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ABSTRACT

Influence functions are classic techniques from robust statistics based on first-
order Taylor approximations that have been widely used in the machine learning
community to estimate small perturbations of datasets accurately to the model.
However, existing researches concentrate on the estimate the perturbations of the
training or pre-training points. In this paper, we introduce the influence functions
to predict the effects of removing features or parameters. It is worth emphasiz-
ing that our method can be applied to explore the influence of any combination
of parameters disturbance on the model whether they belong to the same layer or
whether are related. The validation and experiments also demonstrate that the in-
fluence functions for parameters can be used in many fields such as understanding
model structure, model pruning, feature importance ranking, and any other strate-
gies of masking parameters as you can imagine when you want to evaluate the
importance of a group of parameters.

1 INTRODUCTION

With the continuous development of machine learning, it has shown great success in many applica-
tion scenarios such as natural language processing, biology, finance, computer vision, etc (Goodfel-
low et al., 2016). In the process of building a model, we often want to know whether a particular
feature is important or not, and how much this parameter contributes to the effect of the entire model,
especially when the number of the feature or the parameters is huge. An intuitive method is to delete
a feature or set a parameter to 0, retrain the model with the training set, and compare the changes be-
tween the new model and the initial model to understand the impact of a feature or parameter on the
model. However, it is unrealistic to retrain the model for each judgment, which is an unacceptable
cost. Fortunately, we have a simple and powerful tool called influence functions.

Influence functions are classic techniques from robust statistics (Cook & Weisberg, 1980; 1982)
based on first-order Taylor approximations that can estimate small perturbations accurately to the
model. As is shown in (Koh et al., 2019), there have been a large number of useful applications
such as diagnosing batch effects, apportioning credit between different data sources, understanding
effects of different demographic groups or in a multiparty learning setting since the introduction of
influence functions into understanding black-box predictions (Koh & Liang, 2017). However, all the
existing researches are focused on predicting the effects of removing training points on the model.
What would happen if we use influence functions to predict the effects of removing parameters?

In this paper, we first introduce the influence functions to estimate the parameters’ perturbations.
Then we extend the method from linear conditions to non-convex deep learning problems. We
also use the calculation method of inversion of the Hessian matrix based on Hessian vector product
(HVP) (Pearlmutter, 1994). Validation experiments show that the predicted value obtained by our
method has a strong linear correlation with the true value even when we mask 60% of the parameters.
Finally, we cite a few practical applications. The parameter-based influence functions can help us
understand the model structure, assist in pruning strategies and rank the importance of features.

In summary, the major contributions of the paper include:

• We give a general framework and introduce the influence functions for parameters’
perturbations. To the best of our knowledge, All current work on influence functions in
the field of machine learning is based on datasets, and we creatively use influence functions
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to determine the influence of parameter disturbances on the model. Our framework can not
only calculate the omission of a single parameter but also calculate the influence of a set of
parameters on the model. We mentioned the difficulty of derivation and the main theoretical
contributions in Subsection 3.3.

• We propose the method which can be applied to explore the influence of any combina-
tion of parameters disturbance on the model whether they belong to the same layer or
whether they are related. We give the application of constructing a group with different
granularity. For validation in Subsection 5.1, we mask parameters randomly selected. For
understanding model structure in Subsection 5.2, we mask the parameters of each layer as
a group. For model pruning in Subsection 5.3, we prune at the granularity of the channel.
For feature importance ranking in Subsection 5.4, we use whether it is related to a feature
as the grouping standard of the parameter. Our method can evaluate the impact of any com-
bination of parameters on the model at any level, without ignoring the correlation between
the parameters.

• We apply our method to different kinds of tasks and various fields. As shown in Section
5, our method has a wide range of applications in various fields and can be used as a
theoretically guaranteed parameter importance evaluation tool.

The rest of the paper is organized as follows. We introduce the related work in Section 2. In
Section 3, we introduce the parameter-based influence function framework. In Section 4, we extend
the previous linear hypothesis to non-convex and non-convexity and non-convergence models and
introduce the acceleration method based on the Hessian vector product (HVP). In Section 5, we
conducted a large number of experiments. The verification experiments and application experiments
show that our method has a good effect in calculating the influence of the parameter grouped by each
granularity on the model. Finally, we end in Section 6 with some discussion and conclusion.

2 RELATED WORK

Influence functions were first introduced by (Cook & Weisberg, 1980; 1982) and first used in the
machine learning community for interpretability by (Koh & Liang, 2017) to estimate the effects of
upweighting or perturbing a training point and the loss for a particular test point. Since then, influ-
ence functions have been widely used in various machine learning tasks. For example, (Schulam &
Saria, 2019) used influence functions to approximate the gradient to recover a counterfactual distri-
bution and increase model fairness. (Brunet et al., 2019) used influence functions to understand the
origins of bias in word-embeddings. (Chen et al., 2020) identified the effects of pre-training points
using influence functions. From the perspective of machine learning methodology and theory, there
also have been a lot of further studies in recent years. (Koh et al., 2019) gave the accuracy of influ-
ence functions for measuring group effects with experimental and theoretical analysis. (Basu et al.,
2020) showed that second-order influence functions could be used with optimization techniques to
improve the selection of the most influential group for a test sample. To the best of our knowledge,
all the researches on the influence functions are limited to the perturbations of the training or pre-
training points. Our work is the first time to use the influence functions to study the parameter or
feature disturbance.

Model pruning have been widely used for model compression in neural networks (Reed, 1993;
Aghasi et al., 2017; Han et al., 2015; Sun et al., 2016). Weight-based methods, such as (Han et al.,
2015), deleted parameters based on the magnitude of their absolute values, and retrain the remaining
ones to recover the original prediction performance. However, as (LeCun et al., 1990; Hassibi &
Stork, 1993) was shown, parameters with a low magnitude of their absolute values can be neces-
sary for low error. Gradient-based methods, such as (LeCun et al., 1990; Hassibi & Stork, 1993;
Dong et al., 2017), proposed to minimize the least increase of error approximated by second-order
derivatives to prune parameters. But they did not consider the possible cross-correlations that may
exist between the two parameters, at the same time, the method they used to calculate the Hessian
inverse is extremely expensive. In the past few years, (Frankle & Carbin, 2018) found that a stan-
dard pruning technique naturally uncovered subnetworks whose initializations made them capable
of training effectively, which worked well in experiments but lacked sufficient theoretical support.
Our work can be used in model pruning as a kind of gradient-based method, which considers the
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possible cross-correlations between two parameters for the first time and gives a complete theoretical
guarantee.

Feature selection is a long-standing issue that is mainly classified into three methods: filter methods,
wrapper methods, and embedded methods. Filter methods first perform feature selection on the
data set, and then train the model (Battiti, 1994; Song et al., 2007; Chen et al., 2017). The feature
selection process has nothing to do with the subsequent learning process. Wrapper methods is a
kind of greedy search that directly takes the final model performance to be used as the evaluation
criterion for features (Verikas & Bacauskiene, 2002; Kabir et al., 2010; Roy et al., 2015). There-
fore, it is better than filtered selection generally, but the model needs to be trained multiple times in
the feature selection process, the cost is usually much larger than the filtered selection. Embedded
methods is the integration of the feature selection process and the learner training process, both
of which are completed in the same process. The Least Absolute Shrinkage and Selection Oper-
ator (LASSO) (Tibshirani, 1996) is one of the most famous embedded methods, which is aimed
to minimize the loss while enforcing an `1 constraint on the weights of the features. Although
there have been some researches (Lemhadri et al., 2021a;b) of Lasso into neural networks in recent
years. This may not always work for complex neural networks. Therefore, in the context of neural
networks, some gradient-based methods have been proposed, eg., the averaged input gradient (Av-
Grad) (Hechtlinger, 2016) that uses the average of all the saliency maps extracted from individual
instances for feature selection and (Ribeiro et al., 2016; Škrlj et al., 2020) use different aggregation
mechanisms to judge the importance of features. (Sundararajan et al., 2017) use integrated gradients
to solve the problem of gradients tend to be 0 in deep learning. Most of the existing gradient-based
methods simply consider the derivative of the loss w.r.t. the datasets x and attach importance to
experiments. But they do not give theoretically the corresponding relationship between gradient and
disturbance, which is exactly one of our contributions.

3 PARAMETER-BASED INFLUENCE FUNCTIONS

In this section, we detailedly introduce the general form of the application of the influence func-
tion for the parameters and give the changes of the model and the evaluation function when the
parameters have a small disturbance.

3.1 BACKGROUND AND PRELIMINARY

Consider a prediction problem with parameters θ ∈ Θ from an input space X ⊂ Rd to an output
space Y ⊂ R. Given a training set of n instances {(xi, yi)}ni=1 and a loss function `(x, y,θ) which
is twice-differentiable and convex in θ. It’s worth to note that we will give the extensions to relax
these assumptions in Section 4. To train the model, we need to select the model parameters which
can minimize the L2-regularized empirical risk

θ̂1 = arg min
θ1∈Θ

1

n

n∑
i=1

`(xi, yi,θ1) +
λ

2
||θ1||22, (1)

where λ > 0 is the parameter which controls the regularization strength.

We want to measure how the other parameters would change if a particular group of parameters is
masked. In order to achieve our goal, we define a perturbed vector w ∈ {0, 1}m, where m is the
dimension of θ. In this situation θw = θ1−w�θ1 represents the value of parameters masked byw,
where� is the Hadamard product (also known as the element-wise, entrywise or Schur product), θ1
means that all of the parameters are not masked. The number of masked parameters is ||w||1. The
a new potimal model parameters θw can be given by solving the following optimization problem
when ||w||1 number of them is masked

θ̂w = arg min
θw∈Θ

1

n

n∑
i=1

`(xi, yi,θw) +
λ

2
||θw||22. (2)

We can calculate the influence of the change θ̂w − θ̂1 by retraining the model. However, retraining
the model for each removed parameter is extremely slow. In addition, if we calculate the changes
after removing one parameter separately, and use their sum as the change of removing multiple
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parameters, this method completely ignores the relationship between the parameters. There may
be a set of related parameters whose influence on the model as a whole is less than the sum of the
influence of a single parameter on the model. To solve these problems, we introduce the popular
influence functions to calculate the influence of parameter changes on the model.

3.2 PARAMETER-BASED INFLUENCE FUNCTIONS

Theorem 1. Let Hλ = 1
n

∑n
i=1∇2

θ`(xi, yi, θ̂1) +λI is the second derivative of the L2-regularized
empirical risk (defined in Equation 1), and assume it exists. w ∈ {0, 1}m where m is the dimension
of θ. Then, we have

Iparams
def
=

dθ̂w
dw

∣∣∣∣∣
w=0

= −H−1
λ [w � θ̂1 � (H−1

λ w)�−1], (3)

where the operator ‘�−1’ is the Hadamard inverse. This means that B = A�−1 is equal to Bij =

A−1
ij . θ̂1 is calculated in Equation 1.

Remark 1. Equation 3 gives the effects of the disturbance on the parameter to the model. Hλ

describes the local curvature of the function, (H−1
λ w)�−1 implies the possible hidden cross-

correlations between multiple parameters andw�θ̂1 is the original value of the masked parameters,
which is obvious since the masked parameters are removed and the values of changes are equal to
the original ones. In particular, when we only remove one parameter, the form of the influencing
functions for parameters will become Iparams,p = − θp

[H−1
λ ]pp

H−1
λ , where θp is the value of the re-

moved parameter and [H−1
λ ]pp is the inverse of the Hessian matrix at the corresponding position.

We can easily measure the sensitivity of the parameters through this formula.

Next, we can analyze the influence of parameters that have a small disturbance on loss.
Lemma 1. Under the same assumptions as Theorem 1, we have

LSensitivity
def
=

1

n

n∑
i=1

((
`(xi, yi, θ̂w) +

λ

2
||θ̂w||22

)
−
(
`(xi, yi, θ̂1) +

λ

2
||θ̂1||22

))
=

1

2
([w � θ̂1 � (H−1

λ w)�−1])TH−1
λ [w � θ̂1 � (H−1

λ w)�−1],

(4)

where θ̂1 is calculated in Equation 1.
Remark 2. Equation 4 gives the effect of small disturbance of parameters on loss. Similarly,
when we only remove one parameter, the form of the influencing functions for loss will become
LSensitivity,p = 1

2
(θp)2

[H−1
λ ]pp

, where θp is the value of the removed parameter and [H−1
λ ]pp is the in-

verse of the Hessian matrix at the corresponding position. We can measure the sensitivity of the loss
with different parameter masks through this formula instead of retraining the model.

In practical applications, we often use a function feva : Θ→ R to evaluate the model, or we want to
know the influence of parameters on test datasets. In this situation, the change of feva can be used
to judge the influence of the parameters disturbance on the model. We apply the chain rule of the
derivation to give the influence functions of feva

If,z
def
=

dfeva,z(θ̂w)

dw

∣∣∣∣∣
w=0

= ∇θfeva,z(θ̂1)T

[
dθ̂w
dw

∣∣∣∣∣
w=0

]
= −∇θfeva,z(θ̂1)TH−1

λ [θ̂1 � (H−1
λ w)�−1 �w].

(5)

Generally, the form of the evaluation function is the same as the loss function. We can not only
measure the change in the training loss but also in the test loss when point z is in test datasets.
Through the method of influence function, we can intuitively understand the influence of parameter
disturbance on the model, which is widely used in many fields.
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3.3 DIFFICULTIES AND OUR CONTRIBUTION

It is worth emphasizing that the disturbance of parameters is much more complex than that of
datasets. Theoretically, the parameter-based influence functions need Hadamard product and cor-
responding inverse operation, which is different from our common matrix multiplication, which
brings the difficulty of the proof. In terms of practical calculation, the influence functions based on
the dataset often need to calculate HVP once, while the parameter-based influence functions often
need to be calculated several times, which depends on how many combinations of parameters we
need to evaluate.

Besides, our method can be applied to explore the influence of any combination of parameters dis-
turbance on the model. In other words, you can imagine as you can, masking the parameter j of the
i-th layer of the neural network and the parameter n of the m-th layer, regardless of whether they
belong to the same layer or whether they are related. You can get the sensitivity value of the model
with any imaginative mask functions.

4 EXTENSIONS AND TECHNOLOGIES

In this section, we introduce some extensions to our method so that it can be used in deep learning.
Besides this, we will introduce the acceleration method to calculate the results efficiently.

4.1 NON-CONVEXITY AND NON-CONVERGENCE

In Section 3, we assume that θ̂ is the global minimum. In practice, we often use SGD to optimize
parameters or the model we build is totally non-convex. In this situation, we get our parameters θ̃,
where θ̃ 6= θ̂. Hθ̃ could have negative eigenvalues. We can form a convex quadratic approximation
of the loss around θ̃, i.e. ˜̀(θ) = `(θ̃) + ∇θ`(θ̃)T(θ − θ̃) + 1

2 (θ − θ̃)T(Hθ̃ + λI)(θ − θ̃). Here
ψ is a damping term added to insure that Hθ̃ + λI do not have negative eigenvalues. Recall that
Hθ̃,λ = 1

n

∑n
i=1∇2

θ`(xi, yi, θ̃) + λ
2 ||θ̃||

2
2, we have Hθ̃,λ = Hθ̃ + λI. If we choose the appropriate

value of λ, then we can guarantee that Hθ̃,λ is positive definite.

4.2 HESSIAN VECTOR PRODUCT

According to Section 3, it is difficult for us to calculate the Hλ and inverse it. With n training
points and p-dimensions of θ, it costs O(np2) operations to calculate the Hessian matrices and
O(p3) operations to calculate the inverse, which is impossible for us in large scale machine learning
applications. We investigated the common methods of calculating the inverse of the Hessian matrix
(Lorraine et al., 2020; Maclaurin et al., 2015; Larsen et al., 1996; Bengio, 2000). Luckliy we can
efficiently approximate the inverse with the Neumann series:

H−1
λ = lim

i=∞

i∑
j=0

[I −Hλ]j . (6)

We then show how to do this approximation without instantiating any matrices by using efficient
Hessian vector products. In particular, we can uniformly sample (xi, yi) and use∇2

θ`(xi, yi,θ) as an
unbiased estimator of H . This gives us the following procedure: uniformly sample t points from the
training data; define H̃−1

0 v = v; and recursively compute H̃−1
j v = v+ (I −∇2

θ`(xi, yi,θ))H̃−1
j−1v,

taking H̃−1
t v as our final unbiased estimate of H−1v when t is large enough and H̃t is stable.

Compared with directly calculating the inverse of the Hessian matrix, using the Hessian vector
product (Pearlmutter, 1994) can reduce the time complexity from O(np2 + p3) to O(np). At the
same time, we do not need to store the matrix, the space complexity is also reduced from O(p2) to
O(p).

5 VALIDATION AND APPLICATIONS

In this section, we will do some experiments in a single machine with eight cores (Intel Xeon Silver
4210@2.20 GHz), 128 GB of memory, and GeForce RTX 3090 with 24 GB graphics memory.
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(a) mask one parameter (b) mask 5% parameters (c) mask 10% parameters

(d) mask 15% parameters (e) mask 20% parameters (f) mask 30% parameters

(g) mask 40% parameters (h) mask 50% parameter (i) mask 60% parameter

Figure 1: Influence functions vs. retraining. a, b, c, d, e, f, g, h, i represent that we randomly mask
single, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60% of parameters.
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To investigate the accuracy of our method, we firstly verify the accuracy of the approximation by
comparing our influence functions with the retraining model. Then we give the applications of
constructing a group with different granularity. These applications show that our method is effective
and versatile.

5.1 INFLUENCE FUNCTIONS VS. RETRAINING

Influence functions in Section 3 give an approximate method for calculating the change of the model
after masking a group of parameters. To prove the effectiveness of our method, we use a logistic
regression model on the libsvm1 dataset ‘splice-scale’ to compare the approximate results obtained
by our algorithm with the results of model retraining.

To investigate the accuracy of our method, we compare Actual parameters which is calculated by
retraining with Predicted parameters which is predicted using our method. To more accurately rep-
resent the role of our approximation algorithm, we calculate the difference between the parameters
of the initial model and the parameters with a group of parameters masked. In this condition, Actual
diff in parameters = θ̂w − θ̂1, where θ̂w is trained with ||w||1 number of parameters randomly
masked and θ̂1 is optimized without any mask. Predicted diff in parameters is calculated using
Equation 3. We tested the difference between our method and the exact value of the parameters
under different numbers of mask parameters using Logistic regression.

The result is shown in Figure 1. As the figure shows, especially when ||w||1 is relatively small, the
parameter results predicted by our method are almost the same as the real results. When w is large,
our prediction and the real value are still highly correlated. Our method still works very well even
when we mask 60% of the parameters. Using our method, we only need to train once to be able to
approximate any group of masks whether there is any relationship between them or not.

5.2 UNDERSTANDING MODEL STRUCTURE

The parameter-based influence functions can help us understand the structure of the model. In this
subsection, we will show the contribution of neural network depth to the model. We trained a
multi-layer convolutional Alex neural network on MNIST dataset (Deng, 2012), grouped the con-
volutional parameters by each layer, and calculate the impact of them on the model. The following
results can be obtained. For a network with five layers of convolution kernels, the effects of these
five layers were 0.2150, 0.3208, 0.5389, 0.9702, 0.9852. Then we increase the depth of the convo-
lutional neural network. When the number of convolution kernels reached eleven, the effects of each
convolutional layer were 0.0957, 0.1400, 0.2272, 0.3751, 0.2340, 0.0989, 0.0927, 0.1027, 0.1053,
0.1042, 0.1209.

The above results can help us understand the model structure. Firstly, when the depth of the con-
volutional neural network is relatively shallow, as the depth increases, the contribution of the deep
convolutional layer to the model becomes larger and larger. When the depth increases to a certain
level, the contribution of the convolutional layer to the model will decrease instead. This is com-
pletely consistent with the research results of other papers (He et al., 2016; Simonyan & Zisserman,
2014; Goodfellow et al., 2016). In addition, the last layer of the convolutional layer is followed by
the classifier, so compared with the previous layers, its contribution is more important, as the depth
of the model increases, the parameter scale of the model is constantly increasing, and each layer is
the influence of the model is also diminishing.

5.3 MODEL PRUNING

Model pruning can help us reduce the size of the model while providing better generalization. Com-
mon model pruning is mainly divided into two categories, structured pruning, and unstructured
pruning. Among them, structured pruning is mainly used to reduce the computational cost of the
model, and unstructured pruning is more inclined to reduce the parameter scale, thereby reducing
the size of the model. As a parameter-based influence function, our method can be used to evaluate
the contribution of a certain parameter or a certain group of parameters to the model. Therefore, we

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
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Methods Pruning rates

20% 30% 40% 50% 60% 70% 80% 90% 95%

random 0.944 0.869 0.786 0.488 0.207 0.116 0.113 0.113 0.113
random, retraining 0.989 0.989 0.988 0.988 0.988 0.986 0.983 0.113 0.113

our method 0.988 0.988 0.972 0.941 0.869 0.708 0.514 0.174 0.113
our method, retraining 0.989 0.990 0.991 0.991 0.989 0.989 0.989 0.980 0.975

Table 1: The accuracy on the test set after pruning. The accuracy of the model on the test
dataset under the random channel pruning and the parameter-based influence function pruning. We
respectively give the accuracy after pruning and the accuracy that is retrained after pruning.

can use the parameter-based influence function to perform model compression, whether it is a struc-
tured group of parameters, or a specific parameter, or even a random group of parameter clusters
based on imagination, we can always get their influences on the model.

We used the parameter-based influence functions as the pruning rule. We trained an Alex network
with five layers on the MNIST dataset. The accuracy of the full trained network on the test set is
0.989. We judged whether to prune the channel by calculating its contribution to the model. We cut
the channels evenly on each layer according to the pruning rate. To illustrate the effectiveness of our
method, we compared it with random pruning, the results are shown in Table 1.

We can see that when the pruning rate is less than 30%, our method does not even need to be fine-
tuned. This is also consistent with our theory. Our method essentially approximates the optimal
training model after masking some parameters. When the pruning rate reaches 50%, even without
retraining, our method can achieve an accuracy of 0.941. As the proportion of pruning increases,
after using our method with retraining, the accuracy on the test set increases instead, which also
shows that pruning can generalize the model. Finally, even if the pruning rate is as high as 95%, our
method can still get a nice result after retraining. Random pruning can no longer recover the effect
through retraining. This shows that our method can not only directly approximate the optimal model
when the pruning rate is low but also can find the most important parameters after the pruning rate
is high so that better results can be obtained after retraining.

5.4 FEATURE IMPORTANCE RANKING

Feature importance ranking is very important in machine learning (Goodfellow et al., 2016). By
sorting the importance of features, we can intuitively judge which features have a large contribution
to the model and which features have a small contribution, which can further help us understand
the model, reduce the dimensionality of the dataset, or reduce the size of the model. We show that
the parameter-based influence functions can help us rank the importance of features so that we can
better understand each feature of the dataset.

The key idea is to calculate the change of the loss after removing each feature, which is used as a
criterion for evaluating feature sensitivity. To show the importance of features more intuitively, we
have trained multiple binary classifiers on the MNIST dataset. The sensitivity is calculated sepa-
rately for each input feature of different two-classifier models. Draw the result of the calculation in
the form of a picture. The result is shown in Figure 2, Figure 2a is the feature importance distribu-
tion map of the binary classifier of 0 and 8. Figure 2b represents the two classifiers of 1 and 4, and
Figure 2c represents the two classifiers of 1 and 7. The lighter the color, the more important this
feature is.

First of all, it must be emphasized that we are judging the importance of the features in the binary
classification model trained on 10800 training samples, not the importance of the model’s features
to a specific test point. Therefore, our feature importance distribution map only has a rough outline.
In other words, it is to some extent the accumulation of the feature importance of a large number
of training samples. We then analyze the feature importance distribution map. The edge features
of the three images in Figure 2 are black which means that the characteristics of the edge are not
important. This is consistent with our intuitive feeling. The handwritten fonts of the MNIST dataset
are mainly concentrated in the middle of the image.
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(a) 0, 8 classifier (b) 1, 4 classifier (c) 1, 7 classifier

Figure 2: Feature importance distribution map. The importance of each feature in the binary
classifier. The lighter the color, the more important the feature is. (a). The binary classifier of
MNIST dataset 0 and 8. (b). The binary classifier of MNIST dataset 1 and 4. (c). The binary
classifier of MNIST dataset 1 and 7.

Finally, let’s analyze each picture carefully. For the binary classifiers with 0 and 8, the numbers 0
and 8 overlap in the upper and lower arcs to a certain extent. The main difference between them is in
the middle. The result in Figure 2a is consistent with our guess, we can hardly find a half arc above
and below. The middle part is a bit blurry due to the superposition of the importance of training
samples, but we can still see some crossed contours. In the same way, we can see some acute angles
like ‘∠’ corresponding to the number 4 in Figure 2b. In Figure 2c, we can see the horizontal line
corresponding to the number 7. It is worth mentioning that many people will draw a dash on the
vertical line when writing the number 7 to distinguish it from the number 1. This feature is also
clearly shown in our feature sensitivity map. The part of the vertical line where the numbers 1 and
7 overlap is not visible in Figure 2c. This shows that the vertical line is not an important feature to
distinguish between the numbers 1 and 7. The results in Figure 2 are completely consistent with our
intuitive feelings.

6 DISCUSSION AND CONCLUSION

We start from the disturbance of the parameters and apply the influence function to them. Through
a series of verification and application experiments, our method is effective and versatile. The test
results on the libsvm dataset ‘splic-scale’ show that under linear conditions, our method still has a
strong correlation with the true value for the 50% mask rate of the parameters. In a convolutional
neural network, 30% of the parameters are masked in units of channels, and the accuracy can be
basically maintained without retraining. Even if the mask is 95% of the parameters, it can be re-
stored to an accuracy of 0.975 after retraining. Our method can also get good results in ranking
the importance of the model. These validation and experiments show that our method has a good
performance in various fields.

In fact, the core of the influence functions is to perturb the model. In order to explore the impact
of disturbance on the model, existing work has focused on studying the disturbance of the dataset,
and we deduce the influence of parameter disturbance on the model. Our method can be used to
calculate the influence of any combination of parameters. The approximate calculation method
based on Hessian vector product does not lose the correlation between the parameters, which makes
our group of parameter influence functions valuable.

There are many possible applications of our method in other potential fields. For example, in some
scenarios, we may want to know whether there is a correlation between multiple seemingly unre-
lated parameters in the model. The influence of each masked parameter on the model is calculated
separately, and then they are regarded as a group to calculate the influence on the model. We can
judge whether there is an internal correlation between these parameters by comparing them. In
general, we give a new perspective from the parameter-based influence functions which provides a
useful tool for us to understand the model from another angle.
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A PROOF OF THEOREM 1

Proof. Recall that the L2-regularized empirical risk is as follows

R(θ)
def
=

1

n

n∑
i=1

`(xi, yi,θ) +
λ

2
||θ||22. (7)

We assume that R is twice-differentiable and strictly convex in θ, i.e.,

Hλ
def
= ∇2

θR(θ) =
1

n

n∑
i=1

∇2
θ`(xi, yi,θ) + λI. (8)

Note that the masked dimensions in θ̂1 is 0, we have the obvious condition thatw�∆θ+w� θ̂1 =
0, where ∆θ = θ − θ̂1. Thus our goal is to solve the following optimization problem

θ̂w = arg min
θ∈Θ

1

n

n∑
i=1

`(xi, yi,θw) +
λ

2
||θw||22,

s.t. w �∆θ +w � θ̂1 = 0.

(9)

Use the Largrange multipliers method, we can form the Lagrangian function

L = R(θw) +ψT(w �∆θ +w � θ̂1), (10)
where ψ and θ are the same dimension. Now we can calculate the gradient

∂L
∂θ

= ∇θR(θw) +ψTw

= ∇θR(θ̂1) +
1

n
Hλ∆θ +ψTw

=
1

n
Hλ∆θ +ψTw = 0

∂L
∂ψ

= ∆θ +w � θ̂1 = 0.

(11)

For the first formula above, we use Taylor expansion at θ̂1. Since θ̂1 minimzes R(θ). we have
∇R(θ̂1) = 0. We can solve the equation that

∆θ = −H−1
λ [θ̂1 � (H−1

λ w)�−1 �w]. (12)
Thus

Iparams
def
=

dθ̂w
dw

∣∣∣∣∣
w=0

= −H−1
λ [w � θ̂1 � (H−1

λ w)�−1], (13)

which finishs the proof.

B PROOF OF LEMMA 1

Proof. From the definition we have

LSensitivity
def
=

1

n

n∑
i=1

((
`(xi, yi, θ̂w) +

λ

2
||θ̂w||22

)
−
(
`(xi, yi, θ̂1) +

λ

2
||θ̂1||22

))
= ∇θR(θ̂1)dθ̂w +

1

2
dθ̂T

wHλdθ̂w +O(||dθ̂w||3)],

(14)

Since∇θR(θ̂1) = 0, input Equation 13 into Equation 14 we have

LSensitivity =
1

2
dθ̂T

wHλdθ̂w

=
1

2
([w � θ̂1 � (H−1

λ w)�−1])TH−1
λ [w � θ̂1 � (H−1

λ w)�−1],

(15)

which finishs the proof.
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