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ABSTRACT

The Invariant Risk Minimization (IRM) approach aims to address the challenge
of domain generalization by training a feature representation that remains invari-
ant across multiple environments. However, in noisy environments, IRM-related
techniques such as IRMv1 and VREx may be unable to achieve the optimal IRM
solution due to incorrect optimization directions. To address this issue, we in-
troduce InCo (short for Invariant Correlation), a novel approach that effectively
tackles the aforementioned challenges in noisy environments. Additionally, we
provide a case study to analyze why previous methods may lose ground while
InCo can succeed. We offer theoretical analysis from a causal perspective, demon-
strating that the invariant correlation of representation with labels across environ-
ments is a necessary condition for the optimal invariant predictor in noisy envi-
ronments, whereas the optimization motivations for other methods may not be.
Subsequently, we empirically demonstrate the usefulness of InCo by comparing it
with other domain generalization methods on various noisy datasets.

1 INTRODUCTION

Over the past decade, deep neural networks (DNNs) have made remarkable progress in a wide range
of applications, such as computer vision (Simonyan & Zisserman, 2014; He et al., 2016; Krizhevsky
et al., 2017) and natural language processing (Bahdanau et al., 2014; Luong et al., 2015). Typically,
most deep learning models are trained using the Empirical Risk Minimization (ERM) (Vapnik, 1991)
approach, which assumes that training and testing samples are independently drawn from an identi-
cal distribution (I.I.D. assumption). Nevertheless, recent studies have reported increasing instances
of DNN failures (Beery et al., 2018; Geirhos et al., 2020; DeGrave et al., 2021) when this I.I.D.
assumption is violated due to distributional shifts in practice.

Invariant Risk Minimization (Arjovsky et al., 2019) is a novel learning approach that addresses
the challenge of domain generalization (also known as out of distribution problem) in the face of
distributional shifts. The fundamental concept behind IRM is to train a feature representation that
remains invariant across multiple environments (Peters et al., 2016), such that a single classifier
can perform well in all of them. Although obtaining the optimal invariant feature representation is
challenging, previous works employ alternative methods (Xu & Jaakkola, 2021; Shahtalebi et al.,
2021; Zhang et al., 2023) to approximate it. The success of IRM approach in existing training
environments can ensure its ability to generalize well in new environments with unseen distributional
shifts, which is evidenced by positive empirical results (Rame et al., 2022; Chen et al., 2023).

However, in the real world, different environments (or domains) may exhibit varying levels of in-
herent (independent) noises, leading to various inherent losses. Even an optimal IRM model cannot
mitigate these inherent losses, resulting in varying optimal losses across different environments. As
shown in Fig. 1, inherent noise (such as snow or water) can impact the invariant feature (dog), such
as covering the face or blurring the body, resulting in different inherent losses. Existing IRM-related
methods, such as IRMv1, VREx (Krueger et al., 2021) and Fisher (Rame et al., 2022), focus on
optimizing the model in different clean environments but may fail in these noisy situations.

We conduct an analysis in this study to identify the reasons why existing IRM-related methods may
be ineffective in noisy environments. Upon examining the case study presented in Sec. 2.3, it has
come to our attention that the optimization methods utilized for IRMv1, VREx and others may fail
to converge to the optimal IRM solution due to environmental noise interference. Fortunately, our
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Figure 1: A conceptual illustration of dogs in two environments: (a) snow, (b) water. As snow may
cover the hair of dogs and water may wet the appearance, they can cause different environmental
inherent losses. All images are generated by authors using Midjourney (www.midjourney.com).

proposed method (InCo) in Sec. 2.2 can effectively overcome these challenges, because independent
environmental noise should have no effect on the correlation between invariant representation and
label. Following the theoretical setting from Peters et al. (2016); Arjovsky et al. (2019), we also pro-
vide in Sec. 3 a formal theoretical analysis from the perspective of causality, demonstrating that the
invariant correlation across environments (i.e., the optimization idea of InCo) is a necessary condi-
tion for the (optimal) invariant predictor in noisy environments, while the optimization motivations
for others may not be. Furthermore, in Sec. 4, we conduct a comprehensive range of experiments to
confirm the effectiveness of InCo in noisy environments.

We summarize the contributions and novelties of this work as follows:

• We propose InCo (in Sec. 2.2), which enforces the correlation constraint throughout train-
ing process, and demonstrate its benefits through theoretical analysis of causality (in
Sec. 3).

• We present the motivation of InCo through a case study in Sec. 2.3, which reveals that
when in noisy environments, previous IRM-related methods may fail to get the optimal
IRM solution because of environmental inherent noises, whereas InCo can still converge to
the optimal IRM solution.

• An extensive set of empirical results is provided to demonstrate that InCo can generalize
better in noisy environments across different datasets when compared with other domain
generalization methods (Sec. 4).

2 STUDY IRM IN NOISY ENVIRONMENTS

2.1 PRELIMINARIES

Given that X and Y are the input and output spaces respectively, let E := {e1, e2, ..., em} be a
collection of m environments in the sample space X ×Y with different joint distributions Pe(xe, y),
where e ∈ E . Consider Etr ⊂ E to be the training environments and Se := {(xe

i , yi)}n
e

i=1 to be
the training dataset drawn from distribution Pe(xe, y) (e ∈ Etr) with ne being dataset size. Given
the above training datasets Se (e ∈ Etr), the task is to learn an optimal model f(·;w) : X → Y ,
such that f(xe;w) performs well in predicting y when given xe not only for e ∈ Etr but also for
e ∈ E \ Etr, where w is the parameters of f .

The ERM algorithm (Vapnik, 1991) tries to solve the above problem via directly minimizing the loss
throughout training environments:

min
w:X→Y

∑
e∈Etr

Re(w), (ERM)

whereRe(w),R(xe,w) are the expected loss of f(·;w) in e, loss of f(xe;w), respectively.

IRM (Arjovsky et al., 2019) firstly supposes that the predictor f(·;w) can be made up of g(·; Φ)
and h(·;v), i.e., f(·;w) = h(g(·; Φ);v), where w = {v,Φ} are the model parameters. Here,
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g(·; Φ) : X → H extracts invariant features among Etr through mapping X to the representation
space H. The classifier h(·;v) : H → Y is supposed to be simultaneously optimal for all training
environments. The original IRM method learns g(·; Φ) and h(·;v) through solving the following
minimization problem:

min
Φ:X→H
v:H→Y

∑
e∈Etr

Re({v,Φ})

s.t. v ∈ argmin
v̄:H→Y

Re({v̄,Φ}), for all e ∈ Etr.
(IRM)

However, IRM remains a bi-level optimization problem. Arjovsky et al. (2019) suggests, for prac-
tical reasons, to relax this strict limitation by using the method IRMv1 as a close approximation to
IRM:

min
w:X→Y

∑
e∈Etr

[
Re(w) + λ

∣∣∣∣∇v|v=1Re(w)
∣∣∣∣2], (IRMv1)

where v = 1 is a scalar and fixed “dumm” classifier. Furthermore, VREx (Krueger et al., 2021)
adopts the following regularizer for robust optimization:

min
w:X→Y

λ ·Var(Re(w)) +
∑
e∈Etr

Re(w), (VREx)

where Var(Re(w)) represents the variance of the lossesRe(w) in Etr. Clearly, to encourage f(·;w)
to be simultaneously optimum, IRMv1 constrains the gradients ∇v|v=1Re(w) to be 0 and VREx
decreases the loss variance Var(Re(w)) to 0.

2.2 INVARIANT CORRELATION OF REPRESENTATION WITH LABEL

We now formally describe our method (InCo) to extract invariant features in noisy environments.
InCo performs robust learning via stabilizing the correlation between representation and true label
across environments:

min
w:X→Y

λ ·Var(ρef,y(w)) +
∑
e∈Etr

Re(w), (InCo)

where ρef,y(w) = Exe,y(f̃(x
e;w)y) is the correlation between f(xe;w) and y in the environment e,

f̃(xe;w) = f(xe;w)−Exe(f(xe;w)), and Var(ρef,y(w)) represents the variance of the correlation
in Etr. Here λ ∈ [0,+∞) controls the balance between reducing average loss and enhancing stability
of correlation, with λ = 0 recovering ERM, and λ→ +∞ leading InCo to focus entirely on making
the correlation equal. In the following, we demonstrate the power of InCo in noisy environments
through the case study (Sec. 2.3) and the theoretical analysis of causality (Sec. 3), respectively.

2.3 WHY IS INCO NECESSARY (A CASE STUDY IN TWO-BIT ENVIRONMENTS)

Arjovsky et al. (2019) presents the Colored-MNIST task, a synthetic challenge derived from MNIST,
to demonstrate the efficacy of the IRM technique and IRMv1 in particular. Although MNIST pic-
tures are grayscale, Colored-MNIST images are colored red or green in a manner that strongly (but
spuriously) correlates with the class label. In this case, ERM successfully learns to exploit the color
during training, but it fails at test time when the correlation with the color is inverted.

Kamath et al. (2021) studies an abstract version of Colored-MNIST based on two bits of input,
where y is the label to be predicted, x̂1 is correlated with the label of the hand-written digit (0 − 4
or 5− 9), and x̂e

2 corresponds to the color (red or green).

Setting: Following Kamath et al. (2021), we initially represent each environment e with two param-
eters α, βe ∈ [0, 1]. The data generation process is then defined as

Invariant feature: x̂1 ← Rad(0.5),

True label: y ← x̂1 · Rad(α),
Spurious feature: x̂e

2 ← y · Rad(βe),

(1)

where Rad(δ) is a random variable taking value−1 with probability δ and +1 with probability 1−δ.
In addition, we also consider an environmental inherent noise ηe. That is, we can only observe the
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Figure 2: The output (vertical axis) of optimized g(xe; Φ) with four inputs (x1,x2) =
{(1, 1), (1,−1), (−1, 1), (−1,−1)}. The horizontal axis is log2(λ), with −1 representing λ = 0.
(a), (b) are the results of IRMv1 and InCo for varying λ optimized with training environments
Etr = {(0.1, 0.2,0), (0.1, 0.25,0)}. (c), (d) are the results of IRMv1 and InCo optimized with
Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}. More results are given in App. A.

Table 1: The square losses for optimal IRM (oracle) and other optimization methods: ERM,
IRMv1(λ = +∞), VREx(λ = +∞), InCo(λ = +∞). All losses in this table are computed with
ηe = 0, left methods are optimized with training environments Etr = {(0.1, 0.2,0), (0.1, 0.25,0)},
whereas right ones are optimized with Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}.
The upper two rows are the results with training βe (0.2 and 0.25), whereas the lower two rows
present the results when the correlation of x̂e

2 has flipped (βe = 0.7, 0.9). In addition, we also pro-
vide more results of other methods in App. A. Best results are in bold.
R(α, βe, ηe)

Etr = {(0.1, 0.2,0), (0.1, 0.25,0)} Etr = {(0.1, 0.2,N[0.2,0.01]), (0.1, 0.25,N[0.1,0.02])}
Oracle ERM IRMv1 VREx InCo Oracle ERM IRMv1 VREx InCo

R(0.1, 0.2,0) 0.18 0.15 0.15 0.18 0.18 0.1805 0.15 0.50 0.50 0.1805
R(0.1, 0.25,0) 0.18 0.16 0.17 0.18 0.18 0.1805 0.16 0.50 0.50 0.1805
R(0.1, 0.7,0)tst 0.18 0.26 0.32 0.18 0.18 0.1805 0.25 0.50 0.50 0.1805
R(0.1, 0.9,0)tst 0.18 0.30 0.38 0.18 0.18 0.1805 0.30 0.50 0.50 0.1805

features interfered by environmental noise:

Observed invariant feature: xe
1 ← x̂1 + ηe,

Observed spurious feature: xe
2 ← x̂e

2 + ηe,
(2)

Figure 3: The solutions for (a) IRMv1, (b) VREx
and InCo when λ = +∞. I.e., the solutions sat-
isfy (a) ∇v|v=1Re(w) = 0, (b) Var(Re(w)) =
0 and Var(ρef,y(w)) = 0 for Etr = {e1 =

(0.1, 0.2,0), e2 = (0.1, 0.25,0)}. The horizontal
axis is βe and vertical axis represents square loss
for e = (0.1, βe,0). The solid circles are training
losses for different solutions. Clearly, (a) picks f3
and (b) picks fIRM.

where ηe ∼ N (µe, (σe)2) is an independent
Gaussian noise. Then, for convenience, we de-
note an environment e as (α, βe, ηe), where
α represents invariant correlation between x̂1

and y, βe represents varying (non-invariant)
correlation between x̂e

2 and y across E , ηe is
the environmental inherent noise. We consider
a linear model (f(xe;w)v=1 = g(xe; Φ) =
w1x

e
1 + w2x

e
2) with square loss Rsq(ŷ, y) :=

1
2 (ŷ − y)2 in this case study. All methods
are optimized in training environments Etr =
{(0.1, 0.2, ηe1), (0.1, 0.25, ηe2)} with ηe1,2 =
0 (Case 1) or ηe1,2 ̸= 0 (Case 2).

Case 1: Optimization without environmental
inherent noise.

In the first case, E = Eα=0.1 with training en-
vironments Etr = {e1 = (0.1, 0.2,0), e2 =

(0.1, 0.25,0)}, our results are similar to Kamath et al. (2021).

• Failure of IRMv1: Consider that IRMv1, VREx, InCo become exactly ERM when their regu-
larization terms are λ = 0. Fig. 2(a) shows the output of g(xe; Φ) from IRMv1 (λ = 0, ERM)
to IRMv1 (λ = +∞) with four inputs. Note that IRMv1 with a specific λ is optimized by training
environments Etr. We find that g((1,−1); Φ) decreases and g((−1, 1); Φ) increases with growing λ;
this phenomenon demonstrates the reliance on xe

2 increases when λ→ +∞. Thus IRMv1 may find
an un-invariant predictor even worse than ERM. This is also echoed by the results in Tab. 1(left):
When the correlation of x̂e

2 has flipped (βe = 0.7, 0.9) in the test environment, the performance of
the predictor from IRMv1 (λ = +∞) may be worse than that learnt by optimal IRM and even worse
than ERM.
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• Success of VREx, InCo: Fortunately, VREx and InCo can still converge to the optimal IRM
with increasing λ, as stabilizing losses (VREx) or correlations (InCo) across different training en-
vironments can effectively prevent the interference from spurious feature in this case. Fig. 2(b)
demonstrates that g(xe; Φ) from InCo only relies on invariant feature xe

1 when λ ≥ 211. Further-
more, VREx (λ = +∞) and InCo (λ = +∞) in Tab. 1(left) perform the same as optimal IRM in all
training and test environments.

• Why: As shown in Fig. 3(a) (Kamath et al., 2021), there are four solutions for IRMv1 when
λ→ +∞. Unfortunately, IRMv1 picks f3 rather than optimal IRM solution (f2) as f3 has the lowest
training loss of those four solutions. Clearly, f3 relies more on xe

2 and damages the performance
when flipping βe. On the other hand, Fig. 3(b) shows VREx and InCo can easily converge to the
optimal IRM solution when minimizing training losses for any two training environments. The
details of calculating procedure are given in App. B.1.

Case 2: Optimization with environmental inherent noise.

In the second case, we further consider training environments with environmental inherent noise,
i.e., Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}.
• Failure of IRMv1: As shown in Fig. 2(c), compared with clean training environments in Fig. 2(a),
noisy training environments may make IRMv1 more reliant on xe

2 when λ ∈ [210, 225.3], and finally
IRMv1 converges to a zero solution (w1 = 0, w2 = 0) with a non-continuous step when λ > 225.3.
Thus the loss for IRMv1 (λ = +∞) in Tab. 1(right) is 0.5 across all environments. This finding is
consistent with our calculation in App. B.1, which demonstrates that IRMv1 (λ = +∞) has only
one zero solution.

• Failure of VREx: In noisy training environments, VREx (λ = +∞) in Tab. 1(right) also fails
to extract invariant feature, since minimizing Var(Re(w)) cannot help find the optimal invariant
predictor when there are different environmental inherent noises. As shown in Fig. 6(a) from App. A,
VREx also converges to a zero solution when λ→ +∞.

• Success of InCo: InCo can deal with this case as its regularization term only considers the correla-
tion between representation and true label. In other words, it can filter out the impact of environmen-
tal noise which is independent of true label. The results in Fig. 2(d) show that InCo still converges
to IRM solution in noisy training environments and Tab. 1(right) shows that InCo (λ = +∞) has
the same results with optimal IRM (oracle).

•Why: Due to the variability of environmental inherent losses, optimizing ||∇v|v=1Re(w)|| → 0
or Var(Re(w))→ 0 may be impractical in noisy training environments. That is to say, if an optimal
IRM predictor operates in noisy training environments, there may exist ||∇v|v=1Re(w)|| ̸= 0 and
Var(Re(w)) ̸= 0 due to different environmental inherent noises. Nevertheless, the independence
between ηe and y ensures that Var(ρef,y(w)) = 0 holds for the optimal IRM predictor. Details of
the calculation are given in App. B.1. (We also provide formal proofs under a more general setting
for the above claims in the next section.)

• Failure of other methods: In addition, gradient-based optimization methods for optimal IRM can
also be unsuccessful in noisy environments. In this noisy case with Etr = {e1, e2}, IGA (Koyama
& Yamaguchi, 2020) minimizes ||∇wRe1(w) − ∇wRe2(w)||22, Fish (Shi et al., 2021) increases
∇wRe1(w) · ∇wRe2(w), AND-mask (Parascandolo et al., 2020) and Mansilla et al. (2021) update
weights only when ∇wRe1(w) and ∇wRe2(w) point to the same direction, Fishr (Rame et al.,
2022) reduces ||Var(∇wR(xe1 ,w))−Var(∇wR(xe2 ,w))||22. Clearly, they may be failed in noisy
environments as their penalty terms are also affected by environmental inherent noises. We pro-
vide more simulation and calculation results for some of these methods in App. A and App. B.2
respectively.

3 THEORETICAL ANALYSIS FROM CAUSAL PERSPECTIVE

In this section, we present our theoretical understanding of InCo from the perspective of causality.
Following the theoretical setting from Peters et al. (2016); Arjovsky et al. (2019), we formally prove
that (1) Var(ρef,y(w)) = 0 is a necessary condition for the optimal invariant predictor in noisy
environments; (2) ||∇v|v=1Re(w)|| = 0, Var(Re(w)) = 0 and some other minimal penalty terms
may not be necessary for the optimal invariant predictor in noisy environments.
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Figure 4: Comparison of the DAG form (a) (Arjovsky et al., 2019) and (b) ours. Different from (a),
the observed invariant feature xe

inv in (b) is affected by the environmental inherent noise ηeinv , such
as snow covering the face or water blurring the body in Fig. 1.

Setting: Consider several training environments Etr = {e1, e2, ...} and xe to be the observed input
of e ∈ Etr. We adopt an anti-causal framework (Arjovsky et al., 2019) with data generation process
as follows:

y = γ⊤x̂inv + ηy,

xe
inv = x̂inv + ηeinv, xe

s = x̂e
s + ηes ,

xe = S
(

xe
inv

xe
s

)
,

where γ ∈ Rdinv and γ ̸= 0, the hidden invariant feature x̂inv and the observed invariant feature
xe
inv take values in Rdinv , the hidden spurious feature x̂e

s and the observed spurious feature xe
s

take values in Rds , and S : R(dinv+ds) → Rd is an inherent mapping to mix features. The hidden
spurious feature x̂e

s is generated by y with any non-invariant relationship, ηeinv and ηes are inde-
pendent Gaussian with bounded mean and variance changed by environments, ηy is an independent
and invariant zero-mean Gaussian with bounded variance. As the directed acyclic graph (DAG) in
Fig. 4(b) shows, the hidden invariant feature x̂inv generates the true label y and y generates the
hidden spurious feature x̂e

s. In consideration of environmental noise, we can only observe the input
xe which is a mixture of xe

inv and xe
s after mapping. (Note that the observed feature is generated by

applying environmental noise to the hidden feature.) We aim to learn a classifier to predict y based
on xe, i.e., f(xe;w) = h(g(xe; Φ);v).

Drawing upon the foundational assumption from IRM (Arjovsky et al., 2019), i.e., assume that there
exists a mapping S̃ : Rd → Rdinv such that S̃(S( x1

x2
)) = x1 for all x1 ∈ Rdinv and x2 ∈ Rds , the

following theorem mainly states that, in noisy environments, if there exists a representation Φ that
elicits the optimal invariant predictor f(·;w) across all possible environments E , then the correlation
between f(xe;w) and y remains invariant for all e ∈ E .

Theorem 3.1 Assume that there exists a mapping S̃ : Rd → Rdinv such that S̃(S( x1
x2

)) = x1 for
all x1 ∈ Rdinv ,x2 ∈ Rds . Then, if Φ elicits the desired (optimal) invariant predictor f(·;w) =

γ⊤S̃(·), we have Var(ρef,y(w)) = 0.

Thm. 3.1 indicates that in noisy environments, minimizing the regularization term of InCo, i.e.,
Var(ρef,y(w)), is a necessary condition to find the invariant features. The intuition behind Thm. 3.1
is that, the correlation between the representation and the true label can effectively prevent interfer-
ence in noisy environments, whereas IRMv1 and VREx may get stuck. In the following, we would
like to point out that the regularization strategies employed in IRMV1, VREx and others may not be
the most effective.

Corollary 3.2 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·), then there exists e
satisfies

∂Re(w)

∂v|v=1
̸= 0

in noisy environments.

Cor. 3.2 suggests that ||∇v|v=1Re(w)|| = 0 (IRMv1) may not be a necessary condition for the
optimal invariant predictor in noisy environments, as environmental inherent losses can lead to non-
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Table 2: Comparison of MLP on ColoredMNIST with varying training noises, i.e., first training en-
vironment without noise, second training environment with 0, N (0, 0.5) and N (0, 1), respectively.
We repeat each experiment with 100 times and report the best, worst and average accuracies (%) on
the test environment with 0, N (0, 0.5) and N (0, 1), respectively. Best results are in bold.

Test noise Method {0, 0}train {0, N (0, 0.5)}train {0, N (0, 1)}train
Best Worst Mean Best Worst Mean Best Worst Mean

0

ERM 50.85 10.08 27.08 51.77 17.70 35.38 51.71 10.48 35.64
IRMv1 70.12 63.31 67.46 50.65 17.36 36.92 50.42 10.13 31.19
VREx 70.84 64.80 69.02 58.66 23.50 43.18 51.69 14.43 32.98
CLOvE 69.07 41.32 64.97 34.00 10.61 15.83 50.61 10.77 31.41
Fishr 70.48 66.01 69.07 50.18 20.50 36.98 50.87 9.87 27.01
InCo 70.56 65.25 68.33 69.40 26.69 53.73 68.11 18.18 44.16

N (0, 0.5)

ERM 51.44 22.63 36.11 51.71 13.18 32.98 51.63 12.28 32.94
IRMv1 59.59 53.22 56.75 51.19 11.61 32.01 50.89 10.28 29.33
VREx 58.73 53.52 56.61 51.35 30.44 41.97 51.54 13.69 35.09
CLOvE 49.28 36.10 44.87 42.45 20.33 31.40 49.76 23.32 41.37
Fishr 62.64 57.10 60.54 51.40 26.28 38.17 50.36 10.87 30.63
InCo 59.38 53.02 56.32 64.66 35.43 57.17 67.09 23.96 49.00

N (0, 1)

ERM 50.90 32.70 42.36 51.54 20.61 36.94 50.99 18.31 35.86
IRMv1 55.31 49.94 52.91 51.08 18.95 36.16 51.19 15.34 32.72
VREx 54.20 50.33 52.55 50.85 34.57 43.87 51.47 22.92 39.29
CLOvE 47.39 40.19 45.05 46.12 31.23 39.65 49.83 33.78 45.29
Fishr 57.76 53.48 55.81 51.05 34.63 42.17 51.15 17.33 34.90
InCo 54.51 50.36 52.65 60.06 44.56 55.27 63.51 40.14 52.26

zero ||∇v|v=1Re(w)||. Even in clean environments without noise, ||∇v|v=1Re(w)|| = 0 may point
to other predictors rather than the optimal invariant one (Case 1 in Sec. 2.3).

Corollary 3.3 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·), there exists ηe1inv ̸=
ηe2inv in noisy environments {e1, e2} such that

Var(Re(w)) ̸= 0.

Cor. 3.3 shows that Var(Re(w)) (REx) may also be failed to represent as an indicator for the opti-
mal invariant predictor in noisy environments. Given different inherent losses across environments,
it seems unreasonable to enforce all losses to be equal. In App. C, we further prove that the regular-
ization terms for IGA, Fishr and IB-ERM (Ahuja et al., 2021) may also be not necessary to find the
optimal invariant predictor in such noisy situations. All proofs are given in App. D.

In conclusion, in this section, we examine InCo from a causal perspective and provide theoretical
analysis that minimizing Var(ρef,y(w)) is a necessary condition to find the invariant features in noisy
environments. On the other hand, IRMv1, VREx and others may be ineffective in obtaining the
optimal invariant predictor due to the impact of environmental noise on their regularization terms.

4 EXPERIMENTS

In this section, we implement extensive experiments with ColoredMNIST (Arjovsky et al., 2019),
Circle dataset (Wang et al., 2020a) and noisy DomainBed (Gulrajani & Lopez-Paz, 2020) frame-
work. The first part includes comprehensive experiments on ColoredMNIST using multi-layer-
perceptrons (MLP) with varying environmental noises. In the second part, we conduct further ex-
periments to verify the effectiveness of InCo in extracting invariant features in noisy environments.

4.1 MLP WITH COLOREDMNIST

Training setting: This proof-of-concept experiment of ColoredMNIST follows the settings
from Arjovsky et al. (2019); Krueger et al. (2021). The MLP consists of two hidden layers with
256 and 256 units respectively. Each of these hidden layers is followed by a ReLU activation func-
tion. The final output layer has an output dimension of number of classes. All networks are trained
with the Adam optimizer, ℓ2 weight decay 0.001, learning rate 0.001, batchsize 25000 and epoch
500. Note that we use the exactly same hyperparameters as Arjovsky et al. (2019); Krueger et al.
(2021), only replacing the IRMv1 penalty and VREx penalty with InCo penalty and other penalties.

ColoredMNIST setting: We create three MNIST environments (two training and one test) by mod-
ifying each example as follows: firstly, give the input a binary label ỹ depending on the digit: ỹ = 0
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Figure 5: Results on the noisy circle dataset with 30 domains.

for digits 0 to 4 and ỹ = 1 for digits 5 to 9; secondly, define the final true label y by randomly
flipping ỹ with a probability 0.25; the third step is to randomly choose the color id c by flipping y
with probability Pe

c, where Pe
c is 0.2 in the first environment, 0.1 in the second environment, and 0.9

in the test environment. Finally, if c is 1, the image is colored in red, otherwise it is colored in green.

Evaluating setting: There are three training groups in our experiments: {0,0}, {0,N (0, 0.5)}
and {0,N (0, 1)}. Specifically, the first training environment is clean without noise (i.e., 0 across
all three groups), the second training environment differs in three groups: non-noise 0 in the first
group, noise N (0, 0.5) in the second group and noise N (0, 1) in the third group. We train each
network in these three training groups respectively with 100 times. Note that, following Krueger
et al. (2021), we only record the test accuracy which is less than corresponding training accuracy for
each experiment. We then report the best, average and worst performances (among 100 runs) in the
test domain with environmental noise 0, N (0, 0.5) and N (0, 1), respectively.

Remark: As shown in Tab. 2, there is no significant difference in the performances of IRMv1,
VREx and InCo (Fishr performs relatively better and CLOvE (Wald et al., 2021) performs relatively
worse) when trained in clean environments (first thick column). However, InCo is the only method
to efficiently tackle noisy training environments (second and third thick columns). For example,
with the training group {0,N (0, 0.5)}, InCo can achieve 69.4% best accuracy in the clean test
environment, others can only get up to 58.66%; InCo can achieve 57.17% average accuracy in the
N (0, 0.5) noisy test environment, while VREx, Fishr and IRMv1 only get 41.97%, 38.17% and
32.01%, respectively.

4.2 MORE EMPIRICAL RESULTS

The Circle Dataset (Wang et al., 2020a) consists of 30 domains, with indices ranging from 0 to
29. The domains are depicted in Fig. 5(a) using distinct colors (in ascending order from 0 to 29,
from right to left). Each domain consists of data related to a circle, and the objective is to perform
binary classification. Fig. 5(b) illustrates the positive samples as red dots and negative samples as
blue crosses. We utilize domains 0 to 5 as source domains (inside dashed circle), and the remaining
domains as target domains. To create noisy environments during training, we apply Gaussian noises
N (0, index/10) to source domains 0 to 5, respectively, while keeping target domains 6 to 29 clean.
All other settings are same with Wang et al. (2020a). As shown in Fig. 5(c), the performance of
CIDA (Wang et al., 2020a) in noisy training environments is not good enough, but it can be improved
by adding the InCo penalty term as depicted in Fig. 5(d).

To further substantiate the effectiveness of InCo, we conduct an evaluation within the Do-
mainBed (Gulrajani & Lopez-Paz, 2020) framework with two datasets: noisy PACS (Li et al.,
2017) and noisy VLCS (Fang et al., 2013). In these datasets, we introduce environmental noise
in the form of small Gaussian perturbations, denoted as N (0, i/5), where i represents the index of
the respective environment. As shown in Tab. 3, our findings reveal that InCo consistently exhibits
marked improvements in noisy environments when contrasted with other methods such as ERM,
IRMv1, VREx, GroupDRO (Sagawa et al., 2019), and Fishr. Although Fishr demonstrates superior
performance in the first environment of noisy PACS, the discernible accuracy difference between
InCo and Fishr is minimal, amounting to merely 0.1%. In all other environments across the two
datasets, InCo consistently delivers the highest level of performance. More empirical results and
details are given in App. E.

5 RELATED WORK

The domain generalization problem is initially explicitly described by Blanchard et al. (2011) and
then defined by Muandet et al. (2013), which takes into account the potential of the target data
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Table 3: Domain generalization performances using noisy DomainBed evaluation protocol (with
small environmental noises). All methods are trained with default hyper-parameter. We choose the
checkpoint using the test domain validation set and report the corresponding test domain accuracy
(%).

Noisy PACS Noisy VLCS
A C P S C L S V

ERM 86.5 83.9 94.3 83.4 97.8 65.1 69.9 79.2
IRMv1 88.1 85.2 96.4 73.1 96.1 67.9 72.1 77.6
VREx 86.7 84.3 95.2 84.8 96.4 67.4 73.4 76.4
GroupDRO 87.8 84.7 95.2 81.3 97.1 67.9 70.8 77.4
Fishr 89.6 82.0 94.3 84.9 98.5 63.2 70.5 79.2
InCo 89.5 85.5 96.4 86.4 98.9 69.6 73.7 79.2

being unavailable during model training. A large body of literature seeks to address the domain
generalization challenge, typically through additional regularizations of ERM (Vapnik, 1991). The
regularizations from Motiian et al. (2017); Namkoong & Duchi (2016); Sagawa et al. (2019) enhance
model robustness against minor distributional perturbations in the training distributions, Zhang et al.
(2022b); Liu et al. (2021a); Yao et al. (2022) further improve this robustness with extra assumptions,
while regularizations of Ganin et al. (2016); Sun & Saenko (2016); Li et al. (2018c;b); Dou et al.
(2019); Zhao et al. (2019) promote domain invariance of learned features.

In addition, there has been a growing trend towards integrating the principle of causal invariance
(Pearl, 2009; Louizos et al., 2017; Goudet et al., 2018; Ke et al., 2019; Schölkopf et al., 2021) into
representation learning (Peters et al., 2016; Arjovsky et al., 2019; Creager et al., 2021; Parascan-
dolo et al., 2020; Wald et al., 2021; Ahuja et al., 2021). In this context, the IRM (Arjovsky et al.,
2019) approach has been proposed to extract features that remain consistent across various environ-
ments, following the invariance principle introduced in Peters et al. (2016). As of late, there have
been several IRM-related methods developed in the community. Ahuja et al. (2020a) offers novel
perspectives through the incorporation of game theory and regret minimization into invariant risk
minimization. Ahuja et al. (2021) proposes to combine the information bottleneck constraint with
invariance to address the case in which the invariant features capture all the information of the la-
bel. Zhou et al. (2022) studies IRM for overparameterized models. Ahuja et al. (2020b); Liu et al.
(2021b) endeavor to learn invariant features when explicit environment indices are not provided.
Chen et al. (2022) suggests utilizing the inherent low-dimensional structure of spurious features to
recognize invariant features in logarithmic environments. Rosenfeld et al. (2020) studies IRM in the
non-linear regime and finds it can fail catastrophically. Kamath et al. (2021) analyzes the success
and failure cases of IRMv1 in clean environments. Zhang et al. (2022a) proposes constructing di-
verse initializations to stabilize domain generalization performance under the trade-off between ease
of optimization and robust of domain generalization. Due to space limit, we provide more related
work in App. F.

In contrast to prior research, this paper investigates IRM in noisy environments where environmental
noises can corrupt invariant features. As a result, previous IRM-related approaches may not be
effective in such scenarios. Nevertheless, our InCo technique can successfully handle noisy cases
by utilizing the principle that the correlation of invariant representation with label is invariant across
noisy environments.

6 CONCLUSION

In this paper, we introduced an IRM-related method named InCo, which utilizes the correlation be-
tween representation and labels to overcome the challenge of training an invariant predictor in noisy
environments. In a case study with two-bit environments, we analyzed why other methods may fail
while InCo can succeed in noisy environments. Through some theoretical analyses of causality, we
demonstrated the necessity of invariant correlation across noisy environments for the optimal IRM
solution. Moreover, we conducted extensive experiments which demonstrate the superior perfor-
mance of InCo compared to other methods in such noisy scenarios.

Reproducibility Statement: We provide the detailed calculation process for Sec. 2.3 in App. B, the
proofs for Sec. 3 in App. D, and the code for the experiments in the supplemental file.
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The appendices can be summarized as follows:

• App. A: We present more case study results mentioned in Section 2.3.

• App. B: We provide the calculation details of IRMv1, VREx, InCo and other methods.

• App. C: We provide more causality analysis given the theoretical settings mentioned in
Section 3.

• App. D: We provide the detailed proofs for Thm. 3.1, Cor. 3.2 and Cor. 3.3.

• App. E: We present more experiments and details.

• App. F: In this section, we provide more related work about domain generalization and
IRM.

A MORE CASE STUDY RESULTS

Figure 6: The output (vertical axis) of optimized g(xe; Φ) with four inputs (x1,x2) =
{(1, 1), (1,−1), (−1, 1), (−1,−1)}. The horizontal axis is log2(λ), with −1 representing λ = 0.
(a), (b), (c), (d) are the results of VREx, IGA, IB-ERM and Fishr for varying λ optimized with
training environments Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}. Note that in (a)
we let λ = +∞ when λ > 2120 due to numerical problems.

Table 4: The square losses for optimal IRM (oracle) and different optimization methods:
IGA(λ = +∞ and 27), Fishr(λ = +∞ and 24), IB-ERM(λ = +∞). All losses
in this table are computed with ηe = 0, and all methods are optimized with Etr =
{(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}. The upper two rows are the results with train-
ing βe (0.2 and 0.25), whereas the lower two rows present the results when the correlation of x̂e

2 has
flipped (βe = 0.7, 0.9).

R(α, βe, ηe)
Etr = {(0.1, 0.2,N[0.2,0.01]), (0.1, 0.25,N[0.1,0.02])}

Oracle IGA IGA(λ = 27) Fishr Fishr(λ = 24) IB-ERM
R(0.1, 0.2,0) 0.1805 0.50 0.36 0.50 0.40 0.50
R(0.1, 0.25,0) 0.1805 0.50 0.36 0.50 0.40 0.50
R(0.1, 0.7,0)tst 0.1805 0.50 0.36 0.50 0.40 0.50
R(0.1, 0.9,0)tst 0.1805 0.50 0.36 0.50 0.40 0.50

As shown in Fig. 6, we present the output of g(xe; Φ) which is optimized in noisy training environ-
ments Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))} with varying λ. (a) and (c) show
that VREx and IB-ERM converge to zero solutions when λ → +∞. The results of IGA and Fishr
are presented in (b) and (d), respectively. Both methods converge to invariant solutions when λ ≥ 27

for IGA and λ ≥ 24 for Fishr, and finally they also achieve zero solutions. However, as shown in
Tab. 4, these invariant solutions for IGA (λ = 27) and Fishr (λ = 24) are not optimal, as optimal
loss is 0.1805 but IGA(λ = 27) and Fishr(λ = 24) only get 0.36 and 0.40 respectively. Note that
here we choose 27 for IGA and 24 for Fishr because they are the best λ for corresponding invariant
solutions. Fortunately, the results in Tab. 1 and Fig. 2(d) demonstrate the effectiveness of InCo to
achieve optimal IRM solution (oracle) in this noisy case, because InCo can protect the training pro-
cedure from environmental noises. Note that all of these simulation results are consistent with our
calculation in App. B. In Fig. 7, we show the change of w1 and w2 with respect to λ.
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Figure 7: The vertical axis is the value of w1 and w2 for optimized g(xe; Φ). The horizontal axis
is log2(λ), with −1 representing λ = 0. (a), (b) are the results of IRMv1 and InCo for varying λ
optimized with training environments Etr = {(0.1, 0.2,0), (0.1, 0.25,0)}. (c), (d) are the results of
IRMv1 and InCo optimized with Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}.
Table 5: The square losses for optimal IRM (oracle) and other optimization methods: ERM,
IRMv1(λ = +∞), VREx(λ = +∞), InCo(λ = +∞). All losses in this table are computed
with (left) ηe = N (0.2, 0.01) and (right) ηe = N (0.1, 0.02), all methods are optimized with
Etr = {(0.1, 0.2,N (0.2, 0.01)), (0.1, 0.25,N (0.1, 0.02))}. The upper two rows are the results with
training βe (0.2 and 0.25), whereas the lower two rows present the results when the correlation of
x̂e
2 has flipped (βe = 0.7, 0.9).

R(α, βe, ηe)
ηe = N (0.2, 0.01) ηe = N (0.1, 0.02)

Oracle ERM IRMv1 VREx InCo Oracle ERM IRMv1 VREx InCo
R(0.1, 0.2, ηe) 0.1953 0.17 0.50 0.50 0.1953 0.1894 0.16 0.50 0.50 0.1894
R(0.1, 0.25, ηe) 0.1953 0.18 0.50 0.50 0.1953 0.1894 0.17 0.50 0.50 0.1894
R(0.1, 0.7, ηe)tst 0.1953 0.27 0.50 0.50 0.1953 0.1894 0.27 0.50 0.50 0.1894
R(0.1, 0.9, ηe)tst 0.1953 0.32 0.50 0.50 0.1953 0.1894 0.31 0.50 0.50 0.1894

B CALCULATION DETAILS

B.1 CALCULATION FOR IRMV1, VREX AND INCO

Following Kamath et al. (2021) and Léon Bottou, we provide the calculation details of IRMv1,
VREx and InCo solutions as follows.

Suppose Etr consists of two environments e1 = (α, βe1 , ηe1) and e2 = (α, βe2 , ηe2). From the
definition of IRMv1, VREx, InCo, for any f(xe) = 1 · g(xe; Φ) = w1x

e
1 + w2x

e
2 with square loss,

we have that:

when optimizing IRMv1 till∇v|v=1Re(w) = 0, we get

Exe1 ,y (w1x
e1
1 + w2x

e1
2 − y) (w1x

e1
1 + w2x

e1
2 ) = 0,

Exe2 ,y (w1x
e2
1 + w2x

e2
2 − y) (w1x

e2
1 + w2x

e2
2 ) = 0;

(3)

when optimizing VREx till Var(Re(w)) = 0, we get

Exe1 ,y (w1x
e1
1 + w2x

e1
2 − y)

2
= Exe2 ,y (w1x

e2
1 + w2x

e2
2 − y)

2
; (4)

when optimizing InCo with Var[ρef,y(w)] = 0, we get

Exe1 ,y(w1x
e1
1 y + w2x

e1
2 y) = Exe2 ,y(w1x

e2
1 y + w2x

e2
2 y). (5)

Case 1: For both ηe1 = 0 and ηe2 = 0, we have (i) E[(xe
1)

2] = E[(xe
2)

2] = 1, (ii) E(xei
1 y) = a,

E(xei
2 y) = bi, (iii) E(xei

1 xei
2 ) = abi, where a := 1− 2α and bi := 1− 2βei for i ∈ {1, 2}.

Then, according to equation 3, the solutions for IRMv1 (λ = +∞) are

(1) w1 = 0, w2 = 0;

(2) w1 = a,w2 = 0;

(3) w1 =
1

2a
,w2 =

√
1

2
− 1

4a2
, s.t. a2 >

1

2
;

(4) w1 =
1

2a
,w2 = −

√
1

2
− 1

4a2
, s.t. a2 >

1

2
, w2 ̸= 0.
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According to (4), the solutions for VREx (λ = +∞) are:

(1) w1 =
1

a
,w2 ∈ R;

(2) w1 ∈ R, w2 = 0.

According to (5), the solution for InCo (λ = +∞) is

w1 ∈ R, w2 = 0.

Case 2: ηe1 and ηe2 are independent but not identically distributed, i.e., ηe1 ∼ N (µ1, σ
2
1) and ηe2 ∼

N (µ2, σ
2
2), we have (i) E[(xei

1 )2] = E[(xei
2 )2] = 1 + µ2

i + σ2
i , (ii) E(xei

1 y) = a, E(xei
2 y) = bi,

(iii) E(xei
1 xei

2 ) = abi + µ2
i + σ2

i , where a := 1− 2α and bi = 1− 2βei for i ∈ {1, 2}.
According to (3), we can calculate the solution for IRMv1 (λ = +∞) is

w1 = 0, w2 = 0.

According to (4), we can calculate the solution for VREx (λ = +∞) is

w1 = 0, w2 = 0.

According to (5), the solution for InCo (λ = +∞) is

w1 ∈ R, w2 = 0.

These calculation results are also consistent with the simulations in Sec. 2.3 and App. A.

B.2 MORE CALCULATION RESULTS

When optimizing IGA with ||∇wRe1(w)−∇wRe2(w)||22 → 0, we get(
Exe1 ,y((x

e1
1 )2w1 + w2x

e1
1 xe1

2 − xe1
1 y)− Exe2 ,y((x

e2
1 )2w1 + w2x

e2
1 xe2

2 − xe2
1 y)

)2
+,(

Exe1 ,y((x
e1
2 )2w2 + w1x

e1
1 xe1

2 − xe1
2 y)− Exe2 ,y((x

e2
2 )2w2 + w1x

e2
1 xe2

2 − xe2
2 y)

)2 → 0;
(6)

when optimizing Fishr with ||Var(∇wR(xe1 ,w))−Var(∇wR(xe2 ,w))||22 → 0, we have

Exe1 ,y((x
e1
1 )2w1 + w2x

e1
1 xe1

2 − xe1
1 y − Exe1 ,y((x

e1
1 )2w1 + w2x

e1
1 xe1

2 − xe1
1 y))2

− Exe2 ,y((x
e2
1 )2w1 + w2x

e2
1 xe2

2 − xe2
1 y − Exe2 ,y((x

e2
1 )2w1 + w2x

e2
1 xe2

2 − xe2
1 y))2 → 0,

Exe1 ,y((x
e1
2 )2w2 + w1x

e1
1 xe1

2 − xe1
2 y − Exe1 ,y((x

e1
2 )2w2 + w1x

e1
1 xe1

2 − xe1
2 y))2

− Exe2 ,y((x
e2
2 )2w2 + w1x

e2
1 xe2

2 − xe2
2 y − Exe2 ,y((x

e2
2 )2w2 + w1x

e2
1 xe2

2 − xe2
2 y))2 → 0;

(7)

when optimizing IB-ERM till Var(g(xe1 ; Φ)|y = 1)+Var(g(xe2 ; Φ)|y = 1)+Var(g(xe1 ; Φ)|y =
−1) + Var(g(xe2 ; Φ)|y = −1) = 0, we can get

Exe1 (w1x
e1
1 + w2x

e1
2 − Exe1 (w1x

e1
1 + w2x

e1
2 )|y = 1)2 = 0,

Exe2 (w1x
e2
1 + w2x

e2
2 − Exe2 (w1x

e2
1 + w2x

e2
2 )|y = 1)2 = 0,

Exe1 (w1x
e1
1 + w2x

e1
2 − Exe1 (w1x

e1
1 + w2x

e1
2 )|y = −1)2 = 0,

Exe2 (w1x
e2
1 + w2x

e2
2 − Exe2 (w1x

e2
1 + w2x

e2
2 )|y = −1)2 = 0.

(8)

Given case 2, the solutions for IGA (λ = +∞), Fishr (λ = +∞) and IB-ERM (λ = +∞) are

w1 = 0, w2 = 0.

These calculation results are also consistent with the simulations in App. A.
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C MORE CAUSALITY ANALYSES

Given the theoretical setting in Sec. 3, we have the following corollaries.

Setting: Consider several training environments Etr = {e1, e2, ...} and xe to be the observed input
of e ∈ Etr. We adopt an anti-causal framework (Arjovsky et al., 2019) with data generation process
as follows:

y = γ⊤x̂inv + ηy,

xe
inv = x̂inv + ηeinv, xe

s = x̂e
s + ηes ,

xe = S
(

xe
inv

xe
s

)
,

where γ ∈ Rdinv and γ ̸= 0, the hidden invariant feature x̂inv and the observed invariant fea-
ture xe

inv take values in Rdinv , the hidden spurious feature x̂e
s and the observed spurious feature

xe
s take values in Rds , and S : R(dinv+ds) → Rd is an inherent mapping to mix features. The

hidden spurious feature x̂e
s is generated by y with any non-invariant relationship, ηeinv and ηes are

independent Gaussian with bounded mean and variance changed by environments, ηy is an inde-
pendent and invariant zero-mean Gaussian with bounded variance. As the directed acyclic graph
(DAG) in Fig. 4(b) shows, the hidden invariant feature x̂inv generates the true label y and y gener-
ates the hidden spurious feature x̂e

s. In consideration of environmental noise, we can only observe
the input xe which is a mixture of xe

inv and xe
s after mapping. (Note that the observed feature is

generated by applying environmental noise to the hidden feature.) We follow the assumption from
IRM Arjovsky et al. (2019), i.e., assume that there exists a mapping S̃ : Rd → Rdinv such that
S̃(S( x1

x2
)) = x1 for all x1 ∈ Rdinv ,x2 ∈ Rds . and aim to learn a classifier to predict y based on xe,

i.e., f(xe;w) = h(g(xe; Φ);v).

Corollary C.1 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·), there exist noisy envi-
ronments {e1, e2} such that

∇wRe1(w) ̸= ∇wRe2(w).

Proof C.1 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·) in noisy environments
{e1, e2}, given square loss and the fixed “dummy” classifier v = 1, we have

∂Re(w)

∂v|v=1
=

1
2Exe,y[(f(x

e;w)− y)2]

∂v|v=1

=
1
2Exe,y[(v|v=1(γ

⊤x̂inv + γ⊤ηeinv)− γ⊤x̂inv − ηy)
2]

∂v|v=1

= Exe,y

(
(γ⊤x̂inv + γ⊤ηeinv)(γ

⊤ηeinv − ηy)
)

= Exe,y

(
γ⊤ηeinvγ

⊤x̂inv + (γ⊤ηeinv)
2 − γ⊤x̂invηy − γ⊤ηeinvηy

)
,

(9)

where e ∈ {e1, e2}.

Obviously, when γ ̸= 0, there exists ηe1inv ̸= ηe2inv such that ∂Re1 (w)
∂v|v=1

̸= ∂Re2 (w)
∂v|v=1

. □

Cor. C.1 shows that ||∇wRe1(w)−∇wRe2(w)||22 → 0 (IGA) may also be failed to find the optimal
invariant predictor in noisy environments. Given different inherent losses, it seems unreasonable to
enforce all gradients to be equal across environments.

Corollary C.2 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·), there exist noisy envi-
ronments {e1, e2} such that

Var(∇wR(xe1 ,w)) ̸= Var(∇wR(xe2 ,w)).
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Proof C.2 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·) in noisy environments
{e1, e2}, given square loss and the fixed “dummy” classifier v = 1, we have

Var

(
∂R(xe,w)

∂v|v=1

)
=Exe,y

( [
γ⊤ηeinv

(
γ⊤x̂inv + γ⊤ηeinv − γy

)]2
+

(
γ⊤x̂invηy

)2
− 2γ⊤x̂invηyγ

⊤ηeinv
(
γ⊤x̂inv + γ⊤ηeinv − γy

) )
−
[
Exe,y

(
γ⊤ηeinvγ

⊤x̂inv + (γ⊤ηeinv)
2 − γ⊤x̂invηy − γ⊤ηeinvηy

)]2
,

where e ∈ {e1, e2}.

Clearly, when γ ̸= 0, there exists ηe1inv ̸= ηe2inv such that Var
(

∂R(xe1 ,w)
∂v|v=1

)
̸= Var

(
∂R(xe2 ,w)

∂v|v=1

)
. □

Cor. C.2 implies that looking for the optimal invariant predictor in noisy environments via
||Var(∇wR(xe1 ,w)) − Var(∇wR(xe2 ,w))||22 → 0 (Fishr) may not always be successful, for
the reason that environmental inherent noises can affect the variance of gradients.

Corollary C.3 Given y ∈ {−1, 1} and the fixed “dummy” classifier v = 1, if Φ elicits the desired
invariant predictor f(·;w) = γ⊤S̃(·), there exists e in noisy environments such that

Var(g(xe; Φ)|y) ̸= 0.

Proof C.3 Given y ∈ {−1, 1} and the fixed “dummy” classifier v = 1, if Φ elicits the desired
invariant predictor f(·;w) = γ⊤S̃(·), we have

Var(g(xe; Φ)|y) = Var
(
(γ⊤x̂inv|y) + γ⊤ηeinv

)
.

Obviously, we can find a ηeinv in noisy environments such that Var(g(xe; Φ)|y) ̸= 0. □

Cor. C.3 suggests that the IB penalty (IB-ERM) may also be unsuccessful to find the optimal invari-
ant predictor in noisy environments.

D PROOFS

Here, we provide the proofs for Thm. 3.1, Cor. 3.2 and Cor. 3.3, respectively.

Proof 3.1 Assume that there exists a mapping S̃ : Rd → Rdinv such that S̃(S( x1
x2

)) = x1 for
all x1 ∈ Rdinv ,x2 ∈ Rds . Then, if Φ elicits the desired (optimal) invariant predictor f(·;w) =

γ⊤S̃(·), we have
ρef,y(w) = Exe,y[f(x

e;w)y − Exe(f(xe;w))y]

= Exe,y[γ
⊤S̃(S(

xe
inv

xe
s
))y]− E[γ⊤S̃(S(

xe
inv

xe
s
))]E[y]

= Exe,y[γ
⊤xe

invy]− E[γ⊤xe
inv]E[y]

= E[(γ⊤x̂inv)
2]− [E(γ⊤x̂inv)]

2

= Var(γ⊤x̂inv),

(10)

for all e ∈ E . As Var(γ⊤x̂inv) remains constant in all environments, we have Var(ρef,y(w)) = 0.
Hence, proved. □

Proof 3.2 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·), consider square loss and
the fixed “dummy” classifier v = 1, then

∂Re(w)

∂v|v=1
=

1
2Exe,y[(f(x

e;w)− y)2]

∂v|v=1

=
1
2Exe,y[(v|v=1(γ

⊤x̂inv + γ⊤ηeinv)− γ⊤x̂inv − ηy)
2]

∂v|v=1

= Exe,y

(
(γ⊤x̂inv + γ⊤ηeinv)(γ

⊤ηeinv − ηy)
)

= Exe,y

(
γ⊤ηeinvγ

⊤x̂inv + (γ⊤ηeinv)
2 − γ⊤x̂invηy − γ⊤ηeinvηy

)
.

(11)
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Figure 8: Results of causal invariance (Chen et al., 2023) in noisy environments. We run each
method with 5 times and report the average losses: (c) PAIR 0.8164; (d) InCo 0.6568.

Obviously, when γ ̸= 0, there exists ηeinv in noisy environments such that ∂Re(w)
∂v|v=1

̸= 0. □

Proof 3.3 If Φ elicits the desired invariant predictor f(·;w) = γ⊤S̃(·), consider square loss, then

Re(w) =
1

2
Exe,y

[
(γ⊤x̂inv + γ⊤ηeinv − γ⊤x̂inv − ηy)

2
]

=
1

2
E
[
(γ⊤ηeinv − ηy)

2
]
,

(12)

where e ∈ {e1, e2}.
Clearly, when γ ̸= 0, there exists ηe1inv ̸= ηe2inv such thatRe1(w) ̸= Re2(w). □

E MORE EXPERIMENTS AND DETAILS

Experimental details: All experiments are implemented on NVIDIA A100 and AMD EPYC 7452
32-Core Processor.

For the experiment with ColoredMNIST, we use the exactly same setting as
https://github.com/capybaralet/REx_code_release/blob/master/
InvariantRiskMinimization/colored_mnist/main.py, only replacing the IRMv1
penalty and VREx penalty with InCo penalty and other penalties.

For the experiment with Circle Dataset, we use the exactly same setting as https://github.
com/hehaodele/CIDA/blob/master/toy-circle/main-half-circle.ipynb,
only applying noises to source domains and adding InCo penalty term.

Causal Invariance experiment: We then describe the definition of Causal Invariance specified by
Peters et al. (2016); Arjovsky et al. (2019); Kamath et al. (2021); Chen et al. (2023) as in Def. E.1.

Definition E.1 (Causal Invariance) Given a predictor f(·;w) = h(g(·; Φ);v), the representation
produced by the featurizer Φ is invariant over E if and only if for all e1, e2 ∈ E , it holds that

Exe1 ,y(y|g(xe1 ; Φ) = z) = Exe2 ,y(y|g(xe2 ; Φ) = z) (13)

for all z ∈ {g(xe1 ; Φ)|e1} ∩ {g(xe2 ; Φ)|e2}.

As Chen et al. (2023), a regression example is designed with x : R2 → y : R. The input x is with
two dimensions, i.e., x = (x1,x2), where x1 represents horizontal axis and x2 represents vertical
axis in Fig. 8. x1 is designed to be the invariant feature and x2 is designed to be the spurious feature.
Consider environmental inherent noises, we assume y = sin(1.5 ∗x1) + 1 for domains x1 < 0 and
y = sin(2.5 ∗ x1) + 1 for domains x1 ≥ 0. All other settings are same with https://github.
com/LFhase/PAIR/blob/main/Extrapolation/pair_extrapolation.ipynb.

We evaluate InCo with Causal Invariance experiment from PAIR (Chen et al., 2023). As shown in
Fig. 8, y = sin(1.5 ·x1)+1 for x1 < 0 and y = sin(2.5 ·x1)+1 for x1 ≥ 0. y is solely determined
by x1 (horizontal axis), while x2 (vertical axis) does not influence the values of y. Different colors
represent different values of y. Note that we assume environmental noises influence domains x1 < 0
with sin(1.5 ·x1) and domains x1 ≥ 0 with sin(2.5 ·x1). We sample two training areas as denoted
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Table 6: Comparison of MLP on ColoredMNIST with varying training noises, i.e., first training
environment without noise, second training environment with Poisson noise (with coefficient 0.1)
and Uniform noise ([−0.1, 0.1]), respectively. We repeat each experiment with 20 times and report
the best, worst and average accuracies (%) on the test environment with Poisson noise and Uniform
noise, respectively.

Test noise Method {0, Poisson}train {0, Uniform}train
Best Worst Mean Best Worst Mean

Poisson

ERM 49.55 10.13 26.58 49.64 9.73 20.49
IRMv1 48.79 9.41 26.19 50.04 9.95 31.69
VREx 55.49 40.60 46.17 56.62 38.80 44.77
CLOvE 50.11 10.65 29.48 49.87 9.52 32.66
Fishr 53.72 41.25 45.82 54.59 40.76 44.21
InCo 60.95 44.18 53.31 59.13 47.73 53.01

Uniform

ERM 50.33 9.77 26.12 49.66 9.47 22.10
IRMv1 49.91 9.46 26.23 49.48 9.69 29.17
VREx 57.21 40.12 46.36 58.69 38.93 45.41
CLOvE 51.80 10.33 30.18 50.12 9.70 32.47
Fishr 53.98 40.93 46.79 54.66 41.27 46.10
InCo 62.41 44.61 53.97 60.88 48.11 53.58

by the ellipsoids colored in red (Fig. 8(b)). With 5 repeats, InCo achieves the lower average loss
(0.6568) than PAIR (0.8164).

Experiments with other noises: As shown in Tab. 6, InCo also gets a better performance in Poisson
noisy and Uniform noisy environments.

F MORE RELATED WORK

Domain Generalization

Domain generalization can also be improved by model averaging (Cha et al., 2021; Arpit et al.,
2022), training a model guided by meta learning (Robey et al., 2021; Li et al., 2018a; 2019a;b; Balaji
et al., 2018), sample selection (Kahng et al., 2023), balanced mini-batch sampling (Wang et al.,
2023a), and indirection representations (Pham et al., 2023). Additionally, by training the model
on a variety of produced novel domains, data augmentation-based approaches can also increase the
generalization ability, e.g. using domain synthesis to create new domains (Zhou et al., 2020). Some
works also utilized the robust gradient direction to perturb data and obtained a new dataset to train
the model (Shankar et al., 2018; Wang et al., 2020b; 2023b). Volpi et al. (2018) and Carlucci
et al. (2019) construct a new dataset by solving the jigsaw puzzle. Lee et al. (2023) improves
domain generalization through finding a diverse set of hypotheses and choosing the best one. Kaur
et al. (2023) develops the technique of causally adaptive constraint minimization to improve domain
generalization. Huang et al. (2023) proposes HOOD method that can leverage the content and style
from each image instance to identify benign and malign (out of distribution) data. Xu et al. (2021)
develops a novel Fourier-based data augmentation strategy, which linearly interpolates between the
amplitude spectrums of two images, to improve domain generalization.

IRM

In addition, IRM is also widely studied. Choe et al. (2020) take an empirical study of IRMv1 across
various environments by examining the performance of IRMv1 in different frameworks including
text classification models and then Sonar et al. (2021) extends the IRM to the reinforcement learning
task. Mitrovic et al. (2020) proposed a self-supervised setup method to learn the optimal representa-
tion by augmenting the data to build the second domain. Sun et al. (2023) studies the generalization
issue of face anti-spoofing models through IRM. Shao et al. (2022) shows that active model adap-
tation could achieve both good performance and robustness based on the IRM principle. Wad et al.
(2022) proposes a class-wise IRM method that tackles the challenge of missing environmental an-
notation. Lin et al. (2022) introduces Bayesian inference into IRM to its performance on DNNs. Yu
et al. (2022) proposes a Lipschitz regularized IRM-related method to alleviate the influence of low
quality data at both the sample level and the domain level. Lu et al. (2021) studies IRM and obtains
generalization guarantees in the nonlinear setting.
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