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ABSTRACT

Gaussian Processes (GPs) are non-parametric Bayesian models widely used for
regression, classification, and other tasks due to their explainability and versatil-
ity. However, GPs face challenges in imbalanced regression, where the skewed
distribution of target labels can greatly harm models’ performances. In this work,
we introduce the Probabilistic Feature Smoothed Partially Independent Training
Conditional Approximation (PFS-PITC) to enhance GP performance in imbal-
anced scenarios. We extract statistical features from the observation space using
equidistant label intervals and apply kernel smoothing to address sampling density
discontinuities. This process enables PFS-PITC to utilize information from nearby
labels within imbalanced datasets, thereby reducing GPs’ sensitivity to such im-
balances. Empirical tests on various imbalanced regression datasets demonstrate
the effectiveness of PFS-PITC, contributing to the robustness of GPs in handling
flawed real-world data and expanding their applicability in challenging data pro-
cessing tasks.

1 INTRODUCTION

Gaussian processes (GPs) are extensively applied in various machine learning domains, including
image classification (Bazi & Melgani (2009); Dutordoir et al. (2020); Xu et al. (2013; 2022)), graph
learning (Chen et al. (2022); Miao et al. (2022)), black-box optimization (Koza et al. (2021)), and
manifold learning (Camastra et al. (2023)), showcasing their versatility and effectiveness. As a
classical non-parametric Bayesian model (Williams & Rasmussen (2006)), GPs offer several advan-
tages: ease of training, resistance to overfitting, uncertainty estimation, and the ability to incorporate
prior knowledge. However, the significant time complexity associated with GPs limits their applica-
tion, rendering them computationally intractable with large-scale datasets.

To enhance the computational efficiency of GPs, various methods have been developed, primarily
focusing on sparse approximation techniques (Liu et al. (2020); Snelson & Ghahramani (2007)).
These methods assume local conditional independence of labels within the training set and use
inducing points to accelerate computation. This approach of summarizing the input space with
strategically chosen inducing points has proven to be highly effective over years of research, leading
to advancements such as SoR (Silverman (1985); Wahba et al. (1998)), DTC (Csató & Opper (2002);
Seeger et al. (2003)), FITC (Snelson & Ghahramani (2005)), and PITC (Quinonero-Candela &
Rasmussen (2005)).

The choice of inducing points is central to GP approximation. Initially, inducing points are se-
lected from the training data (Smola & Bartlett (2000); Seeger et al. (2003)). However, Snelson &
Ghahramani (2005) relaxes this constraint, proposing that inducing points can be viewed as aux-
iliary pseudo-inputs representing the spatial structure of the input data. A natural approach is to
cluster the input data and assign each point to its nearest cluster center. In related studies, methods
like farthest point clustering (Gonzalez (1985)) and random clustering (Sibuya (1993)) have been
used to reduce computational burden. An innovative approach involves computing each cluster cen-
ter using a separate Gaussian Process (Park & Choi (2010)). This method significantly improves
computational efficiency by simplifying calculations with sparse matrices, although it may slightly
increase prediction error when points are sparse within each partition.

While studying target-based partition strategies is equally important, research in this area remains
limited. This approach is crucial for addressing challenges in data imbalance, which is a pervasive
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issue in real-world data collection (Oommen et al. (2011); Spelmen & Porkodi (2018); Krawczyk
(2016)). The concept of balancing data through reweighing the label space originated from stud-
ies on imbalanced categorical data (Huang et al. (2016); Fernández et al. (2011)). Recently, DIR
(Yang et al. (2021)) has advanced this approach by applying kernel smoothing to continuous targets,
achieving state-of-the-art performance on complex multi-model regression tasks. However, methods
like LDS and FDS designed for data smoothing do not provide uncertainty assessment—an essential
aspect for evaluating the performance of learning algorithms.

In this paper, we propose Probabilistic Feature Smoothed Partially Independent Training Condi-
tional Approximation (PFS-PITC), a target-based partition and smoothing strategy to leverage the
data approximation flexibility of PITC. Labels are divided into equidistant intervals to address data
imbalance in training labels. Kernel smoothing is then applied, followed by a Gaussian sampling
procedure to generate clustering centers for each label layer. According to theoretical analysis and
multiple experiments, PFS-PITC brings reliable performance boost on datasets with underrepre-
sented label space, providing a feasible way to adopt Gaussian Process to imbalanced regression
missions.

2 RELATED WORK

2.1 SPARSE GAUSSIAN PROCESS APPROXIMATIONS

Continuous target space

N
um

be
r o

f S
am

pl
es

Under-represented target space

Figure 1: PFS-PITC aims to enhance the per-
formance of Gaussian Processes on imbalanced
regression datasets by minimizing the impact of
under-represented label spaces.

Gaussian Processes (GPs) are versatile prob-
abilistic models that represent an underlying
function as a distribution over possible func-
tions. This framework allows for the integra-
tion of prior knowledge through prior mean and
kernel functions, facilitating the accurate mod-
eling of complex, non-linear relationships in
real-world data (Marrel et al. (2008); Jones &
Johnson (2009)). However, the application of
GP is often limited by its unfavourable time
scaling. The O(N3) cost of matrix inversion
during training and the O(N2) cost per pre-
diction limit the application of GPs to large-
scale datasets. To address this drawback, sev-
eral sparse GP approximations have been devel-
oped, reducing training time to O(NM2) and
testing time to O(M2)Csató & Opper (2002);
Snelson & Ghahramani (2005) (where N and
M is the number of training and inducing samples).

Sparse GP approximations are derived from relaxing the conditional probability of the latent func-
tion f and the observation function fT given the inducing variables, as comprehensively reviewed in
Quinonero-Candela & Rasmussen (2005). To elucidate the distinctions among these closely related
approximations, we will summarize the specific relaxations of several popular methods:

• The Deterministic Training Conditional Approximation (DTC)(Csató & Opper (2002);
Seeger et al. (2003))

qDTC(f |f̄) = N (f ;KN,MK
−1
M f̄ ,0), (1)

• The Fully Independent Training Conditional Approximation (FITC)(Snelson & Ghahra-
mani (2005))

qFITC(f |f̄) =
∏
i

p(fi|f̄) = N (f ;KN,MK
−1
M f̄ , diag(KN −QN )), (2)

• The Partially Independent Training Conditional Approximation (PITC)(Quinonero-
Candela & Rasmussen (2005))

qPITC(f |f̄) =
∏
s

p(fBs |f̄) = N (f ;KN,MK
−1
M f̄ , blockdiag(KN −QN )), (3)
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whereQA,B =KA,MK
−1
M KM,B , and f , f̄ are the latent function vectors on training and inducing

points.

Despite their similar assumptions about the conditional distribution of the latent function, these three
approximations rest on different premises regarding dependencies. In DTC, the conditional distri-
bution is treated as a point mass, indicating that the inducing points encapsulate all the necessary
information for calculating latent functions. In contrast, FITC and PITC replace the determinis-
tic relationship between f and f̄ with Gaussian distributions, based on the assumptions of full and
partial independence, respectively. PITC introduces group partitioning to divide the input points,
assuming conditional independence of latent functions between groups. This approach balances
computational efficiency with information loss by leveraging partial independence and allowing
flexible partitioning of groups, thus integrating inducing points effectively.

Although these sparse GP approximations effectively reduce the computational burden of GP calcu-
lations, research has often overlooked their application to imbalanced regression problems. Among
the mainstream GP approximations discussed, PITC is considered most suitable for leveraging uni-
formly distributed inducing points for two major reasons.

Firstly, unlike approximations that use point mass distributions, such as SoR and DTC, PITC allows
for latent function uncertainty given the inducing functions. This flexibility avoids overly rigid
relationships that can lead to shallow predictive variance and a higher risk of data overfitting.

Secondly, PITC assumes block-wise conditional probability independence, which is well suited for
modeling elements within respective label bins. This characteristic can be discovered from the
”PITC kernel function”, given by kPITC(x,x′) = Q(x,x′) + 1x,x′∈Bs [k(x,x

′) − Q(x,x′)](1(·)
denotes the indicator function). This function balances the impact of group partitioning with a
straightforward kernel distance, resulting in a more comprehensive quantification of distances be-
tween input variables.

2.2 IMBALANCED REGRESSION

Imbalanced regression is less explored compared to imbalanced classification problems (Zou et al.
(2016); Feng et al. (2021)). Most existing regression methods for imbalanced data are variants of
the SMOTE algorithm (Branco et al. (2017a); Torgo et al. (2013b)). These methods create artifi-
cial samples to oversample rare targets, either by interpolating training data (Torgo et al. (2013b);
Rahim et al. (2019)) or by applying Gaussian noise augmentation (Branco et al. (2017a)). Despite
their similar origins, regression-focused SMOTE algorithms share several limitations. Firstly, they
fail to utilize the distance between continuous input labels effectively. The interpolation of inputs
and labels relies on classification discreteness, leading to bias in the continuous feature space. Addi-
tionally, high-dimensional data pose significant challenges for oversampling algorithms, as synthetic
data generated through linear interpolation often lack realism, which can further degrade model per-
formance.

To leverage the statistical distribution uniformity of input features and labels, DIR (Yang et al.
(2021)) proposes Feature Distribution Smoothing (FDS) and Label Distribution Smoothing (LDS),
which apply kernel smoothing to latent features and labels, respectively. FDS and LDS partition
features and labels into continuous bins, thereby addressing data imbalance and achieving state-of-
the-art performance. Although DIR is compatible with various downstream networks, it primarily
focuses on minimizing RMSE loss in regression and provides no uncertainty assessment.

3 BACKGROUND

3.1 NOTATIONS AND PROBLEM REVIEW

An imbalanced regression dataset is a dataset {(xi, yi)}Ni=1, where N is the number of training
points, xi ∈ Rd is the input, and yi ∈ Y ⊂ R is the corresponding label with imbalanced distribution
in the continuous label space Y . To measure the imbalance of label space within training dataset,

we divide the label space Y into B equidistant intervals with length C, i.e. Y =
B⋃

b=1

Yb, where

Yb = [y(b−1), y(b)), |Yb| = C, b ∈ B = {1, . . . , B} ⊂ Z+.

3
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3.2 GP WITH PITC APPROXIMATION

Gaussian Process. In the Gaussian Process framework, the latent function follows a multivariate
Gaussian distribution (Williams & Rasmussen (2006); Kanagawa et al. (2018)). A typical Gaussian
Process can be denoted as f ∼ GP(m(·), k(·, ·)). Without specific prior knowledge, m(x) = 0
is assumed by default. As for the kernel function, popular choices include the Linear kernel, the
Spectral Mixture kernel, the Radial Basis Function (RBF) kernel, and the Cosine-Similarity kernel.
According to the study of Reproducing Kernel Hilbert Spaces (RKHS) (Kanagawa et al. (2018)), a
kernel function can also be viewed as an inner product defined in the feature space with a mapping
φ : X → V, k(x,x′) = ⟨φ(x), φ(x′)⟩V . This observation enables the use of deep neural networks
(DNNs) as feature extractors for specific needs (Wilson et al. (2016); Patacchiola et al. (2020); Yang
et al. (2019)). The projection from input space to latent space does not require prior knowledge of
the kernel function, making it a desirable approach to enhance the performance of GP models.

To specify the relationship between the observed data and the latent function, Gaussian Processes
typically assume that the observation process introduces noise to the observed outputs, leading to
the following regression problem:

yi = f(xi) + ϵi, ϵi ∼ N (0, σ2). (4)

PITC approximation. To approximate the Gaussian Process, the inducing point set and the induc-
ing variable set (X̄, f̄) = {x̄m}Mm=1, {f̄m}Mm=1,M ≪ N are introduced to represent the distribu-
tion of input data. The GP prior of f ,fT can now be approximated by:

p(f ,fT ) ≈ q(f ,fT ) =

∫
q(fT |f̄)q(f |f̄)p(f̄)df̄ = N (f ,fT ;0,K

PITC
N+T ), (5)

KPITC
N+T =

[
QN + blockdiag(KN −QN ) QNT

QTN KT

]
. (6)

According to PITC, the probability distribution of predictive labels conditional on observed labels
follows Gaussian distribution similar to classical GP: p(yT |y) = N (yT ;µ

PITC
T ,ΣPITC

T ), where

µPITC
T = QTN [KPITC

N + σ2I]−1y,ΣPITC
T =KTN −QTN [KPITC

N + σ2I]−1QNT + σ2I. (7)

Remark. It is important to note that the marginal probability distributions of training and test
latent functions are not identical. Specifically, q(f) = N (f ;0,QN + blockdiag(KN −QN )) and
q(fT ) = N (fT ;0,KT ). This indicates an assumption of prior knowledge regarding whether a data
point belongs to the training or test set. While this characteristic denies the PITC approximation as
an exact Gaussian Process, the assumption about data partitioning does not diminish its effectiveness
for regression tasks.

4 PROBABILISTIC FEATURE SMOOTHED PARTIALLY INDEPENDENT
TRAINING CONDITIONAL APPROXIMATION

4.1 KERNEL SMOOTHING OF STATISTIC FEATURES

To capture the non-linear structure among the training points, we first apply feature extraction using
a simple neural network. Let Fθ be a feature extractor parameterized by θ. For an input point xi,
its feature is denoted as zi = Fθ(xi). Let (µb,Σb) represent the mean and covariance of features
{zi}Nb

i=1 in the b-th bin(yi ∈ Yb). In practice, the mean and covariance are estimated empirically as
follows:

µb = Ê[Zb] =
1

Nb

Nb∑
i=1

zi,Σb = V̂ar[Zb] =
1

Nb − 1

Nb∑
i=1

(zi − µ)(zi − µ)⊤. (8)

The continuity of feature statistics across nearby bins was first observed in Yang et al. (2021). In
the learned feature space of a regression task, the cosine similarity between feature means and
variances decreases monotonically with increasing label distance. This observation led the authors

4
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Figure 2: General architecture of PFS-PITC for the b-th bin. In the beginning, feature extractor em-
bed input data into latent space. Next, feature statistics is computed to create approximate distribu-
tion for features. In the following process, random variable is used to sample from the approximate
distribution. Eventually, with inducing points and input points ready, kernel matrix is computed for
PITC training and prediction.

to propose Feature Distribution Smoothing (FDS) as a momentum update calibration layer following
feature extraction. The FDS operation adjusts each feature based on neighboring statistics, partially
compensating for sampling imbalances in the raw input space.

The kernel calibration of statistics in our method is implemented as follows. We impose kernel
smoothing on (µb,Σb) with a kernel function kψ(·, ·) parameterized with hyperparameters ψ. The
smoothed statistics are given as follows:

µ̃b =
∑
b′∈B

kψ(yb, yb′)µb′ , Σ̃b =
∑
b′∈B

kψ(yb, yb′)Σb′ . (9)

While the calibrated feature distribution better represents the input features, it still does not meet
the requirements of GP, which does not accept probability distributions as input. Therefore, sam-
pling is necessary to generate inducing inputs for PITC approximation. Assuming that {zi}Nb

i=1
follows a Gaussian distribution as a prior, we approximate the smoothed distribution as q(zi) =
N (zi;µb,Σb). This allows for sampling from a Gaussian distribution:

Z̄ = {µb + ηΣb}b∈B, η ∼ N (0, I). (10)

4.2 OPTIMIZATION OBJECTIVE

To model the heterogeneous feature distribution within each bin, we introduce bin-wise observation
noise. The observed label is given by yi = f(zi) + ϵi, ϵi ∼ N (0, σ2

b ), yi ∈ Yb. The conditional
probability distribution of y given f becomes:

p(y|f) = N (y;f ,Σ),Σ = diag(σ2
1 , . . . , σ

2
B). (11)

In Gaussian Process (GP) optimization, the log marginal likelihood (NLL) is commonly used as the
objective function to minimize. Following a similar derivation for PITC, the expression for the NLL
is given by:

LPITC =
1

2
log |KPITC

N +Σ|+ 1

2
y⊤(KPITC

N +Σ)−1y +
N

2
log(2π), (12)

where KPITC
N = QN + blockdiag(KN − QN ), (KN )i,j = kϕ(Fθ(xi),Fθ(xj)), (QN )i,j =

Kxi,MK
−1
M KM,xj

.

The overall procedure of conducting PFS-PITC on a regression mission is provided in Algorithm1.

4.3 THEORETICAL ANALYSIS

In this section, we manage to conduct theoretical analysis on stability of domain generalization of
PFS-PITC. We deduce the tail bound for PFS estimator and generalization bound of PFS estimator
for finite observation space.

5
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Algorithm 1 Training and test procedure of PFS-PITC
Require: Train dataset D = {(xi, yi)}Ni=1, test dataset Dtest = {(xi, yi)}Ti=1.
Parameters: Feature extractor parameters θ, kernel parameters ϕ.
Hyperparameters: Bin index B, Kernel smoothing parametersψ, learning rate α, β, update rate γ.

1: function TRAIN(D,θ,ϕ,ψ, α, β)
2: while not done do
3: Sample batch T = (X,y) ∼ D
4: Extract Feature Z = Fθ(X)
5: for b ∈ B do
6: Compute statistical features (µb,Σb) ▷ See Equation(8)
7: Computed smoothed statistical features(µ̃b, Σ̃b) ▷ See Equation(9)
8: Implement update (µb,Σb)← (1− γ) ∗ (µb,Σb) + γ ∗ (µ̃b, Σ̃b)
9: end for

10: Sample inducing points Z̄ ▷ See Equateion(10)
11: Compute NLL LPITC ▷ See Equateion(12)
12: Update parameters θ ← θ − α∇θLPITC,ϕ← ϕ− β∇ϕLPITC

13: end while
14: return θ,ϕ, Z̄
15: end function

16: function TEST(Dtest,θ,ϕ)
17: Sample batch T = (XT ,yT ) ∼ Dtest

18: Extract Feature ZT = Fθ(XT )
19: return p(yT |ZT , Z̄,Z,y) ▷ See Equateion(7)
20: end function

Notation. We start from a balanced regression dataset {(xi, yi)}Ni=1 and a equidistant partition of

observation space Y =
|B|⋃
b=1

Yb ⊂ R, |Yb| = C. To model the imbalanced sampling, we introduce

binary revealing set O = {0, 1}N to label whether (xi, yi) is sampled. In addition, probability set
P = {Pb}|B|b=1, Pb = P(yi ∈ Yb) describes the marginal probability distribution for each bin. For
each bin b, index indicator set Ub = {i|yi ∈ Yb} denotes the index of samples, and Sb = {i|Oi =
1, yi ∈ Yb} denotes index given the imbalanced observation made on raw dataset.
Lemma 1. (Tail bound for PFS Estimator). For any given ŷ and y, with probability 1− η, the PFS
estimator R̂PFS(ŷ|P̃ ) does not deviate from its expectation EO[R̂PFS(ŷ|P̃ )]by more than:

|R̂PFS(ŷ|P̃ )− EO[R̂PFS(ŷ|P̃ )]| ≤ ∆

|B|

√
log(2|H|/η)

2

√√√√ |B|∑
b=1

1

P̃ 2
b

. (13)

Theorem 1. (Propensity-Scored ERM Generalization Error Bound of PFS). In imbalanced regres-
sion with bins partition B, for any finite hypothesis space of predictions H = {ŷ1, . . . ŷ|H|}, the
transductive prediction error of the empirical risk minimizer ŷERM, using the PFS estimator with
estimated propensities P̃ (P̃b > 0) and given training observations O from Y with independent
Bernoulli propensities P, is bounded by:

R(ŷERM) ≤ R̂PFS(ŷ
ERM|P̃ ) +

∆

|B|

|B|∑
b=1

|1− Pb

P̃b

|︸ ︷︷ ︸
Bias

+
∆

|B|

√
log(2|H|/η)

2

√√√√ |B|∑
b=1

1

P̃ 2
b︸ ︷︷ ︸

Variance

. (14)

Remark. This theorem establishes an upper bound on the true risk as estimated by the PFS esti-
mator. Without probabilistic feature smoothing, substituting the smoothed P̃b with the observed Pb

results in a bias of 0 but significantly increases the variance term due to Pb ≈ 0 for minority bins.
Conversely, probabilistic feature smoothing aims to smooth each probabilistic feature Pb with its
neighboring features, leading to an estimator that more closely aligns with the true risk estimator.

6
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Following the feature smoothing operation, the probabilistic estimation for minority bins (Pb ≈ 0) is
enhanced, significantly reducing the variance term, albeit at the cost of an increase in the bias term.
In the context of imbalanced regression, balanced probabilistic features minimize the risk contribu-
tion from the under-sampled label subspace, resulting in a substantially lower generalization error.

For specific definitions of related concepts, we refer readers to the appendix for more information.

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We begin by comparing PFS-PITC, local GP, and GP on a simple synthetic regression dataset. This
experiment is designed to emphasize the performance differences among these GP-related regression
algorithms in a variable space with sparse training samples. The ground-truth function is defined
with observation noise as follows: f(x) = exp(x)∗cos(2πx)∗(2+ϵ), ϵ ∼ N (0, 1). Training inputs
are gathered from the combination of two separate distributions on input variables: D = {(xi, yi)}∪
{(x′

j , y
′
j)}, xi ∼ N (0, 1), x′

j ∼ N (2, 1). Test inputs are gathered from a uniform distribution
without observation noise:Dtest = {(x∗

i , y
∗
i )}, x∗

i ∼ U (2.5, 3.5), ϵ = 0. This artificial experiment
presents two major challenges for regression models: 1) The ground-truth function incorporates
periodic patterns that vary in amplitude, mimicking the scaling instability of labels in real-world
data. 2) The observation space in the training and test sets alternates in intervals, simulating data
sampling imbalance.

Figure 3: Comparison of synthetic experiments
among PFS-PITC, GP, and local GP. PFS-PITC
more effectively approximates the ground-truth
function, particularly in scenarios with varying
amplitude and sparse training inputs around the
test interval.

We train all three methods using the RBF kernel
and identical hyperparameters to ensure com-
parable experimental outcomes. The test bias
of PFS-PITC achieves an MSE of 26.290 and
an MAE of 4.305, significantly outperforming
GP (MSE: 75.667, MAE: 6.824) and local GP
(MSE: 82.036, MAE: 7.364). Local GP estab-
lishes 4 separate GPs for the clusters identi-
fied by KMeans, resulting in a prediction out-
put similar to that of vanilla GP in most re-
gions. The difference in fitting accuracy is il-
lustrated in Figure 3, where the prediction mean
of PFS-PITC is closer to the test points, de-
spite the training points being noticeably scat-
tered(at x=2.5 and x=3.0). These findings sup-
port our assertion that PFS-PITC outperforms
both vanilla GP and local GP in addressing im-
balanced samples and scaling instability.

5.2 REGRESSION DATASETS

In this section, we evaluate the performance of PFS-PITC on two real-world regression datasets:
Combined Cycle Power Plant and Concrete Compressive Strength. Multiple approaches for imbal-
anced regression are implemented in conjunction with Gaussian Process for performance compari-
son. Each algorithm is tested five times to provide mean and bias values for stability analysis. The
evaluation metrics for this experiment include Mean Squared Error (MSE), Mean Absolute Error
(MAE), and Negative Log-Likelihood (NLL).

Combined Cycle Power Plant. The Combined Cycle Power Plant (CCPP) dataset, created by Pnar
Tfekci (Tüfekci (2014)) and Heysem Kaya (Zhao & Kok Foong (2022)), comprises 9,568 data points
collected from a Combined Cycle Power Plant operating at full capacity over six years (2006-2011).
The regression task involves predicting the net hourly electrical energy output (EP) of the plant
based on four key input features: hourly average ambient temperature (T), ambient pressure (AP),
relative humidity (RH), and exhaust vacuum (V).

Concrete Compressive Strength. The Concrete Compressive Strength(CCS) dataset (Yeh (1998))
formulates the compressive strength of concrete as a regression problem. It includes eight features:

7
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the density (measured in kg/m3) of cement, blast furnace slag, fly ash, water, superplasticizer,
coarse aggregate and fine aggregate, and the age (measured in days) since cement manufacturing.
Regression models aim to learn the concrete compressive strength (measured in MPa) from 1,030
instances.

Dataset Combined Cycle Power Plant

Methods MSE↓ MAE↓ NLL↓
VANILLA GP 346.247±101.425 14.789±2.834 1047.741±15.246
SMOGN(Branco et al. (2017b)) 304.526±111.192 14.230±2.524 1228.306±1830.890
SMOTER(Torgo et al. (2013a)) 170.877±70.148 10.595±2.443 4115.621±273.998
Random Undersampling 254.779±129.659 12.655±3.986 1936.639±14.778
Gaussian Noise(Branco et al. (2019)) 238.848±84.355 12.351±2.709 1079.346±4.427
CNN(Hart (1968)) 339.045±102.014 15.628±2.033 4712.031±551.982
FDS(Yang et al. (2021)) 398.846±109.765 15.738±2.577 1038.242±32.017
LDS(Yang et al. (2021)) 470.120±76.602 17.052±1.882 1437.778±219.296
PFS-PITC(Bin num=80) 123.332±4.147 8.584±0.197 954.572±3.966
PFS-PITC(Bin num=90) 121.136±4.821 8.524±0.105 955.641±5.031
PFS-PITC(Bin num=100) 120.650±5.831 8.510±0.081 955.893±4.690
PFS-PITC (BEST) VS. VANILLA GP +225.597 +6.279 +93.169

Table 1: Imbalanced regression on Combined Cycle Power Plant dataset

Dataset Concrete Compressive Strength

Methods MSE↓ MAE↓ NLL↓
VANILLA GP 127.956±13.79 7.903±0.156 954.067±36.792
SMOGN(Branco et al. (2017b)) 125.425±16.683 8.391±0.856 707.862±94.103
SMOTER(Torgo et al. (2013a)) 119.224±20.550 8.783±0.488 1736.234±107.566
Random Undersampling 217.431±87.941 10.564±2.061 498.286±113.213
Gaussian Noise(Branco et al. (2019)) 140.873±19.641 8.522±0.509 1222.020±124.957
CNN(Hart (1968)) 121.949±11.501 7.150±0.666 4286.112±250.309
FDS(Yang et al. (2021)) 178.571±50.282 9.577±1.285 1108.508±89.248
LDS(Yang et al. (2021)) 106.176±10.289 8.133±0.541 1747.272±739.201
PFS-PITC(Bin num=80) 102.863±4.725 6.929±0.213 910.858±109.423
PFS-PITC(Bin num=90) 104.678±5.616 6.968±0.188 905.848±111.521
PFS-PITC(Bin num=100) 104.494±5.172 6.964±0.201 870.887±54.999
PFS-PITC (BEST) VS. VANILLA GP +25.093 +0.974 +83.180

Table 2: Imbalanced regression on Concrete Compressive Strength dataset

During the preprocessing procedure, we eliminate duplicate observations of input variables and
apply min-max normalization to mitigate potential distribution shifts. Subsequently, we divide the
sample targets and corresponding variables into 100 equidistant intervals to assess target distribution.
Instances within each bin are allocated to the training, validation, and test datasets in sequence
until the quota is met, simulating the imbalance in training sample sampling and ensuring relatively
uniform prediction demands.

In each dataset, we compare PFS-PITC with several common algorithms for imbalanced learning,
and vanilla GP is used as the baseline. Smogn and Smoter, derived from SMOTE, are designed to
interpolate instances to alleviate the sampling imbalance of rare targets in the training set. Random
Undersampling, Gaussian Noise, and Condensed Nearest Neighbor provide alternative approaches
by undersampling, injecting noise, and removing redundant samples, respectively. DIR (Yang et al.
(2021)), along with LDS and FDS, proposes alternatives that leverage the continuity of label space
in regression tasks to enhance performance. Despite their widespread use for addressing imbalanced
datasets, some of these algorithms are incompatible with the training process of Gaussian Processes,
which can lead to degraded prediction performance.
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Figure 4: Prediction figure on Exchange-Rate, Hotel-Sales, and LCD dataset.

Quantitative analysis of this experiment is presented in Tables 1 and 2. Regarding NLL, most imbal-
anced regression approaches significantly alter the means, highlighting the varied effects of synthetic
instances on the training process. Experiments with PFS-PITC are conducted with increasing par-
tition numbers of bins to assess their impact. The outcome suggests that prediction bias remains
stable regardless of the granularity of the partition. For MSE and MAE, PFS-PITC minimizes pre-
diction loss, achieving (MSE: 120.650, MAE: 8.510) on the CCPP dataset and (MSE: 102.863,
MAE: 6.929) on the CCS dataset.

The results reveal that PFS-PITC is competitive with most imbalanced regression approaches, re-
gardless of prior knowledge about the label density distribution of the datasets. More importantly,
PFS-PITC achieves the lowest MSE and MAE on both datasets, further validating its effectiveness
in addressing imbalanced regression tasks.

5.3 TIME SERIES PREDICTION

To further evaluate the performance of PFS-PITC on diverse real-world datasets, we implement it
on three time series datasets: the Exchange Rate, Hotel Sales, and Local Climatological Data. Mean
Absolute Error (MAE) and Correlation Coefficient (CORR) are employed as evaluation metrics for
this experiment.

Exchange-Rate. (Lai et al. (2018)). The exchange rate of a currency is assessed by the exchange
ratio between the currency and the US Dollar per unit. Exchange-Rate dataset includes daily ex-
change rates for eight foreign countries—Australia, Britain, Canada, Switzerland, China, Japan,
New Zealand, and Singapore—ranging from 1990 to 2016, comprising 7,588 data points. This
dataset exhibits few long-term patterns, characterized by a prevalence of highly uncorrelated repeti-
tive signals. We select Singapore as the target for prediction, using the other exchange rates as input
features.

Hotel-Sales. (STR (2021)). The Hotel-Sales dataset contains data on hotel demand and revenue
across eight major tourist destinations in the US. This dataset includes sales, daily occupancy, de-
mand, and revenue for upper-middle-class hotels, aimed at estimating the impact of the COVID-19
pandemic on the tourism economy. We focus on the time series data for New York from 2013 to
2019, with 2,624 instances available for models to predict hotel occupancy based on past revenue
and demand.

Local Climatological Data. (NOAA (2024)). Local Climatological Data(LCD), provided by
NOAA, includes climatological data for nearly 1,600 U.S. locations over four years (2010-2013).
This dataset comprises hourly weather features, with 11 meteorological attributes and Wet Bulb Cel-
sius as the target. We focus on a subset of data from a single weather station over a specific month,
consisting of 35,064 entries, to validate our model.

We select three common time series predictors for performance comparison: GP, VAR, and LST-
Net. GP and VAR are chosen to establish a performance baseline for statistical methods. In contrast,
LSTNet (Lai et al. (2018)) represents the capabilities of deep neural network (DNN) methods. This
approach leverages a combination of CNNs, RNNs, and attention layers to extract short-term pat-
terns among variables while also capturing long-term trends, resulting in a significant performance
boost on complex real-world datasets.

During the preprocessing procedure, we apply maximum normalization to ensure numerical stabil-
ity. The dataset is then split into training (60%), validation (20%), and test (20%) sets in sequence.
To enhance information absorption, we employ a CNN feature extractor for feature extraction. For
GP and PFS-PITC, we utilize a mixture of RBF, linear, and spectral mixture kernels to model the

9
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Dataset Exchange-Rate Hotel-Sales LCD

Horizon(Window=128) Horizon(Window=220) Horizon(Window=100)

Method Metric 3 6 12 3 6 12 3 6 12

LSTNet MAE 0.040 0.037 0.038 0.053 0.068 0.069 0.053 0.068 0.049
CORR 0.932 0.923 0.925 0.864 0.844 0.821 0.921 0.833 0.927

VAR MAE 0.066 0.064 0.060 0.047 0.049 0.066 0.067 0.077 0.081
CORR 0.827 0.886 0.765 0.846 0.842 0.798 0.812 0.805 0.782

GP MAE 0.110 0.069 0.074 0.045 0.049 0.046 0.066 0.068 0.064
CORR 0.864 0.605 0.679 0.726 0.699 0.755 0.869 0.860 0.839

PFS-PITC(Bin num=30) MAE 0.030 0.060 0.053 0.039 0.036 0.035 0.036 0.050 0.061
CORR 0.949 0.832 0.687 0.958 0.933 0.927 0.938 0.959 0.940

PFS-PITC(Bin num=50) MAE 0.029 0.073 0.059 0.037 0.034 0.039 0.035 0.050 0.060
CORR 0.939 0.841 0.837 0.981 0.912 0.934 0.957 0.961 0.942

PFS-PITC(Bin num=100) MAE 0.036 0.034 0.069 0.038 0.038 0.036 0.034 0.047 0.062
CORR 0.885 0.928 0.857 0.921 0.963 0.933 0.928 0.961 0.936

Table 3: Time Series Experiments on Exchange-Rate, Hotel-Sales, and LCD dataset.

heterogeneous patterns in the dataset. For further details on this experiment, we recommend that
readers refer to the appendix.

The evaluation results of all four methods across the three datasets are presented in Table 3. The
prediction horizon and retrospective window indicate the number of timestamps ahead of and behind
the current time, respectively, and these parameters are varied to assess the stability of each algo-
rithm. From the table, we observe that LSTNet demonstrates its ability to make accurate long-term
predictions, minimizing prediction bias at longer horizons (horizon = 12) with results of (MAE:
0.038, CORR: 0.925) on the Exchange-Rate dataset and (MAE: 0.049, CORR: 0.927) on the LCD
dataset. However, PFS-PITC delivers superior results for shorter horizons, while GP does not show
significant superiority compared to its competitors. On the Exchange-Rate dataset, the best MAE of
PFS-PITC improves from (0.110, 0.069, 0.074) by GP to (0.029, 0.034, 0.053), yielding an average
performance boost of over 40%.

6 CONCLUSIONS

In this work, we introduce PFS-PITC, a target-based partition and smoothing strategy for GP ap-
proximation, aimed at enhancing the performance of Gaussian Processes on imbalanced regression
tasks. PFS-PITC extends the classical PITC approximation by employing label bins to achieve a
more balanced integration of variable information. Additionally, kernel smoothing is applied to re-
duce distribution discrepancies in the latent features within each bin. Compared to incorporating
resampling techniques directly into GP, PFS-PITC offers a more effective solution for addressing
imbalanced regression in the Gaussian Process Regression framework. Extensive empirical experi-
ments demonstrate significant performance improvements with our approach.

6.1 BROADER IMPACT

Gaussian Processes (GPs) are widely employed for various data analysis tasks Li et al. (2019); Du-
tordoir et al. (2018). While their performances can be affected by sampling biases, such as domain
shift or imbalanced sampling, using inducing points for approximation enables targeted counter-
measures. PFS-PITC, inspired by the traditional PITC approximation, specifically addresses the
issue of imbalanced sample distribution in the label space. Our method offers an effective solution
for imbalanced regression, providing uncertainty estimation and enhanced inference explainability.
Furthermore, it integrates seamlessly into the Gaussian Process Regression framework, requiring
minimal adjustments and facilitating performance improvements on imbalanced datasets through a
straightforward substitution of GP with our approach. This capability significantly enhances the
applicability of GPs in various fields, including finance, healthcare, and environmental modeling,
ultimately contributing to more robust data analysis in these critical areas.
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Pınar Tüfekci. Prediction of full load electrical power output of a base load operated combined
cycle power plant using machine learning methods. International Journal of Electrical Power
& Energy Systems, 60:126–140, 2014. ISSN 0142-0615. doi: https://doi.org/10.1016/j.ijepes.
2014.02.027. URL https://www.sciencedirect.com/science/article/pii/
S0142061514000908.

Grace Wahba, Xiwu Lin, Fangyu Gao, Dong Xiang, Ronald Klein, and Barbara Klein. The bias-
variance tradeoff and the randomized gacv. Advances in Neural Information Processing Systems,
11, 1998.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial intelligence and statistics, pp. 370–378. PMLR, 2016.

Chang Xu, Dacheng Tao, Yangxi Li, and Chao Xu. Large-margin multi-view gaussian process for
image classification. In Proceedings of the Fifth International Conference on Internet Multimedia
Computing and Service, pp. 7–12, 2013.

Lixiang Xu, Biao Zhou, Xinlu Li, Zhize Wu, Yan Chen, Xiaofeng Wang, and Yuanyan Tang. Gaus-
sian process image classification based on multi-layer convolution kernel function. Neurocom-
puting, 480:99–109, 2022.

13

https://proceedings.mlr.press/v48/schnabel16.html
https://proceedings.mlr.press/v48/schnabel16.html
https://www.sciencedirect.com/science/article/pii/S0142061514000908
https://www.sciencedirect.com/science/article/pii/S0142061514000908


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bin Yang, Yaguo Lei, Feng Jia, Naipeng Li, and Zhaojun Du. A polynomial kernel induced distance
metric to improve deep transfer learning for fault diagnosis of machines. IEEE Transactions on
Industrial Electronics, 67(11):9747–9757, 2019.

Yuzhe Yang, Kaiwen Zha, Yingcong Chen, Hao Wang, and Dina Katabi. Delving into deep imbal-
anced regression. In International conference on machine learning, pp. 11842–11851. PMLR,
2021.

I-Cheng Yeh. Modeling of strength of high-performance concrete using artificial neural net-
works. Cement and Concrete Research, 28:1797–1808, 1998. URL https://api.
semanticscholar.org/CorpusID:135820588.

Yinghao Zhao and Loke Kok Foong. Predicting electrical power output of combined cycle power
plants using a novel artificial neural network optimized by electrostatic discharge algorithm. Mea-
surement, 198:111405, 2022. ISSN 0263-2241. doi: https://doi.org/10.1016/j.measurement.
2022.111405. URL https://www.sciencedirect.com/science/article/pii/
S0263224122006388.

Quan Zou, Sifa Xie, Ziyu Lin, Meihong Wu, and Ying Ju. Finding the best classification threshold
in imbalanced classification. Big Data Research, 5:2–8, 2016.

14

https://api.semanticscholar.org/CorpusID:135820588
https://api.semanticscholar.org/CorpusID:135820588
https://www.sciencedirect.com/science/article/pii/S0263224122006388
https://www.sciencedirect.com/science/article/pii/S0263224122006388

	Introduction
	Related Work
	Sparse Gaussian Process Approximations
	Imbalanced Regression

	Background
	Notations and Problem review
	GP with PITC approximation

	Probabilistic Feature Smoothed Partially Independent Training Conditional Approximation
	Kernel smoothing of statistic features
	Optimization Objective
	Theoretical Analysis

	Experiments
	Synthetic Data
	Regression Datasets
	Time Series Prediction

	Conclusions
	Broader Impact


