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Abstract

Supervised learning relies on high-quality labeled data, but obtaining such data
through human annotation is both expensive and time-consuming. Recent work
explores using large language models (LLMs) for annotation, but LLM-generated
labels still fall short of human-level quality. To address this problem, we propose
the Annotation with Critical Thinking (ACT) data pipeline, where LLMs serve
not only as annotators but also as judges to critically identify potential errors.
Human effort is then directed towards reviewing only the most “suspicious” cases,
significantly improving the human annotation efficiency. Our major contributions
are as follows: (1) ACT is applicable to a wide range of domains, including natural
language processing (NLP), computer vision (CV), and multimodal understanding,
by leveraging multimodal-LLMs (MLLMs). (2) Through empirical studies, we
derive 7 insights on how to enhance annotation quality while efficiently reducing
the human cost, and then translate these findings into user-friendly guidelines. (3)
We theoretically analyze how to modify the loss function so that models trained on
ACT data achieve similar performance to those trained on fully human-annotated
data. Our experiments show that the performance gap can be reduced to less than
2% on most benchmark datasets while saving up to 90% of human costs.

1 Introduction
High-quality labeled data is essential for the success of supervised learning, but human annotation
remains costly and difficult to scale [1, 2, 3, 4, 5]. While large language models (LLMs) have recently
emerged as an alternative for data annotation [6, 7, 8, 9, 10], the labels they generate often lack the
accuracy required for training reliable models [11, 12, 13]. The trade-off between annotation cost and
label quality leads to our research question: How can we incorporate LLMs into the data pipeline
to efficiently reduce human cost without compromising downstream training performance? To
address this challenge, we first propose the Annotation with Critical Thinking (ACT) data pipeline.
In this approach, an LLM handles the majority of annotation workloads, while a limited human
budget is strategically allocated to reviewing samples flagged as potentially erroneous by another
LLM-based error detector (the criticizer). Then, we provide a theoretical analysis of how to ensure
that models trained on ACT data are comparable to those trained on fully human-annotated data. An
illustration of the ACT data pipeline and downstream training is provided in Figure 1.

While the majority of LLM-based data pipelines solely focus on natural language processing (NLP)
[12, 14, 15, 16, 17], our method further extends to visual scenarios by leveraging multimodal-LLMs
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Figure 1: Illustration of the ACT data pipeline (left) and the user guidelines (right).

(MLLMs), thus supporting a wider range of practical domains, such as computer vision (CV) and
multimodal understanding. In addition, unlike some existing methods that are limited to white-box
models (i.e., those with accessible internal representations such as logit scores) [18, 19], our approach
is agnostic to model accessibility. This allows us to effectively unify both white-box and black-box
MLLMs, and enables the exploration into a broader spectrum of model families. Furthermore, in
contrast to some related works [16, 17, 19], our data pipeline is training-free, waiving the need for
additional training costs on annotators or criticizers.

The primary goal of this paper is to introduce a practically valuable and user-friendly data annotation
pipeline. Specifically, we aim to enable future users—when faced with a new data annotation task—to
quickly determine how to set up the entire pipeline and seamlessly deploy it in production. To this
end, we preface a summary of key takeaways in the form of user guidelines in Figure 1, which distill
the core insights from subsequent explorations in our paper into actionable steps.

The main discussions in this paper are divided into two parts, each addressing an important aspect
of the annotation and training process. The first part (Sections 2 to 4) focuses on the annotation
stage, where we explore how to choose appropriate MLLMs and prompt strategies to enhance label
accuracy while efficiently reducing human effort. The second part (Section 5) addresses the challenge
of downstream training. We theoretically analyze how to optimally sample data for human review
and appropriately modify the loss function, such that models trained on ACT data achieve similar
performance to those trained on fully human-annotated datasets. Empirically, we validate that, using
the loss modified from active M-estimation [20], the performance gap can be narrowed to within 2%
while saving up to 90% of human costs.

2 ACT Data Pipeline: Formulation & Key Evaluation Metrics
In this section, we provide a formal mathematical formulation of the ACT data pipeline and introduce
key metrics to evaluate its performance.

Data Annotation. Let X be a space of unlabeled data with a finite space of labels Y . We then denote
the dataset as D = {(xi, yi)|xi ∈ X , yi ∈ Y, i ∈ I}, where the ground truth label yi is assumed to
be unknown, and I = {1, 2, ..., N} is a set of indices. We formulate any data annotation approach
as a function from the functional space F = {f : X → Y} that maps the unlabeled data to labels.
Ideally, given a dataset D, the optimal data annotation f∗ ∈ F satisfies f∗(xi) = yi,∀i ∈ I . We
further denote the sets of all annotations conducted by humans and machines as F (h) ⊂ F and
F (m) ⊂ F , respectively. Without loss of generality, we consider a representative human annotator
f (h) ∈ F (h) and an MLLM-based machine annotator f (m) ∈ F (m) in following discussions. Let
ŷi

(h) = f (h)(xi) and ŷi
(m) = f (m)(xi) be the human- and machine-annotated labels, respectively.

Measure Annotation Quality. We define a scalar function Q : F × F → [Qmin, Qmax] as the
quality measure. Formally, we evaluate the quality of an annotation method f ∈ F as:

Q(f∗, f) = Ex∈X [s(f∗(x), f(x))] ≈ 1

N

∑
i∈I

s(f∗(xi), f(xi)), (1)

where s(·, ·) is a similarity function defined on the label space, such as 0-1 loss when Q is accuracy,
thus the higher value of Q indicates better quality. We generally observe that Q(f∗, f (h)) >
Q(f∗, f (m)), indicating that human annotation is usually more accurate than the machine. Following
the common practice of supervised learning, where human-annotated labels are used as the ground
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truth labels when the latter is not available, we assume that ŷ(h)i = yi for most if not all i ∈ I, thus
Q(f∗, f (h)) ≈ Q(f∗, f∗) = Qmax.

Review Machine Errors with Human. Assume that δ ∈ {0, 1}N is a machine error indicator,
where δi = 1 means ŷ

(m)
i ̸= yi, and 0 otherwise. Then, the refinement of machine annotation

can be done via a correction operator: κδ[f
(m)](xi) = (1− δi) f

(m)(xi) + δif
∗(xi). Practically,

regarding human-annotated labels as the ground truth, the correction operator can be approximated by
the human-correction operator: κδ[f

(m)](xi) ≈ κ
(h)
δ [f (m)](xi) = (1− δi) f

(m)(xi) + δif
(h)(xi).

Accordingly, our goal is to find δ for the following optimization problem:

max
δ

Q
(
f (h), κ

(h)
δ [f (m)]

)
. (2)

Ideally, the optimal solution is the Kronecker delta δŷ(m),ŷ(h) such that δ
ŷ
(m)
i ,ŷ

(h)
i

= 1 if ŷ(m)
i ̸= ŷ

(h)
i ,

and 0 otherwise. This means we replace the erroneous machine-annotated labels with the human-
annotated labels.

ACT Data Pipeline. Now the problem is, we do not know when the machine makes mistakes.
Previous works have validated the judgmental capabilities of LLMs, where an LLM evaluates answers
generated by another LLM or itself to enhance the generator’s inference quality [21, 22, 23, 24].
Enlightened by this idea, we adopt a pre-trained MLLM g as the criticizer to determine whether
the annotator f (m) assigns the wrong label for each data pair (xi, ŷ

(m)
i ). Considering that human

resources are limited, instead of generating binary decisions, we query the criticizer to estimate the
probability of error. Then, we sample the data for human review based on this estimated probability,
ensuring that the total sample size does not exceed a given human budget B. Mathematically, let
ϵi = P(yi ̸= ŷ

(m)
i |xi) denote the true error probability, which is then estimated by ϵ̂i = g(xi, ŷ

(m)
i ).

Recall that N is the dataset size. Given a human budget B ≤ N , we define a budget-aware
sampling function δ(B) where δi(B) ∼ B(πB(ϵ̂i)). Here, B denotes the Bernoulli distribution, and
πB(·) is a transformation that adjusts the error probability ϵ̂i based on the budget B, ensuring that∑

I δi(B) ≤ B. In this paper, we consider the following sampling rules:

• Normalization [17, 20]: πB(ϵ̂i) = (B × ϵ̂i)/
∑

I ϵ̂i such that
∑

I δi(B) ≤ B.

• Exponential Weighting: πB(ϵ̂i) = 1/(1 + e−β(ϵ̂i−α)), where α ∈ [0, 1] and β ∈ R+ are
hyperparameters that control the center and sharpness of the transformed error distribution.
The hyperparameters are set to satisfy

∑
I δi(B) ≤ B.

• Thresholding: πB(ϵ̂i) = 1(ϵ̂i ≥ τ), where τ is a sampling threshold chosen such that∑
I δi(B) ≤ B. This is a special case of exponential weighting when α = τ and β → ∞.

With the human budget B, our ultimate goal is modified from Equation (2) by adding the budget
constraint as

max
δ(B)

Q
(
f (h), κ

(h)
δ(B)[f

(m)]
)
, s.t.

∑
i∈I

δi(B) ≤ B, (3)

where κ
(h)
δ(B)[f

(m)](xi) = (1− δi(B)) f (m)(xi) + δi(B)f (h)(xi) is the budget-constrained human
correction operator.

As a summary, the ACT data pipeline consists of three steps: (1)Annotation: generating MLLM-
annotated labels for all unlabeled data in the dataset; (2) Error estimation: utilizing another MLLM
as the criticizer to estimate the error probability for each annotation job; (3) Correction: sample data
with high likelihood of machine annotation errors for human review and correction, with the sample
size controlled by a human budget.

Metrics. In the following sections, we will evaluate the effectiveness of various MLLMs and prompt
strategies as components of the ACT data pipeline. Here, we propose two key metrics: (1) Annotation
Quality Gain (AQG): measurement of the annotation quality improved by ACT from machine
annotation given a fixed human budget B; (2) Area under Budget Sensitivity (ABS): measurement of
the overall efficiency of human budget, for which a higher value implies better budget utilization.

Definition 2.1 (Annotation Quality Gain). With a machine annotator f (m), a machine criticizer
g, and a correction operator κ(h)

δ(B) under human budget B, where δi(B) ∼ B(πB(ϵ̂i)) with ϵ̂i =
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g(xi, f
(m)(xi)), we define the Annotation Quality Gain (AQG) of the data pipeline as

AQG
(
f (m), g, B

)
=

Q(f (h), κ
(h)
δ(B)[f

(m)])−Q
(
f (h), f (m)

)
Qmax −Q

(
f (h), f (m)

) , (4)

where the denominator Qmax−Q(f (h), f (m)) scales AQG into range [0, 1], which offsets the influence
of room for improvement.

Definition 2.2 (Area under Budget Sensitivity). Let b ∈ [0, 1] be the proportion of human budget
over the dataset, such that B = ⌊bN⌋, where ⌊·⌋ means round down to the largest integer. With a
machine annotator f (m) and a machine criticizer g, we define the Area under Budget Sensitivity
(ABS) of the data pipeline as

ABS
(
f (m), g

)
=

∫ 1

0

AQG
(
f (m), g, ⌊bN⌋

)
db ≈ 1

N

N∑
B=0

AQG
(
f (m), g, B

)
. (5)

3 Experimental Details
Datasets. Since MLLMs are capable of handling multiple data types, we consider a comprehensive
variety of annotation tasks, including image classification: CIFAR10 [25], Fashion-MNIST (Fashion)
[26], and Stanford Cars (Cars) [27]; text classification: Emotion [28] and Irony [28]; and vision
question-answering (VQA): the close-ended VQA-RAD [29].

MLLMs. We conduct experiments using models from six prominent MLLM families: Chat-
GPT 4o 2024-08-06 (GPT4o) [30], Gemini-1.5-Pro-002 (Gemini1.5P) [31], Claude 3.5 Sonnet
(Claude3.5S) [32], LLaVA OneVision 72B (LLaVA-OV) [33], Qwen 2.5 VL 72B (Qwen2.5VL) [34],
and InternVL 2.5 78B (InternVL2.5) [35]. Among these models, LLaVA-OV, Qwen2.5VL, and
InternVL2.5 are white-box models that provide access to intermediate outputs such as logit scores,
facilitating further fine-grained analyses. In contrast, GPT4o, Gemini1.5P, and Claude3.5S are
black-box models, offering only final responses. Larger models are generally associated with better
criticism functionality [24], hence, we select white-box models with large parameter sizes - each ex-
ceeding 70 billion, to evaluate the data pipeline. For all models, we adopt sampling hyperparameters
p = 0.9, t = 0.7, k = 50, and max new tokens 500 when applicable.

Downstream Models. We employ three pre-trained models for our downstream experiments. For
image classification tasks, we use ResNet18 [36], initialized with default weights pretrained on
ImageNet-1k [37]. For text classification, we utilize the RoBERTa-base model (RoBERTa) [38]. For
the VQA task, we adopt the BLIP-VQA model (blip-vqa-base) [39].

More experimental details of the datasets and downstream training can be found in Appendix A.

4 What Makes ACT Work Better?
In this section, we investigate how to boost ACT’s performance by systematically exploring each
component, namely, the machine annotator, the criticizer, and the associated prompt strategies.
We choose accuracy as the annotation quality measure. In addition, we do not assume a fixed
human annotation budget and adopt ABS as the evaluation metric to capture the pipeline’s overall
efficiency in leveraging human resources to boost the annotation quality. In consideration of time and
computational costs, results reported are from a single run per experiment; but a stability analysis in
Appendix B demonstrates the robustness of the observations. Examples of prompt strategies explored
are provided in Appendix C.

4.1 Exploration of Machine Annotators
We consider two types of prompt strategies for machine annotators: (1) Naïve annotation (naïve):
directly output the label; (2) Annotation with Chain-of-Thought (CoT) [40]: output the step-by-step
reasoning with the label. The results are shown in Figure 2.

Insight 1: GPT4o is a generally promising annotator. We observe that GPT4o achieves the highest
annotation accuracy on most datasets. While LLaVA-OV performs best on VQA-RAD, it struggles
with image classification tasks (CIFAR-10 and Fashion).

Insight 2: CoT is not consistently helpful with annotation. The results do not show a clear benefit
from using CoT overall. However, for GPT4o specifically, CoT improves performance across all
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tasks. Therefore, in the following exploration of criticizers, we will adopt GPT4o with the CoT
prompting strategy as the base annotator.

4.2 Exploration of Machine Criticizers
Recall that we categorize MLLMs into two types: black-box and white-box, based on whether they
provide access to the underlying logit probabilities. Accordingly, we design several strategies for
each type to measure the error probabilities of the annotator. For simplicity, we use the thresholding
sampling rule in the criticizer experiments. In Appendix B, we demonstrate that different sampling
rules have minimal impact on the ABS results.

4.2.1 Black-box Criticism Strategies
Black-box criticism strategies refer to methods that query models for error elicitation in the response
token space. These strategies are broadly applicable to any model with chatbot functions, which
means they can also be applied to white-box models. In our study, we evaluate four black-box
strategies. While they may not encompass every possible approach, they are representative and
straightforward to implement. A detailed description of these strategies is provided in Table 1. Since
the mc strategy implicitly measures error probability through error levels, we use threshold-based
sampling with random selection when multiple options fit the budget. Other sampling rules may not
directly apply to this strategy. Note that the mc and devil strategies are CoT variants differing mainly
in their error measurement approach. The results of the black-box strategies are presented in Figure 3.

Table 1: Details of black-box criticism strategies.
Strategy Description Input (Prompt) → Output (Response)

Naïve Estimation
(naïve)

Directly estimate the error probability based
on the given data and label. data & label → error_prob

Chain-of-Thought
(CoT) [40]

Output step-by-step reasoning and error
probability. data & label → CoT & error_prob

Multiple Choice
(mc) [41, 42, 43]

Select from predefined error levels from 1
to 5, where higher level means higher error
probability.

data & label → CoT & error_level

Devil’s Advocate
(devil) [44, 45]

Critically assess the CoT produced by the
annotator and estimate its error probability. data & CoT_A → CoT & error_prob

* CoT_A is the CoT obtained from the machine annotator.

Insight 3: Cross-criticism outperforms self-criticism with black-box strategies. Recall that we
use GPT4o as the machine annotator. When GPT4o also serves as the criticizer, the process is referred
to as self-criticism. In contrast, when the criticizer is another model, the process is known as cross-
criticism. Figure 3 indicates that the best ABS scores are typically achieved through cross-criticism.
However, the performance of self-criticism remains highly competitive in most datasets.

Insight 4: Black-box models are better criticizers with black-box strategies. We generally observe
that black-box models (GPT4o, Gemini1.5P, & Claude3.5S) achieve higher ABS scores than white-
box models (LLaVA-OV, Qwen2.5VL, & InternVL2.5) when using black-box strategies. Specifically,
GPT4o and Gemini1.5P tend to perform better on image classification tasks, while Claude3.5S
demonstrates stronger performance on language-focused tasks, including text classification and VQA.

Insight 5: CoT is more helpful with criticism than annotation. Compared to our observations
with the machine annotator, CoT consistently shows more benefits in the criticism process, leading
to an ABS improvement of up to 22.46% over the naïve strategy. We suppose that this is because
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Figure 2: Accuracy of various models as machine annotators with different prompt strategies.
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detecting errors requires explicit reasoning and justification, whereas annotation often relies more
on direct pattern recognition. CoT also demonstrates a clear advantage over other prompt strategies,
achieving the best results on 4 out of the 6 datasets.

4.2.2 White-box Criticism Strategies
With white-box models, we propose two approaches to estimate the error probability: logit probability
and perplexity (PPL). In the logit probability approach, we ask the criticizer to predict if there is an
error and answer "yes" or "no". The estimated error probability is then calculated as:

ϵ̂ = P("yes")/(P("yes") + P("no")), (6)

where P("yes") and P("no") denote the logit probabilities assigned to tokens "yes" and "no".
In the PPL-based approach, we adopt the CoT prompt strategy and indirectly measure the error
by computing the PPL of the criticizer’s CoT. We note that only the threshold-based sampling is
applicable for PPL, as we cannot directly estimate the error probability. During sampling, instances
are prioritized based on the following selection order:

↓ PPL( CoT |"yes") ≻↑ PPL( CoT |"yes") ≻↑ PPL( CoT |"no") ≻↓ PPL( CoT |"no"), (7)

where PPL( CoT |"yes") and PPL( CoT |"no") are corresponding to the PPL of the CoT when
the final decision is "yes" and "no"; ↑ and ↓ means higher and lower PPL values; and ≻ indicates
higher priority in the sampling process. For further clarity, we summarize the white-box strategies in
Table 2. The comparison between the black- and white-box strategies are shown in Figure 4.

Table 2: Details of white-box criticism strategies.

Strategy Description Input (Prompt) → Output (Response)
→ Error Measurement

Naïve Estimation
with Logit Probability
(naïve-logit) [46, 47, 48]

Output "yes" or "no" based on the given
data and label. Error probability is estimated
by the logit probability.

data & label → "yes"/"no"

→ Error estimation via logit probabilities

Chain-of-Thought
with Logit Probability
(CoT-logit)

Output step-by-step reasoning before "yes"
or "no". Error probability is estimated by
the logit probability.

data & label → CoT & "yes"/"no"

→ Error estimation via logit probabilities

Chain-of-Thought
with Perplexity
(CoT-PPL)

Output step-by-step reasoning before "yes"
or "no". Error is indirectly measured by PPL
of the CoT.

data & label → CoT & "yes"/"no"

→ PPL calculation

Insight 6: White-box strategies can occasionally enhance criticism performance. Compared to
black-box strategies, models often achieve higher ABS scores with white-box methods, particularly
with naïve-logit and CoT-PPL. This improvement is more consistently observed with InternVL2.5,
while LLaVA-OV and Qwen2.5VL show smaller gains.
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Figure 3: Results of black-box strategies. The metric shown is ABS (%), where higher values indicate
better annotation efficiency of the ACT data pipeline. The best results are highlighted with black
frames.
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Insight 7: White-box strategies do not consistently outperform black-box strategies. Although
white-box methods occasionally outperform the best black-box ABS, this occurs in only 2 of the 6
datasets tested. The inconsistent performance arises primarily because white-box strategies cannot
leverage powerful black-box models, limiting their effectiveness on the same tasks. Therefore, we
conclude that black-box strategies remain more promising for practical use based on current results.
However, we also conjecture that, as MLLMs continue to advance, a future white-box model with
capabilities comparable to black-box models could make it possible for white-box strategies to
consistently achieve superior performance.

4.3 Bridging Insights and Practical Usability of the ACT Data Pipeline
From the explorations above, we have gained some insights that lead to practical guidelines: (1)
GPT4o with the CoT strategy can serve as a generally good annotator; (2) Black-box criticism
strategies, especially the CoT strategy, provide more generalized practical values with current
MLLMs; (3) While GPT4o self-criticism is a promising setting for the ACT data pipeline, the best
ABS is typically achieved through cross-criticism. Building on these, we further examine model
selection to offer guidance that makes ACT more user-friendly.

The key question of interest is: for a given dataset, how do we choose the annotator and criticizer
to maximize pipeline efficiency? Of course, the effortless default is GPT4o self-criticism with CoT,
which often works well but may not be optimal. To facilitate better selection, we propose a simple
but effective approach based on empirical observations (Figure 5). First, annotation and criticism
abilities are positively correlated, implying that models with strong annotation ability are also likely to
perform well as criticizers. Second, across datasets, the best criticism ABS are consistently achieved
by using the top-performing annotator and the model with second-best annotation ability (i.e., best
among models other than the annotator) as criticizer. We therefore recommend: (1) obtaining a small
test set of human-annotated samples; (2) evaluating annotation ability across available MLLMs; and
(3) selecting the best model as the annotator and the second-best as the criticizer.
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5 ACT as Human: Enhance Downstream Performance with Modified Loss

5.1 Theoretical Discussions of Downstream Training with ACT Data

Problem: The Downstream Challenge. With a dataset annotated by the ACT data pipeline (referred
to as ACT data), the next challenge lies in effectively leveraging it for downstream tasks, such as
supervised fine-tuning (SFT). The ACT data consists of two components: the high-quality human-
annotated data, and the comparatively lower-quality machine-annotated data, which may include
erroneous labels. Relying solely on human-annotated data results in significant data loss, particularly
when human budget is limited. On the other hand, incorporating both human- and machine-annotated
data risks introducing noisy labels, which may disturb the learning process and lead to suboptimal
performance in downstream tasks.

Solution: Active M-estimation. A potential solution to the downstream challenge is active M-
estimation, which proposed a modified loss to ensure effective statistical properties that lead to
promising downstream training [17, 20]. In this work, we adapt the modified loss to ACT data and
design the ACT loss as follows:

L(ACT )
θ =

1

N

N∑
i=1

(
ℓ
(m)
θ,i +

(
ℓθ,i − ℓ

(m)
θ,i

) δi(B)

πB(ϵ̂i)

)
, (8)

where ℓθ and ℓ
(m)
θ are losses computed with ground truth and machine-annotated data, respectively.

δi(B) ∼ B(πB(ϵ̂i)) is the error indicator as discussed in Section 2. In practical implementation,
ground-truth loss is usually estimated with the high-quality human-annotated data.

According to Proposition 5.1 (see proof in Appendix D), while the ACT loss is an unbiased estimate
of the ground truth loss, we note that the variance of ACT loss is minimized when the expectation
term in Equation (9) equals to 0. This can be satisfied or mostly satisfied with: (1) perfect machine
annotator: the machine annotator is perfectly accurate such that ℓ(m)

θ = ℓ
(h)
θ ≈ ℓθ; (2) astute machine

criticizer: when the machine annotation is not sufficiently accurate, the second term can be reduced
by accurate error probability estimation, i.e., πB(ϵ̂) → 1 when machine makes mistakes. This further
demonstrates the importance of our exploration in Section 4.

Proposition 5.1 Statistical Properties of ACT Loss

Suppose Lθ = E(ℓθ(x, y)) is a µ-strongly convex loss. Let ℓ(m)
θ = ℓθ(x, ŷ

(m)) be the loss
computed with machine-annotated data. Then, the ACT loss defined in Equation (8) is an
unbiased loss estimate: E

(
L(ACT )
θ

)
= Lθ [20]. The variance of the ACT loss is given by:

Var
(
L(ACT )
θ

)
=

1

N

(
Var (ℓθ) + E

[(
ℓθ − ℓ

(m)
θ

)2( 1

πB(ϵ̂)
− 1

)])
. (9)

Important Factor: The Sampling Rule. In Section 2, we introduced three sampling rules to keep
the volume of data for human review within a pre-specified human budget. While all rules adapt to
the ACT loss and share similar statistical properties, they can yield very different training outcomes.
We show via Theorem 5.2 (see proof in Appendix D) that when the machine annotator is fixed (i.e., C
is fixed), the upper bound of the gap between parameters learned with ACT loss and ground truth loss
is decided by q, the lower bound of the transformed errors of samples reviewed by human. A small q
increases the likelihood of a large parameter gap and poor model performance. Active M-estimation
[17, 20] uses the normalization rule, but this may perform poorly when the human budget B is small.
This is because πB(ϵ̂i) = (B × ϵ̂i)/

∑
I ϵ̂i becomes close to 0 (q → 0) when B is small compared

to the accumulation of errors in a large dataset. To address this, we propose exponential weighting
and thresholding rules, which map errors of selected samples close to 1 (q → 1), ensuring a small
parameter gap, and eventually, model performance similar to the ground truth loss. Further details of
the ACT losses with different sampling rules are presented in Appendix E.

8



Theorem 5.2 Probabilistic Upper Bound of the Parameter Gap

Let N be the dataset size. Suppose ℓθ is µ-strongly convex, and there exist constants q, C > 0
such that the transformed error πB(ϵ̂i) ≥ q for all i with δi(B) = 1, and the gradient gap
∥∇ℓ

(m)
θ,i − ∇ℓθ,i∥ ≤ C for all i ∈ {1, 2, ..., N}. Then, for an arbitrary p ∈ (0, 1), with

probability at least 1− p, we can bound

∥θ(ACT)
∗ − θ∗∥ ≤

√
8c1 log(2/p)

µ2N
, (10)

where θ
(ACT )
∗ = argminθ L(ACT )

θ , θ∗ = argminθ Lθ, and c1 = (1− q)C2/q.

5.2 Experiments of Downstream Training with ACT Losses
To empirically support our theoretical analysis, we conducted experiments across various data and
loss combinations, with results presented in Table 3. Without affecting the theoretical validity, we
adopt the Cross-entropy loss as ℓθ and apply the power-tuning hyperparameter for all ACT losses
following [17]. We used GPT4o with the CoT strategy for both annotation and criticism as the
default settings of ACT. The human budget is determined by GPT4o’s annotation accuracy—for
instance, with 88.48% accuracy on CIFAR10, the human budget is set to 11.52% of the dataset. We
treat this as the “ideal” budget, as it is the least budget we shall assign to fix all machine errors. In
practice, however, the human budget should be set based on available resources. To further enhance
the completeness of our analyses, we provide the sensitivity analysis of human budget in Appendix F.

We highlight four key observations from the results. First, training solely on machine-annotated data
yields up to 10.15% lower accuracy compared to human-annotated data, whereas ACT reduces the
performance gap to less than 2% for most datasets while saving approximately 70% ∼ 90% human
costs. Second, exponential weighting (exp.) and thresholding (thre.) outperform normalization
(norm.), especially under limited human budgets. On Cars, with an ideal budget of 9.56%, normaliza-
tion leaves a 76.34% gap from full supervision, while exponential weighting and thresholding reduce
it to 1.69% and 1.88%. Third, ACT data with Cross-entropy loss also perform comparably well, as it
is a special case of thresholding (see Appendix E). Lastly, exponential weighting and thresholding
perform similarly overall. Although exponential weighting often yields slightly better results, we
recommend thresholding for its simplicity, as the threshold τ is easier to decide with a given human
budget than the hyperparameters in the exponential weighting transform (α and β).

Table 3: Results of downstream training - test accuracy (%) in form of mean ± std over 5 runs.

Training Data - Loss CIFAR10
(ResNet18)

Fashion
(ResNet18)

Cars
(ResNet18)

Emotion
(RoBERTa)

Irony
(RoBERTa)

VQA-RAD
(BLIP-VQA)

Human only - Cross-entropy Loss 88.66 ± 0.97 93.01 ± 0.63 87.88 ± 0.36 81.82 ± 0.57 70.18 ± 3.23 67.81 ± 1.47

Machine only - Cross-entropy Loss 81.55 ± 1.93 82.86 ± 0.84 83.68 ± 0.17 78.96 ± 2.40 60.71 ± 5.43 61.03 ± 2.05
ACT data - Cross-entropy loss 85.59 ± 0.52 87.50 ± 0.86 85.88 ± 0.26 80.82 ± 1.08 67.83 ± 2.82 61.83 ± 3.27
ACT data - ACT norm. loss 64.70 ± 5.46 69.27 ± 7.25 11.54 ± 0.96 79.87 ± 0.88 65.66 ± 2.00 62.55 ± 3.01
ACT data - ACT exp. loss (Ours) 87.73 ± 0.36 89.73 ± 0.35 86.19 ± 0.14 81.44 ± 0.51 68.49 ± 3.20 67.73 ± 1.33
ACT data - ACT thre. loss (Ours) 87.95 ± 0.35 89.16 ± 0.89 86.00 ± 0.26 81.41 ± 0.64 68.21 ± 1.94 67.02 ± 1.32

Human-Machine performance gap (%) 7.11% 10.15% 4.20% 2.86% 9.47% 6.87%
Human-ACT performance gap (%) 0.71% 3.28% 1.69% 0.38% 1.69% 0.08%
ACT human budget (%) 11.52% 21.81% 9.56% 17.98% 33.79% 30.15%

6 Related Works
Data Annotation with LLMs LLMs’ annotation ability has been widely studied, but mainly in NLP
[6, 7, 12, 13]. The most relevant to our work is CDI [17], which uses a trained XGBoost [49] to detect
LLM errors for human review. However, CDI (1) employs an error detector that lacks flexibility, as it
often requires task-specific design and training with additional data; and (2) uses normalization-based
active M-estimation loss, which we find suboptimal in downstream experiments. We further discuss
CDI and other prior works [15, 16, 18, 19], along with experimental comparisons, in Appendix G.

LLM-as-a-Judge LLM-as-a-Judge refers to using an LLM to evaluate the outputs generated by other
LLMs [23, 50, 51, 52]. Many prior works considered the case where the verifier and generator are the
same model, and focused on the phenomenon of LLM self-improvement [21, 22, 24, 53, 54, 55, 56],
which is the concept we refer to as self-criticism in our study. However, recent studies suggest that
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self-criticism may introduce bias, as the verifier tends to favor its own outputs [57, 58]. This may
explain why we observe better performance with cross-criticism in our ACT data pipeline.

7 Conclusion
In this paper, we introduce the ACT data pipeline, which uses MLLM-generated annotations for most
data while strategically allocating human effort to potentially erroneous cases, as identified by another
MLLM criticizer. We further analyze how to modify the training loss to align the performance of
models trained on ACT data with those trained on fully human-annotated data, supported by both
theoretical analysis and empirical evidence. Although our study is based on current MLLMs, and the
efficiency of the proposed pipeline is constrained by their capabilities, our approach can be readily
adapted to more advanced models in the future. The insights gained from our explorations are likely
to generalize and provide valuable guidance for practical applications and future research.

The main limitation of this work is that we focus primarily on classification tasks, without involving
more complex tasks such as text summarization or open-ended question answering. We provide a
discussion in the Appendix G on how our approach can be extended to these more complex scenarios.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions are stated in the Abstract. The scope is mentioned
in both the Abstract and Introduction (Section 1), i.e., the method is applicable to diverse
application domains such as computer vision (CV), natural language processing (NLP), and
multimodal understanding.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: (1) Our proposed method relies on a strong assumption that human-annotated
labels closely approximate the ground truth (see Section 2 and Section 5). While this
assumption may not always hold, it remains a widely accepted practice in supervised
learning. (2) Due to time and computational constraints, we report experimental results from
a single run in the exploratory analysis presented in Section 4, as stated at the beginning
of that section. However, in Appendix B, we further demonstrate the robustness of these
results using small subsets of the datasets.(3) As discussed in the Conclusion (Section 7),
the efficiency of our proposed data pipeline is currently constrained by the capabilities of
existing MLLMs. Nevertheless, to the best of our knowledge, the method is model-agnostic
and can be readily adapted to more advanced MLLMs as they become available in the future.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: There are two key theoretical results in our paper, Proposition 5.1 and Theorem
5.2. The proofs with full set of assumptions are provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While the code of the proposed data pipeline is not provided, the experiment
results can be reproduced with the information provided in the paper and supplementary
appendices. All datasets used are public datasets with the sources provided in Appendix A.
The main experimental details including the specific versions of MLLMs tested are provided
in Section 3. Other experimental details and examples of prompt strategies are provided in
Appendices A and C, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code is not shared due to business considerations. However, as outlined
in Point 4, the experimental results are reproducible using the information provided in the
paper and the supplementary appendices.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings/details can be found in the paper and supplementary
appendices (see Section 3 and Appendix A).

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: (1) Experiments in Section 4: Due to computational and API cost constraints,
error bars are not reported for the experimental results in Section 4. However, a stability
analysis is provided in Appendix B to illustrate potential variations in the results. (2) Results
in Section 5: All results reported in Section 5 include standard deviations computed over 5
independent training and testing runs to reflect variability.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: We stated in Appendix A that all experiments were conducted with 1 to 8
NVIDIA H100 SXM5 GPUs with 80 GB memories.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not explicitly discuss potential societal impacts, as the work
is not expected to have significant positive or negative effects beyond those commonly
associated with standard machine learning research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of models or datasets with high risk for
misuse. The methods and data used fall within standard LLM/MLLM practices and do not
introduce novel risks beyond those typically associated with academic research in this field.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers of all models used were cited at the first time they were
mentioned in the paper. The source (i.e., website) and license of the datasets are provided in
Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets such as publicly released datasets,
pretrained models, or software tools that would require accompanying documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects.
Although we propose a human-machine collaborative data pipeline, the human annotations
used in our study are derived from labels provided by publicly available datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
Although we propose a human-machine collaborative data pipeline, the human annotations
used in our study are derived from labels provided by publicly available datasets.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Yes, the paper is based on a method that directly involves the use of multimodal-
LLMs (MLLMs) as a core component. The methodology section includes detailed descrip-
tions of how MLLMs are utilized within our proposed data pipeline (see Section 2). The
type and version of MLLMs tested are stated in Section 3. The use of MLLMs in our work
fully complies with NeurIPS policies.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Experimental Details
A.1 Datasets

Table 4: Dataset details.

Dataset Type Description #Classes Size - Train Size - Test

CIFAR10 CV Image classification of basic image categories. 10 50,000 10,000

Fashion-MNIST CV Image classification of cloth items. 10 60,000 10,000

Stanford Cars CV Image classification of car models. 196 8,143 8,040

TweetEval-Emotion NLP Text emotion classification. 4 3,257 1,421

TweetEval-Irony NLP Text rony detection. 2 2,862 784

VQA-RAD (Close-end) VQA Question-answer pairs on radiology images. 2 940 262

Table 5: Dataset sources and licenses retrieved from https://paperswithcode.com/datasets.

Dataset Source License

CIFAR10 https://www.cs.toronto.edu/~kriz/cifar.html N/A

Fashion-MNIST https://github.com/zalandoresearch/fashion-mnist MIT

Stanford Cars https://paperswithcode.com/dataset/stanford-cars Custom (non-commercial)

TweetEval-Emotion https://github.com/cardiffnlp/tweeteval N/A

TweetEval-Irony https://github.com/cardiffnlp/tweeteval N/A

VQA-RAD https://paperswithcode.com/dataset/vqa-rad CC0 1.0 Universal

A.2 Device & Random Seed
All experiments are conducted with 1 to 8 NVIDIA SXM5 H100 GPUs with 80GB memories. When
applicable, we set the random seed to 42 for all controllable sources of randomness.

A.3 Downstream Training
Sampling For the thresholding sampling rule, the threshold τ is determined by the quartile corre-
sponding to the human budget proportion. Specifically, we rank the errors in descending order and
set τ as the quartile value that matches the given proportion of the human budget. For the exponential
weighting sampling rule, we try β = 10 or 100 for all datasets. The mean transition parameter α is
set in the same way as τ , based on the corresponding quartile.

ResNet18 For all datasets, we fine-tune the ResNet18 model initialized with ImageNet-pretrained
weights for 10 epochs. The batch size is set to 4096 for CIFAR-10 and Fashion-MNIST, and 32 for
the Stanford Cars dataset. We use the Adam optimizer for CIFAR-10 and Fashion-MNIST, while
the SGD optimizer is employed for Cars, following the implementation described in https://
www.kaggle.com/code/archanatrivedi/resnet18-on-stanford-car-dataset. The key
hyperparameters include the learning rate, with a search space of [1e-2, 1e-3, 5e-4, 1e-4], and the
power-tuning parameter for ACT losses, with values selected from [0.6, 0.7, 0.8, 0.9, 1.0] (see
Appendix E for more details about the power-tuning parameter).

RoBERTa For text classification tasks, we fine-tune the RoBERTa-base model for 5 epochs. We set
the batch size to 32 and use the AdamW optimizer. The key hyperparameters include the learning
rate, with a search space of [1e-4, 5e-5, 2e-5, 1e-5], and the power-tuning parameter for ACT losses,
with values selected from [0.6, 0.7, 0.8, 0.9, 1.0].

BLIP-VQA For VQA-RAD, we fine-tune the BLIP-VQA model initialized with the blip-vqa-base
for 10 epochs. Since we adopt the close-ended version of VQA-RAD, where answers are limited to
either “Yes” or “No”, we use these two tokens as ground truth. During both training and inference,
the model is prompted to generate either “Yes” or “No” in the response token space. We evaluate
the trained model by checking if the first generated response token—either ’Yes’ or ’No’—matches
the correct answer. We use a batch size of 32 and optimize the model using the AdamW optimizer.
The key hyperparameters include the learning rate, searched over [2e-4, 1e-4, 5e-5, 2e-5], and the
power-tuning parameter for ACT losses, selected from [0.6, 0.7, 0.8, 0.9, 1.0].
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B Stability Analyses
B.1 Robustness of Annotation and Criticism Results
We assess the robustness of both annotation and criticism by repeating the process 5 times for each
MLLM involved in our explorations. We perform the stability test on a subset of all datasets (i.e., 100
random samples per class). The results are shown in Figure 6, Figure 7, and Figure 8, respectively.
We observe that the standard deviations are generally low (most within 2%). In addition, the rank of
abilities does not change after taking account of potential variations in metric values, indicating that
the conclusions drawn from our explorations are robust to randomness.
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Figure 6: Annotation accuracy with error bars (mean ± std). Results are presented for the CoT
prompt strategy across 6 MLLM annotators.
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Figure 7: Criticism ABS with error bars (mean ± std). Results are presented for the black-box CoT
prompt strategy across 6 MLLM criticizers.
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Figure 8: Criticism ABS with error bars (mean ± std). Results are presented for the white-box
naïve-logit prompt strategy across 3 MLLM criticizers.

B.2 Impact of Different Sampling Rules on Criticism
In Figure 9, we present results computed on the full datasets using different sampling rules to evaluate
the criticism ABS. The results indicate that the choice of sampling rule has minimal impact on the
comparative outcomes. Therefore, the insights derived from our analyses using the thresholding rule
remain consistent across other sampling methods as well.
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Figure 9: Criticism ABS with various sampling rules. Results are presented for the black-box CoT
strategy across 6 MLLM criticizers.
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C Examples of Prompt Strategies
Here, we present examples of prompt strategies. For annotation prompt - naïve, we include examples
for all three tasks (image classification, text classification, and VQA) to provide a comprehensive
illustration. For other prompt strategies, we only present examples for image classification, but they
can be easily adapted to other tasks by following the same pattern as the annotation prompts. In the
following examples, {purple} denotes inputs, while [blue] denotes outputs. Note that we require
MLLMs to follow a specific output format to simplify the extraction of CoT and labels. In practice,
we observe that MLLMs follow the formatting instructions well.

Illustrations of Inputs and Outputs

• {image_data}, {text_data}, and {question}: Images, texts, and questions from the datasets.
• {label_list_with_index}: A label list with indices of each label, for example, “0: airplane, 1:

automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog, 7: horse, 8: ship, 9: truck”.
• {first_label}: The first label in the label list, for example, “airplane”.
• {label_index} & [label_index]: The label index generated by the annotator.
• [error_probability] & [error_level]: The error probability or level generated by the criticizer.
• {CoT_A} & [CoT_A]: The CoT generated by the annotator.
• [CoT]: The CoT generated by the criticizer.

[Image Classification] Annotation Prompt - naïve

Prompt
{image_data}
Determine the label of the image classification task. The list of labels is: {label_list_with_index}.
The required output format is: [label_index]. For example, if the label is {first_label}, you
should output [0]. Do not return other texts.
Output
[label_index]

[Text Classification] Annotation Prompt - naïve

Prompt
Determine the label of the text classification task. The text is {text_data}. The list of labels is:
{label_list_with_index}. The required output format is: [label_index]. For example, if the label
is {first_label}, you should output [0]. Do not return other texts.
Output
[label_index]

[VQA-Binary] Annotation Prompt - naïve

Prompt
{image_data}
Answer the question based on the given image. The question is: {question}. The required output
format is [0] for No and [1] for Yes. Do not return other text.
Output
[answer_index]

[Image Classification] Annotation Prompt - CoT

Prompt
{image_data}
Determine the label of the image classification task. The list of labels is: {label_list_with_index}.
The required output format is: [label_index]. Think step-by-step and provide your reasoning.
Example of required output format is: [reasoning][label_index]. The first brackets contain
your step-by-step reasoning, and the second brackets contain the label index such as [0] for
{first_label}. Do not return other texts.
Output
[CoT_A][label_index]
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[Image Classification] Black-box Criticism Prompt - naïve

Prompt
{image_data}
Your task is to produce the probability that the label of the given image is wrong. The list of
labels is: {label_list_with_index}. The label of the image is: {label_index}. The required output
format is: [error_probability]. For example, [0.911]. The error probability should be reported in
3 decimals. Do not return other texts.
Output
[error_probability]

[Image Classification] Black-box Criticism Prompt - CoT

Prompt
{image_data}
Your task is to produce the probability that the label of the given image is wrong. The list of
labels is: {label_list_with_index}. The label of the image is: {label_index}. Think step-by-step
and provide your reasoning. The required output format is: [reasoning][error_probability]. The
first brackets contain your step-by-step reasoning, and the second brackets contain the error
probability such as [0.911]. The error probability should be reported in 3 decimals. Do not return
other texts.
Output
[CoT][error_probability]

[Image Classification] Black-box Criticism Prompt - multiple choice

Prompt
{image_data}
Your task is to analyze if label of the given image is wrong and select from [1: correct, 2:
correct but not sure, 3: not sure, 4: incorrect but not sure, 5: incorrect]. The list of labels
is: {label_list_with_index}. The label of the image is: {label_index}. Think step-by-step
and provide your reasoning. The required output format is: [reasoning][error_level]. The first
brackets contain your step-by-step reasoning, and the second brackets contain the error level
such as [5] for incorrect. Do not return other texts.
Output
[CoT][error_level]

[Image Classification] Black-box Criticism Prompt - devil’s advocate

Prompt
{image_data}
Your task is to produce the probability that the statement related to the label of the given image
is wrong. The list of labels is: {label_list_with_index}. The statement of the image label
is: [CoT_A]. Think step-by-step and provide your reasoning. The required output format is:
[reasoning][error_probability]. The first brackets contain your step-by-step reasoning, and the
second brackets contain the error probability such as [0.911]. The error probability should be
reported in 3 decimals. Do not return other texts.
Output
[CoT][error_probability]
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[Image Classification] White-box Criticism Prompt - naïve

Prompt
{image_data}
Your task is to decide whether the label of the given image is wrong. The list of labels is:
{label_list_with_index}. The label of the image is: {label_index}. The required output is either
Yes or No, where Yes means mistake and No otherwise. Do not return other texts.
Output
Yes/No

[Image Classification] White-box Criticism Prompt - CoT

Prompt
{image_data}
Your task is to decide whether the label of the given image is wrong. The list of labels is:
{label_list_with_index}. The label of the image is: {label_index}. Think step-by-step and
provide your reasoning. The required output format is: [reasoning][answer]. The first brackets
contain your step-by-step reasoning, and the second brackets contain either Yes or No with Yes
meaning mistake and No otherwise. Do not return other texts.
Output
[CoT][Yes/No]
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D Theoretical Proofs
D.1 Proof of Proposition 5.1 - Statistical Properties of ACT Loss (Variance)

Proof. Recall that the ACT loss is defined as:

L(ACT)
θ =

1

N

N∑
i=1

(
ℓ
(m)
θ,i +

(
ℓθ,i − ℓ

(m)
θ,i

) δi(B)

πB(ϵ̂i)

)
, (11)

where δi(B) ∼ B(πB(ϵ̂i)). Then, we define

Zi := ℓ
(m)
θ,i +

(
ℓθ,i − ℓ

(m)
θ,i

)
· δi(B)

πB(ϵ̂i)
, and Z :=

1

N

N∑
i=1

Zi = L(ACT)
θ .

Assuming that data are i.i.d, the variance of the ACT loss is now equivalent to the variance of Z,
which is

Var(Z) = Var

(
1

N

N∑
i=1

Zi

)
=

1

N2

N∑
i=1

Var(Zi). (12)

Hence, it suffices to only calculate the variance of Zi, which can be decomposed into two parts as
Var(Zi) = E[Z2

i ]− (E[Zi])
2. We first expand:

Z2
i =

(
ℓ
(m)
θ,i +

(
ℓθ,i − ℓ

(m)
θ,i

)
· δi(B)

πB(ϵ̂i)
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(
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(m)
θ,i
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(m)
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πB(ϵ̂i)
+ (ℓθ,i − ℓ

(m)
θ,i )2 · δi(B)

πB(ϵ̂i)2
, (13)

where we have δ2i (B) = δi(B) because δi(B) is either 0 or 1. We assume that δi(B) and ℓθ,i are
independent. In addition, it is easy to see that E[δi(B)] = πB(ϵ̂i), and that E[Zi] = E[ℓθ,i]. So, we
calculate the expectation of Z2

i as follows:

E[Z2
i ] =
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ℓ
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)2
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(m)
θ,i E

[
ℓθ,i − ℓ

(m)
θ,i

]
+ E

[(
ℓθ,i − ℓ

(m)
θ,i

)2
· 1

πB(ϵ̂i)

]
= E

[
ℓ2θ,i −

(
ℓθ,i − ℓ

(m)
θ,i

)2]
+ E

[(
ℓθ,i − ℓ

(m)
θ,i

)2
· 1

πB(ϵ̂i)

]
= E

[
ℓ2θ,i
]
+ E

[(
ℓθ,i − ℓ

(m)
θ,i

)2
·
(

1

πB(ϵ̂i)
− 1

)]
(14)

Thus, we have
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Finally, we can show that

Var
(
L(ACT )

)
= Var(Z) =

1

N2

N∑
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Var(Zi)

=
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(
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. (16)

This completes the proof.
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D.2 Proof of Theorem 5.2 - Probabilistic Upper Bound of the Parameter Gap

Proof. From the definition of ACT loss in Equation (11), we can show that

∇L(ACT )
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1

N

N∑
i=1

πi∇ℓθ,i +
1

N

N∑
i=1
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where we let πi =
δi(B)
πB(ϵ̂i)

and Lθ = 1
N ℓθ,i.

It is easy to see E
[
(1− πi)

(
∇ℓ

(m)
θ,i −∇ℓθ,i
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= 0. Assume there exist constants q, C > 0 such that

the transformed error πB(ϵ̂i) ≥ q for all i with δi(B) = 1, and the gradient gap
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q
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Then we apply the vector Bernstein’s inequality (e.g., Lemma 18 in [59]) such that
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for 0 < ϵ < c1
c0

. Then, with a probability of at least 1− p where p ∈ (0, 1), we have∥∥∥∥∥ 1
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for any N ≥ 8c20 log(2/p)/c1.

Finally, due to the µ-strong convexity of ℓ(·)θ,i and thus L(·)
θ , with a probability of at least 1− p, we

can bound the parameter gap∥∥∥θ(ACT )
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where θ
(ACT )
∗ = argminθ L(ACT )

θ , and θ∗ = argminθ Lθ.

This completes the proof.
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E Further Details of ACT Losses
E.1 ACT Losses with Different Sampling Rules
The ACT losses with different sampling rules are listed as follows:

• Normalization [17, 20]

L(ACT)
θ =

1

N
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i=1

(
λℓ

(m)
θ,i +

(
ℓθ,i − λℓ

(m)
θ,i

)
×

δi(B)×
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n=1 ϵ̂n
B × ϵ̂i

)
; (21)

• Exponential Weighting

L(ACT)
θ =

1
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θ,i +
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(
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; (22)

• Thresholding
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1
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(
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(m)
θ,i +

(
ℓθ,i − λℓ

(m)
θ,i

)
× δi(B)

)
, (23)

where λ ∈ [0, 1] is the power tuning parameter [17, 60], which controls the extent to which machine
annotations are utilized. Specifically, λ = 0 corresponds to completely ignoring machine annotations,
while λ = 1 corresponds to the full usage. Notably, when employing the thresholding sampling
rule with λ = 1, the ACT loss is equivalent to the standard Cross-entropy loss computed using
human-annotated labels when available, and machine-annotated labels otherwise. Therefore, we
stated in Section 5.2 that the Cross-entropy loss is a special case of the ACT loss.

E.2 Distributions of Transformed Errors with Different Sampling Rules
In Figure 10, we present the distributions of transformed errors for data samples reviewed by humans
(δ(B) = 1) under different sampling strategies. We observe that, with normalization sampling, the
lower bounds of the transformed errors are close to 0 across all presented datasets. In contrast, for
exponential weighting, the lower bounds typically around 0.8, while thresholding yields a consistent
lower bound of 1.0. Based on Theorem 5.2, these results provide an explanation for why exponential
weighting and thresholding can lead to better downstream training performance.
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Figure 10: Distributions of transformed errors with different sampling rules (δ(B) = 1). B is set to
the ideal human budget for each dataset.
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F Sensitivity Analyses of Human Budget
F.1 AQG vs. Human Budget
In Figure 11, we illustrate how Annotation Quality Gain (AQG) changes with the human budget
proportion. We observe that as the human budget increases, AQG generally rises rapidly at first, then
begins to plateau after a certain point. This initial rapid increase suggests that the human-corrected
samples tend to be more obvious and easily identifiable errors. On most datasets, AQG does not
reach 100% before the human budget reaches its maximum. In other words, it is usually difficult to
achieve perfect annotation quality without reviewing all examples. This indicates that some subtle
or hard-to-detect errors are unavoidable. However, we will show in Figure 12 that this does not
undermine the effectiveness of using ACT to reduce human effort. With the ACT loss, a promising
downstream training does not rely on perfectly labeled data.
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Figure 11: How AQG changes with human budget (%). The results are presented for GPT4o self-
criticism with 4 black-box strategies.
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F.2 Downstream Performance vs. Human Budget
We conducted the human budget sensitivity experiments using GPT4o self-criticism and the threshold-
ing sampling rule. The results are shown in Figure 12. We observe that both annotation accuracy and
downstream accuracy generally increase with a larger human budget. When using the ideal budget, a
performance gap can be observed across all datasets. This is because the criticizer is not perfectly
accurate, leading to some overlooked mislabeled data, which slightly degrades the final training
performance. In Figure 12, we also show the downstream performance gain achieved by adding a
10% buffer budget on top of the ideal budget. In 4 out of 6 datasets, this buffer nearly eliminates
the performance gap, while the gap is significantly reduced in the other 2 datasets. Therefore, we
recommend first evaluating the annotator’s accuracy, and then adding a reasonable buffer to
the ideal budget based on the observed error rate.
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Figure 12: How annotation accuracy and downstream accuracy change with the human budget (%).
The black vertical line shows the position of the ideal human budget (i.e., one minus the initial
annotator accuracy). The grey area shows the buffer budget over the ideal budget.
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G Extended Discussions and Experiments
G.1 Additional Related Works
Enhance Data Annotation with LLMs

To improve the quality of LLM annotation, AdaICL adopts in-context learning (ICL) with examples
annotated by human [18]. The ICL examples are actively selected based on LLM logit probabilities
during annotation, which means their method only supports white-box LLMs. In addition, AdaICL
lacks mechanisms for long-context visual inference, making it difficult to apply directly to vision-
based tasks. This is because retrieving and encoding a large number of visual examples during
inference would incur prohibitive computational costs [61, 62]. However, we consider ICL as a
potential direction for future work, particularly as a component in our data pipeline for building an
annotator.

Other related works typically follow a three-step LLM-human collaborative framework: (1) LLMs
generate initial labels, (2) a verifier assesses the correctness of these labels and outputs verification
scores, and (3) human annotators re-annotate a selected subset of labels based on these scores
[15, 16, 17, 19]. The primary distinction among these methods lies in the design of the verifier.
For instance, Model-in-the-Loop (MILO) [19] utilizes the logit scores from another LLM-based
verifier (similar to our white-box criticizer). In contrast, MEGAnno+ [15] directly employs the logit
probabilities from the LLM annotator itself. Another framework proposed by [63] uses a verifier
implemented as a Support Vector Machine [64], Random Forests [65], or BERT [66], trained on
additional human-annotated data. Unlike our approach, the aforementioned methods focus solely
on annotation accuracy without considering the utility of annotations for downstream training. This
narrow focus limits their effectiveness, as high-accuracy labels do not necessarily translate into
meaningful model improvements.

The most relevant work to our research is CDI [17], which identifies LLM errors using a trained
XGBoost model [49] and relies on human annotators for correction. During the annotation process,
CDI prompts annotators to provide both labels and corresponding verbalized confidence scores.
These confidence scores are provided in a black-box manner, where higher values indicate greater
confidence. For example, an annotator might respond, “The label is cat, and my confidence is 0.999,”
to express high certainty. The XGBoost model then uses these confidence scores as input to learn
and predict error probabilities. The ground truth is either 0 or 1 depending on the correctness of the
annotation, and then the logit probabilities are regarded as error probabilities. However, CDI has two
key limitations: (1) its error detection mechanism lacks flexibility, requiring task-specific design and
additional training data, and (2) it employs a normalization-based active M-estimation loss, which we
find suboptimal in downstream tasks.
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G.2 Potential Improvements of ACT
Here, we outline several potential improvements to the ACT data pipeline, as inspired by the
related works. First, drawing from AdaICL [18], we could enhance the prompts of the MLLM
annotator—particularly for NLP tasks—by incorporating in-context examples. Second, following the
approach of MEGAanno+ [15], it may be beneficial to combine the annotator’s confidence scores
with the criticizer’s error estimations to better capture the insights from both perspectives. Finally,
while the current pipeline relies on a single MLLM annotator–criticizer pair, it could be extended to a
multi-model setup using techniques such as majority voting or peer discussion in [13]. An illustration
is provided in Figure 13.

For decision of the human budget, one may consider dynamically estimating and adjusting the human
budget during the review process. As more human-verified labels are accumulated over time, it
becomes increasingly feasible to refine the error rate estimation and update the budget allocation
accordingly.
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Figure 13: Illustration of potential improvements of the ACT data pipeline.

G.3 Supplementary Experiments
G.3.1 Comparison with CDI
In Table 6, we compare the downstream performance of models trained on ACT and CDI data using
various loss functions. Note that CDI data with the ACT norm. loss is corresponding to the approach
proposed in [17]. We apply the same human budget (the ideal human budget) to both ACT and CDI.
For CDI, a proportion of this budget is allocated to training the XGBoost error detector. The results
demonstrate that ACT consistently outperforms CDI in reducing the downstream performance gap.

Table 6: Comparison between ACT and CDI in downstream tasks. The test accuracy (%) is reported
in form of mean ± std over 5 runs.

Training Data - Loss CIFAR10
(ResNet18)

Fashion
(ResNet18)

Cars
(ResNet18)

Emotion
(RoBERTa)

Irony
(RoBERTa)

VQA-RAD
(BLIP-VQA)

Human only - Cross-entropy Loss 88.66 ± 0.97 93.01 ± 0.63 87.88 ± 0.36 81.82 ± 0.57 70.18 ± 3.23 67.81 ± 1.47

CDI data - Cross-entropy loss 84.02 ± 0.85 86.99 ± 0.72 85.61 ± 0.24 79.91 ± 1.37 66.63 ± 3.44 61.77 ± 3.41
CDI data - ACT norm. loss 72.22 ± 1.71 83.38 ± 1.79 10.76 ± 1.12 79.05 ± 1.15 65.96 ± 3.36 62.24 ± 3.05
CDI data - ACT exp. loss 84.99 ± 0.31 87.72 ± 0.54 86.03 ± 0.15 80.51 ± 1.49 68.44 ± 2.22 67.33 ± 1.66
CDI data - ACT thre. loss 84.91 ± 0.57 87.64 ± 0.52 85.89 ± 0.27 80.00 ± 0.83 68.19 ± 2.29 67.44 ± 2.16

ACT data - Cross-entropy loss 85.59 ± 0.52 87.50 ± 0.86 85.88 ± 0.26 80.82 ± 1.08 67.83 ± 2.82 61.83 ± 3.27
ACT data - ACT norm. loss 64.70 ± 5.46 69.27 ± 7.25 11.54 ± 0.96 79.87 ± 0.88 65.66 ± 2.00 62.55 ± 3.01
ACT data - ACT exp. loss (Ours) 87.73 ± 0.36 89.73 ± 0.35 86.19 ± 0.14 81.44 ± 0.51 68.49 ± 3.20 67.73 ± 1.33
ACT data - ACT thre. loss (Ours) 87.95 ± 0.35 89.16 ± 0.89 86.00 ± 0.26 81.41 ± 0.64 68.21 ± 1.94 67.02 ± 1.32

Human-CDI performance gap (%) 3.67% 5.29% 1.85% 1.31% 1.74% 0.37%
Human-ACT performance gap (%) 0.71% 3.28% 1.69% 0.38% 1.69% 0.08%
Human budget (%) 11.52% 21.81% 9.56% 17.98% 33.79% 30.15%
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G.3.2 Comparison with Active Learning and Pseudo Labels
We compare our method with more existing baselines from related fields on CIFAR10 (ResNet18):

• Pseudo Labelling: We randomly label 11.52% of the data to fine-tune ResNet18, then
iteratively add high-confidence predictions (e.g., logit probability > 0.9) as pseudo labels to
the training set.

• Active Pseudo Labelling: We start by labelling 100 samples per class and progressively
select uncertain samples (based on prediction entropy) for annotation until the human budget
is exhausted.

The results shown in Table 7 indicate that our approach outperforms these two methods by 4.28%
and 2.56% in terms of performance gap from 100% human annotation.

Table 7: Comparison with baselines from related fields.

Method Accuracy (%) Human Performance Gap (%)

Human-only – CE loss 88.66± 0.97 –

ACT – ACT thre. loss (Ours) 87.95± 0.35 0.71

Pseudo labeling – CE loss 83.67± 0.32 4.99

Active Pseudo labeling – CE loss 85.39± 0.91 3.27

G.3.3 More Challenging Tasks: Biased and Long-tail Data
To validate the effectiveness of our method in more challenging tasks, we conduct two experiments:

• Allenoise [67] is a product classification dataset where similar category names often result
in subjective and biased labelling. We focus on 20 labels under the "Sports & Travel"
category, which exhibit approximately 70% label similarity—making the task ambiguous
and prone to bias. Additionally, the largest category contains 27 times more samples than
the smallest, reflecting a significant long-tail distribution. The results are shown in Table
8, demonstrating that ACT yields only a 1.4% performance gap in accuracy and a 0.0041
difference in F1-score compared to full human annotation.

Table 8: Experiment results on AlleNoise with RoBERTa.

Data – Loss (AlleNoise – RoBERTa) Accuracy (%) F1-score

Human annotation – CE loss 91.54± 1.84 0.8448± 0.0165

ACT data – ACT thre. loss (GPT4o self-criticism) 90.14± 1.79 0.8397± 0.0191

Human–ACT performance gap 1.40 0.0041

• CIFAR10-LT 3 is a long-tailed variant of CIFAR10 with an imbalance ratio of 100 between
the most and least frequent classes. As shown in Table 9, ACT achieves a performance gap
of 1.97% in accuracy and 0.0148 in F1-score compared to full human annotation.

Table 9: Experiment results on CIFAR10-LT with ResNet.

Data – Loss (CIFAR10-LT – ResNet) Accuracy (%) F1-score

Human annotation – CE loss 70.29± 2.15 0.6820± 0.0261

ACT data – ACT thre. loss (GPT4o self-criticism) 68.32± 1.66 0.6672± 0.0263

ACT – Human performance gap 1.97 0.0148

3https://huggingface.co/datasets/tomas-gajarsky/cifar10-lt
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G.3.4 Analyses on Critic True Positives and False Positives
a. Analyze Criticism Reliability with False Positives

Table 10 reports the number of false positives produced by different error detection methods across
six datasets. The human budget is consistent with Table 3. We compare GPT4o self-criticism and the
best-performing cross-criticizer for each task, with random error sampling included as a baseline. We
observe the following:

• MLLM-based error detection significantly outperforms random sampling, consistently
yielding fewer false positives across tasks.

• False positives account for approximately 5%–15% of the total dataset, depending on the
complexity and ambiguity of the task.

These results suggest that MLLM-based criticism is an effective strategy for identifying annotation
errors. In addition, there remains room for improvement, especially through incorporating sample-
specific analysis and adaptive selection mechanisms in real-world applications.

Table 10: Number of false positives by different error detection methods across six datasets.

Error Detection Methods CIFAR10 (data size∼50k) Fashion (data size∼60k) Cars (data size∼8k)

Random Sampling 4866 9852 704

GPT4o Self-Criticizer 2805 6395 594

Optimal Cross-Criticizer 2692 6087 514

Error Detection Methods Emotion (data size∼3k) Irony (data size∼3k) VQA-RAD (data size∼1k)

Random Sampling 480 640 198

GPT4o Self-Criticizer 302 591 123

Optimal Cross-Criticizer 299 455 113

b. Compare Self- and Cross-Criticism with True Positives

We use dataset VQA-RAD as an example, where GPT4o only achieves 69.85% annotation accuracy.
The human budget is set to 30.15%. In Table 11, we present the number of true positives and
annotation accuracy after human correction. Randomly sampled errors are included as a baseline.
It is clear that all MLLM criticizers perform much better than random sampling, while self- and
cross-criticism do not show huge differences. This further strengthens the claim that self-criticism
performs competitively with cross-criticism.

Table 11: Number of true positives and annotation accuracy after human correction (VQA-RAD).

Error Detection Methods #True Positives Final Annotation Accuracy

Random Sampling 85 78.89%

GPT4o (Self-criticism) 160 86.87%

Gemini1.5P (Cross-criticism) 153 86.12%

Claude3.5S (Cross-criticism) 159 86.76%

LLaVA-OV (Cross-criticism) 158 86.66%

Qwen2.5VL (Cross-criticism) 170 87.94%

InternVL2.5 (Cross-criticism) 149 85.70%
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G.3.5 Ablation of Annotator-Criticizer Selection
We conduct ablation experiments that examine how annotator-criticizer choice affects final down-
stream model performance. The experiments are conducted with Cars, because variations in self- and
cross-criticism performance are large on this dataset based on Figure 3. So, we would like to know
whether the downstream performance also varies a lot.

In Table 12, we find that the effectiveness of criticism is indeed related to downstream performance.
The best-performing criticizer (highest ABS) yields the smallest performance gap. However, the
default GPT4o also performs reasonably well, keeping the gap within 2%.

Table 12: Ablation on how annotator-criticizer choice affects final downstream model performance.
The results are reported in ABS (%) and accuracy (%).

Cars – GPT4o Annotation GPT4o Gemini1.5P Claude3.5S LLaVA-OV Qwen2.5VL InternVL2.5

Criticism ability – ABS 60.6 70.9 53.2 55.9 54.4 57.5

ACT data – ACT thre. loss 86.00± 0.26 86.21± 0.31 85.21± 0.35 85.39± 0.29 85.80± 0.29 85.45± 0.31

Human–ACT performance gap 1.88 1.67 2.67 2.49 2.08 2.43

G.3.6 Cost-Benefit Analysis
We present a cost-benefit analysis using CIFAR10 (50k samples) to compare three annotation
strategies: (1) 100% human annotation, (2) ACT with GPT4o self-criticism, and (3) ACT with GPT4o
& Qwen2.5VL cross-criticism. Note that we exclude the cases where GPUs are not rented but owned,
whose costs are difficult to estimate.

As shown in Table 13, API-based approaches are the most cost-efficient. We also highlight that mon-
etary costs are not the only concern. Human annotation also incurs significant time and educational
costs, further highlighting the efficiency of our machine-based approach.

Table 13: Cost comparison between human-only annotation and ACT approaches.

Item Human-only ACT (GPT4o-GPT4o) ACT (GPT4o-Qwen2.5VL)

GPT4o Annotation
API costs (OpenAI)

– ∼200 tokens × 10 / 1M = 0.002/im-
age. Total = 50,000 × 0.002 = $100

Same as left → $100

GPT4o CoT Criticism
API costs (OpenAI)

– ∼200 tokens × 10 / 1M = 0.002/im-
age. Total = 50,000 × 0.002 = $100

–

Qwen2.5VL CoT Criticism
GPU rent costs (RunPod)

– – 8 A100 GPUs × 144 hrs ×
$1.74/hr ≈ $2000

Human Annotation / Correction
Human costs (AWS avg.)

50,000 images ×
$0.08 = $4000

10% × 50,000 = 5,000 images
→ 5,000 × $0.08 = $400

Same as left → $400

Total Costs $4000 $600 $2500
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G.4 Extend ACT to More Complex Tasks
For tasks where the notion of “correct” and “incorrect” becomes subjective, the criticizer can output
a continuous quality score or a relative ranking rather than a binary error probability.

The criticizer can leverage a strong evaluator, e.g., an MLLM-based evaluator or a reward model, to
detect semantic inconsistencies, factual mistakes, or language issues in each candidate output and
return a numerical score or rank.

For content-dense tasks such as multi-fact text summarisation, we can first segment the summary
into individual factual statements and then evaluate each statement separately. This allows human to
focus only on the segments flagged as uncertain, rather than re-checking the entire summary.

G.5 Ethical Considerations
A potential ethical consideration of ACT lies in its influence on traditional annotation jobs, as the
reduction of human effort could be perceived as a threat to existing human roles. However, the primary
motivation of ACT is to alleviate the scalability limitations inherent in fully manual annotation, rather
than to replace human annotators. By design, ACT facilitates human–AI collaboration, assigning
human oversight to high-risk or ambiguous cases where nuanced judgment is essential. Importantly,
this approach may also help mitigate the psychological burden associated with labeling harmful or
sensitive content (e.g., depictions of violence or nudity), since human intervention is required only
for a limited subset of critical instances.
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