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Abstract

With the blossom of large language models (LLMs), inference efficiency becomes
increasingly important. Various approximation methods are proposed to reduce
the cost at inference time. Contextual Sparsity (CS) is appealing for its training-
free nature and its ability to reach a higher compression ratio seemingly without
quality degradation. However, after a comprehensive evaluation of contextual
sparsity methods on various complex generation tasks, we find that although CS
succeeds in prompt-understanding tasks, CS significantly degrades the model
performance for reasoning, deduction, and knowledge-based tasks. Despite the
gap in end-to-end accuracy, we observed that sparse models often share general
problem-solving logic and require only a few token corrections to recover the
original model performance. This paper introduces SIRIUS1, an efficient correction
mechanism, which significantly recovers CS models quality on reasoning tasks
while maintaining its efficiency gain. SIRIUS is evaluated on 6 models with 8
difficult generation tasks in reasoning, math, and coding and shows consistent
effectiveness and efficiency. Also, we carefully develop a system implementation
for SIRIUS and show that SIRIUS achieves roughly 20% reduction in latency for 8B
model on-chip and 35% reduction for 70B model offloading. We will open-source
our implementation once published.

1 Introduction

Large Language Models (LLM), such as [22] (GPT-4), [31] (Gemini), and [33] (Llama) have
demonstrated their proficiency in a wide range of natural language processing applications. Exploiting
the model sparsity is a natural way to reduce the model parameter size and computational cost with a
long history [13, 32]. More recently, many studies have shown that contextual sparsity [20, 16, 7, 14],
which highly correlates to the prompt or the context, can greatly speed up LLM inference without
quality degradation.

However, in this paper, we first demonstrate a critical and fundamental problem with contextual
sparsity (CS): while generally robust in classification tasks and generation tasks that mainly rely

1We draw inspiration from the astronomical concept, in which SIRIUS refers to a two-body star system, where one is
the brightest star ever detected, while the other is a dim star.
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Figure 1: Contextual sparse models struggle at challenging text generation tests that require high-
level reasoning and understanding, e.g. GSM8K. On these tasks, contextually sparse models lead to
significant quality degradation. In (a), we contrast CS Llama-3-8B-Instruct on GSM8K (green) and
CNN DailyMail (coral). (b) Contextual Sparsity Llama-3-70B-Instruct crashes at 50% global sparsity,
making the smaller dense model Llama-3-8B-Instruct (green star) a significantly more efficient choice
than the sparse 70B model. (c) Sparse model crashing at reasoning tasks has patterns, and ideally
only correcting 11% unlikely tokens recovers the sparse model performance fully.

on prompt understanding (e.g., summarization, chat question-answering), we found that CS models
struggle at high-level reasoning and understanding generation tasks. In Figure 1 (a), we contrast
between the Text Summarization task (CNN/DailyMail) and Arithmetic Reasoning (GSM8K) with
contextual sparsity methods on Llama-3-8B-Instruct. Varying sparsity levels, Llama-3-8B-Instruct
with contextual sparsity performs consistently worse on GSM8K compared to CNN/DailyMail. CS on
GSM8K crashes way earlier than summarization, which CS shows robust performance. Furthermore,
shown in Figure 1 (b), the 50% Llama-3-70B-Instruct sparse model still has 4X the parameter
size compared to the smaller dense model (Llama-3-8B-Instruct), while still performing worse on
GSM8K-COT, rendering contextual sparsity utterly not useful for complex reasoning tasks. We
notice that the overall reasoning pathway of these sparse models is usually sound, while the fatal
mistake happens in the middle and propagates toward the end.

In this paper, we first conduct a simple experiment with CSparse Llama-3-8B-Instruct on GSM8K
with the full model to check the sparse token-by-token. Surprisingly, only 6% tokens of the sparse
model’s generation corrected recovers most GSM8K accuracy. We are inspired by the observation
and systematically design SIRIUS, a correction method. SIRIUS is empirically evaluated SIRIUS on
6 different models with 8 different Reasoning tasks and showed that SIRIUS is generally effective
and efficient. On GSM8K and Llama-3-8B-Instruct specifically, we boost the fine-grained sparsity
from 58% to 72% with 4% increase in effective parameter size and coarse-grained sparsity from 38%
to 70% with the cost of 5% effective parameter size. SIRIUS is also shown to deliver the promised
efficiency in both on-chip and offloading settings.

2 Related Works and Problem Formulation

In this section, we present the classification of the prior Contextual Sparsity methods. Additionally,
we narrate important efficiency metrics in Appendix A.3, and show why Speculative Decoding
applying directly to sparse correction would lead to substantial inefficiency Appendix A.4. For
extended related works on model compression, contextual sparsity, and speculative decoding, we
present in Appendix A.1.

Contextual sparsity (CS) methods are usually training-free, easy to use, and seemingly effective,
making them highly attractive to ML practitioners looking to reduce LLM inference costs. The
contextual sparsity selection is as follows: given the context, only a limited number of the most
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Table 2: We show the difference between cases when Contextual Sparsity (CS) succeeds or fails. CS
is generally good at prompt understanding tasks and tasks that measure the trustworthiness of the
language models while not good at tasks that require reasoning and world knowledge understanding.
MMLU* refers to MMLU-Flan-COT.

Where CS Succeeds CNN/DailyMail CoQA TruthfulQA
Experiment Settings Unitxt Rouge EM/F1 Rouge-1/2 ACC

Llama-3-8B-Instruct 0.1237 0.6153/0.7825 0.4945/0.3647
Llama-3-8B-Instruct-CSparse 0.1144 0.6633/0.7977 0.4725/0.3403
Llama-3-8B-Instruct-FSparse 0.1166 0.6625/0.7984 0.5043/0.3305

Where CS Fails GSM8K HumanEval MMLU*
Experiment Settings ACC (strict/flexible) Pass@1 (GD) Accuracy

Llama-3-8B-Instruct 0.7551/0.7544 0.560 0.6231
Llama-3-8B-Instruct-CSparse 0.3859/0.3874 0.207 0.5558
Llama-3-8B-Instruct-FSparse 0.5868/0.5891 0.457 0.5304

relevant neurons are selected based on the input activation. The rest contributed to the output far less
is discarded. We refer to two main directions of contextual sparsity methods as

• Coarse-grained Sparsity (CSparse) Methods ([7]) - that within the same input prompt, the sparsity
pattern is fixed for all tokens generated.

• Fine-grained Sparsity (FSparse) Methods ([14]) - that exploits the per-token sparsity to save
resources.

3 Observations

Table 1: Llama-3-70B-Instruct with Offloading.

Settings Sparse Sirius Full

Performance 0.7407 0.8719 0.9014
Latency (s) 3.57 s 3.68 s 5.72 s
Ratio to Full 0.6241 0.6434 1.0

We build our 50% neuron sparsity implementa-
tion2 of fine-grained sparsity based on [14] and
coarse-grained sparsity based on [7].

For tasks on prompt understanding, CS gen-
erally performs well and gives consistent and
strong output. We evaluate CS models on
machine summarization (CNNDailyMail [26]),
and Conversational Question Answering (CoQA
[24]). On the other hand, contextual sparsity
severely struggles when the generation tasks rely solely on the model’s own reasoning and deduction
ability, or the model’s world knowledge understanding ability. Here we show the Llama-3-8B-Instruct
and the Llama-2-7B-Chat models in Table 2. For a detailed analysis of results, we present more
information in Appendix B.1, B.2 and B.3. We visually inspect extensive cases where the sparse
model and dense differ in answers, more examples are shown in Appendix B.4. Shown in Figure 3, we
found that a very small amount of correction would drastically improve the sparse model performance,
showing a steep gradient when the percentage of corrected tokens is small. The experiment verifies
our hypothesis that by correcting the small portion of key tokens, the sparse model can meet the large
model’s performance.

2Since [14] doesn’t open-source its implementation and it relies on the threshold for determining the sparsity pattern,
replicating the method isn’t straightforward. Using a threshold also increases the difficulty of determining the actual
density of the sparse model. Our implementation uses topk on the Gate Layer activations. The rest is implemented as
described in the original method.
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4 Methods

Naturally, letting the sparse model decide when to call the LLM for evaluation would be more flexible,
but we show in Appendix C.1 that the sparse model cannot provide a reliable signal for consistently
making the decision.

The full model is called once every kernel size. Throughout the inference, the KV cache is shared
between the sparse and the full model. Therefore, full passes on its KV cache to benefit the small
model’s next chunk. The full model’s KV helps the sparse model’s output, which is evaluated later in
the sections. Due to space limit, we place the full Algorithm in Appendix C as Algorithm 1. The
LLM evaluation decision is based on comparing the full likelihood against a preset threshold. The
overview is drawn in Appendix C Figure 7. Detailed ablation for threshold is in D.3. Also, we found
that at the position when the full rejects the sparse’s tokens, the second or third most probable tokens
show strong coverage of tokens that can be accepted, and we further improve the efficiency of the
SIRIUS efficiency by incorporating a hardware efficient tree building systems, details in C.2.

5 Experiments

In this section, we empirically evaluate SIRIUS to correct CS models on various generation tasks
in complex reasoning. We show that SIRIUS is consistent in various tasks, effective in helping CS
models recover their performance, and efficient in correction with low additional overhead.

Main Results - Due to space limits, we only select the best treewidth of SIRIUS for GSM8K,
CSQA, and HumanEval for the main results in Table 6. Extensive studies on the rest 5 datasets
with different treewidth are presented in the Appendix E. From Table 6, we can see that SIRIUS
is consistently effective and efficient across all different classes of tasks. Specifically for Llama-
3-8B-Instruct, besides GSM8K, SIRIUS corrects FSparse and CSparse, on CSQA, from 61% and
64% accuracy to 70% with cost only 3% sparsity for FSparse and 7% for CSparse respectively. On
HumanEval, SIRIUS corrects FSparse from 45% to 61% with 4% sparsity overhead even surpassing
the full model’s performance, and from 20% to 52% with 8% sparsity as cost. Besides, Llama-3-8B-
Instruct, SIRIUS corrects all 6 models with additional sparsity overhead smaller than 10% across
these three datasets, further showing its strong efficiency. Besides results in Table 6, in Appendix E,
we show that SIRIUS consistently shows great effectiveness with high efficiency across the rest of the
5 datasets.

Wallclock Speedup - Here we show that Sirius delivers its promised efficiency claim under
two different settings, on-chip, and offloading, with two different models, Llama-3-8B-Instruct and
Llama-3-70B-Instruct. Details are shown in Table 4. We consider the generation speedup only since
contextual sparse methods are sparse mainly in generation, most use full weights for prefilling. For
the two settings, we consider the coarse-grained sparsity method Griffin [7] because it open-sourced
its implementation. On the other hand, the fine-grained sparsity method [14] relies on a custom
CUDA kernel to achieve the target speed up, which they didn’t open-source. The downstream dataset
selected is GSM-8K COT, and the input sequence length is around 900. For the measurement on A40,
L40, we found that kernel size 10 without tree delivers the best speedup, while a tree of treewidth 4 is
built for A100 and H100. On average, Sirius with efficient implementation achieves 20% speedup on
average for on-chip settings for Llama-3-8B-Instruct.

Secondly, we consider the offloading setting which is the only way for resource-limited users
to run 70B models, which cannot easily fit in GPU clusters other than A100s and H100s. We use
a single L40 48GB with a PCIe bus bandwidth of 25 GB/s. Llama-3-70B-Instruct is running on
GSM8K-COT. Llama-3-70B-Instruct has roughly 80% of parameters to be MLP, which gives the
theoretical APU for Griffin to be 0.6. Sparse + Sirius achieves 15.4 out of 16 average advance length,
which in theory gives 0.649 APU, which is roughly what our system achieved.
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Table 3: We show SIRIUS effectiveness and efficiency in the following table. We select GSM8K for
Arithmetic Reasoning, CSQA for Commonsense Reasoning, and HumanEval for code generation.
Under the "SIRIUS Perf. " column, A(B) is shown. A denotes the accuracy after SIRIUS correction in
the dataset evaluated, while (B) represents the optimal treewidth selected under the current model
dataset settings. Under the column of "AAL", X/Y is shown, where X is the AAL, while Y is the
period.

GSM8K (Arithmetic Reasoning)

Model Full Perf. CSparse Perf. CSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7536 0.3844 0.65 0.7051 (8) 15.22/16 0.706
Llama-3-8B 0.4966 0.2085 0.65 0.4177 (8) 15.29/16 0.703

Model Full Perf. FSparse Perf. FSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7536 0.5868 0.76 0.7278 (4) 15.37/16 0.807
Llama-3-8B 0.4966 0.3199 0.76 0.4579 (2) 15.03/16 0.825

CSQA (Commonsense Reasoning)

Model Full Perf. CSparse Perf. CSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7073 0.6470 0.58 0.7076 (8) 14.76/16 0.657
Llama-3-8B 0.6437 0.5585 0.58 0.6429 (8) 15.43/16 0.628

Model Full Perf. FSparse Perf. FSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7073 0.6158 0.72 0.7043 (8) 15.66/16 0.753
Llama-3-8B 0.6437 0.533 0.72 0.6388 (1) 15.00/16 0.786

HumanEval (Coding)

Model Full Perf. CSparse Perf. CSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.561 0.207 0.65 0.524 (8) 14.67/16 0.733
Llama-3-8B 0.262 0.067 0.65 0.243 (8) 15.10/16 0.691

Model Full Perf. FSparse Perf. FSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.561 0.457 0.76 0.616 (6) 15.42/16 0.804
Llama-3-8B 0.262 0.189 0.76 0.298 (6) 15.54/16 0.797

Table 4: Performance and Speedup Ratios on GSM8K-COT with Different Hardware Configurations.

Settings ACC A40 Ratio L40 Ratio A100 Ratio H100 Ratio

CSparse 0.3601 20.7 ms 0.66 15.6 ms 0.67 9.6 ms 0.72 6.6 ms 0.76
Sirius 0.7127 24.1 ms 0.78 18.2 ms 0.78 11.1 ms 0.83 7.7 ms 0.88

Full 0.7612 30.9 ms 1.0 23.2 ms 1.0 13.3 ms 1.0 8.6 ms 1.0

6 Conclusion

We observe that contextual sparse methods significantly degrade for reasoning and deduction tasks.
With similar parameter size, the degradation from these sparsity is shown to be more severe for
more well-trained models. However, we find that the degradation from contextual sparse models
can theoretically be recovered with 10% token corrected by original model. Where to locate these
small amount of tokens to effectively corrected by the full model is a difficulty. SIRIUS, an efficient
correction mechanism, enables accurate LLM inference with contextual sparsity. With roughly 11%
to 18% sparsity increase, SIRIUS improves fine-grained and coarse-grained sparsity significantly in
their performance while maintaining their efficiency gain, reaching a reasonable tradeoff between
performance and efficiency. We hope that this understanding inspires future work in this area.
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A Additional Background

A.1 Extended Related Works

Pruning in LLM Sparsity in neural networks has been widely studied. In the context of LLM,
sparsity is studied under two branches - unstructured and structured. On the unstructured sparsity
side, [8] (SparseGPT) is a ground-breaking work that formulates pruning as a solving a series of
sparse regression problems and proposes a fine solver for the problem. [30] (Wanda) introduces input
activations into the pruning decision and achieves strong results in inducing LLM sparsity. On the
structured side, LLMPruner [21] and Sheared Llama [35] each proposes different meticulous pruning
algorithms and restoring weights through either parameter-efficient finetuning or efficient full weights
training.

Contextual Sparsity Many recent works on LLM sparsity notice that the sparse pattern is highly
related to the input or context. Deja Vu [20] revealed that for OPT models [36] the contextual
sparsity is as high as 85%, meaning that 80% of the parameters can be pruned that won’t hurt the
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token decoded quality given the prompt. Deja Vu formulates the problem of neuron selection as
a near-neighbor search problem: finding neurons that are the most similar to the input activations.
PowerInfer [28] extends the contextual sparsity to benefit the heterogeneous setting. Compared to the
rest of the model, MLP layers tend to possess significant contextual sparsity and can be effectively
exploited in a training-free manner. Concurrently, Griffin [7] discovers the phenomenon of flocking,
where MLP neurons have temporal locality, where given a fixed prompt, similar neurons tend to
get activated throughout the following generation. Flocking is shown to occur in most activation
types and open-source LLMs. Griffin selects the same set of heated neurons with 50% sparsity
throughout the generation of each input prompt, which we refer to as coarse-grained sparsity. CATS
[14] successfully exploits per-token contextual sparsity in the MLP layers for inference latency
reduction. They resample a new set of neurons per every new input token, which we categorize
it as fine-grained contextual sparsity. Our paper mainly focuses on the training-free MLP sparsity
techniques. Although these recent works show minimal accuracy degradation in classification and
easy text summarization tasks, they both severely degrade in generation quality under tasks that
require high-level reasoning and understanding ability. Our work serves as a low-cost complementary
tool, aiming to push these elegant and promising techniques for mainstream use cases.

Also, previous contextual sparsity methods haven’t fully and exhaustively evaluated their benefits
and limitations in downstream generation tasks. To fully study this technique, we extensively go
through open-source LLMs in diverse performance and sizes on diverse generation tasks and datasets
to locate where these sparse models maintain the performance or fail.

Speculative Decoding Besides model compression techniques, Speculative decoding [15], [2], [12]
is another important LLM inference latency reduction method. Compared to LLM, small transformer
models are much more computationally accessible and can effectively model short-range tokens.
Therefore, smaller models are asked to speculate short-term future tokens, which the LLM takes in in
parallel to trade in FLOPs with memory loading time. During verification, most speculative decoding
methods pursue lossless acceleration, leading to frequent rollback during rejection. In contrast, Sirius
solves a very different problem. Our method aims to maximally preserve the efficiency of sparse
models while boosting its performance. Sparse models, pruned directly from LLM, are much stronger
at modeling a longer range of text than draft models, thus requiring much less help from the LLM.
Our work aims to find the minimum amount of LLM overhead while boosting its performance to the
LLM level. Given the resemblance and relevance of Speculative Decoding to our method Sirius, we
will elaborate more in-depth on their differences and Speculative Decoding’s inefficiencies when it
comes to helping the Sparse method in A.4.

A.2 Why 0.76?

Here we explain in greater detail why Sirius can achieve APU < 0.76 for Llama-3-8B with CSparse
on GSM8K. For a threshold of 0.1, Sirius can correct Llama-3-8B coarse-grained sparsity from
20.85% to 43.9%, compared to the 49.66% full model. With a period of 16 tokens (gamma = 15),
Sirius on average can accept 13.4 tokens out of a kernel size of 16 and over 9 tokens out of a kernel
size of 10, translating to APU < 0.76, significantly lower than SD does.

A.3 Average Parameters Used Per Token

A key metric is used to evaluate the efficiency of our proposed method, the Average Parameter Used
per token decoded (later referred to as APU). LLM inference is memory I/O bound [15], [12]. The
latency of generating every single token is dominated by the memory loading time from the GPU
HBM to SRAM. On the other hand, SIRIUS relies on full model parallel verifying a chunk of tokens.
Although from the FLOPs standpoint, the amount of compute performed per evaluation step is the
number of input token times of a single token input process, the latency of parallel verification is still
roughly the same as taking a single token (Verified further in 10, length 64 is only 1.1 ms longer than
length 1), because the inference is memory bound.
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SIRIUS operates in the memory-bound regime (single inference sequence length smaller than or
equal to 64). Thus, the average parameter count of a model gives us a rough judgment of the latency
of inference. Formally, for a full LLM to have Cfull number of parameters, and its sparse counterpart
of a certain predetermined sparsity Csparse. The average advancement length (later we refer to as
AAL) in the number of tokens between two consecutive LLM corrections can be represented as
nAAL. The average parameters used per token (APU) are the following

APU =
nsparseCsparse + Cfull

nAAL
(1)

We want the metric to be as small as possible, and obviously, we want nAAL to be as large as possible.

Another thing to note is that we always compare the system’s APU against the full model’s APU,
which is Cfull. If we divided the above equation by Cfull, we can have an equivalent parameter
density of the system defined based on Iglobalsparsity , which is Csparse/Cfull.

Effective Density =
nsparseIglobalsparsity + 1

nAAL
(2)

Later, if we use period nperiod, the equation can be rewritten as

Effective Density =
(nperiod − 1)Iglobalsparsity + 1

nAAL
(3)

Later when presenting SIRIUS, we mainly specify nperiod with nAAL to evaluate its efficiency. Notice
that Iglobalsparsity is determined by the sparsity method, SIRIUS cannot change it anymore.

A.4 Why Not Using the Speculative Decoding to Correct the Sparse Model?

Figure 2: Speculative Decoding has limitation in
efficiency when correcting sparse models.

When Speculative Decoding is used to correct
sparse using the full model, we will show that
the efficiency of the overall process will be
largely limited. We followed the common prac-
tice from speculative decoding and measured the
acceptance rate on different datasets C4 [23] and
GSM8K [6]. Take the Coarse-grained sparse
model as an example. For Llama-3-8B as the
full model, the 50% sparse (APU 0.65) model
will produce an acceptance rate of 0.71 on C4
and 0.89 on GSM8K. Speculative decoding also
use parallel verification in the period-basis. Nat-
urally, to keep the system efficiency high, we
need to (1) enlarge the period and (2) increase
the average number of tokens accepted (AAL)
given the gamma (period - 1) value. Take the
acceptance rate of 0.89 on GSM8K as an exam-
ple, following the formulation in [15], we can
calculate the expected number of accepted tokens for every gamma term in the Speculative Decoding
literature. AAL = 1−α(γ+1)

1−α . The trend (green) is plotted in Figure 2

We can notice the trend that the average advance length starts to plateau as the gamma becomes
larger. Take the gamma of 16 as an example, the period is then 17. The average advance length is
only 7.84. The APU is (16 * 0.65 + 1)/7.84 = 1.45, which is larger than the full model 1. The blue
line in Figure 2 shows the relationship between APU and gamma.

Because of the plateauing effect, for an acceptance rate of 0.89, the best gamma is 2 (period = 3).
The optimal APU is 0.86, compared with 0.65 coarse-grained sparse APU. A similar picture can be
applied to Fine-grained sparsity as well. The key reasons for the observation are two-fold: (1) the
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contextually sparse models are too big to be the draft model of the speculative decoding system and to
have a large period; (2) Speculative decoding preserves the original model’s performance so that the
acceptance criteria are usually very strict, which is also not suitable for large period and high average
advance length. Following the same spirit, [29] also uses a large draft model to do self-speculation,
but for them, the authors select gamma = 1 to achieve the optimal speedup of their system. In contrast,
SIRIUS brings <0.76 APU in this case with period ≥ 10. (Details in Appendix A.2)
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B Supplemental Observation

In this section, we present a detailed study of the strengths and weaknesses of Contextual Sparsity
(CS). B.1 presents the strengths of CS. B.2 presents the weaknesses of CS. In Section ??, we show
that given the similar parameter size, the more well-trained the model is, the more CS degradation
will be for the model. B.4 shows our findings when looking into the failure cases of CS model in
complex reasoning tasks.

Text generation is the main use case for these sparse models, which optimizes inference for the
dense counterpart. Therefore, we choose not to look into text classification and language modeling
ability, focusing on generation tasks.

In the following series of experiments, we build our implementation3 of fine-grained sparsity
based on [14] and coarse-grained sparsity based on [7]. The default sparsity for both methods is 50%
for the MLP component of the model (whole MLP for coarse-grained sparsity and Up and Down
linear layers only for fine-grained sparsity). We mainly use this default setting in most experiment
tables in the paper without explicitly mentioning, or otherwise, we will explicitly specify the different
sparsity levels we used.

B.1 Contextual Sparsity: Where Does It Succeed?

Figure 3: Given the similar model parameters, the more
well-trained the model is, the worse the degradation would
be. (Compare the figures vertically between Llama-3 and
Llama-2 family models).

For tasks on prompt understanding,
CS generally performs well and gives
consistent and strong output. We eval-
uate CS models on machine summa-
rization (CNNDailyMail [26]), and
Conversational Question Answering
(CoQA [24]).

The results show that the cor-
rectly selected contextual sparsity in
the MLP layers and the full atten-
tion layers can fully extract and un-
derstand the local prompt information.
More details are presented in Figure
4, where we show that by varying the
sparsity level, the language model’s
performance on CNN/DailyMail is ro-
bust even when the activation sparsity
drops to below 20%, which translates
to around 44% global density.

For tasks accessing factuality and
hallucination, we select the generation
portion of the TruthfulQA dataset [17].
Results are shown in Table 2, where
we evaluate the techniques on 5 dif-
ferent LLMs. Interestingly, we find
that the Fine-grained sparsity is often better than the dense model baseline across different models.
This finding is consistent with previous works Laser [27] and Dola [4]. They both observed that
compressing the original LLM in a carefully designed way would lead to improvement in factuality
and better de-hallucination. Laser comes from the low-rank approximation of the MLP layers, while
Dola proposes a factuality-aware layer-skipping algorithm. Based on their findings, hallucination

3Since [14] doesn’t open-source its implementation and it relies on the threshold for determining the sparsity pattern,
replicating the method isn’t straightforward. Using a threshold also increases the difficulty of determining the actual
density of the sparse model. Our implementation uses topk on the Gate Layer activations. The rest is implemented as
described in the original method.
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Figure 4: We contrast between Contextual Sparsity on prompt understanding task and complex
generation tasks that require reasoning. (a) Both CSparse and FSparse are robust on CNN/DailyMail
for various sparsity; (b) and (c) Show that both CSparse and FSparse crash on GSM8K and HumanEval
at the global sparsity that they are still robust in prompt understanding tasks.

occurs when parts of the weights aren’t as well-versed in the given input as the other parts. They
expose the "averaging" effect that blurs the factuality of the output. Removing these neurons gives
rise to better facutality and less hallucination. Our studies look at the same problem from a neuron
sparsity standpoint.

B.2 Contextual Sparsity: Where Does It Fail?

Neuron Index  

Neuron Index  

To
ke

ns
To

ke
ns

Prompt Understanding Tasks

Reasoning Tasks selected sparse

(a) (b)

Figure 5: (a) Illustration on why Contextual Sparsity has uneven per-
formance on different tasks. The activation heat map (red) has the
brighter the color the larger in magnitude. On top, we also show the
neuron sparsity selected. The graph points signify that the pattern in
the prompt understanding task is easier to capture. (b) An additional
graph of correcting Csparse Llama-2-7B-Chat. It is similar to the pre-
vious experiment on 8B. Only 10% tokens being corrected results in
complete performance recovery.

On the other hand, contex-
tual sparsity severely strug-
gles when the generation
tasks rely solely on the
model’s own reasoning and
deduction ability, or the
model’s world knowledge
understanding ability. Here
we show the Llama-3-8B-
Instruct and the Llama-2-
7B-Chat models in Table 2,
refer to Table 12 for evalua-
tions on more models. No-
tice that since fine-grained
sparsity method needs the
activation from Gate MLP
for selecting sparsity, while
coarse-grained sparsity has
a predetermined pattern af-
ter prefilling and can spar-
sify the Gate MLP. Even
though both are at 50% acti-
vation sparsity, the coarse-grained sparsity method effectively achieves higher parameter savings than
fine-grained sparsity in practice. Here we evaluate the sparse techniques using 5-shot CoT on the
GSM8K dataset [6]. We found that across all the models we evaluated, both sparsity methods lead to
significant accuracy degradation. Although code generation is not directly an arithmetic reasoning
task, we found it useful to include, it since coding is a comprehensive evaluation of the language
model’s prompt understanding, reasoning, and planning to solve complex tasks. Therefore, we include
HumanEval [3]. We found that both sparsity methods exhibit similar performance degradation when
it comes to coding. Shown in Figure 4, two tasks see sparsity significantly drop performance after
50% activation sparsity.
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For knowledge recall and world knowledge understanding, we specifically test on MMLU-Flan-
CoT [5] the CoT text generation version of the MMLU dataset [11]. Table 2 shows the results.
Stronger models like Llama-3-8B-Instruct suffer from significant degradation too.

B.3 Given Similar Parameter Size Well-trained Models Suffer More

We observe another interesting phenomenon: given the similar parameter size, the more well-trained
the model is, the more performance degradation contextual sparsity would make on the full models.
Here we present two pairs of results. First, we look at the performance between Llama-3-8B-Instruct
and Llama-2-7B-Chat with Llama-3-70B-Instruct and Llama-2-70B-Chat. All models are evaluated
on GSM8K-COT. We draw these models in CSparse in Figure 3, and the readers can find more results
in Appendix D.7. We can see figures from top to bottom, where even at lower density (more elements
are not selected), Llama-2-7B-Chat and Llama-2-70B-Chat suffer from less performance degradation
(blue) compared to the Llama-3-8B-Instruct and Llama-3-70B-Instruct models. Furthermore, suppose
we focus on Llama-3-70B-Instruct for global density at 60% or lower. In that case, the performance
(coral) is degraded significantly, which is comparable or even lower to Llama-3-8B-Instruct full
model performance at 0.76, Even at 50% density, the 70B model still has more than 40B parameters,
much more expensive than the 8B model. The observation fully manifests the difficulty of using CS
in complex reasoning tasks.

B.4 Examples of Failure Cases

Question: Marie ordered one chicken meal that costs $12, 5 
packs of milk that costs $3 each, 4 apples that cost $1.50 
each, and some boxes of pizza. Marie paid a total of $50. 
How many boxes of pizza did Marie order if each box costs 
$8.50?

Answer: The total cost of the chicken meal, milk, and 
apples is 12 + 5 * 3 + 4 * 1.5 = <<12+5*3+4*1.5=27>>27 
dollars (33 dollars) …… Miscalculation

Question: A merchant wants to make a choice of 
purchase between 2 purchase plans: jewelry worth $5,000 
or electronic gadgets worth $8,000. His financial advisor 
speculates that the jewelry market will go up 2.5% while 
the electronic gadgets market will rise 1.2% within the 
same month. If the merchant is looking to maximize profit 
at the end of this month by making a choice, how much 
profit would this be?

Miscalculation

Answer: The jewelry will increase in value by 2.5% which 
is 5,000 * 0.025 = $1250 ($125) ……

Question: Janet’s ducks lay 16 eggs per day. She eats three 
for breakfast every morning and bakes muffins for her 
friends every day with four. She sells the remainder at the 
farmers' market daily for $2 per fresh duck egg. How much 
in dollars does she make every day at the farmers' market?

Answer (Sparse): 
Janet eats 3 + 4 = <<3+4=7>>7 eggs per day.
She lays 16 - 7 = <<16-7=9>>9 eggs per day.
She sells 9 - 7 = <<9-7=2>>2 eggs per day.
She makes 2 * 2 = <<2*2=4>>4 dollars per day.
#### 4

Different Reasoning Path

Answer (Full): 
Janet eats 3 eggs and bakes 4 eggs, so she has 16 - 3 - 4 = 
<<16-3-4=9>>9 eggs left.
She sells 9 eggs for $2 each, so she makes 9 * 2 = 
<<9*2=18>>18 dollars.
#### 18

Question: Raymond and Samantha are cousins. Raymond 
was born 6 years before Samantha. Raymond had a son at 
the age of 23. If Samantha is now 31, how many years ago 
was Raymond's son born?

Answer: Samantha is 31, so she is 31 - 6 = 25 years old. 
Raymond is 25 - 23 = 2 years older than Samantha, so he is 
25 years old ...... Unreasonable Statement

Question: A candle melts by 2 centimeters every hour 
that it burns. How many centimeters shorter will a candle 
be after burning from 1:00 PM to 5:00 PM?

Unreasonable Statement

Answer: The candle will be 4 centimeters shorter after 
5:00 PM because it will be 4 hours x 2 centimeters = 
<<4*2=8>>8 centimeters shorter.
#### 4
Remarks: There is conflicting statement in reasoning, 
leading to the wrong end result. 

Figure 6: Examples of contextual sparse model making the identified three different types of mistakes.
Most mistakes occur because the model makes calculation mistakes or has a wrong reasoning step
compared to the full model. We also observe that there are rare cases where the model makes
insensible statements in the middle that make the end result wrong.

We visually inspect extensive cases where the sparse model and dense differ in answers. Generally,
the sparse model always produces highly similar answers to the dense model: the similar approach or
logic flow when approaching the same problem and even the same number of sentences before the first
mistake occurs or in success cases. However, the key differences are usually caused by the following
three categories of small token-level mistakes: (1) frequent miscalculation in the intermediate steps,
(2) wrong reasoning in intermediate steps, and (3) insensible and random statements. We find failure
question-answer pairs provided in Figure 6 for each of the above-summarized cases. These mistakes
happen in the middle of arguments and propagate to the wrong end result.

Similar observations can also be found for fine-grained sparse methods with different model types.
Interestingly, we find that even with these mistakes, the sparse model can still fully generate coherent
tokens and make further reasoning assuming their prior steps are correct.
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Figure 7: Overview of Sirius. Contextual Sparsity requires full model weights to be placed on the
GPU memory. While the sparse model doesn’t perform well on complex reasoning tasks, Sirius uses
the Full Model to correct the Sparse model. The full model is called fairly infrequently. During
the correction, the Full Model will rewrite the KV Cache, interleave with high-quality tokens to the
sparse outputs, and then roll back only when the token is deemed extremely unlikely by the Full
Model.

(b) (c) (a)

Figure 8: In (a), we present an example that illustrates why the signals from the sparse model are
unreliable. It is a figure plotting entropy versus generated tokens. At the tokens where the sparse
made the mistake (red), the entropy isn’t in large spikes which signifies chaos and low confidence,
rather it is even quite low, compared to nearby entropy spikes. In (b) and (c), we view Sirius as a
compression method by itself. We compare Sirius with contextual sparse methods and show that
given the same parameter used, Sirius performs better than Contextual Sparse Methods on GSM8K.

C Supplemental Method

C.1 Sparse Model’s Self-Awareness Cannot Be Trusted

Intuitively, rather than fixing the nsparse number, letting the system decide when to call the LLM for
evaluation would then give more flexible nsparse. In other words, the problem becomes how to make
the sparse model decide when the LLM can be called. Nevertheless, we argue that the sparse model’s
output probability distribution cannot be used as a metric for accuracy decisions.

We empirically experiment with various methods to utilize the information contained in the sparse
model’s output distribution. However, it always leads to nsparse being too short, the single-digit
number for GSM8K (around 4 for Llama-3-8B Instruct). setting up the threshold isn’t useful. We
then discovered that the sparse model has very limited self-awareness of its own mistakes. The sparse
model can be very confused with small top-1 likelihood numbers and larger entropy when making
mistakes. However, we also frequently find examples where the sparse model is very confident in
their mistakes. To make the observation concrete, we present a small example in Figure 2 a piece of
text where the sparse model makes a mistake while the full model succeeds. The red bars signify the
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Algorithm 1 Sirius
Require: Prompt [x1, ..., xt], full model MF , and sparse model MS sharing weights and sharing

KV Cache C, cache_pos is the location where new k and v are written to C, kernel size n
Require: forward function FORWARD, threshold r, which is a value used by MF to judge whether

the token occurs likely enough
Require: StoppingCriteriaMet() downstream task-specific, returns a boolean

1: while not StoppingCriteriaMet() do
2: i← 0
3: kernel← empty
4: cache_pos← 0
5: while i < n do
6: set ˆpt+i ← FORWARD(MC , C, [x1, ..., xt], [xt+1, ..., xt+i−1], cache_pos)
7: ▷ Running sparse model
8: cache_pos← cache_pos+ 1
9: sample ˆxt+i ∼ ˆpt+i

10: kernel← cat(kernel, ˆxt+i)
11: i← i+ 1 ▷ Before exiting, kernel [xt, ..., xt+n]
12: end while
13: cache_pos← cache_pos subtracts n ▷ Enables Full to directly rewrites KV Cache
14: set [qt, ..., qt+i]← FORWARD(MC , CS , cache_pos, kernel)
15: for j from 0, n do
16: if qt+j < r then ▷ Full rejects
17: break ▷ j stores the first token position being rejected
18: end if
19: end for
20: cache_pos← j + 1 ▷ Rollback
21: kernel← empty
22: sample xt+j+1 ∼ pt+j ▷ Interleaving Key Token
23: end while

error location. The token entropy is neither high nor at zero, making it impossible to effectively use
a threshold to control the number nsparse. We deployed fixed nsparse at 16 to 24 based on results
tuning on a small validation set which works effectively in practice.

C.2 Hardware Friendly Tree Building Process

Table 5: The second and third most likely
tokens from sparse models offer potential for
boosting efficiency.

Sparsity 2nd Hit 3rd Hit Miss Coverage%

FSparse 79% 11% 9% 90%
CSparse 65% 17% 16% 82%

In this section, we first look at the insights behind
whether building the tree can help efficiency, then we
detail the specific steps towards tree pruning.

The goal for the Sirius system is to make nAAL

to be as large as possible. Despite the full model
sharing KVs with the sparse model, Sirius still en-
counters costly rollbacks because of sparse greedily
decoded tokens being rejected. Interestingly, we look
closely into where the sparse model is likely to make
a mistake on GSM8K and AQuA-RAT-COT [18] with Sirius on Llama-3-8B-Instruct and a kernel
size of 16. More details are shown in Appendix D.5. The error distributes almost uniformly across all
positions of the kernel size. Also, when the token makes the mistake, besides the greedily decoded to-
kens, we find that other tokens of lower likelihood offer the potential to boost efficiency. Surprisingly,
we found that out of the cases where the greedily decoded tokens are rejected, the probability that the
second or third most likely tokens from the sparse being accepted by the full model is reasonably
high.
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Figure 9: Illustration of Tree Building Process.

Shown in Table 5, we test on part
of the GSM8K rejected cases. The
"Second Hit" is defined as the count
of the second most likely tokens be-
ing accepted by the full model when
the greedily decoded token is rejected,
while the "Third Hit" is defined as the
count of the third most likely token
being accepted when the first two are
rejected. Both sparsity method has a
high acceptance rate, or "Coverage",
from the second and third most likely
tokens when the most likely token is rejected, showing huge potential for gains in efficiency.

To capitalize the potential from the second to third tokens, we propose to build a tree during the
sparse generating process (lines 6 to 11 in Algorithm 1. The tree algorithm is similar to Beam Search
[9]. However, to make sure that the tree building and tree parallel correction processes can achieve
speedup over cases that don’t build trees, we impose strong restrictions on the tree structure we build.
For a fixed kernel size, we limit every step to having a fixed number of leaves, or treewidth, through
tree pruning based on ranking the cumulative log-likelihood of the path. The resulting tree has a fixed
shape for a given kernel size and tree width, but only the interconnection pattern between steps varies
based on the pruning and ranking within each step. The details are illustrated in Figure 9. During
verification, out of the treewidth complete paths, we select the one that reaches the longest advance
length. In practice, we found that for kernel size 16, when the treewidth is increased to 8, the optimal
verification tree is around 64. From Section A.4, we see that the parallel verification of the tree of 64
roughly equals the time the full input 1 token.

Therefore, a treewidth of 8 is set as the maximum treewidth when building the tree for kernel
size 16 for later. We show that building a tree makes the system significantly more efficient while
retaining correction effects.

17



D Supplemental Experiments

D.1 Additional Experiment Setting and Main Results

Models and Datasets - To comprehensively evaluate SIRIUS performance, we deploy six mainstream
LLMs with sizes ranging from 7B to 13B: Llama-2-7B, Llama-3-8B, and Llama-2-13B with their
instruction finetuned counterparts, all from Llama family. Following prior milestone [34] in LLM
reasoning, we also tested CS models on two popular types of reasoning generation tasks: arithmetic
and commonsense reasoning. On the Arithmetic side, besides GSM8K, we also evaluate CS models
on AQuA-RAT. On the Common Sense side, we use CSQA [25], StrategyQA[10], Date, and Sports,
where the last two are from Big Bench Suite [1]. Most of these tasks are originally classification
tasks. Following the instruction in [34], we manually compose COT prompts to transform these
into logic argument generation tasks. Besides, we found that the CS models do perform not well in
code generation, which also requires forming logical arguments and planning. We select HumanEval
[3] and MBPP+ [19] two high-quality Python coding tasks to see whether SIRIUS corrects these
problems.

For arithmetic reasoning and coding, we use 50% neuron sparsity for both CSparse and FSparse.
FSparse relies on the gate layer to be dense, leading to higher global density than CSparse. Since
commonsense reasoning tasks are generally less logically challenging comparatively, we lowered the
neuron sparsity level to 40%.

D.2 Large Model Experiments

In this section, we provide several supplemental experiments to the picture. First, we run SIRIUS
on Llama-3-70B. However, because of computational limits, we cannot run SIRIUS with the tree
on Llama-3-70B with the scale we did for other models. Nevertheless, we do show that 70B has
roughly the same pattern as we have seen before, large model sparsity also somehow struggles on
reasoning tasks. Second, we provide additional proof for the parallel verification efficiency statement.
After that, I show results on where the error is located in the chunk size of 16 tokens. The error is
distributed almost uniformly. Last but not least, we also apply SIRIUS on datasets that are reasoning.
Lastly, we provide more results on the comparison between models of similar size but have a huge
performance gap. We show that given the similar parameter size, the trend is for a more well-trained,
powerful model to degrade more from contextual sparsity.

To diversify the evaluation of Sirius, we also evaluate Sirius’s Effectiveness on the Llama-3-
70B-Instruct model. MMLU is subsampled 10%, while CNN/DailyMail is subsampled 30%. The
following table contrasts with Llama-3-8B-Instruct. We use strict match/flexible extract accuracy for
GSM-8K-COT, accuracy for MMLU, F1/EM score for CoQA, Rouge-1/2/L score for CNN/DailyMail,
and Rouge-1/2 ACC for TruthfulQA.

D.3 Ablation: Various Aspects of Sirius Are Tested and Challenged

Probing Components To understand the contribution and the utility of each component of Sirius,
we ablate all components of Sirius in Table 8. We started by only letting the LLM correct the token
it is evaluating (interleaving only). Then, we add on top of it the KV cache correction, and then
the rollback. All these three techniques are effective when applied solely. Rollback seems to be
the most effective technique. Even when applied alone, rollback asserts significant correction to
both the CSparse and FSparse models. Interestingly, KV Cache is also effective alone, bringing a
12% increment for CSparse and an 11% accuracy increase for FSparse. Relatively, interleaving is
the weakest. Surprisingly, adding both KV rewriting and rollback is only marginally better than
rollback alone. Although it is tempting to think KV Cache rewriting is not useful with rollback,
the improvement KV Cache Rewriting brings is a gain in efficiency. When adding the KV Cache
Rewriting on top of Roll Back and interleave it significantly improves the efficiency of the correction.
For CSparse, adding KV rewrite increases AAL from 12.77 to 13.80.
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Table 6: We show SIRIUS effectiveness and efficiency in the following table. We select GSM8K for
Arithmetic Reasoning, CSQA for Commonsense Reasoning, and HumanEval for code generation.
Under the "SIRIUS Perf. " column, A(B) is shown. A denotes the accuracy after SIRIUS correction in
the dataset evaluated, while (B) represents the optimal treewidth selected under the current model
dataset settings. Under the column of "AAL", X/Y is shown, where X is the AAL, while Y is the
period.

GSM8K

Model Full Perf. CSparse Perf. CSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7536 0.3844 0.65 0.7051 (8) 15.22/16 0.706
Llama-3-8B 0.4966 0.2085 0.65 0.4177 (8) 15.29/16 0.703
Llama-2-7B-Chat 0.2403 0.1334 0.69 0.2244 (8) 15.00/16 0.757
Llama-2-7B 0.1357 0.0758 0.69 0.1183 (6) 15.87/16 0.715
Llama-2-13B-Chat 0.3548 0.2714 0.68 0.3381 (4) 15.34/16 0.730
Llama-2-13B 0.2282 0.1759 0.68 0.2418 (1) 15.34/16 0.730

Model Full Perf. FSparse Perf. FSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7536 0.5868 0.76 0.7278 (4) 15.37/16 0.807
Llama-3-8B 0.4966 0.3199 0.76 0.4579 (2) 15.03/16 0.825
Llama-2-7B-Chat 0.2403 0.1971 0.79 0.2388 (6) 15.69/16 0.819
Llama-2-7B 0.1357 0.1137 0.79 0.1410 (4) 15.91/16 0.807
Llama-2-13B-Chat 0.3548 0.3222 0.78 0.3533 (1) 15.08/16 0.842
Llama-2-13B 0.2282 0.2191 0.78 0.2372 (4) 15.92/16 0.797

CSQA

Model Full Perf. CSparse Perf. CSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7073 0.6470 0.58 0.7076 (8) 14.76/16 0.657
Llama-3-8B 0.6437 0.5585 0.58 0.6429 (8) 15.43/16 0.628
Llama-2-7B-Chat 0.6248 0.5200 0.62 0.6175 (8) 15.07/16 0.683
Llama-2-7B 0.4742 0.4414 0.62 0.4742 (8) 15.80/16 0.652
Llama-2-13B-Chat 0.6879 0.5536 0.61 0.6691 (4) 11.43/12 0.674
Llama-2-13B 0.6109 0.5601 0.61 0.6060 (4) 15.72/16 0.645

Model Full Perf. FSparse Perf. FSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.7073 0.6158 0.72 0.7043 (8) 15.66/16 0.753
Llama-3-8B 0.6437 0.533 0.72 0.6388 (1) 15.00/16 0.786
Llama-2-7B-Chat 0.6248 0.6167 0.75 0.6380 (4) 15.09/16 0.811
Llama-2-7B 0.4742 0.4717 0.75 0.5012 (6) 15.89/16 0.771
Llama-2-13B-Chat 0.6879 0.533 0.74 0.6691 (4) 14.30/16 0.846
Llama-2-13B 0.6109 0.5700 0.74 0.5864 (4) 15.72/16 0.770

HumanEval

Model Full Perf. CSparse Perf. CSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.561 0.207 0.65 0.524 (8) 14.67/16 0.733
Llama-3-8B 0.262 0.067 0.65 0.243 (8) 15.10/16 0.691
Llama-2-7B-Chat 0.140 0.067 0.69 0.159 (8) 10.88/12 0.789
Llama-2-7B 0.116 0.079 0.69 0.128 (8) 14.84/16 0.765
Llama-2-13B-Chat 0.189 0.122 0.68 0.171 (8) 11.12/12 0.762
Llama-2-13B 0.262 0.067 0.68 0.244 (8) 15.10/16 0.741

Model Full Perf. FSparse Perf. FSparse SIRIUS Perf. AAL Effective
Density Density

Llama-3-8B-Instruct 0.561 0.457 0.76 0.616 (6) 15.42/16 0.804
Llama-3-8B 0.262 0.189 0.76 0.298 (6) 15.54/16 0.797
Llama-2-7B-Chat 0.140 0.134 0.79 0.165 (6) 15.27/16 0.841
Llama-2-7B 0.116 0.116 0.79 0.165 (6) 15.86/16 0.810
Llama-2-13B-Chat 0.189 0.146 0.78 0.183 (6) 15.34/16 0.827
Llama-2-13B 0.246 0.233 0.78 0.259 (4) 15.85/16 0.801
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Table 7: Large model results on miscellaneous datasets.

GSM-8K-COT MMLU CoQA CNN/DailyMail TruthfulQA
Llama-3-70B-In 0.9014/0.9022 0.7456 0.6567/0.8069 0.101634/0.020614/0.096413 0.5116/0.4247
+ CSparse 0.7407/0.7483 0.7018 0.6497/0.8046 0.101922/0.020854/0.096703 0.4541/0.3807
+ FSparse 0.8726/0.8772 0.7193 0.6497/0.8035 0.101505/0.020623/0.096344 0.4835/0.3905
Llama-3-8B-In 0.7612/0.7672 0.6272 0.6153/0.7825 0.101523/0.020481/0.096311 0.4945/0.3647
+ CSparse 0.3601/0.3647 0.5307 0.6003/0.7735 0.101681/0.020657/0.096432 0.5067/0.3953
+ FSparse 0.6103/0.6202 0.4825 0.5828/0.7577 0.101713/0.020448/0.096516 0.5202/0.3941

Table 8: Ablation on Components in Sirius.

CSparse GSM8K 20% FSparse GSM8K 20%

Llama3-8B-Instruct 0.7538/0.7538 Llama3-8B-Instruct 0.7538/0.7538
+ CSparse 0.3674/0.3674 + FSparse 0.5644/0.5644
+ CSparse + Interleave 0.3826/0.3826 + FSparse + Interleave 0.6288/0.6288
+ CSparse + KV Rewrite 0.4735/0.4735 + FSparse + KV Rewrite 0.6629/0.6629
+ CSparse + KV Rewrite 0.4886/0.4886 + FSparse + KV Rewrite 0.6780/0.6818+ Interleave + Interleave
+ CSparse + Roll back 0.6591/0.6591 + FSparse + Roll back 0.7273/0.7273+ Interleave + Interleave
+ CSparse + KV Rewrite 0.6667/0.6667 + FSparse + KV Rewrite 0.7273/0.7311+ Interleave + Rollback + Interleave + Rollback

Likelihood threshold to balance Correction and Efficiency We found that the likelihood
threshold is important for managing the Sirius correction and efficiency tradeoff. We present results
in Table 9. We ablate this setting on a 30% subsampled GSM8K dataset, and only strict accuracy
is reported. The performance is the score, while the efficiency is measured by Average Advance
Length (AAL). We can find that with the increase of threshold, the scores generally improve, while
the efficiency metric decreases.

Building Wider Tree We study the effect of increasing the treewidth. In fact, for every number
from SIRIUS in Table 6, we are selecting from a group of results by different treewidth. We present
all of this treewidth and its corresponding accuracy and efficiency numbers in the Appendix E.
Importantly, raising treewidth always improves AAL. Although different choices of treewidth usually
give similar accuracy scores, there is hardly a pattern on which treewidth always gives the best
accuracy. The optimal treewidth can only be found through empirical studies.

D.4 Variable Sequence Length with Batch Size One

Here we show the benchmark latency on A100, where the input tensor to Llama-3-8B-Instruct has a
shape of batch size 1 and a different input sequence length. To get the hardware optimal readings, we
use torch compile to compile the whole forward pass of the model. We show that the latency only
goes up insignificantly to 64, but the trend of increment to 96 is a bit steep.

D.5 Error Occurs At Which Position inside a Chunk

We look at the distribution of where the error would be inside a kernel of 16 tokens. We run through
Sirius with a kernel size of 16 on the entire GSM-8K and AQuA-RAT-COT dataset. The histogram is
shown in Figure 10. We found that the error occurs in a uniform pattern, where it is hard to see any
particular region where the tokens are likely to occur the most.
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Table 9: Ablation on the threshold for correction (FSparse Llama-3-8B-Instruct).

Threshold Full Sparse 0.05 0.1 0.3 0.5 0.7 0.9

Accuracy 0.7803 0.5884 0.7247 0.7399 0.7399 0.7677 0.7702 0.7652
AAL N/A N/A 15.2 14.6 11.6 8.5 6.2 4.2

Table 10: A100 Latency versus Input Sequence Length.

Input Sequence Length A100 Latency (ms)

1 0.0133
2 0.0135
4 0.0136
8 0.0138
16 0.0140
32 0.0149
64 0.0144
96 0.0171

D.6 Miscellaneous Results

Besides, the results on the complex reasoning tasks, we evaluate Sirius on slightly more diverse tasks
in Table 12.

D.7 Llama-2 and Llama-3 Models on GSM8K-COT

Table 11: Detail on Llama-2 and Llama-3 family models with CS.

Llama-3-70B-Instruct Accuracy Degradation Llama-3-8B-Instruct Accuracy Degradation
Full 0.9205 Full 0.7462
Csparse 60% 0.8144 0.1061
Csparse 50% 0.7652 0.1553 Csparse 50% 0.3636 0.3826
Csparse 40% 0.6023 0.3182 Csparse 40% 0.1856 0.5606
Csparse 30% 0.3144 0.6061 Csparse 30% 0.0644 0.6818
Fsparse 50% 0.8864 0.0341 Fsparse 50% 0.6477 0.0985
Fsparse 40% 0.8485 0.0720 Fsparse 40% 0.4053 0.3409
Fsparse 30% 0.7386 0.1819 Fsparse 30% 0.0265 0.7197
Fsparse 20% 0.2803 0.6402

Llama-2-70B-Chat Accuracy Degradation Llama-2-7B-Chat Accuracy Degradation
Full 0.4508 Full 0.1856
Csparse 50% 0.3939 0.0569 Csparse 50% 0.1515 0.0341
Csparse 40% 0.3447 0.1061 Csparse 40% 0.1098 0.0758
Csparse 30% 0.2689 0.1819 Csparse 30% 0.0720 0.1136
Fsparse 50% 0.3864 0.0644 Fsparse 50% 0.1629 0.0227
Fsparse 40% 0.3902 0.0606 Fsparse 40% 0.1364 0.0492
Fsparse 30% 0.2689 0.1819 Fsparse 30% 0.1212 0.0644

Here we present more experiments for the comparison between Llama-2 and Llama-3 family
models, which is first mentioned in Section B.3, where we also include FSparse methods together
with the CSparse method. The results are in Table 11.
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Figure 10: We look at the histogram of the number of errors versus the position among a period of
sixteen tokens on average. We have two different datasets of Arithmetic Reasoning GSM-8K and
AQuA-RAT-COT. We can see that the number of errors is distributed almost evenly for both datasets.

GSM-8K AQuA-RAT-COT

Position inside 16 Position inside 16 

E Additional Results on Reasoning

Due to page restrictions, we only show GSM8K, CSQA, and HumanEval in the paper. Below we
show additional results to the numbers presented in the paper. We present tables of a similar format.
Please notice that the leftmost column writes a number that represents the treewidth in the
given settings. Also, we show the results of SIRIUS on the other five datasets AQuA-RAT-COT
(Arithmetic Reasoning), Sports (Commonsense Reasoning), Date (Commonsense Reasoning), and
StrategyQA (CommonSense Reasoning), and MBPP+ (coding).

E.1 Arithmetic Reasoning

In this section, we present GSM8K and AQuA RAT COT evaluation results with the efficiency
metric AAL. Sirius is shown to be effective on these two reasoning tasks about arithmetic. Below we
show the raw AAL score associated with efficiency for all models and the performance of different
treewidths.

E.2 CommonSense Reasoning

We followed the COT paper and evaluated Sirius on CSQA, Sports, StrategyQA, and Dates. Sparse
methods are capable of outputting high-quality output similar to the full model at the 0.5 mark,
which is different than on other datasets. However, we tune the sparsity level to 0.4 (0.6 dense, 0.4
removed), and it starts to have performance degradation. Sirius can compensate them with relatively
high efficiency)

E.3 Code

We also have a coding portion that evaluates Sirius on HumanEval. Sirius performs well similar to
other datasets. Besides, we also have results on MBPP+. The results show SIRIUS effectiveness and
efficiency again.

Optionally include supplemental material (complete proofs, additional experiments and plots) in
appendix. All such materials SHOULD be included in the main submission.
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Table 12: Miscellaneous Results: 5 models on different Three Different datasets.

Experiment Setting CoQA AGIEval (Math) MMLU-FLAN-COT

Llama-2-7B-Chat 0.5982/0.7580 0.072 0.4925
Llama-2-7B-Chat-FSparse 0.5898/0.7540 0.077 0.4768
Llama-2-7B-Chat-FSparse-SIRIUS 0.5908/0.7540 0.081 0.4670
Llama-2-7B-Chat-CSparse 0.6117/0.7639 0.065 0.4637
Llama-2-7B-Chat-CSparse-SIRIUS 0.6117/0.7664 0.078 0.4794

Llama-3-8B-Instruct 0.6153/0.7825 0.213 0.6231
Llama-3-8B-Instruct-FSparse 0.5828/0.7577 0.172 0.5304
Llama-3-8B-Instruct-FSparse-SIRIUS 0.5868/0.7591 0.196 0.5709
Llama-3-8B-Instruct-CSparse 0.6003/0.7735 0.154 0.5558
Llama-3-8B-Instruct-CSparse-SIRIUS 0.6005/0.7728 0.178 0.6003

Llama-2-13B-Chat 0.6408/0.7896 0.092 0.5317
Llama-2-13B-Chat-FSparse 0.6320/0.7837 0.087 0.5082
Llama-2-13B-Chat-FSparse-SIRIUS 0.6340/0.7859 0.089 0.5219
Llama-2-13B-Chat-CSparse 0.6350/0.7841 0.088 0.5127
Llama-2-13B-Chat-CSparse-SIRIUS 0.6363/0.7847 0.1 0.5127

Llama-2-7B 0.6388/0.7735 0.101 0.4520
Llama-2-7B-FSparse 0.6352/0.7697 0.09 0.4435
Llama-2-7B-FSparse-SIRIUS 0.6352/0.7697 0.092 0.4415
Llama-2-7B-CSparse 0.6338/0.7700 0.086 0.4213
Llama-2-7B-CSparse-SIRIUS 0.6372/0.7709 0.093 0.4317

Llama-3-8B 0.6727/0.8055 0.163 0.5754
Llama-3-8B-FSparse 0.6625/0.7984 0.152 0.5349
Llama-3-8B-FSparse-SIRIUS 0.6625/0.7984 0.154 0.5532
Llama-3-8B-CSparse 0.6633/0.7977 0.131 0.5049
Llama-3-8B-CSparse-SIRIUS 0.6670/0.7995 0.15 0.5428

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer
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Table 13: SIRIUS Tree on GSM8K.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.7536/0.7544 N/A 0.7536/0.7544 N/A
Sparse Performance 0.5868/0.5891 N/A 0.3844/0.3867 N/A

1 0.7316/0.7324 14.5903 0.6983/0.7005 13.1903
2 0.7172/0.7172 14.9554 0.7089/0.7096 14.1517
4 0.7278/0.7309 15.3705 0.7119/0.7111 14.8393
6 0.7195/0.7187 15.5979 0.7081/0.7074 15.0682
8 0.7202/0.7218 15.5548 0.7051/0.7058 15.2291

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.4966/0.5042 N/A 0.4966/0.5042 N/A
Sparse Performance 0.3199/0.3260 N/A 0.2085/0.2168 N/A

1 0.4526/0.4572 14.6946 0.439/0.445 13.361
2 0.4579/0.4640 15.0355 0.4299/0.4367 14.3061
4 0.4579/0.4540 15.0355 0.4223/0.4306 14.9721
6 0.4450/0.4503 15.4834 0.4177/0.4238 15.1435
8 0.4352/0.4428 15.5863 0.4177/0.4238 15.2939

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.3548/0.3647 N/A 0.3548/0.3647 N/A
Sparse Performance 0.3222/0.3275 N/A 0.2714/0.2767 N/A

1 0.3533/0.3472 15.085 0.3412/0.3472 14.0153
4 0.3412/0.3374 15.7576 0.3381/0.3412 15.3491

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.2282/0.2312 N/A 0.2282/0.2312 N/A
Sparse Performance 0.2191/0.2229 N/A 0.1759/0.1797 N/A

1 0.2328/0.2381 15.6759 0.2418/0.2472 15.3415
4 0.2372/0.2403 15.9283 0.2077/0.2100 15.825

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.2403/0.2426 N/A 0.2403/0.2426 N/A
Sparse Performance 0.1971/0.1994 N/A 0.1334/0.1372 N/A

1 0.2282/0.2312 14.8172 0.2214/0.2229 12.6888
2 0.2297/0.2305 15.1784 0.2252/0.2359 13.8875
4 0.2305/0.2282 15.5467 0.2183/0.2214 14.6751
6 0.2388/0.2411 15.691 0.2199/0.2206 14.8575
8 0.2312/0.2343 15.735 0.2244/0.2252 15.0017

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.1357/0.1403 N/A 0.1357/0.1403 N/A
Sparse Performance 0.1137/0.1168 N/A 0.0758/0.0804 N/A

1 0.1183/0.1205 15.6864 0.1152/0.1168 15.1096
2 0.1334/0.1357 15.7893 0.113/0.116 15.5358
4 0.1410/0.1448 15.9161 0.113/0.116 15.8558 (53.341)
6 0.1289/0.1312 15.9662 0.1183/0.1205 15.8715
8 0.1236/0.1259 15.9568 0.1114/0.1145 15.8939
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Table 14: SIRIUS on AQuA-RAT-COT.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.515748 N/A 0.515748 N/A
Sparse Performance 0.42126 N/A 0.271654 N/A

1 0.429134 13.1945 0.468504 10.3322
4 0.488189 14.4722 0.44095 10.6228
6 0.496063 15.115 0.452756 10.8348
8 0.476378 15.3721 0.456693 11.0874

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.456693 N/A 0.456693 N/A
Sparse Performance 0.287402 N/A 0.228346 N/A

1 0.377953 12.6665 0.377945 12.6665
4 0.385827 14.46 0.397638 10.2826
6 0.366142 15.0671 0.370079 10.6753
8 0.42126 15.0995 0.38189 11.0019

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.232283 N/A 0.232283 N/A
Sparse Performance 0.251969 N/A 0.208661 N/A

1 0.275591 15.5163 0.26378 9.17465
4 0.279528 15.3995 0.259843 10.8726

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.149606 N/A 0.149606 N/A
Sparse Performance 0.165354 N/A 0.149606 N/A

1 0.185039 15.4652 0.161417 11.0874
4 0.220472 15.6346 0.192913 11.8238

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.251969 N/A 0.251969 N/A
Sparse Performance 0.283465 N/A 0.220472 N/A

1 0.248031 15.5294 0.251969 12.6424
4 0.259843 15.7254 0.244096 14.5794

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.15748 N/A 0.15748 N/A
Sparse Performance 0.153543 N/A 0.177165 N/A

1 0.185039 15.423 0.141732 15.4122
4 0.161417 15.651 0.145669 15.3788
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Table 15: SIRIUS on CSQA.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.707341 N/A 0.707341 N/A
Sparse Performance 0.615889 N/A 0.647011 N/A

1 0.699427 12.2108 0.724816 11.0512
4 0.687961 13.2734 0.709255 13.5876
6 0.714169 13.7842 0.720721 13.3097
8 0.710893 14.1173 0.707617 14.76893

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.643735 N/A 0.643735 N/A
Sparse Performance 0.53317 N/A 0.558559 N/A

1 0.638821 15.0088 0.618346 12.7426
4 0.630631 14.6151 0.63964 14.8704
6 0.625717 14.9905 0.640459 15.1968
8 0.617527 15.2534 0.642916 15.4355

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.687961 N/A 0.687961 N/A
Sparse Performance 0.53317 N/A 0.553645 N/A

1 0.657658 13.0868 0.649468 9.2183
4 0.669124 14.309 0.669124 11.438

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.610975 N/A 0.610975 N/A
Sparse Performance 0.570025 N/A 0.560197 N/A

1 0.578215 15.2554 0.58231 14.7381
4 0.586405 15.7213 0.606061 15.7284

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.624898 N/A 0.624898 N/A
Sparse Performance 0.616708 N/A 0.520066 N/A

1 0.632269 14.1015 0.608518 11.4607
4 0.638002 15.0978 0.605242 14.0366
6 0.605242 15.4365 0.611794 14.7197
8 0.621622 15.552 0.617527 15.0799

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.474201 N/A 0.474201 N/A
Sparse Performance 0.471744 N/A 0.441441 N/A

1 0.488124 15.5119 0.461916 14.703
4 0.494676 15.9141 0.486486 15.5972
6 0.501229 15.8922 0.476658 15.7315
8 0.473382 15.9247 0.474201 15.802
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Table 16: SIRIUS on Sports.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.943299 N/A 0.943299 N/A
Sparse Performance 0.864948 N/A 0.879381 N/A

1 0.937113 12.3652 0.946392 9.95237
4 0.941237 14.5248 0.943299 11.5858
6 0.942268 14.8651 0.943299 14.0954
8 0.939175 14.9832 0.941237 14.7718

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.898969 N/A 0.898969 N/A
Sparse Performance 0.748454 N/A 0.720619 N/A

1 0.86653 15.5259 0.845361 13.5897
4 0.849485 15.5917 0.847423 15.2325
6 0.863918 15.5256 0.843299 15.4376
8 0.869072 15.6014 0.841237 15.5023

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.742268 N/A 0.742268 N/A
Sparse Performance 0.690722 N/A 0.584536 N/A

1 0.710309 13.9767 0.717659 7.72686
4 0.735052 14.9247 0.728953 10.7298

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.709278 N/A 0.709278 N/A
Sparse Performance 0.635052 N/A 0.558763 N/A

1 0.669072 15.4924 0.639175 14.3603
4 0.657732 15.9845 0.658763 15.48

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.731959 N/A 0.731959 N/A
Sparse Performance 0.652677 N/A 0.596907 N/A

1 0.704124 14.3861 0.712371 11.1517
4 0.712371 15.5904 0.71134 13.7394
6 0.709278 15.7475 0.71134 13.9857
8 0.698969 15.9927 0.715464 14.3817

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.545361 N/A 0.545361 N/A
Sparse Performance 0.536082 N/A 0.528866 N/A

1 0.524742 15.6754 0.536082 14.1031
4 0.547423 15.937 0.538144 15.6263
6 0.545361 15.9807 0.540206 15.7243
8 0.545361 15.9927 0.549485 15.811
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Table 17: SIRIUS on Date.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.657224 N/A 0.657224 N/A
Sparse Performance 0.518414 N/A 0.532578 N/A

1 0.688385 14.2885 0.671388 14.6771
4 0.671388 15.357 0.685552 15.6324
6 0.679887 15.2435 0.688385 15.1663
8 0.674221 15.2654 0.694051 15.4293

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.583569 N/A 0.583569 N/A
Sparse Performance 0.399433 N/A 0.424929 N/A

1 0.535014 15.4236 0.535411 14.4364
4 0.543909 15.4782 0.546742 15.606
6 0.546742 15.6365 0.526912 15.7718
8 0.549575 15.7159 0.541076 15.7997

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.524079 N/A 0.524079 N/A
Sparse Performance 0.498584 N/A 0.419263 N/A

1 0.490085 13.9589 0.461756 14.1419
4 0.524079 15.432 0.478992 15.8545

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.501416 N/A 0.501416 N/A
Sparse Performance 0.464589 N/A 0.390935 N/A

1 0.447592 15.5992 0.461756 15.3896
4 0.492918 15.9129 0.484419 15.8357

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.320113 N/A 0.320113 N/A
Sparse Performance 0.339943 N/A 0.3002823 N/A

1 0.31728 14.4663 0.305949 5.75938
4 0.345609 15.6588 0.325779 14.7519
6 0.342776 15.742 0.314448 14.5768
8 0.348442 15.7692 0.308782 14.3627

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.33711 N/A 0.33711 N/A
Sparse Performance 0.314448 N/A 0.235127 N/A

1 0.342776 15.5144 0.269122 15.3598
4 0.342776 15.9141 0.266289 15.8553
6 0.328612 15.943 0.274788 15.9266
8 0.322946 15.9671 0.271955 15.956
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Table 18: SIRIUS on StrategyQA.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 10)

Original Performance 0.770241 N/A 0.770241 N/A
Sparse Performance 0.713348 N/A 0.562363 N/A

1 0.741794 8.98893 0.737418 6.60992
4 0.741794 9.48412 0.746171 7.92521
6 0.743982 9.53292 0.728665 8.22667
8 0.743982 9.55946 0.708972 8.97268

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.649891 N/A 0.649891 N/A
Sparse Performance 0.599562 N/A 0.439825 N/A

1 0.623632 9.46018 0.531729 8.68633
4 0.623632 9.74383 0.560175 9.44497
6 0.632385 9.83975 0.560175 9.58122
8 0.680525 9.80493 0.555799 9.67198

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.695842 N/A 0.695842 N/A
Sparse Performance 0.706783 N/A 0.634573 N/A

1 0.71116 9.48266 0.682713 6.74106
4 0.667396 9.83767 0.715536 8.09959
6 0.671772 9.88989 0.693654 8.82263

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.63895 N/A 0.63895 N/A
Sparse Performance 0.693654 N/A 0.533917 N/A

1 0.695842 9.8979 0.595186 8.77388
4 0.682713 9.96438 0.643326 9.47368
6 0.689278 9.9789 0.63895 9.56319

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.654267 N/A 0.654267 N/A
Sparse Performance 0.678337 N/A 0.612691 N/A

1 0.684902 9.64754 0.669584 6.55818
4 0.691466 9.79539 0.671772 7.88988
6 0.68709 9.86474 0.643326 8.28982
8 0.689278 9.86488 0.66302 8.43513

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.599562 N/A 0.599562 N/A
Sparse Performance 0.592998 N/A 0.538293 N/A

1 0.612691 9.73256 0.568928 8.38473
4 0.599562 9.93662 0.560175 9.36272
6 0.617068 9.95582 0.536105 9.35857
8 0.610503 9.96658 0.544858 9.4642
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Table 19: SIRIUS on HumanEval.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.560975609756098 N/A 0.560975609756098 N/A
Sparse Performance 0.457317073170732 N/A 0.207317073170732 N/A

1 0.585365853658537 14.7624 0.554878048780488 12.1326
4 0.579268292682927 15.2299 0.530487804878049 14.0546
6 0.615853658536585 15.4209 0.518292682926829 14.4431
8 0.585365853658537 15.5009 0.524390243902439 14.6725

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.26219512195122 N/A 0.26219512195122 N/A
Sparse Performance 0.189024390243902 N/A 0.0670731707317073 N/A

1 0.231707317073171 15.1878 0.109756097560976 12.1402
4 0.274390243902439 15.2827 0.219512195121951 13.7718
6 0.26219512195122 14.5355 0.207317073170732 14.7776
8 0.29268 15.6305 0.24390243902439 15.1074

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.189024390243902 N/A 0.189024390243902 N/A
Sparse Performance 0.146341463414634 N/A 0.121951219512195 N/A

1 0.170731707317073 14.3976 0.189024390243902 9.6447
4 0.182926829268293 15.1956 0.176829268292683 10.7946
6 0.182926829268293 15.3494 0.170731707317073 11.0149
8 0.176829268292683 15.4067 0.170731707317073 11.1252

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.176829268292683 N/A 0.176829268292683 N/A
Sparse Performance 0.158536585365854 N/A 0.0975609756097561 N/A

1 0.146341463414634 15.2129 N/A N/A
4 0.158536585365854 15.9093 0.146341463414634 14.1813
6 0.170731707317073 15.9211 0.134146341463415 14.5866
8 0.176829268292683 15.9015 0.134146341463415 14.7508

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.140243902439024 N/A 0.140243902439024 N/A
Sparse Performance 0.134146341463415 N/A 0.0670731707317073 N/A

1 0.134146341463415 14.055 0.140243902439024 8.83176
4 0.146341463414634 14.8504 0.146341463414634 10.1263
6 0.152439024390244 15.1924 0.152439024390244 10.5576
8 0.164634146341463 15.2742 0.158536585365854 10.822

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.115853658536585 N/A 0.115853658536585 N/A
Sparse Performance 0.115853658536585 N/A 0.0792682926829268 N/A

1 0.115853658536585 15.5268 0.121951219512195 12.6604
4 0.128048780487805 15.8167 0.121951219512195 14.4053
6 0.164634146341463 15.8615 0.121951219512195 14.8296
8 0.109756097560976 15.9189 0.128048780487805 14.8443
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Table 20: SIRIUS on MBPP+.

Experiment Settings Llama-3-8B-Instruct-FSparse Llama-3-8B-Instruct-CSparse
treewidth Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.584656084656085 N/A 0.584656084656085 N/A
Sparse Performance 0.531746031746032 N/A 0.248677248677249 N/A

1 0.537037037037037 14.7267 0.563492063492064 11.5415
4 0.563492063492064 15.2699 0.566137566137566 13.5896
6 0.552910052910053 15.3782 0.571428571428571 14.0547
8 0.552910052910053 15.4689 0.566137566137566 14.7648

Llama-3-8B-FSparse Llama-3-8B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.518518518518519 N/A 0.518518518518519 N/A
Sparse Performance 0.433862433862434 N/A 0.161375661375661 N/A

1 0.4894 14.8849 0.415343915343915 12.7016
4 0.484126984126984 15.4346 0.407407407407407 14.0936
6 0.473544973544974 15.3581 0.433862433862434 14.5662
8 0.468253968253968 15.6088 0.41005291005291 14.4752

Llama-2-13B-Chat-FSparse Llama-2-13B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.23015873015873 N/A 0.27 N/A
Sparse Performance 0.19047619047619 N/A 0.1 N/A

1 0.201058201058201 13.8235 0.26 9.32827
4 0.232804232804233 14.8394 0.26 10.7346
6 0.224867724867725 15.0801 0.26 10.8897
8 0.227513227513228 15.2373 0.25 11.0214

Llama-2-13B-FSparse Llama-2-13B-CSparse
Performance AAL (out of 16) Performance AAL (out of 16)

Original Performance 0.246031746031746 N/A 0.21 N/A
Sparse Performance 0.232804232804233 N/A 0.13 N/A

1 0.214285714285714 14.8374 0.22 14.5174
4 0.259259259259259 15.8547 0.24 15.6461
6 0.235449735449735 15.9197 0.23 15.7174
8 0.246031746031746 15.9094 0.22 15.7179

Llama-2-7B-Chat-FSparse Llama-2-7B-Chat-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.261904761904762 N/A 0.261904761904762 N/A
Sparse Performance 0.224867724867725 N/A 0.100529100529101 N/A

1 0.238095238095238 14.1571 0.214285714285714 8.61325
4 0.26984126984127 14.9264 0.23015873015873 10.2517
6 0.238095238095238 15.2194 0.227513227513228 10.5845
8 0.272486772486773 15.3086 0.235449735449735 10.7621
10 N/A N/A 0.232804232804233 10.8962

Llama-2-7B-FSparse Llama-2-7B-CSparse
Performance AAL (out of 16) Performance AAL (out of 12)

Original Performance 0.253968253968254 N/A 0.253968253968254 N/A
Sparse Performance 0.201058201058201 N/A 0.0793650793650794 N/A

1 0.216931216931217 14.6103 0.171957671957672 10.6643
4 0.238095238095238 15.5672 0.185185185185185 11.5561
6 0.224867724867725 15.6273 0.195767195767196 11.6547
8 0.240740740740741 15.5569 0.203703703703704 11.6753
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"[No] " provided a proper justification is given (e.g., "error bars are not reported because it would be
too computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

A. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

B. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [No]

Justification: [TODO]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

C. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

D. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

1. If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

2. If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

3. If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

4. We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

E. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

F. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

G. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

H. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

I. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

J. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

L. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

M. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

O. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

38

paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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