
Under review as a conference paper at ICLR 2020

GRADIENT FLOW IN SPARSE NEURAL NETWORKS
AND HOW LOTTERY TICKETS WIN

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Neural Networks (NNs) can match the generalization of dense NNs using a
fraction of the compute/storage for inference, and have the potential to enable efficient
training. However, naively training unstructured sparse NNs from random initialization
results in significantly worse generalization, with the notable exceptions of Lottery Tick-
ets (LTs) and Dynamic Sparse Training (DST). In this work, we attempt to answer: (1)
why training unstructured sparse networks from random initialization performs poorly
and; and (2) what makes LTs and DST the exceptions? We show that sparse NNs have
poor gradient flow at initialization and propose a modified initialization for unstructured
connectivity. Furthermore, we find that DST methods significantly improve gradient
flow during training over traditional sparse training methods. Finally, we show that LTs
do not improve gradient flow, rather their success lies in re-learning the pruning solution
they are derived from — however, this comes at the cost of learning novel solutions.

1 Introduction

Deep Neural Networks (DNNs) are the state-of-the-art method for solving problems in computer vision,
speech recognition, and many other fields. While early research in deep learning focused on application
to new problems, or pushing state-of-the-art performance with ever larger/more computationally expensive
models, a broader focus has emerged towards their efficient real-world application. One such focus is
on the observation that only a sparse subset of this dense connectivity is required for inference, as apparent
in the success of pruning (Han et al., 2015; Mozer et al., 1989b).

Pruning has a long history in Neural Network (NN) literature, and remains the most popular approach
for finding sparse NNs. Sparse NNs found by pruning algorithms (Han et al., 2015; Louizos et al., 2017;
Molchanov et al., 2017; Zhu et al., 2018) (i.e. pruning solutions) can match dense NN generalization with
much better efficiency at inference time. However, naively training an (unstructured) sparse NN from
a random initialization (i.e. from scratch), typically leads to significantly worse generalization.

Two methods in particular have shown some success at addressing this problem — Lottery Tickets (LTs) and
Dynamic Sparse Training (DST). The mechanism behind the success of both of these methods is not well
understood however, e.g. we don’t know how to find Lottery Tickets (LTs) efficiently; while RigL (Evci
et al., 2020), a recent DST method, requires 5× the training steps to match dense NN generalization. Only
in understanding how these methods overcome the difficulty of sparse training can we improve upon them.

A significant breakthrough in training DNNs — addressing vanishing and exploding gradients — arose
from understanding gradient flow both at initialization, and during training. In this work we investigate
the role of gradient flow in the difficulty of training unstructured sparse NNs from random initializations
and from LT initializations. Our experimental investigation results in the following insights:

1. Sparse NNs have poor gradient flow at initialization. In §3.1, §4.1 we show that existing methods
for initializing sparse NNs are incorrect in not considering heterogeneous connectivity. We believe
we are the first to show that sparsity-aware initialization methods improve gradient flow and training.

2. Sparse NNs have poor gradient flow during training. In §3.2, §4.2, we observe that even in sparse
NN architectures less sensitive to incorrect initialization, the gradient flow during training is poor.
We show that DST methods achieving the best generalization have improved gradient flow.

3. Lottery Tickets don’t improve upon (1) or (2), instead they re-learn the pruning solution. In §3.3,
§4.3 we show that a LT initialization resides within the same basin of attraction as the original pruning
solution it is derived of, and a LT solution is highly similar to the pruning solution in function space.

1

Under review as a conference paper at ICLR 2020

2 Related Work

Pruning Pruning is used commonly in Neural Network (NN) literature to obtain sparse networks (Castel-
lano et al., 1997; Hanson et al., 1988; Kusupati et al., 2020; Mozer et al., 1989a,b; Setiono, 1997; Sietsma
et al., 1988; Wortsman et al., 2019). Pruning algorithms remove connections of a trained dense network
using various criteria including weight magnitude (Han et al., 2016, 2015; Zhu et al., 2018), gradient-based
measures (Molchanov et al., 2016), and 2nd-order terms based on the Hessian (Hassibi et al., 1993; LeCun
et al., 1990). While the majority of pruning algorithms focus on pruning after training, a subset focuses
on pruning NNs before training (Lee et al., 2019; Tanaka et al., 2020; Wang et al., 2020). Gradient Signal
Preservation (GRaSP) (Wang et al., 2020) is particularly relevant to our study, since their pruning criteria
aims to preserve gradient flow, and they observe a positive correlation between initial gradient flow and
final generalization. However, recent work of Frankle et al., 2020b suggests that the reported gains are
due to sparsity distributions discovered rather than the particular sub-network. Another limitation of these
algorithms is that they don’t scale to large scale tasks like Resnet-50 training on ImageNet-2012.

Lottery Tickets Frankle et al. (2019a) showed the existence of sparse sub-networks at initialization —
known as Lottery Tickets — which can be trained to match the generalization of the corresponding dense
Deep Neural Network (DNN). The initial work of Frankle et al. (2019a) inspired much follow-up work. Gale
et al. (2019) and Liu et al. (2019) observed that the initial formulation was not applicable to larger networks
with higher learning rates. Frankle et al. (2019b, 2020a) proposed late rewinding as a solution. Morcos
et al. (2019) and Sabatelli et al. (2020) showed that Lottery Tickets (LTs) trained on large datasets transfer
to smaller ones, but not vice versa. Frankle et al. (2020c), Ramanujan et al. (2019), and Zhou et al. (2019)
focused on further understanding LTs, and finding sparse sub-networks at initialization. As one might expect,
sufficiently large networks would have smaller solutions hidden in them. Malach et al. (2020) studied this
and proved the existence of solutions in sufficiently large networks. However, it is an open question whether
finding such networks at initialization could be done more efficiently than with existing pruning algorithms.

Dynamic Sparse Training Most training algorithms work on pre-determined architectures and optimize
parameters using fixed learning schedules. Dynamic Sparse Training (DST), on the other hand, aims to
optimize the sparse NN connectivity jointly with model parameters. Mocanu et al. (2018) and Mostafa et al.
(2019) propose replacing low magnitude parameters with random connections and report improved general-
ization. Dettmers et al. (2019) proposed using momentum values, whereas Evci et al. (2020) used gradient
estimates directly to guide the selection of new connections, reporting results that are on par with pruning
algorithms. In §4.2 we study these algorithms and try to understand the role of gradient flow in their success.

Random Initialization of Sparse NN In training sparse NN from scratch, the vast majority of
pre-exisiting work on training sparse NN has used the common initialization methods (Glorot et al., 2010;
He et al., 2015) derived for dense NNs, with only a few notable exceptions. Gale et al. (2019), Liu et al.
(2019), and Ramanujan et al. (2019) scaled the variance (fan-in/fan-out) of a sparse NN layer according
to the layer’s sparsity, effectively using the standard initialization for a small dense layer of equivalent
number of weights as in the sparse model.

3 Analyzing Gradient Flow in Sparse Neural Networks

A significant breakthrough in training very deep NNs arose in addressing the vanishing and exploding
gradient problem, both at initialization, and during training. This problem was understood by analyzing
the signal propagation within a DNN, and addressed in improved initialization methods (Glorot et al.,
2010; He et al., 2015; Xiao et al., 2018) alongside normalization methods, such as Batch Normalization
(BatchNorm) (Ioffe et al., 2015). In our work, following Wang et al. (2020), we study these problems
using the gradient flow,∇L(θ)T∇L(θ) which is the first order approximation* of the decrease in the loss
expected after a gradient step. We observe poor gradient flow for the predominant sparse NN initialization
strategy and propose a solution in §3.1. Then in §3.2 and §3.3 we summarize Dynamic Sparse Training
(DST) methods and LT hypothesis respectively.

*We omit learning rate for simplicity.

2

Under review as a conference paper at ICLR 2020

w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

weight
matrix

fanin= 2

fanout= 3

w21,1 w
2
1,2

w22,1 w
2
2,2

w23,1 w
2
3,2

(a) Dense Layer

w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

weight
mask

_ 1

_ _

2 2

fan in
0 1

0 0

1 1

(b) Sparse Layer

0.0 0.2 0.4 0.6 0.8

Sparsity
10-6

10-5

10-4

10-3

10-2

10-1

100

σ
(f

(x
))

Dense
Liu et. al.
Ours

(c) Signal Propagation at Init.

Figure 1: Glorot/He Initialization for a Sparse NN. All neurons in a dense NN layer (a) have the same
fan-in, whereas in a sparse NN (b) the fan-in can differ for every neuron, potentially requiring sampling
from a different distribution for every neuron. The initialization derivation/fan-out variant are explained
further in Appendix A.1. (c) Std. dev. of the pre-softmax output of LeNet5 with input sampled from a
normal distribution, over 5 different randomly-initialized sparse NN for a range of sparsities.

3.1 The Initialization Problem in Sparse Networks

Here we analyze the gradient flow at initialization for random sparse NNs, motivating the derivation
of a more general initialization for NN with heterogeneous connectivity, such as in sparse NNs. In
practice, without a method such as BatchNorm (Ioffe et al., 2015), using the correct initialization can
be the difference between being able to train a DNN, or not — as observed for VGG16 in our results (§4.1,
Table 1). The initializations proposed by Glorot et al. (2010) and He et al. (2015) ensure that the output
distribution of every neuron in a layer is of zero-mean and unit variance, and do this by sampling a Gaussian
distribution with a variance based on the number of incoming/outgoing connections for all the neurons
in a dense layer, as illustrated in Fig. 1a, which is assumed to be identical for all neurons in the layer.

In an unstructured sparse NN however, the number of incoming/outgoing connections is not identical for
all neurons in a layer, as illustrated in Fig. 1b. In Appendix A.2 we derive the initialization for this more
general case. In Appendix A.1 we explain in full the generalized Glorot et al. (2010) and He et al. (2015)
initialization, in the forward, backward and average use cases. Here we will focus only on explaining
the generalized He et al. (2015) initialization for forward propagation, which we used in our experiments.

For every weightw[`]
ij ∈Wn[`]×n[`−1]

in a layer `with n[`] neurons, and mask [m
[`]
ij]=M`∈ [0,1]n

[`]×n[`−1]

,

w
[`]
ij ∼N

(
0,

2

fan-in[`]i

)
, where fan-in[`]i =

n[`−1]∑
j=1

m
[`]
ij , (1)

is the number of incoming connections for neuron i in layer `.

In the special case of a dense layer where m[`]
ij = 1,∀i,j, Eq. (1) reduces to the initialization proposed

by (He et al., 2015) since fan-in[`]i =n[`−1],∀i. Using the dense initialization in a sparse DNN causes signal
to vanish, as empirically observed in Fig. 1c), whereas our initialization keeps the variance of the signal
constant. The initialization proposed by Liu et al. (2019) is a special case of ours where it is assumed
fan-in[`]i ≡ fan-in[`],∀i, i.e. all neurons have the same number of unmasked incoming connections in a layer.
Surprisingly the initialization of Liu et al. (2019) also preserves the signal in Fig. 1c (discussed in §4.1).

3.2 Gradient Flow during Training and Dynamic Sparse Training

While initialization is important for the first training step, the gradient flow during the early stages of training
is not well addressed by initialization alone, as shown by normalization methods (Ioffe et al., 2015). Our find-
ings show that even with BatchNorm, the gradient flow during training in unstructured sparse NNs is poor.

Recently, a promising new approach to training sparse NNs has emerged — Dynamic Sparse Training
(DST) — that learns connectivity adaptively during training, showing significant improvements over
baseline methods that use a fixed mask. These methods perform periodic updates on the sparse connectivity
of each layer: commonly replacing least magnitude connections with new connections selected using
various criteria. We consider two of these methods: Sparse Evolutionary Training (SET) (Mocanu et al.,

3

Under review as a conference paper at ICLR 2020

2018), which chooses new connections randomly and Rigged Lottery (RigL) (Evci et al., 2019), which
chooses connections with high gradient magnitude. RigL improves over SET and matches pruning
performance with sufficient training time. Since these methods have only recently been proposed, there
is a lack of understanding of why and how these methods achieve better results.

3.3 Lottery Ticket Hypothesis

A recent approach for training unstructured sparse NNs while achieving similar generalization to the
original dense solution is the Lottery Ticket Hypothesis (LTH) (Frankle et al., 2019a). Notably, rather
than training a pruned NN structure from random initialization, the LTH uses the dense initialization from
which the pruning solution was trained/derived from.

Definition [Lottery Ticket Hypothesis]: Given a NN f with a parameter vector θ and an optimization
function ON(f,θ) = θN , which gives the optimized parameters of f after N training steps, there exists
a sparse sub-network characterized by the binary maskM such that for some iterationK,ON(f,θK∗M)
performs as well asON(f,θ)∗M , whereas the model trained from another random initialization θS, using
the same maskON(f,θS∗M), typically does not*. Frankle et al. (2019a) initially claimed the LTH held
forK=0, but later revised this toN�K≥0 (Frankle et al., 2019b; Liu et al., 2019).

LTs enjoy significantly faster convergence compared to regular NN training but require the connectivity
mask as found by the pruning solution (Frankle et al., 2019a) along with values from early training (Frankle
et al., 2019b). Given the importance of the early phase of training (Frankle et al., 2020c; Lewkowycz
et al., n.d.), it is natural to ask about the difference between lottery tickets and the solution they are derived
from (i.e. pruning solutions). Answering this question can help us understand if the success of LTs is
primarily due to its relation to the solution, or if we can identify generalizable characteristics that help
with sparse NNs training.

4 Experiments

Here we show empirically that (1) sparsity-aware initialization improves gradient flow at initialization for
all methods, and achieves higher generalization for networks without BatchNorm, (2) the mask updates of
DST methods increase gradient flow and create new negative eigenvalues in the Hessian; which we believe
to be the main factor for improved generalization, (3) lottery tickets have poor gradient flow, however they
achieve good performance by effectively re-learning the pruning solution, meaning they do not address
the problem of training sparse NNs in general. Our experiments include the following settings: LeNet5
on MNIST, VGG16 on ImageNet-2012 and ResNet-50 on ImageNet-2012. Experimental details can
be found in Appendix B†.

4.1 Gradient Flow at Initialization

In this section, we measure the gradient flow over the course of the training (Fig. 2) and evaluate the
performance of our generalized He initialization method (Table 1), and that proposed by Liu et al. (2019),
over the commonly used masked dense initialization. Additional gradient flow plots for the remaining
methods are shared in Appendix C. Sparse NN initialized using the initialization distribution of a dense
model (Scratch in Fig. 2) start in a flat region where gradient flow is very small and don’t make any
early progress. Learning starts after 1000 iterations for LeNet5 and 5000 for VGG-16, however, their
generalization is sub-optimal. Liu et al. (2019) claim their proposed initialization has no empirical effect as
compared to the masked dense initialization‡. Although technically incorrect (see §3.1), our results show
their method to be largely as effective as our proposed initialization. This indicates that the assumption
of a mask having roughly uniform mask sparsity is sufficient for the masks we considered. Both of
these initializations remedy the vanishing gradient problem at initialization (Scratch+ in Fig. 2) and
result in better generalization for all methods. For instance, improved initialization results in an 11%
improvement in Top-1 accuracy for VGG16 (62.52 vs 51.81). While initialization is extremely important

*See Frankle et al. (2019b) for details. ∗ indicates element-wise multiplication, respecting the mask.
†Implementation of our sparse initialization, Hessian calculation and code for reproducing our experiments will

be open sourced with the final version. Additionally we provide videos that shows the evolution of Hessian during
training under different algorithms in the supplementary material.

‡Models with BatchNorm and skip connections are less affected by initialization, and this is likely why the authors
did not observe this effect.

4

Under review as a conference paper at ICLR 2020

Table 1: Results of Trained Sparse/Dense Models from Different Initializations. The initializations proposed in Eq. (1) (Ours) and
Liu et al. (2019) improve generalization consistently over masked dense (Original) except for in ResNet50. Note that VGG16 trained
without a sparsity-aware initialization fails to converge in some instances. Baseline corresponds to the original dense architecture,
whereas Small Dense corresponds to a smaller dense model with approximately the same parameter count as the sparse models.

MNIST ImageNet-2012

LeNet5 (95% sparse) VGG16 (80% sparse) ResNet50 (80% sparse)

Baseline 99.21±0.07 69.25±0.13 76.75±0.12
Lottery 98.26±0.27 0.10±0.01 75.75±0.12*

Small
Dense

98.21±0.46 61.75±0.09 71.95±0.24

Original Liu et al. Ours Original Liu et al. Ours Original Liu et al. Ours

Scratch 62.99±42.16 96.64±0.83 97.70±0.09 51.81±3.02 62.71±0.05 62.52±0.10 70.58±0.18 70.72±0.16 70.63±0.22
SET 63.33±42.44 97.77±0.31 98.16±0.06 53.55±1.03 63.19±0.26 63.13±0.15 72.93±0.27 72.77±0.27 72.56±0.14
RigL 80.82±34.74 98.14±0.17 98.13±0.09 37.15±26.20 63.69±0.02 63.56±0.06 74.41±0.05 74.38±0.10 74.38±0.01

* Used late-rewinding (i.e. K=5000).

102 103 104

Iteration
0

1

2

G
ra

di
en

t N
or

m

Lottery
RigL+
Scratch
Scratch+
Small Dense

(a) LeNet5

103 104 105

Iteration
0

1

2

3

4

5

6

7

G
ra

di
en

t N
or

m

Lottery
RigL+
Scratch
Scratch+
Small Dense

(b) VGG-16

102 103 104

Iteration

0.2

0.4

0.6

0.8

1.0

G
ra

di
en

t N
or

m

Lottery
RigL+
Scratch
Scratch+
Small Dense

(c) ResNet-50

Figure 2: Gradient Flow of Sparse Models during Training. Gradient flow during training averaged
over multiple runs, ‘+‘ indicates training runs with our proposed sparse initialization and Small Dense
corresponds to training of a dense network with same number of parameters as the sparse networks.
Lottery ticket runs for ResNet-50 include late-rewinding.

102 103 104

Iteration

0.1

0.0

0.1

0.2

0.3

0.4

0.5

∆
 G

ra
d

N
or

m

RigL
RigL Inverted
SET

(a) ResNet-50

102 103 104

Iteration

0

1

 G
ra

d
N

or
m

RigL+
RigL+ Inverted
SET+

(b) LeNet5

Figure 3: Effect of Mask Updates in Dynamic Sparse Training. Effect of mask updates on the gradient
norm. RigL Inverted chooses connections with least magnitude. We measure the gradient norm before and
after the mask updates and plot the ∆. ‘+‘ indicates proposed initialization and used in MNIST experiments.

for NNs without BatchNorm and skip connections, its effect on modern architectures, such as Resnet-50,
is limited (Evci et al., 2019; Frankle et al., 2020b; Zhang et al., 2019). We confirm these observations in
our ResNet-50 experiments in which, despite some initial improvement in gradient flow, our initialization
seems to have no effect on final generalization. We observe significant increases in gradient norm after
each learning rate drop (due to increased variance in gradients), which suggests studying gradient norm
in the later part of the training might not be helpful. On the other hand, we observe a significant difference
in gradient flow during training between sparse networks and small dense models of a similar parameter
count. Can the performance gap between static-sparse and dense models be explained by this difference?

5

Under review as a conference paper at ICLR 2020

Scratch
Basin

Lottery
(Sparse)
Initialization

Pruning
Basin

Random (Scratch)
Initializations

Lottery
Solution

Pruning
Solution

Pruning Mask

Figure 4: Lottery Tickets Are Biased Towards the Pruning Solution, Unlike Random Initialization.
A cartoon illustration of the loss landscape of a sparse model, after it is pruned from a dense solution
to create a LT sub-network. A lottery ticket initialization is within the basin of attraction of the pruned
model’s solution. In contrast a random initialization is unlikely to be close to the dense solution’s basin.

4.2 Gradient Flow during Training and Dynamic Sparse Training

In Fig. 2 we observed improved gradient flow for RigL. In this section we focus on those iterations in
which the sparse connectivity is updated, and measure the change in gradient flow along with the Hessian
spectrum. We also run the inverted baseline for RigL (RigL Inverted), in which the growing criteria is
reversed and connections with least gradient magnitudes are activated.

DST methods such as RigL replace low saliency connections during training. Assuming the pruned connec-
tions indeed have a low impact on the loss, we might expect to see increased gradient norm after new con-
nections are activated, especially in the case of RigL, which picks new connections with high magnitude gra-
dients. In Fig. 3 we confirm that RigL updates increase the norm of the gradient significantly, especially in
the first half of training, whereas SET, which picks new connections randomly, seems to be less effective at
this. Using the inverted RigL criteria doesn’t improve the gradient flow, as expected, and without this RigL’s
performance degrades (73.83±0.12 for ResNet-50 and 92.71±7.67 for LeNet5). These results suggest that
improving gradient flow early in training might be the key for training sparse networks and that is what
RigL appears to be doing. Additional plots for different initialization methods are shared in Appendix C.

RigL falls short of matching Small-Dense performance while constantly having higher gradient flow
during the training, which highlights a limitation of looking solely at gradient flow. When the gradient
is zero, or uninformative due to the error term of the approximation, analyzing the Hessian could provide
additional insights (Ghorbani et al., 2019; Papyan, 2019; Sagun et al., 2017). In Appendix E, we show
the Hessian spectrum before and after sparse connectivity updates. After RigL updates we observe more
negative eigenvalues with significantly larger magnitudes as compared to SET. On the other hand, small
dense models have smaller positive outlier eigenvalues while having significantly larger negative ones;
which is again a sign of better conditioned optimization. We leave investigating the relationship between
gradient flow and the Hessian further as a future work.

4.3 Why Lottery Tickets are Successful

We found that LTs do not improve gradient flow, either at initialization, or early in training, as shown in Fig. 2.
This may be surprising given the apparent success of LTs, however the questions posed in §3.3 present an
alternative hypothesis for the ease of training from a LT initialization. Here we present results showing that
indeed (1) LTs initializations are consistently closer to the pruning solution than a random initialization,
(2) trained LTs (i.e. LT solutions) consistently end up in the same basin as the pruning solution and (3), LT
solutions are highly similar to pruning solutions under various function similarity measures. Our resulting
understanding of LTs in the context of the pruning solution and the loss landscape is illustrated in Fig. 4.

Experimental Setup To investigate the relationship between the pruned and LT solutions we perform
experiments on two models/datasets: a 95% sparse LeNet5§ architecture (LeCun et al., 1989) trained on
MNIST (where the original LT formulation works, i.e.K=0), and an 80% sparse ResNet-50 (Wu et al.,
2018) on ImageNet-2012 (Russakovsky et al., 2015) (whereK=0 doesn’t work (Frankle et al., 2019b)),
for which we use values fromK=2000 (≈6th epoch). In both cases, we find a LT initialization by pruning
each layer of a dense NN separately using magnitude-based iterative pruning (Zhu et al., 2018). Further
details about our experiments can be found in Appendix B.

Lottery Tickets Are Close to the Pruning Solution We train 5 different models using different seeds
from both scratch (random) and LT initializations, the results of which are in Figs. 5b and 5e. These

§Note: We use ReLU activation functions, unlike the original architecture (LeCun et al., 1989).

6

Under review as a conference paper at ICLR 2020

20 0 20
20

10

0

10

20

Lottery-start
Lottery-end

Scratch-start
Scratch-end

Prune-end

(a) MDS Projection

MNIST/LeNet5

LT Scratch

Acctest 98.52 97.19
dinit 13.61 17.46
dfinal 8.03 25.64

(b) L2 Distances

0.0 0.5 1.0
Interpolation Coefficient ()

0

1

2

Tr
ai

ni
ng

 L
os

s

Lottery
Lottery End
Scratch
Scratch End

(c) Loss Interpolation

200 100 0 100 200
200

100

0

100

200

Lottery-start
Lottery-end

Scratch-start
Scratch-end

Prune-end

(d) MDS Projection

ImageNet-2012
/ResNet-50

Method LT Scratch

Acctest 75.74 71.16
dinit 147.12 200.44
dfinal 39.35 215.98

(e) L2 Distances

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Coefficient (α)

1

2

3

4

5

6

7

8

9

Tr
ai

ni
ng

 L
os

s

Lottery
Lottery End
Scratch
Scratch End

(f) Loss Interpolation

Figure 5: MDS Embeddings/L2 Distances: (a, d): 2D Multi-dimensional Scaling (MDS) embedding
of sparse NNs with the same connectivity/mask; (b, e): the average L2-distance between a pruning solution
and other derived sparse networks; (c, f): linear path between the pruning solution (α=1.0) and LT/scratch
at both initialization, and solution (end of training). Top and bottom rows are for MNIST/LeNet5 and
ImageNet-2012/ResNet-50 respectively.

networks share the same pruning mask and therefore lie in the same solution space. We visualize distances
between initial and final points of these experiments in Figs. 5a and 5d using 2D Multi-dimensional Scaling
(MDS) (Kruskal, 1964) embeddings. LeNet5/MNIST: In Fig. 5b, we provide the average L2 distance to
the pruning solution at initialization (dinit), and after training (dfinal). We observe that LT initializations
start significantly closer to the pruning solution on average (dinit=13.61 v.s. 17.46). After training, LTs
end up more than 3× closer to the pruning solution compared to scratch. Resnet-50/ImageNet-2012:
We observe similar results for Resnet-50/ImageNet-2012. LTs, again, start closer to the pruning solution,
and solutions are 5× closer (dfinal=39.35 v.s. 215.98). With these observations, non-random initial loss
values for LT initialization reported first by (Zhou et al., 2019) seem reasonable. LTs are biased towards
the pruning solution they are derived from, but are they in the same basin?

Lottery Tickets are in the Pruning Solution Basin Investigating paths between different solutions is
a popular tool for understanding how various points in parameter space relate to each other in the loss
landscape (Draxler et al., 2018; Evci et al., 2019; Fort et al., 2020; Frankle et al., 2020a; Garipov et al.,
2018; Goodfellow et al., 2015). For example, Frankle et al. (2019b) use linear interpolations to show that
LTs always go to the same basin¶ when trained in different data orders. In Figs. 5c and 5f we look at the
linear paths between pruning solution and 4 other points: LT initialization/solution and random (scratch)
initialization/solution. Each experiment is repeated 5 times with different random seeds, and mean values
are provided with 80% confidence intervals. In both experiments we observe that the linear path between
LT initialization and the pruning solution decreases faster compared to the path that originates from scratch
initialization. After training, the linear paths towards the pruning solution change drastically. The path
from the scratch solution depicts a loss barrier; the scratch solution seems to be in a different basin than
the pruning solution||. In contrast, LTs are linearly connected to the pruning solution in both small and
large-scale experiments indicating that LTs have the same basin of attraction as the pruning solutions

¶We define a basin as a set of points, each of which is linearly connected to at least one other point in the set.
||This is not always true, it is possible that non-linear low energy paths exist between two solutions (Draxler et al.,

2018; Garipov et al., 2018), but searching for such paths is outside the scope of this work.

7

Under review as a conference paper at ICLR 2020

Table 2: Ensemble & Prediction Disagreement. We compare the function similarity (Fort et al.,
2020) with the original pruning solution and ensemble generalization over 5 sparse models, trained
from random initializations and LTs. As a baseline, we also show results for 5 pruned models
trained from different random initializations. See Appendix F for the complete results.

Initialization (Top-1) Test Acc. Ensemble Disagree. Disagree. w/ Pruned

LeNet5
MNIST

LT 98.52±0.02 98.58 0.0043±0.0006 0.0089±0.0002
Scratch 97.04±0.15 98.00 0.0316±0.0023 0.0278±0.0020
Scratch (Diff. Init.) 97.19±0.33 98.43 0.0352±0.0037 0.0278±0.0032
Prune Restart 98.60±0.01 98.63 0.0027±0.0003 0.0077±0.0003

Pruned Soln. 98.53 – – –
5 Diff. Pruned 98.30±0.23 99.07 0.0214±0.0023 0.0197±0.0019*

ResNet50
ImageNet

LT 75.73±0.08 76.27 0.0894±0.0009 0.0941±0.0009
Scratch 71.16±0.13 74.05 0.2039±0.0013 0.2033±0.0012

Pruned Soln. 75.60 – – –
5 Diff. Pruned 75.65±0.13 77.80 0.1620±0.0008 0.1623±0.0011*

* Here we compare 4 different pruned models with the pruning solution LT/Scratch are derived from.

they are derived from. While it seems likely, these results do not however explicitly show that the LT
and pruning solutions have learned similar functions.

Lottery Tickets Learn Similar Functions to the Pruning Solution Fort et al. (2020) motivate deep
ensembles by empirically showing that models starting from different random initializations typically
learn different solutions, as compared to models trained from similar initializations. Here we adopt
the analysis of (Fort et al., 2020), but in comparing LT initializations and random initializations using
fractional disagreement. The fractional disagreement with the pruning solution is the fraction of class
predictions over which the LT and scratch models disagree with the pruning solution they were derived
from. In Table 2 we show the mean fractional disagreement over all pairs of models. We run two versions
of scratch training: (1) Scratch (Diff. Init. different weight initialization and different data order (2) Scratch
same weight initialization and different data order for 5 different seeds the experiments are ran. Finally,
we restart training starting from the pruning solution (Prune Restart) using, again, 5 different data orders.

The results presented in Table 2 suggest that all 5 LTs models converge on a solution almost identical to
the pruning solution. Interestingly, the 5 LT models are even more similar to each other (Disagree. column)
than the pruning solution, possibly because they share an initialization and training is stable (Frankle
et al., 2019b). The disagreement of Prune Restart solutions with the original pruning solution matches
the disagreement of lottery solutions; showing the extent of similarity between LT and pruning solutions.

Our results show that having a fixed initialization alone can not explain the low disagreement observed
for LT experiments as Scratch solutions obtain an average disagreement of 0.0316 despite using the
same initialization, which is almost 10 times more than the LT solutions (0.0043). Finding different LT
initialization is costly, however using a different initialization in Scratch (Diff. Init.) training is free as
the initializations are random. Using different initializations we can obtain more diverse solutions and
thus achieve higher ensemble accuracy. As suggested by the analysis of Fort et al. (2020), ensembles of
different solutions are more robust, and generalize better, than ensembles of similar solutions. An ensemble
of 5 LT models with low disagreement doesn’t significantly improve generalization as compared to an
ensemble of 5 different pruning solutions with similar individual test accuracy. We further demonstrate
these results by comparing the output probability distributions using the Kullback–Leibler Divergence
(KL), and Jensen–Shannon Divergence (JSD) in Appendix F.

Implications: (a) Rewinding of LTs. Frankle et al. (2019b, 2020a) argued that LTs work when the
training is stable, and thus converges to the same basin when trained with different data sampling orders. In
§4.3, we show that this basin is the same one found by pruning, and since the training converges to the same
basin as before, we expect to see limited gains from rewinding if any. This is partially confirmed by Renda
et al. (2020) which shows that restarting the learning rate schedule from the pruning solution performs better
than rewinding the weights. (b) Transfer of LTs. Given the close relationship between LTs and pruning
solutions, the observation that LTs trained on large datasets transfer to smaller ones, but not vice versa
(Morcos et al., 2019; Sabatelli et al., 2020) can be explained by a common observation in transfer learning:
networks trained in large datasets transfer to smaller ones. (c) LT’s Robustness to Perturbations. Frankle
et al. (2020c) and Zhou et al. (2019) found that certain perturbations, like only using the signs of weights

8

Under review as a conference paper at ICLR 2020

at initialization, do not impact LT generalization, while others, like shuffling the weights, do. Our results
bring further insights to these observations: As long as the perturbation is small enough such that a LT stays
in the same basin of attraction, results will be as good as the pruning solution. (d) Success of LTs. While
it is exciting to see widespread applicability of LTs in different domains (Brix et al., 2020; Li et al., 2020;
Venkatesh et al., 2020), the results presented in this paper suggest this success may be due to the underlying
pruning algorithm (and transfer learning) rather than LT initializations themselves.

5 Conclusion

We attempted to answer the questions of (1) why training unstructured sparse networks from random
initialization performs poorly and; (2) what makes Lottery Tickets (LTs) and Dynamic Sparse Training
(DST) the exceptions? We identified that randomly initialized unstructured sparse Neural Networks (NNs)
exhibit poor gradient flow when initialized naively and proposed an alternative initialization that scales the
initial variance for each neuron separately. Furthermore we showed that modern sparse NN architectures
are more sensitive to poor gradient flow during early training rather than initialization alone. We observed
that this is somewhat addressed by state-of-the-art DST methods, such as Rigged Lottery (RigL), which
significantly improves gradient flow during early training over traditional sparse training methods. Finally,
we show that LTs do not improve gradient flow at either initialization or during training, but rather their
success lies in effectively re-learning the original pruning solution they are derived from. We showed that a
LTs initialization resides within the same basin of attraction as the pruning solution and, furthermore, when
trained the LT solution learns a highly similar solution to the pruning solution. These findings suggest that
LTs are fundamentally limited in their potential for improving the training of sparse NNs more generally.

References

Brix, Christopher, Parnia Bahar, and Hermann Ney (2020). “Successfully Applying the Stabilized Lottery
Ticket Hypothesis to the Transformer Architecture”. In: ArXiv. URL: https://arxiv.org/abs/
2005.03454.

Castellano, Giovanna, Anna Maria Fanelli, and Marcello Pelillo (1997). “An iterative pruning algorithm
for feedforward neural networks”. In: IEEE Transactions on Neural Networks. ISSN: 1045-9227. DOI:
10.1109/72.572092.

Dettmers, Tim and Luke Zettlemoyer (2019). “Sparse Networks from Scratch: Faster Training without
Losing Performance”. In: ArXiv. URL: http://arxiv.org/abs/1907.04840.

Draxler, Felix, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht (2018). “Essentially No
Barriers in Neural Network Energy Landscape”. In: International Conference on Machine Learning.

Evci, Utku, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen (2020). “Rigging the Lottery:
Making All Tickets Winners”. In: Proceedings of Machine Learning and Systems 2020.

Evci, Utku, Fabian Pedregosa, Aidan N. Gomez, and Erich Elsen (2019). “The Difficulty of Training
Sparse Neural Networks”. In: ArXiv. URL: http://arxiv.org/abs/1906.10732.

Fort, Stanislav, Huiyi Hu, and Balaji Lakshminarayanan (2020). “Deep Ensembles: A Loss Landscape
Perspective”. In: International Conference on Learning Representations.

Frankle, Jonathan and Michael Carbin (2019a). “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks”. In: 7th International Conference on Learning Representations (ICLR).

Frankle, Jonathan, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin (2019b). “Stabilizing
the Lottery Ticket Hypothesis”. In: ArXiv. URL: https://arxiv.org/abs/1903.01611.

– (2020a). “Linear Mode Connectivity and the Lottery Ticket Hypothesis”. In: Proceedings of the Interna-
tional Conference on Machine Learning.

– (2020b). “Pruning Neural Networks at Initialization: Why are We Missing the Mark?” In: ArXiv. URL:
https://arxiv.org/abs/2009.08576.

Frankle, Jonathan, David J. Schwab, and Ari S. Morcos (2020c). “The Early Phase of Neural Network
Training”. In: International Conference on Learning Representations.

Gale, Trevor, Erich Elsen, and Sara Hooker (2019). “The State of Sparsity in Deep Neural Networks”. In:
ArXiv. URL: http://arxiv.org/abs/1902.09574.

Garipov, Timur, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew Gordon Wilson (2018).
“Loss Surfaces, M Connectivity, and Fast Ensembling of DNNs”. In: Advances in Neural Information
Processing Systems.

Ghorbani, Behrooz, Shankar Krishnan, and Ying Xiao (2019). “An Investigation into Neural Net Optimiza-
tion via Hessian Eigenvalue Density”. In: Proceedings of the 36th International Conference on Machine

9

https://arxiv.org/abs/2005.03454
https://arxiv.org/abs/2005.03454
https://doi.org/10.1109/72.572092
http://arxiv.org/abs/1907.04840
http://proceedings.mlr.press/v80/draxler18a/draxler18a.pdf
http://proceedings.mlr.press/v80/draxler18a/draxler18a.pdf
http://arxiv.org/abs/1906.10732
https://arxiv.org/abs/1903.01611
https://arxiv.org/abs/2009.08576
http://arxiv.org/abs/1902.09574

Under review as a conference paper at ICLR 2020

Learning. URL: http://proceedings.mlr.press/v97/ghorbani19b.html.
Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep feedforward

neural networks”. In: Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS).

Goodfellow, Ian J., Oriol Vinyals, and Andrew M. Saxe (2015). “Qualitatively characterizing neural network
optimization problems”. In: International Conference on Learning Representations.

Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally
(2016). “EIE: Efficient Inference Engine on Compressed Deep Neural Network”. In: Proceedings of the
43rd International Symposium on Computer Architecture.

Han, Song, Jeff Pool, John Tran, and William Dally (2015). “Learning both weights and connections for
efficient neural network”. In: Advances in neural information processing systems.

Hanson, Stephen José and Lorien Y. Pratt (1988). “Comparing biases for minimal network construction
with back-propagation”. In: Proceedings of the 1st International Conference on Neural Information
Processing Systems (NIPS). Morgan Kaufmann.

Hassibi, B. and D. Stork (1993). “Second order derivatives for network pruning: Optimal Brain Surgeon”.
In: Advances in Neural Information Processing Systems.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification”. In: IEEE International Conference
on Computer Vision (ICCV).

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: Proceedings of the 32Nd International Conference on
International Conference on Machine Learning.

Kruskal, J. (1964). “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis”. In:
Psychometrika. DOI: 10.1007/BF02289565.

Kusupati, Aditya, Vivek Ramanujan, Ragha Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and
Ali Farhadi (2020). “Soft Threshold Weight Reparameterization for Learnable Sparsity”. In: Proceedings
of the International Conference on Machine Learning.

LeCun, Yann, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne Hubbard,
and Lawrence D. Jackel (1989). “Backpropagation applied to handwritten zip code recognition”. In:
Neural Computation. ISSN: 0899-7667. DOI: 10.1162/neco.1989.1.4.541.

LeCun, Yann, John S. Denker, and Sara A. Solla (1990). “Optimal Brain Damage”. In: Advances in Neural
Information Processing Systems.

Lee, Namhoon, Thalaiyasingam Ajanthan, and Philip H. S. Torr (2019). “SNIP: Single-shot Network
Pruning based on Connection Sensitivity”. In: International Conference on Learning Representations
(ICLR), 2019.

Lewkowycz, Aitor, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari (n.d.). “The
large learning rate phase of deep learning: the catapult mechanism”. In: Arxiv (). URL: https:
//arxiv.org/pdf/2003.02218.

Li, Bai, Shiqi Wang, Yunhan Jia, Yantao Lu, Zhenyu Zhong, Lawrence Carin, and Suman Jana (2020).
“Towards Practical Lottery Ticket Hypothesis for Adversarial Training”. In: ArXiv. URL: https:
//arxiv.org/abs/2003.05733.

Liu, Zhuang, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell (2019). “Rethinking the Value of
Network Pruning”. In: International Conference on Learning Representations.

Louizos, Christos, Karen Ullrich, and Max Welling (2017). “Bayesian compression for deep learning”. In:
Advances in Neural Information Processing Systems.

Malach, Eran, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir (2020). “Proving the Lottery Ticket
Hypothesis: Pruning is All You Need”. In: ArXiv. URL: http://arxiv.org/abs/2002.00585.

Mocanu, Decebal Constantin, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta (2018). “Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science”. In: Nature Communications.

Molchanov, Dmitry, Arsenii Ashukha, and Dmitry Vetrov (2017). “Variational Dropout Sparsifies Deep
Neural Networks”. In: Proceedings of the 34th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research. International Convention Centre, Sydney, Australia: PMLR. URL:
http://proceedings.mlr.press/v70/molchanov17a.html.

Molchanov, Pavlo, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz (2016). “Pruning Convolutional
Neural Networks for Resource Efficient Inference”. In: ArXiv. URL: http://arxiv.org/abs/
1611.06440.

Morcos, Ari, Haonan Yu, Michela Paganini, and Yuandong Tian (2019). “One ticket to win them all: gener-
alizing lottery ticket initializations across datasets and optimizers”. In: Advances in Neural Information

10

http://proceedings.mlr.press/v97/ghorbani19b.html
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://doi.org/10.1007/BF02289565
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/pdf/2003.02218
https://arxiv.org/pdf/2003.02218
https://arxiv.org/abs/2003.05733
https://arxiv.org/abs/2003.05733
https://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
http://arxiv.org/abs/2002.00585
http://www.nature.com/articles/s41467-018-04316-3
http://www.nature.com/articles/s41467-018-04316-3
http://proceedings.mlr.press/v70/molchanov17a.html
http://arxiv.org/abs/1611.06440
http://arxiv.org/abs/1611.06440

Under review as a conference paper at ICLR 2020

Processing Systems 32.
Mostafa, Hesham and Xin Wang (2019). “Parameter efficient training of deep convolutional neural

networks by dynamic sparse reparameterization”. In: Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. URL: http:
//proceedings.mlr.press/v97/mostafa19a.html.

Mozer, Michael C. and Paul Smolensky (1989a). “Using Relevance to Reduce Network Size Automatically”.
In: Connection Science. DOI: 10.1080/09540098908915626.

– (1989b). “Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assess-
ment”. In: Advances in Neural Information Processing Systems 1.

Papyan, Vardan (2019). “Measurements of Three-Level Hierarchical Structure in the Outliers in the
Spectrum of Deepnet Hessians”. In: ArXiv. URL: https://arxiv.org/abs/1901.08244.

Ramanujan, Vivek, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari
(2019). “What’s Hidden in a Randomly Weighted Neural Network?” In: ArXiv. URL: http://arxiv.
org/abs/1911.13299.

Renda, Alex, Jonathan Frankle, and Michael Carbin (2020). “Comparing Rewinding and Fine-tuning in
Neural Network Pruning”. In: International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=S1gSj0NKvB.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei (2015). “ImageNet
Large Scale Visual Recognition Challenge”. In: International Journal of Computer Vision (IJCV).

Sabatelli, Matthia, Mike Kestemont, and Pierre Geurts (2020). “On the Transferability of Winning Tickets
in Non-Natural Image Datasets”. In: ArXiv. URL: https://arxiv.org/abs/2005.05232.

Sagun, Levent, Utku Evci, V. Ugur Güney, Yann Dauphin, and Léon Bottou (2017). “Empirical Analysis
of the Hessian of Over-Parametrized Neural Networks”. In: International Conference on Learning
Representations.

Setiono, Rudy (1997). “A Penalty-Function Approach for Pruning Feedforward Neural Networks”. In:
Neural Computation. DOI: 10.1162/neco.1997.9.1.185.

Sietsma, Jocelyn and Robert J.F. Dow (1988). “Neural net pruning-why and how”. In: IEEE International
Conference on Neural Networks. DOI: 10.1109/ICNN.1988.23864.

Tanaka, Hidenori, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli (2020). “Pruning neural networks
without any data by iteratively conserving synaptic flow”. In: ArXiv. URL: https://arxiv.org/
abs/2006.05467.

van der Walt, S., S. C. Colbert, and G. Varoquaux (2011). “The NumPy Array: A Structure for Efficient
Numerical Computation”. In: Computing in Science Engineering.

Venkatesh, Bindya, Jayaraman J. Thiagarajan, Kowshik Thopalli, and Prasanna Sattigeri (2020). “Calibrate
and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration”. In: ArXiv. URL:
http://arxiv.org/abs/2002.03875.

Wang, Chaoqi, Guodong Zhang, and Roger Grosse (2020). “Picking Winning Tickets Before Training by
Preserving Gradient Flow”. In: International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=SkgsACVKPH.

Wortsman, Mitchell, Ali Farhadi, and Mohammad Rastegari (2019). “Discovering Neural Wirings”. In:
Advances in Neural Information Processing Systems.

Wu, Songtao, Shenghua Zhong, and Yan Liu (2018). “Deep residual learning for image steganalysis”. In:
Multimedia Tools and Applications.

Xiao, Lechao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and Jeffrey Pennington (2018).
“Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional
neural networks”. In: International Conference on Machine Learning (ICML).

Zhang, Hongyi, Yann N. Dauphin, and Tengyu Ma (2019). “Fixup Initialization: Residual Learning Without
Normalization”. In: International Conference on Learning Representations.

Zhou, Hattie, Janice Lan, Rosanne Liu, and Jason Yosinski (2019). “Deconstructing lottery tickets: Zeros,
signs, and the supermask”. In: Advances in Neural Information Processing Systems.

Zhu, Michael and Suyog Gupta (2018). “To Prune, or Not to Prune: Exploring the Efficacy of Pruning for
Model Compression”. In: International Conference on Learning Representations Workshop.

11

http://proceedings.mlr.press/v97/mostafa19a.html
http://proceedings.mlr.press/v97/mostafa19a.html
https://doi.org/10.1080/09540098908915626
https://arxiv.org/abs/1901.08244
http://arxiv.org/abs/1911.13299
http://arxiv.org/abs/1911.13299
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=S1gSj0NKvB
https://arxiv.org/abs/2005.05232
https://doi.org/10.1162/neco.1997.9.1.185
https://doi.org/10.1109/ICNN.1988.23864
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/2006.05467
http://arxiv.org/abs/2002.03875
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

Under review as a conference paper at ICLR 2020

w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

weight
matrix

fanin= 2

fanout= 3

w21,1 w
2
1,2

w22,1 w
2
2,2

w23,1 w
2
3,2

(a) Dense Layer

weight mask

w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

_ 1

_ _

2 2

fan in fan out

w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

0 1

0 0

1 1

_ 2

_ _

1 2

(b) Sparse Layer

Figure 6: Glorot/He Initialization for a Sparse NN. (Glorot et al., 2010; He et al., 2015) restrict the
outputs of all neurons to be zero-mean and of unit variance. All neurons in a dense NN layer (a) have the
same fan-in/fan-out, whereas in a sparse NN (b) the fan-in/fan-out can differ for every neuron, potentially
requiring sampling from a different distribution for every neuron. The fan-in matrix contains the values
used in Eq. (1) for each neuron.

A Glorot/He Initialization Generalized to Neural Networks with Heterogeneous
Connectivity: Full Explanation/Derivation

Here we derive the full generalized initialization for both the forwards/backwards cases (i.e. fan-in/fan-out),
refer to Fig. 6 for an illustration of how the connectivity for the fan-in/fan-out cases are determined for
each neuron.

A.1 Generalized Glorot/He Initialization: Backwards, Forwards and Average Cases

For every weight w[`]
ij ∈Wn[`]×n[`−1]

in a layer ` with n[`] neurons, connecting neuron i in layer ` to

neuron j in layer (`−1) with n[`−1] neurons, and weight mask [m
[`]
ij]=M`∈ [0,1]n

[`]×n[`−1]

,

Glorot et al. (2010): w[`]
ij ∼N

(
0, 1u
)

He et al. (2015): w
[`]
ij ∼N

(
0, 2u
)where u=

fan-in[`]i (forward)
fan-out[`]j (backward)(

fan-in[`]i +fan-out[`]j
)
/2 (average)

(2)

where,

fan-in[`]i =

n[`−1]∑
j=1

m
[`]
ij , fan-out[`]j =

n[`]∑
i=1

m
[`]
ij ,

are the number of incoming and outgoing connections respectively. In the special case of a dense layer
wherem[`]

ij =1,∀i,j, Eq. (1) reduces to the initializations proposed by (Glorot et al., 2010; He et al., 2015)

since fan-in[`]i =n[`−1],∀i, and fan-out[`]j =n[`],∀j.

A.2 Derivation: Fixed Mask, Forward Propagation

Given a sparse NN, where the output of a neuron ai is given by, a
[`]
i = f

(
z
[`]
i

)
, where

z
[`]
i =

∑n[`−1]

j m
[`]
ijw

[`]
ij a

[`−1]
j , where m[`]

ij ∈ M [`] and w
[`]
ij ∈ W [`] are the mask and weights re-

spectively for layer `, and a[`−1]j the output of the previous layer. Assume the mask M [`]∈1n[`]×n[`−1]

is constant, where 1n
[`]×n[`−1]

is an indicator matrix.

12

Under review as a conference paper at ICLR 2020

As in Glorot et al. (2010) we want to ensure Var(a
[`]
i)=Var(a

[`−1]
i), and mean(a

[`]
i)=0. Assume that

f(x)≈x for x close to 0, e.g. in the case of f(x)=tanh(x), and that w[`]
ij and a[`−1]j are independent,

Var(a
[`−1]
i)≈Var(z

[`]
i) (3)

=Var

n[l−1]∑
j=1

m
[`]
ijw

[`]
ij a

[`−1]
j

 (4)

=

n[`−1]∑
j=1

Var
(
m

[`]
ijw

[`]
ij a

[`−1]
j

)
(independent sum) (5)

=

n[`−1]∑
j=1

(
m

[`]
ij

)2
Var
(
w

[`]
ij a

[`−1]
j

)
∵m[`]

ij is constant,Var(cX)=c2Var(X) (6)

=

n[`−1]∑
j=1

m
[`]
ij Var

(
w

[`]
ij a

[`−1]
j

)
∵m[`]

ij ∈ [0,1],
(
m

[`]
ij

)2
=m

[`]
ij . (7)

=

n[`−1]∑
j=1

m
[`]
ij Var(w

[`]
ij)Var(a

[`−1]
j). (independent product) (8)

Assume Var(w
[`]
im) = Var(w

[`]
in),∀n,m, i.e. the variance of all weights for a given neuron are the same,

and Var(a
[`−1]
n)=Var(a

[`−1]
m), i.e. the variance of any of the outputs of the previous layer are the same.

Therefore we can simplify Eq. (8),

Var(a
[`−1]
i)=

n[`−1]∑
j=1

m
[`]
ij Var(w

[`]
ij)Var(a

[`−1]
j) (9)

=Var(w
[`]
ij)Var(a

[`−1]
j)

n[`−1]∑
j=1

m
[`]
ij . (10)

Let neuron i’s number of non-masked weights be denoted fan-in[`]i , where fan-in[`]i =
∑n[`−1]

j=1 m
[`]
ij , then

Var(a
[`−1]
i)= fan-in[`]i Var(w

[`]
ij)Var(a

[`−1]
j) (11)

Recall, Var(a
[`−1]
i)=Var(a

[`−1]
j)

⇒Var(w
[`]
ij)=

1

fan-in[`]i
. (12)

Therefore, in order to have the output of each neuron a[`]i in layer ` to have unit variance, and mean 0,
we need to sample the weights for each neuron from the normal distribution,

[w
[`]
ij]∼N

(
0,

1

fan-in[`]i

)
, (13)

where s`i is the sparsity of weights of the neuron with output ai. For the ReLU activation function,
following the derivation in He et al. (2015),

[w
[`]
ij]∼N

(
0,

2

fan-in[`]i

)
. (14)

A.3 Fixed Mask: Backward Pass

Given a sparse NN, where the output of a neuron ai is given by, a
[`]
i = f

(
z
[`]
i

)
, where

z
[`]
i =

∑n[`−1]

j m
[`]
ijw

[`]
ij a

[`−1]
j , where m[`]

ij ∈M [`] and w[`]
ij ∈W [`] are the mask and weights respectively

13

Under review as a conference paper at ICLR 2020

for layer `, and a[`−1]j the output of the previous layer. Assume the maskM [`]∈1n[`]×n[`−1]

is constant,

where 1n
[`]×n[`−1]

is an indicator matrix, and let L
(
θ={W [`],`=0...N}

)
be the loss we are optimizing.

As in Glorot et al. (2010), from the backward-propagation standpoint, we want to ensure
Var(∂L

∂z
[`]
i

)=Var(∂L

∂z
[`−1]
i

)), and mean(∂L

∂z
[`]
i

)=0. Assume that f ′(0)=1,

Var(
∂L

∂z
[`]
j

)≈Var(
∂L

∂a
[`−1]
j

) (15)

=Var

n[`]∑
i=1

m
[`]
ijw

[`]
ij

∂L

∂z
[`]
i

 (16)

=

n[`]∑
i=1

Var

(
m

[`]
ijw

[`]
ij

∂L

∂z
[`]
i

)
(independent sum) (17)

=

n[`]∑
i=1

(
m

[`]
ij

)2
Var

(
w

[`]
ij

∂L

∂z
[`]
i

)
∵m[`]

ij is constant,Var(cX)=c2Var(X) (18)

=

n[`]∑
i=1

m
[`]
ij Var

(
w

[`]
ij

∂L

∂z
[`]
i

)
∵m[`]

ij ∈ [0,1],
(
m

[`]
ij

)2
=m

[`]
ij . (19)

=

n[`]∑
i=1

m
[`]
ij Var(w

[`]
ij)Var(

∂L

∂z
[`]
i

). (independent product) (20)

Assume Var(w
[`]
mj) = Var(w

[`]
nj),∀n,m, i.e. the variance of all weights for a given neuron are the same,

and Var(∂L

∂z
[`]
n

)=Var(∂L

∂z
[`]
m

), i.e. the variance of the output gradients of each neuron at layer l are the same.
Then we can simplify Eq. (20),

Var(
∂L

∂z
[`]
j

)=

n[`]∑
i=1

m
[`]
ij Var(w

[`]
ij)Var(

∂L

∂z
[`]
i

) (21)

=Var(w
[`]
ij)Var(

∂L

∂z
[`]
i

)

n[`]∑
i=1

m
[`]
ij . (22)

Let neuron i’s number of non-masked weights be denoted fan-out[`]j , where fan-out[`]j =
∑n[`]

i=1m
[`]
ij , then

Var(
∂L

∂z
[`]
j

)= fan-out[`]j Var(w
[`]
ij)Var(

∂L

∂z
[`]
i

) (23)

Recall, Var(
∂L

∂z
[`]
j

)=Var(
∂L

∂z
[`]
i

)

⇒Var(w
[`]
ij)=

1

fan-out[`]j
. (24)

Therefore, in order to have the output of each neuron a[`]i in layer ` to have unit variance, and mean 0,
we need to sample the weights for each neuron from the normal distribution,

[w
[`]
ij]∼N

(
0,

1

fan-in[`]i

)
, (25)

where s`i is the sparsity of weights of the neuron with output ai. For the ReLU activation function,
following the derivation in He et al. (2015),

[w
[`]
ij]∼N

(
0,

2

fan-in[`]i

)
. (26)

14

Under review as a conference paper at ICLR 2020

Table 3: §4.3: Experiment Details/Hyperparameters. Initial Learning Rate (LR), LR Schedule (Sched.),
Batchsize (Batch.), Momentum (m), Weight Decay (WD), tstart, tend and f are the pruning starting iteration,
end iteration, and mask update frequency respectively.

Dataset Model ttotal Epochs Batch. LR Sched. m WD Sparsity Pruning
tstart tend f

MNIST LeNet5 11719 30 128 0.05 Cosine 0.9 0 95% 3000 7000 100

ImageNet ResNet50 32000 ≈102 4096 1.6 Step* 0.9 1×10−4 80% 5000 8000 2000
* Step schedule has a linear warm-up in first 5 epochs and decreases the learning rate by a factor of 10 at epochs
30,70 and 90.

Table 4: §4.1: Experiment Details/Hyperparameters. Initial Learning Rate (LR), LR Schedule
(Sched.), Batchsize (Batch.), Momentum (m), Weight Decay (WD), Initial Drop Fraction (Drop.), tend
and f are the pruning mask update frequency and end iteration respectively. LeNet5+ row corresponds
the LeNet5 experiments with our sparse initialization, whereas LeNet5 is the regular masked initialization.

Dataset Model ttotal Epochs Batch. LR Sched. m WD Sparsity DST
Drop. f tend

MNIST LeNet5 11719 30 128 0.05 Cosine 0.9 5×10−4 95% 0.3 500 11719

ImageNet
ResNet50 32000

≈102
4096 1.6

Step* 0.9 1×10−4 80%
0.3 100

25000VGG16 128000 1024 0.04 0.1 500
* Step schedule has a linear warm-up in first 5 epochs and decreases the learning rate by a factor of 10 at epochs
30,70 and 90.

B Experimental Details

B.1 Details of Experiments in Section 4.3

The training hyper-parameters used in §4.3 are shared in Table 3. All experiments in this section start with
a pruning experiment, after which the sparsity masks found by pruning are used to perform LT experiments.
We use iterative magnitude pruning (Zhu et al., 2018) in our experiments, which is a well studied and more
efficient pruning method as compared to the one used by Frankle et al. (2019a). Our pruning algorithm per-
forms iterative pruning without rewinding the weights between intermediate steps and requires significantly
less iterations. We expect our results would be even more pronounced with additional rewinding steps.

We use SGD with momentum in all of our experiments. Scratch and Lottery experiments use the same
hyper-parameters. Additional specific details of our experiments are shared below.

LeNet5 We prune all layers of LeNet5, so that they reach 95% final sparsity (i.e. 95% of the
parameters are zeros). We choose this sparsity, since at this sparsity, we start observing stark differences
between Lottery and Scratch in terms of performance. We set the weight decay to zero, similar to the
MNIST experiments done in the original LT paper (Frankle et al., 2019a) and do a grid search over
learning-rates={0.1,0.2,0.05,0.02,0.01}. Loss values for the linear interpolation experiments are calculated
on the entire training set.

ResNet50 We prune all layers of ResNet50, except the first layer, so that they reach 80% final sparsity.
In this setting rewinding to the original initialization doesn’t work, hence we use values from 6th epoch.
Loss values for the linear interpolation experiments are calculated using 500,000 images from the
ImageNet-2012 training set.

B.2 Details of Experiments in Section 4.1 and 4.2

Training hyper-parameters used for these experiments are shared in Table 4.

MNIST In this setting, the hyper-parameters are almost same as in §4.3, except we en-
able weight decay as it brings better generalization. We do a grid search over weight-
decays={0.001,0.0001,0.00005,0.00001,0.0005} and learning-rates={0.1,0.2,0.05,0.02,0.01} and

15

Under review as a conference paper at ICLR 2020

102 103 104

Iteration
0

1

2
G

ra
di

en
t N

or
m

RigL
RigL+
SET
SET+
Scratch

(a)

102 103 104

Iteration
0

1

2

G
ra

di
en

t N
or

m

RigL+Liu
SET+Liu
Scratch
Scratch+Liu

(b)

102 103 104

Iteration
0

1

2

G
ra

di
en

t N
or

m

Scratch
Scratch+
Scratch+He
Scratch+LiuHe
ScratchHe

(c)

Figure 7: Gradient Flow of Sparse LeNet-5s during Training. Gradient flow during training averaged
over multiple runs, ‘+‘ indicates training runs with our proposed sparse initialization. ‘+Liu‘ indicates
initialization proposed by Liu et al., 2019. ‘He‘ suffix refers to He initilization where ‘scale=2‘ and ‘fanin‘
options are used for the variance scaling initialization.

pick the values with top test accuracy. We use the masks found by pruning experiments in all of our
MNIST experiments in this section to isolate the effect of the initialization. We simplify the update
schedule of Dynamic Sparse Training (DST) methods such that they decay with learning rate. This
approach fits well, since the original decay function used in these experiments is the cosine decay which is
the same as our learning rate schedule. We scale learning rate such that it matches the initial drop fraction
provided. Mask update frequency and initial drop fraction are chosen from a grid search of{50, 100, 500}
and{0.01,0.1,0.3} respectively. To allow fair comparison, we use Glorot scaling in all of our initializations
(i.e. scale=1 and we average fan-in fan-out values) as it is the default initialization for Tensorflow layers
and our results shows that it out-performs He initialization by a small margin with the hyper-parameters
used. Using He initialization brings similar results.

Hessian calculation The Hessian is calculated on full training set using Hessian-vector products. We
mask our network after each gradient call and calculate only non-zero rows. After calculating the full
Hessian, we use numpy.eigh (van der Walt et al., 2011) to calculate eigenvalues of the Hessian.

ImageNet-2012 In this setting, hyper-parameters are almost the same as in §4.3 except for VGG16 ar-
chitecture, where we use a smaller batch size and learning rate. For all DST methods, we use a cosine drop
schedule Dettmers et al., 2019 and hyper-parameters proposed by Evci et al. (2019). For VGG, we reduce
the mask update frequency and the initial drop fraction, as we observe better performance after doing a grid
search over{50, 100, 500} and{0.1,0.3,0.5} respectively. We also use a non-uniform (ERK) sparsity distri-
bution among layers as described in Evci et al. (2020), since we observed that it brings better performance.

C Additional Gradient Flow Plots

Here we share additional gradient flow figures for method/initialization combinations presented in 3 and 2.

In Fig. 7b, we show the gradient flow for DST methods and scratch training. Using RigL helps improves
gradient flow with both initialization; helping learning to start earlier than regular Scratch training. Sparse
Evolutionary Training (SET) seem to have limited effect on the gradient flow.

In Fig. 7b, we share gradient flow when the scaled initialization of Liu et al., 2019 is used. Similar to the
proposed initialization, we observe improved gradient flow for all cases. Different than our initialization
however, RigL doesn’t improve gradient flow in this setting; highlighting an interesting future research
direction on the relationship between initialization and the DST methods.

In Fig. 7c, we share gradient flow when He initialization is used instead of Glorot initialization. We
observe that Scratch training starts learning faster in this case. Gradient flow seems to be similar for other
sparse initialization methods.

In Fig. 8, we share gradient flow improvements after DST updates on connectivity for different initialization
methods. ResNet-50 curves match the results in Fig. 3. LeNet5 curves however seem to be adversely
affected by poor initialization at the beginning of the training. We start observing improvements with
RigL when the learning starts (around the 400th iteration).

16

Under review as a conference paper at ICLR 2020

102 103 104

Iteration

0.00

0.25

 G
ra

d
N

or
m

RigL+
SET+

(a) ResNet-50

102 103 104

Iteration

0.00

0.25

0.50

 G
ra

d
N

or
m

RigL
SET

(b) LeNet5

Figure 8: Effect of Mask Updates in Dynamic Sparse Training. Effect of mask updates on the gradient
norm. We measure the gradient norm before and after the mask updates and plot the ∆. ‘+‘ indicates
proposed initialization and used in MNIST experiments.

Table 5: Results of Trained Fully-Connected MNIST Model from Different Initializations.

MNIST

Fully-Connected NN (98% sparse)

Baseline 98.55±0.04
Lottery 97.73±0.11
Small Dense 91.69±1.85

Original Liu et al. Ours

Scratch 94.40±4.00 96.66±0.18 96.70±0.12
SET 96.49±0.36 96.56±0.22 96.48±0.10
RigL 96.82±0.25 96.76±0.19 96.94±0.12

D Fully Connected Neural Network Experiments on MNIST

In this section we repeat our experiments from §4.1 using different sparse initialization methods, and analyz-
ing gradient flow, for a standard 2-layer fully-connected NN with 2 hidden layers of size 300 and 100 units.
We use the same grid used in LeNet5 experiments for hyper-parameter selection. Best results were obtained
with a learning rate of 0.2, a weight decay coefficient of 0.0001 and an mask update frequency of 500 (used
in DST methods). The rest of the hyperparameters remained unchanged from the LeNet5 experiments.

The results of training with various initialization methods is shown in Table 5. Although the results are
not as drastic as with LeNet5, we see that here too sparsity aware initialization (the proposed initialization,
and that of Liu (Liu et al., 2019)) shows a significant improvement in the test accuracy of Scratch, and
RigL or our proposed initialization, although not quite reaching lottery or RigL accuracy. Finally, we see
no significant effect on SET training, with none of the initialization variants having a significant increase
over any of the others, although the Liu (Liu et al., 2019) initialization does marginally better.

The gradient flow of this model is shown in Fig. 9. While we see moderate improvements to Scratch
gradient flow early on in training with our proposed initialization (a), RigL shows significantly higher
gradient flow throughout training, in particular after mask updates (b), mirroring the results of LeNet5.
The interpolation graphs in (c) only differ slightly from that of LeNet5, again showing that our results
for LeNet5 broadly hold for the fully-connected model.

E Hessian Spectrum of LeNet5

Given a loss function L and parameters θ, we can write the first order Taylor approximation of the change
in loss ∆L=L(θt+1)−L(θt) after a single training step with the learning rate ε>0 as :

∆L≈−ε∇L(θ)T∇L(θ). (27)

Note that as long as the error is small, gradient descent is guaranteed to decrease the loss by an amount
proportional to∇L(θ)T∇L(θ), which we refer as the gradient flow. In practice large learning rates are
used, and the first order approximation might not be accurate. Instead we can look at the second order

17

Under review as a conference paper at ICLR 2020

102 103 104

Iteration
0

1

2
G

ra
di

en
t N

or
m

Lottery
RigL+
Scratch
Scratch+

(a) Gradient Flow during training

102 103 104

Iteration

0

1

 G
ra

d
N

or
m

RigL+
SET+

(b) Gradient Flow improvements after
connectivity updates

0.0 0.5 1.0
Interpolation Coefficient ()

0

1

2

Tr
ai

ni
ng

 L
os

s

Lottery
Lottery End
Scratch
Scratch End

(c) Interpolation

Figure 9: Sparse 300-100 MLP experiments. Gradient flow during training averaged over multiple runs,
‘+‘ indicates training runs with our proposed sparse initialization.

approximation of ∆L:

∆L≈−α∇L(θ)T∇L(θ)+
α2

2
∇L(θ)TH(θ)∇L(θ), (28)

whereH(θ) is the Hessian of the loss function. The eigenvalue spectrum of Hessian can help us understand
the local landscape (Sagun et al., 2017), and help us identify optimization difficulties (Ghorbani et al.,
2019). For example, if and when the gradient is aligned with large magnitude eigenvalues, the second
term of Eq. (28) can have a significant effect on the optimization of L. If the gradient is aligned with large
positive eigenvalues, it can prevent gradient descent from decreasing the loss and harm the optimization.
Similarly, if it is aligned with negative eigenvalues it can help to accelerate optimization.

We show the Hessian spectrum before and after the topology updates in Fig. 10. After RigL updates
we observe new negative eigenvalues with significantly larger magnitudes. We also see larger positive
eigenvalues, which disappear after few iterations**. In comparison, the effect of SET updates on the
Hessian spectrum seems limited.

We also evaluate the Hessian spectrum of LeNet5 during the training. In Fig. 11b, we observe similar
shapes for each method on the positive side of the spectrum, however, on the negative side dense models
seem to have more mass. We plot the magnitude of the largest negative eigenvalue to characterize this
behaviour in Fig. 11a. We observe a significant difference between sparse and dense models and observe
that sparse networks trained with RigL have larger negative eigenvalues.

F Comparing Function Similarity

Table 6 gives a full list of comparison metrics of the predictions on the test set for LeNet5 on MNIST
and ResNet50 on ImageNet-2012, in particular here we also compare the output probability distributions
using relevant metrics.

**We share videos of these transitions in supplementary material.

18

Under review as a conference paper at ICLR 2020

Ta
bl

e
6:

En
se

m
bl

e/
Pr

ed
ic

tio
n

D
isa

gr
ee

m
en

t.
In

or
de

rt
o

sh
ow

th
e

fu
nc

tio
n

si
m

ila
rit

y
of

LT
s

to
th

e
pr

un
in

g
so

lu
tio

n,
w

e
fo

llo
w

th
e

an
al

ys
is

of
(F

or
te

ta
l.,

20
20

),
an

d
co

m
pa

re
th

e
fu

nc
tio

n
si

m
ila

rit
y

an
d

en
se

m
bl

e
ge

ne
ra

liz
at

io
n

ov
er

5
sp

ar
se

m
od

el
s

tra
in

ed
us

in
g

ra
nd

om
in

iti
al

iz
at

io
ns

an
d

LT
s

w
ith

th
e

or
ig

in
al

pr
un

in
g

so
lu

tio
n

th
ey

ar
e

de
riv

ed
fr

om
.

Th
e

fr
ac

tio
na

ld
is

ag
re

em
en

ti
s

th
e

pa
irw

is
e

di
sa

gr
ee

m
en

to
fc

la
ss

pr
ed

ic
tio

ns
ov

er
th

e
te

st
se

t,
as

co
m

pa
re

d
w

ith
in

th
e

gr
ou

p
of

sp
ar

se
m

od
el

s,
an

d
as

co
m

pa
re

d
to

th
e

pr
un

ed
m

od
el

w
ho

se
m

as
k

th
ey

w
er

e
de

riv
ed

fr
om

.K
ul

lb
ac

k–
Le

ib
le

rD
iv

er
ge

nc
e

(K
L)

an
d

Je
ns

en
–S

ha
nn

on
D

iv
er

ge
nc

e
(J

SD
)c

om
pa

re
th

e
pr

ed
ic

tio
n

di
st

rib
ut

io
ns

ov
er

al
lt

he
te

st
sa

m
pl

es
.

M
N

IS
T/

Le
N

et
5

In
it.

M
et

ho
d

Te
st

A
cc

.(
To

p-
1)

En
se

m
bl

e
Pa

ir
w

ise
D

isa
gr

ee
.

D
isa

gr
ee

.w
/P

ru
ne

d
Pa

ir
w

ise
K

L
K

L
w

/P
ru

ne
d

5-
m

od
el

JS
D

JS
D

w
/P

ru
ne

d

Pr
un

ed
So

ln
.*

98
.5
3

–
–

–
–

–
–

–
LT

98
.5
2
±
0.
02

98
.5
8

0.
00
43
±
0.
00
06

0.
00
89
±
0.
00
02

0.
00
30
±
0.
00
04

0.
00
39
±
0.
00
28

0.
01
40

±
0.
00
04

0.
00
33
±
0.
00
01

Sc
ra

tc
h

97
.0
4
±
0.
15

98
.0
0

0.
03
16
±
0.
00
23

0.
02
78
±
0.
00
20

0.
09
17
±
0.
01
26

0.
05
06
±
0.
02
38

0.
15
06

±
0.
01
30

0.
01
59
±
0.
00
09

Sc
ra

tc
h

(D
iff

.I
ni

t.)
97
.1
9
±
0.
33

98
.4
3

0.
03
52
±
0.
00
37

0.
02
78
±
0.
00
32

0.
13
58
±
0.
02
02

0.
06
50
±
0.
03
01

0.
14
68

±
0.
02
95

0.
01
57
±
0.
00
21

Pr
un

e
R

es
ta

rt
98
.6
0
±
0.
01

98
.6
3

0.
00
27
±
0.
00
03

0.
00
77
±
0.
00
03

0.
00
14
±
0.
00
01

0.
00
19
±
0.
00
14

0.
01
05

±
0.
00
01

0.
00
27
±
0.
00
00

Pr
un

ed
w

/D
iff

.I
ni

t.**
98
.3
0
±
0.
23

99
.0
7

0.
02
14
±
0.
00
23

0.
01
97
±
0.
00
19

**
*

0.
07
41
±
0.
01
07

0.
04
38
±
0.
02
41

0.
07
52

±
0.
01
33

0.
01
03
±
0.
00
10

In
it.

M
et

ho
d

Te
st

A
cc

.(
To

p-
1)

En
se

m
bl

e
Pa

ir
w

ise
D

isa
gr

ee
.

D
isa

gr
ee

.w
/P

ru
ne

d
Pa

ir
w

ise
K

L
K

L
w

/P
ru

ne
d

5-
m

od
el

JS
D

JS
D

w
/P

ru
ne

d

Im
ag

eN
et

-2
01

2/
R

es
N

et
-5

0

Pr
un

ed
So

ln
.*

0.
75
54

–
–

–
–

–
–

–
LT

75
.7
30
±
0.
00
8

76
.2
7

0.
08
94
±
0.
00
08

0.
09
41
±
0.
00
09

33
25
.0
±
26
.4

36
05
.0
±
12
.4

78
7.
20
±
5.
24

85
3.
70
±
3.
55

Sc
ra

tc
h

71
.1
6
±
0.
13

74
.0
5

0.
20
39
±
0.
00
13

0.
20
33
±
0.
00
12

15
78
7

±
10
5

20
44
2

±
17
8

33
16
.0

±
13
.2

38
47
.0

±
26
.0

Pr
un

ed
w

/D
iff

.I
ni

t.**
75
.6
5
±
0.
13

77
.7
8

0.
16
20
±
0.
00
08

0.
16
23
±
0.
00
11

**
*

13
15
8

±
14
3

13
08
7.
0±

55
.9

27
60
.0

±
16
.8

27
55
.0
0±

4.
96

*
Th

is
is

th
e

pr
un

in
g

so
lu

tio
n

th
at

th
e

LT
an

d
sc

ra
tc

h
m

od
el

s
ar

e
de

riv
ed

fr
om

.
**

5
pr

un
in

g
so

lu
tio

ns
fo

un
d

w
ith

di
ff

er
en

tr
an

do
m

in
iti

al
iz

at
io

n,
on

e
of

w
hi

ch
is

th
e

pr
un

in
g

so
lu

tio
n

ab
ov

e.
**

*
H

er
e

w
e

co
m

pa
re

4
di

ff
er

en
tp

ru
ne

d
m

od
el

s
w

ith
th

e
pr

un
in

g
so

lu
tio

n
th

e
LT

/S
cr

at
ch

ar
e

de
riv

ed
fr

om
.

19

Under review as a conference paper at ICLR 2020

0 10 20 30
10 6

10 4

10 2

100

102

D
en

si
ty

(SET) Iteration: 200

After
Before

0 10 20 30
10 6

10 4

10 2

100

102

(RigL) Iteration: 200

After
Before

0 5 10
10 6

10 4

10 2

100

102

D
en

si
ty

Iteration: 1000

After
Before

0 5 10
10 6

10 4

10 2

100

102

Iteration: 1000

After
Before

Figure 10: Hessian spectrum before and after mask updates: (left) SET (right) RigL. Similar to Ghorbani
et al., 2019, we estimate the spectral density of Hessian using Gaussian kernels.

20

Under review as a conference paper at ICLR 2020

5000 10000

Iteration

10 2

10 1

100

|
m

in
|

RigL+
SET+
Scratch
Scratch+
Small Dense

(a)

0 20
10 5

10 3

10 1

101

103

D
en

si
ty

Iteration:200
RigL+
Scratch+
Small Dense

0 5 10
10 5

10 3

10 1

101

103

D
en

si
ty

Iteration:500
RigL+
Scratch+
Small Dense

0.0 2.5 5.0 7.5
10 5

10 3

10 1

101

103

D
en

si
ty

Iteration:2000
RigL+
Scratch+
Small Dense

0 2 4 6
10 5

10 3

10 1

101

103

D
en

si
ty

Iteration:10000
RigL+
Scratch+
Small Dense

(b)

Figure 11: MNIST Hessian spectrum experiments.

21

	Introduction
	Related Work
	Analyzing Gradient Flow in Sparse Neural Networks
	The Initialization Problem in Sparse Networks
	Gradient Flow during Training and Dynamic Sparse Training
	Lottery Ticket Hypothesis

	Experiments
	Gradient Flow at Initialization
	Gradient Flow during Training and Dynamic Sparse Training
	Why Lottery Tickets are Successful

	Conclusion
	Glorot/He Initialization Generalized to Neural Networks with Heterogeneous Connectivity: Full Explanation/Derivation
	Generalized Glorot/He Initialization: Backwards, Forwards and Average Cases
	Derivation: Fixed Mask, Forward Propagation
	Fixed Mask: Backward Pass

	Experimental Details
	Details of Experiments in Section 4.3
	Details of Experiments in Section 4.1 and 4.2

	Additional Gradient Flow Plots
	Fully Connected Neural Network Experiments on MNIST
	Hessian Spectrum of LeNet5
	Comparing Function Similarity

