shape transfer.

We derive several critical aspects below from the state-
of-the-art 3D neural stylization works for evaluating 3D
stylization performance. Overall, the main consideration
includes the alignment with the target style, the preserva-
tion of the original content, the consistency between different
views, the visual quality of the stylized results, and the effi-
ciency of training/inference.
• Style Similarity Stylization tasks are driven by guidance
information (i.e. style reference), mainly images and texts.
For measuring style similarity between the reference image
and the rendering output, Gram matrix loss and AdaIN loss
(i.e. MSE of the channel-wise mean and variance) that intro-
duced in Sect. 2.1 are heavily used. When the style reference
is given by textual prompt, the most popular choice of recent
works is CLIPScore (Hessel et al., 2021), which quantifies
the correspondence between the rendered image and the tex-
tual prompt.
• Content Preservation Content preservation is achieved to
different extents in stylization works. In some works (Chi-
ang et al., 2022c; Chen et al., 2022b; Wang et al., 2023b)
the stylization is conducted only for appearance while the
3D geometry is locked, which dramatically eliminates the
morphing of geometric content. Some other works (Zhang
et al., 2022, 2023c) aim for a balance of stylization and
content texture preservation by training exclusively with
view-independent texture colors, hence showcasing multi-
view color consistency.
• Multi-view Consistency Explicit 3D representations inher-
ently provide multi-view geometry consistency. To measure
multi-view appearance consistency, some 3D stylization
works refer to video temporal short-range and long-range
consistency evaluation (Lai et al., 2018), using warping
difference error and the warped LPIPS, via optical flow esti-
mation or depth estimation (Chiang et al., 2022c; Liu et al.,
2023; Nguyen-Phuoc et al., 2022; Huang et al., 2021; Höllein
et al., 2022). CLIP can also be applied to evaluate multi-view
semantic consistency by encoding adjacent views to CLIP
space as proposed in Haque et al. (2023); Ma et al. (2023).
• Visual Quality For image synthesis, we expect synthesized
images to looknatural and contain as fewartifacts as possible.
The inception score (IS)(Salimans et al., 2016) is designed to
measure the image quality and diversity of generated images.
Another popular metric is Frechet Inception Distance (FID)
(Heusel et al., 2017), which compares the distribution of gen-

erated images with the distribution of real images. It works
well to decide if generated images are similar to objects in the
target domain. For instance, TSNeRF (Wang et al., 2023b)
used FID to evaluate the distance between stylized rendered
views and the target art database.
• Robustness and Efficiency For model robustness, Ref-NPR
(Zhang et al., 2023c) proposed to measure PSNR between
rendered results around a specific view angle. It is not essen-
tial for general 3D neural stylization evaluation, but it can
be taken as a robustness reference. Regarding efficiency,
important factors include the training time, inference speed,
memory usage, data accessibility, model size and usability.
• User Study The above metrics do not necessarily reflect
and align with human bias, especially for subjective factors
such as naturalness and attractiveness. Therefore, conduct-
ing a user study is usually a suitable option. A typical user
study involves steps including recruiting participants, prepar-
ing study materials and questionnaires, collecting answers,
and analyzing statistics. In 3Dstylization, themost frequently
evaluated metrics are “stylization quality" and “temporal
consistency” (Huang et al., 2021; Chiang et al., 2022c; Chen
et al., 2022b; Liu et al., 2023).

4.3 Benchmark of 3D Stylization

In this section, we provide a benchmark evaluation in Table 7
of state-of-the-art mesh-based and neural field-based neural
stylization methods in terms of the criteria discussed above,
followed by a high-level discussion of the insights gained.
The methods can be categorized into text-guided or image-
guided object mesh texture stylization, text-guided neural
field stylization, and image-guided neural field artistic styl-
ization.

4.3.1 Experimental Settings

• Datasets. For mesh-based stylization methods with image
guidance, we create 300 object-image pairs from Obja-
verse (Deitke et al., 2023) dataset: 100 objects with their
own rendered images, 100 with rendered images of other
objects in the same category, and 100 with rendered images
from different categories. The first two parts aim to evaluate
the capacity of “in-domain” texture transfer, while the last
part tests the capacity of “out-of-domain” texture transfer.
All the images are rendered in 2048 × 2048 resolution. For
TEXTure (Richardson et al., 2023), we fine-tuned ten diffu-
sion models following their official requirement to conduct
the texture transfer. For mesh-based stylizationmethods with
text guidance, we use the same 100 selected objects from
Objaverse and directly use the object name to construct the
text prompt.

For neural field-based stylization methods with image
guidance, we include eight scenes from three public datasets,
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including single-object scenes (chair,mic) inNeRF-Synthetic
(Mildenhall et al., 2020) that are inward-facing 360◦ objects
without background, forward-facing real scenes (fern, flower,
horns, trex) in LLFF dataset (Mildenhall et al., 2019),
and large unbounded real scenes (Truck, Playground) in
Tanks&Temples dataset (Knapitsch et al., 2017). Particu-
larly, masked large scenes Caterpillar and Truck without
background (Knapitsch et al., 2017) are used instead for
StyleRF and INS. The style reference images are selected
from WikiArt (Painter by numbers, 2016) dataset. 120
WikiArt (Painter by numbers, 2016) style references are
used for feed-forward methods, and 6 WikiArt images for
single-style optimization methods. We select artistic images
here because neural field-based methods usually have larger
scenes with multi-objects and backgrounds, and single-
object images won’t lead to satisfying results. Conversely,
such artistic images with abstract concepts tend to ignore
the detailed semantics of a concrete object, and thus are
not suitable for most mesh stylization methods that focus
on a single object. For neural field-based stylization meth-
ods with text guidance, we select two unbounded and two
forward-facing scenes (farm, campsite; fangzhou, person)
from InstructN2N (Haque et al., 2023) and test four style
prompts for each of them.
• Metrics. For style similarity, we compute Gram Loss
for artistic image-guided works and ClipScore for others.
FID (Heusel et al., 2017) is adopted for measuring the visual
quality of selectedmethods, using the rendered views of styl-
ized results as evaluation samples and style reference images
as ground truths. The original rendering views of selected
objects from the Objaverse dataset are used as ground truths
for evaluating text-guided mesh stylization works. Since the
FIDmetric needs to be calculated on a large number of evalu-
ation images, we skipped a fewworks that are hard to obtain a
large amount of ground truth data (Haque et al., 2023; Dong
& Wang, 2023; Vachha & Haque, 2024; Koo et al., 2024)
or have a relatively slow optimization speed which prevents
generating a sufficient number of evaluation samples (Fan
et al., 2022; Nguyen-Phuoc et al., 2022; Zhang et al., 2022,
2023c).

For multi-view consistency, we utilize CLIP-Var (Li et al.,
2025) to take theminimumvalue of cosine similarity between
CLIP features of uniformly sampled views as ametric, which
derives from the idea that images of the same object from
multiple views have the same semantics. For the artistic style
transfer task, we compute short-range and long-range warp
error withmasked LPIPS scores via off-the-shelf optical flow
estimator RAFT (Teed & Deng, 2020).

The GPU consumption, pre-training time and optimiza-
tion time are measured on RTX 5880 Ada GPUs with 48GB
memory per GPU. The pre-training time denotes the normal
duration for required additional training of themethod before
conducting stylization (while the original authors may have

provided trained weights), like training a ControlNet (Deng
et al., 2024), training a feature transformation module (Liu
et al., 2023; Chiang et al., 2022c), training the original 3D
reconstruction, etc. Please refer to our evaluation code repos-
itory for details: https://github.com/chenyingshu/advances_
3d_neural_stylization.

4.3.2 Discussion

Through the theoretical analysis, benchmarking and practi-
cal experience, we aim to address a research question: How
do various factors such as 3D representation, optimization
methods, guidance, etc., impact stylization outcomes across
different dimensions like visual quality, consistency, and effi-
ciency?Wewill delve into this inquiry through the following
key points.
• Optimization—How to conduct efficient optimization?
When aiming for efficiency, effective strategies include
employing largepre-trainedmodels and training task-specific
adapter modules. For example, TEXTure and FlashTex
(Richardson et al., 2023; Deng et al., 2024) can synthe-
size stylish texture in high quality in under five minutes by
leveraging large pre-trained diffusionmodels as priors. Addi-
tionally, some utilize feed-forward processing to enhance
efficiency during stylization inference, removing the neces-
sity for per-style optimization, as demonstrated in works like
StyleRF and StyleGaussian(Liu et al., 2023, 2024).
• Guidance—How to provide effective guidance? In styliza-
tion, a visual prompt can efficiently convey intricate details,
especially for complex designs or expectations that are hard
to articulate in natural language. Conversely, textual prompts
offer greater flexibility allowing for easy adjustments. In
Table 7, image-guidedmesh stylizationmethods (Richardson
et al., 2023;Zeng et al., 2024; Perla et al., 2024) exhibit higher
CLIP-scores compared to text-guided approaches (Richard-
son et al., 2023; Youwang et al., 2024; Zhang et al., 2024d;
Deng et al., 2024). This disparity stems from the calcu-
lation principle of CLIP-score that captures multi-concept
features from the inputs and measures the similarity of the
features, where image-guided texture transfer can directly
reconstruct the features from the reference image and thus
easily achieve higher CLIP-scores. Meticulous prompt engi-
neering is required to achieve similar results using natural
language.

Beyond 2D guidance, 3D guidance proves effective for
tasks like 3D shape transfer, often through the point cloud
representation which enables 3D shape similarity calcula-
tion using metrics like Chamfer distance. The point cloud
representation offers efficiency for physics simulation, scal-
ability, and other advantages. 3D Gaussian Splatting (Kerbl
et al., 2023) akin to point clouds has great potential in such
topics (Kotovenko et al., 2024).
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•VisualQuality—How to enrich visual effectswhile reducing
artifacts? State-of-the-art 3D stylization methods improve
visual quality by developing view-dependent appearances
based on CG empirical models (Deng et al., 2024), utilizing
multiple vision priors (Haque et al., 2023; Youwang et al.,
2024; Zhang et al., 2022), and data-driven learning (Huang et
al., 2021;Liu et al., 2023). For example, Easi-Tex (Perla et al.,
2024) employs a pre-trained IP-Adapter (Ye et al., 2023) and
an edge ControlNet to faithfully extract the texture and shape
details respectively, demonstrating both high visual quality
and style similarity, even if there are significant discrepancies
between the input and the reference object (we denote it as
“out-domain” type in Table 7). FlashTex (Deng et al., 2024)
trains a novel LightControlNet, which learns from numer-
ous rendered images of objects with different materials and
enables providing rich visual details in texture generation.
•Consistency -How to ensuremulti-view consistency?Exist-
ing works strive to achieve multi-view consistency when
rendering photorealistic or artistic 3D scenes. As mentioned
in the practical guidelines (Sect. 3.7), some works directly
construct view-independent objects/scenes (Zhang et al.,
2022; Liu et al., 2023; Zeng et al., 2024) which largely alle-
viates the worry. However, it will significantly improve the
overall quality to provide view-dependent effects or make
the object/scene light-aware (Zhang et al., 2024f; Deng et
al., 2024). Similar to the ideas of linking 2D to 3D styl-
ization in Sect. 2.1.4, one way is to devise a dedicated loss
item to enforce multi-view consistency (Zhang et al., 2023c;
Mei et al., 2024). ARF (Zhang et al., 2022) presents another
way that applies a simple linear transformation of colors in
RGB space for all rendered views tomatch the color statistics
of the style image, which greatly improves the consistency
between the rendered views. Last but not least, we can incor-
porate additional guidance (depth map, normal map, etc.) for
generative models. As seen in Table 7, FlashTex (Deng et al.,
2024) with depth ControlNet achieves the highest multi-view
consistency among the text-guided mesh stylization meth-
ods. Compared to Paint3D and Easi-Tex which only use one
image as style reference, TEXTure achieves an overall higher
Clip variance, probably benefiting from fine-tuning a diffu-
sion model with multi-view renderings of the target object
for texture transfer.
• Scalability - How to adapt stylization to different sizes
of scenes? Mesh-based stylization is thriving in 3D object
assets, which is suitable for benchmarking with accessible
3D object datasets. Some researchers also attempt to styl-
ize room-scale (Chen et al., 2024a; Höllein et al., 2022) or
city-scale scenarios (Chen et al., 2024e) concerning complex
semantics andviewsampling strategies.Byemployingneural
fields, 3D representations support various scales of scenes,
from naive NeRF and grid-based radiance fields for object-
centric and feed-forward scenes (Fan et al., 2022; Zhang et
al., 2022; Liu et al., 2023) to 3DGS for scenes in the wild

Fig. 11 Neural field stylization results. Zoom in for details

(Vachha & Haque, 2024; Liu et al., 2024). Stylization tech-
niques can be tailored to specific representations considering
the structure types such as grids (Liu et al., 2023), points
(Huang et al., 2021), and optimization strategies, as summa-
rized in Table 2 (Fig. 11).

5 Applications

The burgeoning technologies for generating and manipulat-
ing 3D assets are unleashing the power of creativity and
revolutionizing the way that we perceive and interact with
visual content. 3D neural stylization sheds light on a new
paradigm of providing infinite aesthetic possibilities from
classic paintings to futuristic concepts, enhanced immersive
experiences for virtual and augmented reality environments,
seamless integration for cross-industry applications includ-
ing advertising and marketing, fashion and product design,
film and game development, architecture and environment
visualization, and interactive education and learning, etc.
Some examples are visualized in Fig. 12. In this section,
we present some representative and promising applications
of 3D neural stylization.

5.1 3D Asset Design

3D asset design and modeling involve constructing shapes,
textures, materials, etc. Harnessing advanced neural styliza-
tion techniques, automatic 3D design becomes more flexible
in a controllable way with text prompts, images or 3D refer-
ences.
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Fig. 12 Applications of 3D neural stylization. Images adapted from Orghidan et al. (2022); Chen et al. (2024a); Han et al. (2024); Volinga (2023);
Kanyuk et al. (2023); Zhang et al. (2022); Wu et al. (2023); Li et al. (2023c)

5.1.1 Single Object Design

In the creation of consumer products, the stylization of a sin-
gle object can enhance its market appeal. Neural stylization
enables fast illustration of ideas for a more effective discus-
sion among designers, developers and customers, especially
in the prototyping phase. Text-guided mesh stylization pro-
vides a flexible way to design 3D assets. For example, after
the launch of Text2Mesh (Michel et al., 2022), digital R&D
designers and artists employed this tool for 3D gaming asset
designs (Orghidan et al., 2022) and artwork creation (Gul-
jajeva & Canet, 2022). Advanced techniques in automatic
3D shape mixing and morphing (Hui et al., 2022; Gao et
al., 2023) are also promising for speedy 3D asset design and
production.

5.1.2 Room Decoration

Current digital room/house decoration tools support adding
pre-made assets to a virtual scene and adjusting their places,
or using the device’s camera to map the room and place pro-
vided furniture (Yu et al., 2011; Global, 2024; Houzz, 2024;
Planner5D, 2024). However, the asset library provides lim-
ited types and styles of 3Dmodels, and the overall style of the
whole space is neglected. Recentworks that leverage 3Dneu-
ral stylization techniques explore more possibilities in room
decoration. DreamSpace (Yang et al., 2024) allows users
to personalize the appearance of real-world scene recon-
structions with text prompts, and delivers immersive VR
experiences on HMD devices. SceneTex (Chen et al., 2024a)
generates high-quality textures for 3D indoor scenes from
the given text prompts, which provide a consistent styliza-
tion for the whole space. Instead of entire room stylization,
Text2Scene (Hwang et al., 2023) focuses on the stylization
of individual object meshes in an indoor scene.

5.2 3D Avatar Stylization

Avatar stylization is a long-standing and popular research
area, that enables interesting applications such as cartooniza-

tion for 2D or 3D-aware portraits (Jang et al., 2021; Song et
al., 2021; Yang et al., 2022; Zhang et al., 2023a). With neu-
ral stylization techniques and novel 3D representations such
as NeRF, there appear stylization solutions for 3D avatars
(Pérez et al., 2024; Zhang et al., 2024c; Han et al., 2024).

For example, the general NeRF stylization framework
SNeRF (Nguyen-Phuoc et al., 2022) supports style transfer
for dynamic NeRF avatars. 3DFaceHybrid (Feng & Sing-
hal, 2024) achieves arbitrary style transfer for a NeRF-based
face by lifting 2D pre-trained face style transfer knowledge
(Yang et al., 2022) to the 3D face mesh. StyleAvatar (Pérez
et al., 2024) enables either image- or text-guided stylization
for animatable avatars from a phone scan (Cao et al., 2022)
with CLIP supervision. TECA (Zhang et al., 2024c) gener-
ates a detailed 3D avatar composition based on a given text
description. The avatar includes a mesh-based face and body,
and NeRF-based hair, clothing, and other accessories. Head-
Sculpt (Han et al., 2024) generates and edits a 3D-consistent
head avatar with text prompts via diffusion priors (Brooks et
al., 2023), achieving editions such as realistic or artistic head
generation, expression editing, cartoonization, etc.

5.3 Non-Photorealistic Rendering

Compared to traditional non-photorealistic rendering tech-
niques (Gooch et al., 1998; Gooch & Gooch, 2001) with
low-level control of simple strokes and textures, neural styl-
ization techniques realize general stylization for arbitrary
style targets, offering high-level controllability with refer-
ence and semantics and higher speed for stylized assets
production. 3D artistic stylization works have shown the
potential of efficient NPR for a scene (Huang et al., 2021;
Chiang et al., 2022c; Huang et al., 2022; Liu et al., 2023;
Zhang et al., 2022; Fan et al., 2022; Nguyen-Phuoc et al.,
2022; Zhang et al., 2023c; Wang et al., 2023a; Haque et al.,
2023).
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5.4 Physically Based Rendering

Physical properties in 3D scenes enable photorealistic ren-
dering and editing.

5.4.1 Texture Stylization

TANGO (Lei et al., 2022) tends to optimize texture mate-
rial parameters by CLIP supervision. It trains MLPs given
the point and its normal to generate SVBRDF parameters
and normal offset, which enables photorealistic rendering. Its
follow-upwork 3DStyle-Diffusion (Yang et al., 2023) further
incorporates depth-guided ControlNet (Zhang et al., 2023b)
for score distillation, enabling high-quality fine-grained tex-
ture stylization.

5.4.2 3D Generation and Editing

HyperDreamer (Wu et al., 2023) achieves single-image-
to-3D generation with physical decomposition including
semantics, albedo, specular, roughness, and normal. It sup-
ports diverse downstream tasks such as relighting, text-
guided and part-aware editing. Decorate3D (Guo et al., 2023)
converts NeRF scene to mesh for geometry and material
decomposition. The decoupled geometry and UV texture
representations support controllable texture editing and gen-
eration with text instructions.

5.4.3 Simulation

ClimateNeRF (Li et al., 2023c) fuses weather physical sim-
ulation with NeRF rendering to create NeRF scenes with
realistic weather effects such as smog, snow, and floods.
PhysGaussian (Xie et al., 2024) integrates physics-based
dynamics simulation, specifically the Material Point Method
(MPM) simulation, to deform a 3DGS scene. By merging
realistic rendering and physical simulation, these approaches
have the potential to enhance the realism of virtual games and
films.

5.5 Industrial Production

3D neural stylization provides automatic stylization tech-
niques for 3D assets including mesh, point cloud, volumetric
simulation, and novel views. Stylized assets can be seam-
lessly integrated into traditional computer graphics rendering
pipelines and software, such as meshes with new stylized
texture, re-colored point clouds, and stylized volumetric sim-
ulation. Implicit reconstructed scenes, such as NeRF, can
be exported as textured mesh or rendered by game engine
plugins such as Luma AI’s Unreal Engine NeRF plug-ins
(Luma, 2023). Automated 3D environment synthesis holds
great promise for film virtual production applications. For

instance, combining environmental NeRF with light stages
(Manzaneque, 2023) enables cost-effective scene shooting
using Volinga suite (Volinga, 2023). Non-photorealistic styl-
ized 3D assets and scenes are particularly beneficial for
animation production, as demonstrated by the filmElemen-
tal (Hoffman et al., 2023; Kanyuk et al., 2023). Moreover,
these techniques find possible applications in VR and video
game development (Menapace et al., 2022), enabling rapid
stylization and editing of 3D scenes (Liu et al., 2023; Fang
et al., 2023).

6 Open Challenges and FutureWorks

From this survey, we identify under-explored problems and
notable challenges in 3D neural stylization that are worth
investigating in future work, which we discuss below.

6.1 Generalization

6.1.1 Large-scale Scene Stylization

Most 3D neural stylization works focus on objects or object-
centric scenes (Michel et al., 2022; Hertz et al., 2022),
room-scale scenes (Pang et al., 2023; Höllein et al., 2022),
and outdoor inward-facing scenes (Huang et al., 2021; Chi-
ang et al., 2022c). Though G. Kim et al. (2024) extended
novel view stylization to city scenes, it does not output styl-
ized 3D assets. StyleCity (2024e) stylizes urban texture and
sky but replies on heavy mesh representation. 3D assets and
scenes can scale to as large as multi-room indoor scene
(Straub et al., 2019; Huang et al., 2022), architectural scenes
(Martin-Brualla et al., 2021; Wang et al., 2021), multi-block
outdoor scenes (Tancik et al., 2022; Turki et al., 2023), and
even city-scale scenes (Xiangli et al., 2022;Xu et al., 2023; Li
et al., 2023b). These complex scenarios with intricate seman-
tics are challenging for semantic alignment and computation
efficiency.

6.1.2 4D Scene Stylization

Limited literature exists on 4D scene stylization, with only
a few notable works such as SNeRF (2022) and S-DyRF
(2024b) presenting to stylize dynamic portraits and small
scenes. Stylizing time-varying scenes with dynamic geom-
etry and appearance changes (Park et al., 2021; Song et al.,
2023; Yang et al., 2024), or integrating time-related special
effects (Shih et al., 2013; Logacheva et al., 2020), poses
significant challenges in maintaining temporospatial consis-
tency in this domain.
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6.1.3 Generalizable Text-guided Stylization

Text-guided 3D scene stylization and editing are still in the
early stages. Data-driven generalizable text-guided 3D scene
stylization or editing without re-training is seldom explored
yet (Fang et al., 2023), which demands more attention. It is
worth investigation and exploration since current advanced
large-language models such as BLIP (Li et al., 2023a), GPT
(Brown et al., 2020) enable infinite image-text pair data gen-
eration for data-driven model training.

6.2 Controllability

6.2.1 3D Reference-Guided Stylization

Various modalities have been explored to be style references,
especially images and text prompts. 3D to 3D geometric
and appearance style transfer with 3D shape or 3D scene
guidance is still underexplored (Yin et al., 2021). While
3D features can provide 3D-aligned holistic references for
stylization, 3D feature extraction suffers from limited 3D
datasets in a few categories. With the rapid development
of 2D-to-3D lifting techniques, there is potential to lever-
age large-scale pre-trained 2D models, such as 2D diffusion
models (Rombach et al., 2022; Zhang et al., 2023b), as pri-
ors for context-aware scene stylization with 3D references.
In addition, we expect more and more 3D pre-trained fea-
ture extractors and generative models with data in the wild
to boost the 3D context-aligned style transfer.

6.2.2 Multi-modal Controls

Currently, most researchworks focus on sole-reference guid-
ance for stylization, whilemulti-modal reference can provide
high accuracy and controllability on precise manipulation
and design (Pang et al., 2023; Bao et al., 2023; Zhuang et
al., 2024). Therefore, it is worthwhile to explore the possi-
bilities of joint supervision incorporating visual (Simonyan
& Zisserman, 2015), textual (Radford et al., 2021), semantic
(Caron et al., 2021), and geometric features for 3D styliza-
tion.

6.3 Efficiency

6.3.1 Real-time Arbitrary Style Transfer of 3D Scenes

Modern photo or video filters support real-time processing
(Ruder et al., 2016; Jamriška et al., 2019). For instance,
Ioannou and Maddock (2023) proposed a simplified style
transfer architecture embedded intoUnity rendering pipeline,
enabling real-time depth-aware 2D style transfer. However,
real-time stylizing a 3D scene given arbitrary styles remains
challenging for some 3D representations due to the slow

optimization process (Michel et al., 2022; Richardson et al.,
2023; Cao et al., 2023; Yang et al., 2023) and slow rendering
in neural fields (Chiang et al., 2022c; Zhang et al., 2022).
Even though there are some novel view stylization works (Li
et al., 2019; Liu et al., 2023; Chen et al., 2024c) that achieve
arbitrary style transfer for speedy novel view synthesis, they
fail to obtain stylized 3D scenes instantly. It is worth explor-
ing to improve stylization speed by leveraging feed-forward
networks (Aurand et al., 2022), 3D generative models (Cao
et al., 2020), and advanced 3D representations such as 3DGS
(Liu et al., 2024; Zhang et al., 2024a).

6.4 3D Consistency

6.4.1 Comprehensive View Planning for Complex Scenes

Existing works have primarily focused on planning training
views for object or room scenes for 3D stylization (Michel et
al., 2022; Hwang et al., 2023; Richardson et al., 2023; Chen
et al., 2023a), overlooking the crucial aspects of semantic-
and instance-level view planning. Hence, it is a compelling
research opportunity to investigate effective strategies for
planning views in scenes characterized by intricate semantics
such as cityscapes and multi-room scenarios.

6.4.2 3D-Holistic Style Feature of Scenes

The majority of works reviewed are supervised by large-data
2D pixel-level features extracted from multi-views (Michel
et al., 2022; Zhang et al., 2022; Kim et al., 2019), since large-
data 3D pre-trained models are still rare and expensive. Even
though someworks try to lift 2Dcontent features to 3Dbefore
3D stylization (Huang et al., 2021; Liu et al., 2023; Huang
et al., 2022), they still use view-dependent style features for
final 3D stylization supervision. It is also impractical to lift
2D features to 3D at every iteration. Some works supervise
stylization with a 3D-aware style feature by averaging fea-
tures of several views for a small object (Michel et al., 2022;
Ma et al., 2023), which is not implementable for more views
with limited memory. Per-view or multi-view supervision
may not be sufficient to represent the whole 3D scene style
feature, and worse may dilute the current single-view style
fromother viewswith conflicting gradients (Gao et al., 2023).
More research and investigation are needed for efficient 3D-
aware and even 3D-holistic style features for 3D stylization.

6.5 Evaluation

6.5.1 Standardized Evaluation Across Modalities

The current evaluation metrics do not always align with
human preference. User study is still widely adopted but it
also prevents a precise quantitative analysis ofmethodperfor-
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mance. The heterogeneity of datasets of different modalities
also imposes great challenges for a fair and comprehensive
comparison of works on different modalities. We believe
there should be some variations from the evaluation of our
benchmark, while concerns should be similar to criteria in
Sect. 4.2.

7 Conclusion

The report has explored the advancements in neural styliza-
tion techniques for diverse 3D data, including mesh, volume,
neural fields, point cloud, and implicit shapes. Through
this comprehensive survey of 3D neural stylization tech-
niques and corresponding applications, we highlighted the
importance of neural stylization in accelerating the creative
process, enabling fine-grained control over stylization, and
enhancing artistic expression in various domains such as
movie making, virtual production, and video game devel-
opment. Furthermore, we have introduced a taxonomy for
neural stylization, providing a framework for categorizing
new works in the neural stylization field. Our analysis and
discussion of advanced techniques underscored the ongoing
research efforts aimed at addressing limitations and pushing
the boundaries of neural stylization in the 3D digital domain.
In addition, we proposed a benchmark of 3D neural styliza-
tion, with which we aim to offer reference and inspiration for
future 3D stylization works. Finally, we introduced practical
applications and discussed open challenges and future works
of 3D neural stylization.
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