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Abstract

Variational auto-encoders are powerful probabilis-
tic models in generative tasks but suffer from gen-
erating low-quality samples which are caused by
the holes in the prior. We propose the Coupled
Variational Auto-Encoder (C-VAE), which formu-
lates the VAE problem as one of Optimal Trans-
port (OT) between the prior and data distributions.
The C-VAE allows greater flexibility in priors
and natural resolution of the prior hole problem
by enforcing coupling between the prior and the
data distribution and enables flexible optimization
through the primal, dual, and semi-dual formu-
lations of entropic OT. Simulations on synthetic
and real data show that the C-VAE outperforms
alternatives including VAE, WAE, and InfoVAE
in fidelity to the data, quality of the latent repre-
sentation, and in quality of generated samples.

1. Introduction
The combination of variational Bayesian inference and deep
latent variable models resulted in one of the most pow-
erful generative models, Variational autoencoders (VAEs)
(Kingma & Welling, 2014; Rezende et al., 2014). Scaleable
inference and simple, flexible latent representations have en-
abled VAEs to make substantial progress in fields including
image and video generation (Razavi et al., 2019; Yan et al.,
2021), audio and music synthesis (Dhariwal et al., 2020;
Kim et al., 2021), molecular processes (Lim et al., 2018),
semi-supervised learning (Kingma et al., 2014; Izmailov
et al., 2020), and unsupervised representation learning (For-
tuin et al., 2018; van den Oord et al., 2017).

VAEs assume a latent prior over a generic space, and a
variational approximate posterior, which in principle allow
flexibility in modeling domains. However, for simplicity, an
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isotropic multivariate Gaussian is often employed for both
prior distribution and variational posterior. A too simplistic
prior could lead to over-regularization and a too simplis-
tic family of variational posterior distributions leaves a big
gap between true posterior and variational posterior, which
limits performance on complex data (Burda et al., 2016;
Kingma et al., 2016; Dai & Wipf, 2019). Although people
have proposed many methods to solve these problems. i.e en-
riching the variational family (Rezende & Mohamed, 2015;
Kingma et al., 2016), using a more flexible (Tomczak &
Welling, 2018; Takahashi et al., 2019; Casale et al., 2018) or
non gaussian prior (Davidson et al., 2018; Joo et al., 2019),
these approaches remain restricted to parametric distribu-
tions. A second limitation is the “prior hole problem” which
refers to the mismatch between prior and aggregate posterior
that reduces the quality of ancestral samples (Rezende &
Viola, 2018; Aneja et al., 2021). The problem arises due to
the variational approximation and density estimation, which
when imperfect allows “holes”—areas where the aggregate
posterior has low density compared to the prior—where the
decoder has not been trained but has a high probability of
being generated under the prior.

Optimal transport (OT) (Villani, 2008; Kantorovich, 1942;
Cuturi, 2013) provides a cogent solution to both the restric-
tion to parametric posterior distributions and the mismatch
between the prior and aggregate posterior distributions. Kan-
torovich OT computes optimal couplings between marginal
distributions, and entropic OT allows efficient computation.
Computational methods for solving EOT problems do not
require parametric distributions, which in principle allows
greater flexibility. Moreover, coupling the marginals—here
the prior and the empirical distribution of the data—can
resolve the prior hole problem.

We propose the Coupled VAE (C-VAE), which generalizes
previous VAEs and addresses their limitations. We derive an
EOT-based algorithm for training the decoder and encoder.
We use the dual and semi-dual OT formulation solving
for the approximate posterior in the continuous prior case
and the Sinkhorn algorithm in the discrete prior case. We
can therefore work with an enriched family of approximate
posterior distributions, and any distribution as prior without
extra cost. The prior hole problem is resolved naturally via
marginal constraints of EOT. We illustrate the flexibility in
both prior and posterior, and the resolution of the prior hole
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problem through detailed simulations.

Notation. For a metric space X , C(X ) denotes the space of
all continuous functions on X andM1

+(X ) denotes the set
of positive Radon probability measures (i.e. of unit mass)
on X . Upper cases X denote random variables that take
values on X . X ∼ α says that a random variable X follows
a distribution α ∈ M1

+(X ). Capital letters PX denote
probability distribution and p(x) to represent the probability
density function. When there is no ambiguity, we use the
same notation for distributions and their densities.

2. Background
We start by reviewing VAEs and the generalization to Info-
VAE. Then we will introduce Entropy-regularized Optimal
transport and the connection between VAEs and EOT.

2.1. Variatonal autoencoders and InfoVAE

Consider two compact metric spaces X and Z . Latent
variable generative models are usually defined in the form of
a parametric model of joint distribution that admits density
function pθ(x, z) = pθ(x|z)p(z) over observable variable
x ∈ X and latent variable z ∈ Z . p(z) is typically a simple
prior distribution such as uniform or Gaussian. pθ(x|z) is
the conditional distribution parametrized by neural networks
with parameters θ. Marginalizing out the latent variable z
results in the model distribution pθ(x) =

∫
pθ(x, z)dz =∫

pθ(x|z)p(z)dz. The goal of generative modeling is to
maximize marginal likelihood:

EpD(x)[log pθ(x)] = EpD(x)[logEp(z)[pθ(x|z)]], (1)

Where pD(x) represents data distribution. However, be-
cause of the parameterization of pθ(x|z), the log marginal
likelihood is intractable in general. VAEs maximize a surro-
gate, the evidence lower bound (ELBO) instead. We denote
it by LVAE:

EpD(x)[Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z))], (2)

where qϕ(z|x) is the variational posterior that is modeled
by deep neural networks with parameter ϕ. In the context of
Auto-encoders, pθ(x|z) and qϕ(z|x) are called decoder and
encoder respectively. The first term of equation 2 is called
the reconstruction term and the second term is called the
regularization term. The typical choice of encoder distri-
bution is Gaussian with a diagonal covariance matrix, i.e.,
qϕ(z|x) = N (z|µϕ(x),diag(σ2

ϕ(x))). The decoder distri-
bution depends on the context, e.g. Bernoulli distribution if
x is binary and the Gaussian distribution if x is continuous.

The parameters of the neural networks are obtained by op-
timizing the ELBO. For continuous latent variables, this
could be done efficiently through the re-parameterization
trick (Kingma & Welling, 2014).

InfoVAE (Zhao et al., 2019) generalizes the VAE family
of models by introducing a scaling parameter to the KL
divergence term and including a mutual information term
that encourages high mutual information between x and
z. Formally, up to an additive constant, we can derive an
equivalent expression of ELBO:

LVAE = −DKL(qϕ(z)||p(z))]
− Eqϕ(z)[DKL(qϕ(x|z)||pθ(x|z)] + const.

(3)

where constant is given by EpD(x)[log pD(x)], qϕ(z) =∫
qϕ(z|x)pD(x)dx and qϕ(x|z) = qϕ(z|x)pD(x)

qϕ(z)
. Then the

loss of InfoVAE is derived as follows:

LInfoVAE =− λDKL(qϕ(z)||p(z))
− Eqϕ(z)[DKL(qϕ(x|z)||pθ(x|z))]
+ αIq(x; z)

=EpD(x)Eqϕ(z|x)[log pθ(x|z)]
− (1− α)EpD(x)[DKL(qϕ(z|x)||p(z))] (4)
− (α+ λ− 1)DKL(qϕ(z)||p(z)).

When α = 0 and λ = 1, InfoVAE recovers simple VAE.
When α+λ−1 = 0, we have β-VAE (Higgins et al., 2017).
If α = λ = 1 and KL divergence is replaced with Jensen
Shannon divergence, and the model becomes adversarial
autoencoder (AAE) (Makhzani et al., 2016).

The final optimization problem of InfoVAE is,

min
pθ(x|z)

min
qϕ(z|x)

−LInfoVAE. (5)

Typically, optimizations over pθ(x|z) and qϕ(z|x) are done
jointly and over parameters θ and ϕ. We introduce separated
minimizations here in order to make connections in the
following sections.

Prior hole problem. The problem refers to the situation
when qϕ(z) ̸= p(z) and there exist regions that have high
density under p(z) but low, possibly zero, density under
qϕ(z). This does harm to the ancestral sampling process
of the VAEs model as the samples drawn from the prior
may not be decoded closely to the samples from the data
distribution. In other words, the holes in the prior will
generate low-quality samples. InfoVAE mitigates but does
not solve, this problem to some degree as it has an explicit
penalty term with a pre-defined weight parameter.

2.2. Entropy-regularized optimal transport

For two continuous probability measures µ ∈M1
+(X ) and

ν ∈ M1
+(Y), given a measurable function c(x, y) : X ×

Y → R which represents the ground cost of moving a
unit of mass from x to y, Kantorovich OT (Kantorovich,
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1942) seeks the optimal transport plan π(x, y) subject to
marginals µ, ν with minimum transport loss. Formally, the
Kantorovich OT is,

OT (µ, ν)
def
= min

π∈U(µ,ν)

∫
X×Y

c(x, y)dπ(x, y). (6)

where the feasible set U(µ, ν) consists of all probabil-
ity measures defined over the product space X × Y with
marginal measures µ and ν respectively.

Entropy regularized Optimal Transport (EOT) (Cuturi, 2013;
Genevay et al., 2016) includes an entropy regularization
term into the original Kantorovich OT objective:

OTε(µ, ν)
def
= min

π∈U(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

+ εDKL(π∥µ⊗ ν). (7)

where ϵ is the regularization weight and relative entropy
DKL(π∥µ⊗ ν) is defined as:

DKL(π∥µ⊗ ν)
def
=

∫
X×Y

log

(
dπ(x, y)

dµ(x)dν(y)

)
dπ(x, y).

(8)

By Fenchel-Rockafellar duality, the Kantorovich problem
with entropy regularization admits dual formulation, which
can be expressed as the maximization of an expectation:

OTε(µ, ν) = max
u∈C(X )
v∈C(Y)

∫
X
u(x)dµ(x) +

∫
Y
v(z)dν(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dµ(x)dν(y)

(9)

= max
u∈C(X )

∫
X
u(x)dµ(x) +

∫
Y
uc,ε(y)dν(y)

= max
u∈C(X )

EY∼ν [

∫
X
u(x)dµ(x) + uc,ε(Y )],

(10)

where uc,ε(y) is the c, ε -transform:

uc,ε(y)
def
= −ε log

∫
X
e

u(x)−c(x,y)
ε dµ(x). (11)

Sinkhorn’s algorithm solves discrete EOT with linear conver-
gence (Cuturi, 2013). However, EOT does not scale well to
measures supported on a large number of points and it also
assumes discrete measures. A fundamental property of the
dual problem (Equation 10) is stochastic gradient methods
are applicable as long as we can sample from the marginal

distributions (Genevay et al., 2016; Seguy et al., 2018). Dual
variables can be parameterized by neural networks in contin-
uous settings or left as a finite vector in discrete cases. This
provides a method to apply optimal transport to large-scale
machine learning tasks such as generative modeling.

The relationship between primal and dual problems allows
switching between formulations. After solving for the dual
variables, we can recover a feasible solution to the primal
problem by the first-order optimality condition,

dπ(x, y) = exp

(
u(x) + v(y)− c(x, y)

ε
− 1

)
dµ(x)dν(y).

(12)

3. C-VAE formulation
C-VAE generalizes InfoVAE via EOT, which will address
the prior hole problem and relax the Gaussian assumption
of the approximated posterior distribution.

Framework. Assume all probability measures are abso-
lutely continuous with respect to the Lebesgue measure or
counting measure. i.e., dπ(x, y) = π(x, y)dxdy. Consider
data space X and latent space Z as the underlying metric
space for EOT. Data distribution PD and the prior distribu-
tion of latent variable PZ from VAEs serve as marginals for
the joint distribution. Let cost function c(x, z) to be nega-
tive log likelihood, i.e., c(x, z) = − log pθ(x|z). Plugging
in everything above into equation 7, we get:

OTε(PD, PZ) = min
π(x,z)

∫
X×Z

− log pθ(x|z)π(x, z)dxdz

+ εDKL(π(x, z)∥p(z)pD(x)).
(13)

Decompose the joint distribution into marginal and con-
ditional distribution, i.e., π(x, z) = q(z|x)pD(x). OT re-
quires the joint distribution to satisfy the other marginal
distribution also, i.e., p(z) = q(z)

def
=

∫
q(z|x)pD(x)dx.

Relaxing this hard constraint with a KL divergence and min-
imizing the transport loss with respect to the cost function,
we get:

OTε(PD, PZ) = min
π(x,z)

∫
X×Z

− log pθ(x|z)π(x, z)dxdz

+ εDKL(π(x, z)∥p(z)pD(x))
+ ςDKL(q(z)∥p(z))

= min
q(z|x)

EpD(x)Eq(z|x)[− log pθ(x|z)]

+ εEpD(x)[DKL(q(z|x)∥p(z))]
+ ςDKL(q(z)∥p(z)), (14)

where ς > 0 is the weight for the penalty term. Let ε = 1−α
and ς = α+ λ− 1, equation 14 coincides with equation 4
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except the optimization is only about the posterior q(z|x).
With pθ(x|z) as a neural network parametrized decoder,
optimizing θ by SGD, we arrive at the final objective:

min
pθ(x|z)

min
q(z|x)

EpD(x)Eq(z|x)[− log pθ(x|z)]

+ εEpD(x)[DKL(q(z|x)∥p(z))] + ςDKL(q(z)∥p(z)).
(15)

Noting that pθ(x|z) is the likelihood function in VAEs,
which has a natural explanation as decoding cost such that
if x can be successfully decoded from z, then the cost is
small. Otherwise, the cost is large. Cost function optimiza-
tion is problematic in the usual OT setting because the cost
function can be arbitrarily small for any pair of x and z.
However, this is not the case for our model as the likelihood
is assumed to be Gaussian or Bernoulli.
Proposition 3.1. Let pθ(x|z) be selected from the family
of all parametric Gaussian distributions, i.e., pθ(x|z) =
N (x|µθ(z),diag(σ2

θ(z))). Then for any z ∈ Z , c(·, z) =
− log pθ(·|z) is a positive quadratic function with minimum∑dx
i=1 log

√
2πσ2

θ,i(z) achieved at x = µθ(z).

The proof is a direct calculation of the negative log density
function of Gaussians. It shows that given any z, there can
be only one minimum at the mean of the distribution. If
we want to make all costs equally small, then the minimum∑dx

i=1 log
√
2πσ2

θ,i(z) will go up as σ2
θ,i(z) will increase.

Similar results can be derived for Bernoulli likelihood.

EOT acts as variational inference. In VAEs, amor-
tized variational inference requires approximated posteri-
ors qϕ(z|x) to be multivariate gaussian distributions which
are modeled by neural networks with parameters ϕ. Fur-
thermore, the covariance matrices of Gaussians are often
assumed to be diagonal. Normalizing flow enriches the
distributions via composing with invertible transformations.
But it is still within a restricted family of distributions. This
limits the expressiveness of the variational distributions and
hurts the accuracy of the inference. In the OT setting, we
can solve for the approximated posterior q(z|x) or more
generally joint distribution π(z, x) using optimal transport
solvers such as the Sinkhorn algorithm in the discrete set-
ting, stochastic gradients method of Dual or Semi-dual in
the continuous setting, and unbalanced Sinkhorn for relaxed
marginals problem without assuming the form of approxi-
mate distributions.

EOT explanations of VAEs. One of the well-known draw-
backs of VAEs models is the blurry samples. People orig-
inally attributed this issue on the maximum likelihood ob-
jective that penalizes differently when pθ(x) > pD(x) and
when pθ(x) < pD(x). Zhao et al. (2017) argued that blurri-
ness is not merely because of the objective but the VAE ap-
proximation of the maximum likelihood objective, whereas

Cai et al. (2017) argued the L2 distance used in the objec-
tive caused the fuzziness in samples. We propose to explain
the fuzziness in samples through EOT. The encoder’s and
decoder’s parameter learning in VAEs correspond to the
coupling and cost function learning in EOT. The relative
entropy term forces the coupling to spread over all possible
locations, resulting in a plan π(x, z) that has a non-zero den-
sity between different xi’s and the same z. Then if we try
to optimize the cost function to further reduce the transport
cost, based on the proposition we state above, we know that
the decoder will send z to the weighted average of all xi’s.

Another common problem of VAEs is the posterior col-
lapse phenomenon, which refers to the situation when
qϕ(z|x) = p(z) for any x. One commonly accepted rea-
son is that the decoder is too flexible. It could ignore the
latent representations but achieve a good enough likelihood
estimation, i.e., pθ(x|z) = pD(x). This is also easy to ex-
plain in EOT as the cost function is no longer a function
of z. The optimal plan only depends on the relative en-
tropy term which will achieve minimum when the plan is
an independent coupling.

Matching the aggregate posterior with prior. In the fol-
lowing sections, we will assume ς = +∞ which forces
aggregated posterior to equal prior distribution (hard con-
straint). We claim this is not an unreasonable choice be-
cause maximizing VAE objective with respect to the prior
distribution is equivalent to matching the prior with ag-
gregate posterior, and if the model has learned the data
distribution, i.e. pθ(x) = pD(x) and approximated poste-
rior capture the true posterior, i.e., qϕ(z|x) = p(z|x), then
qϕ(z) =

∫
qϕ(z|x)pD(x)dx =

∫
p(z|x)pθ(x)dx should

equal to p(z).

Unlike the primal OT problem which is a constrained opti-
mization problem that is known to be difficult to solve, the
Dual and Semi-Dual formulation is unconstrained where
SGD methods apply naturally:

min
θ

max
u∈C(X )
v∈C(Z)

Ep(z)⊗pD(x)

[
u(x) + v(z)− εe

u(x)+v(z)−cθ(x,z)

ε

]
(16)

and

min
θ

max
u∈C(X )

Ep(z)
[∫

X
u(x)pD(x)dx+ ucθ,ε(z)

]
. (17)

We keep cθ(x, z) = − log pθ(x|z) for readability. Since
pD(x) ≈ 1

n

∑n
i=1 δxi

where δx is Dirac-delta function, in-
ner optimization is actually a finite-dimensional concave
maximization problem:

min
θ

max
u∈Rn

LC−VAE, (18)
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where

LC−VAE = Ep(z)

[
n∑
i=1

1

n
ui − ε log

n∑
i=1

1

n
e

ui−cθ(xi,z)

ε

]
.

With the primal-dual relationship, we can recover the opti-
mal plan:

π(xi, z) = exp

(
ui + ucθ,ε(z)− cθ(xi, z)

ε
− 1

)
p(z)pD(xi).

(19)

Substitute π with q(z|x)pD(xi), we can get the expression
of posterior :

q(z|xi) = exp

(
ui + ucθ,ε(z)− cθ(xi, z)

ε
− 1

)
p(z). (20)

Flexible choice of prior distribution. Our model can work
with any prior distribution from which we can sample. There
are no differences in training between models with different
priors. The data distribution PD is always discrete as it is
approximated by Dirac measures of samples in the training
set empirically. If we have a discrete prior over the latent
variables, i.e., categorical distribution PZ = Cat(K;p),
we will arrive at a discrete EOT problem that can be solved
by Sinkhorn algorithm efficiently.

We will arrive at semi-discrete EOT problems if we have con-
tinuous marginal over latent variables like PZ = N (z;0, I)
or PZ = Dir(z;K, α). Next, we will come up with two
different strategies for learning the latent generative models.
The main difference between these two strategies is optimiz-
ing the primal or dual formulation of EOT with respect to
the likelihood function.

3.1. Optimizing q(z|x) with dual but pθ(x|z) with
primal

Building on the foundation from the above section, we now
define the first training strategy that is established on the
primal formulation of EOT. We call this Primal Strategy
(see Algorithm 1):

1. Solve for the optimal q(z|x) in dual EOT with a fixed
log likelihood log pθ(x|z) as cost function.

2. Optimize the primal EOT objective with respect to
likelihood function pθ(x|z) using posterior q(z|x) got
from the first step.

3. Repeat these two steps until convergence or desired
number of steps.

Step one is to find the optimal plan or optimal conditional
plan given the marginals. In this step, we will use dual or
semi-dual formulation depending on the context. By primal-
dual relationship, we can get q(z|x) from dual variables.
Then, we are solving for the likelihood function which

Algorithm 1 Primal Strategy
Require: Input distributions PZ , PD; cost function or de-

coder network pθ(x|z); sample size n; learning rate λ1,
λ2; number of iterations K;
Semi-Dual: Dual variable u or uϕ if parametrized by
neural network;
Dual: Dual variables u, v or uϕ, vψ if parametrized by
neural network;

Ensure: θ, ϕ (and ψ if dual formulation)
repeat

for k = 1, 2, ...K do
Sample (zj)

n
j=1 ∼ PZ ;

Lu ← 1
n

∑n
j=1[

∑m
i=1

1
mui−

ε log
∑m
i=1

1
m exp

(
ui−cθ(xi,zj)

ε

)
]

Update u using ∂Lu

∂u and λ1 to maximize Lu;
end for
Sample (zj)

n
j=1 ∼ QZ|X ;

Lθ ← 1
m

∑m
i=1[

1
n

∑n
j=1− log pθ(xi|zj)]

Update θ using ∂Lθ

∂θ and λ2 to minimize Lθ;
until converged or reach the max number of epochs

needs to evaluate the expectation with respect to q(z|x).
This is particularly difficult as the integral does not have
a closed form. Monte Carlo estimate is also hard because
samples from a nontrivial q(z|x) are difficult. Fortunately,
the expression of q(z|x) derived above could be seen as
a weighted prior which is exactly what we need in impor-
tance sampling. The computationally expensive parts of the
weight can be cached during the optimization of the optimal
plan. Calculating importance weight will not cost much to
generate samples from the posterior.

3.2. Optimizing q(z|x) with dual and pθ(x|z) with dual

An alternative training strategy is to calculate q(z|x) by
the primal-dual relationship, it is possible to optimize dual
objective with pθ(x|z) directly (see Algorithm 2). The rela-
tionship between optimal coupling and dual variables only
holds at optimum. When we update only for a fixed num-
ber of steps instead of convergence, the coupling can be
very biased. Direct optimizing dual can improve this prob-
lem. Based on Genevay et al. (2016), we could derive the
gradients with respect to dual variable and cost function
analytically.

Proposition 3.2. When ϵ > 0, the gradient of LC−VAE

with respect to cθ is given by

(
∂LC−VAE

∂cθ

)
j

= Ep(z)

 exp
(

uj−cθ(xj ,z)
ε

)
]∑n

i=1 exp
(

ui−cθ(xi,z)
ε

)
]


Proof is trivial. For details we refer to Genevay et al. (2016)

5



Coupled Variational Autoencoder

Algorithm 2 Dual Strategy
Require: Input distributions PZ , PD; cost function or de-

coder networkpθ(x|z); sample size n; learning rate λ1,
λ2; number of iterations K;
Semi-Dual: Dual variable u or uϕ if parametrized by
neural network;
Dual: Dual variables u, v or uϕ, vψ if parametrized by
neural network;

Ensure: θ, ϕ (and ψ if dual formulation)
repeat

for k = 1, 2, ...K do
Sample (zj)

n
j=1 ∼ PZ ;

Lu ← 1
n

∑n
j=1[

∑m
i=1

1
mui−

ε log
∑m
i=1

1
m exp

(
ui−cθ(xi,zj)

ε

)
]

Update u using ∂Lu

∂u and λ1 to maximize Lu;
end for
Sample (zj)

n
j=1 ∼ PZ ;

Lθ ← 1
n

∑n
j=1[

∑m
i=1

1
mui−

ε log
∑m
i=1

1
m exp

(
ui−cθ(xi,zj)

ε

)
]

Update θ using ∂Lθ

∂θ and λ2 to minimize Lθ;
until converged or reach the max number of epochs

where gradients of dual variables are given. By the chain
rule, the decoder can be trained through back-propagation.

4. Related work
There are several examples of OT-based generative model-
ing in the past few years. The majority focus on classical op-
timal transport (Arjovsky et al., 2017; Tomczak & Welling,
2018; Patrini et al., 2018; Seguy et al., 2018; Deshpande
et al., 2018; An et al., 2020; Rout et al., 2021). WGAN
(Arjovsky et al., 2017) replaced the Jensen-Shannon diver-
gence optimized in the original GAN framework with the
Wasserstein-1 distance. Deshpande et al. (2018) proposed
to further modify the GAN by approximating Wasserstein-1
distance by sliced Wasserstein distance. People also tried
to apply OT on auto-encoder models. WAE (Tomczak &
Welling, 2018) aims to minimize the penalized Wasser-
stein distance between model distribution and target dis-
tribution. SAE (Patrini et al., 2018) replaced the MMD
or GAN penalty term in WAE with Sinkhorn divergence.
Sinkhorn generative model (Genevay et al., 2018) minimizes
the Sinkhorn divergence between data distribution and gen-
erative distribution in a mini-batch manner. LSOT (Seguy
et al., 2018), AE-OT (An et al., 2020) and OTM (Rout et al.,
2021) are computing the OT maps instead of the plans in
generative modeling. LSOT considers continuous OT with
regularization. AE-OT solves the semi-discrete OT between
a noise distribution and encoded data distribution captured
by an autoencoder. OTM is trying to find the OT maps

in observation space that is different from AE-OT which
happens in latent space.

Our methods are different from the above methods as we
compute the EOT loss between two distributions supported
on different spaces. We unify the training of the encoder
in VAEs with the EOT problem and treat the decoder as
a learnable cost function. The recast of VAE as EOT pro-
vides a new perspective of generative modeling and new
explanations for problems that occurred during training.

5. Experiments
In this section, we explore various properties of C-VAE on
a selection of synthetic and real datasets. And We also com-
pare it with other autoencoder models including VAE, VAE-
NF1, WAE2 and InfoVAE3. All of the models are trained
with the exact same architecture (if they have the same com-
ponents) across all experiments. We use Dual strategy for
C-VAE training in all experiments.

Figure 2. Mixture of 25
Gaussians in R2.

Mixture of Gaussians. We
first test our model on a two-
dimensional synthetic dataset
consisting of a mixture of 25
isotropic Gaussian distributions
laid out on a grid (Dumoulin
et al., 2016). The means are on
the grids µ ∈ {−2, 1, 0, 1, 2}
and we used a standard devi-
ation σ = 0.05. Despite be-
ing a 2D toy example, it is not
an easy task since the distribu-
tion defined there exhibits many
modes that are separated by large low-density areas. In all
experiments, we generated 300 samples from each Gaussian
and synthesize a dataset with a total of 7500 data points.
For all encoder and decoder neural networks, we used four
fully connected layers with ReLU activations with Batch
normalizations in between. All hidden layers have 256 neu-
rons and we choose the latent dimension dz = 2 to plot the
latent space. The prior is a 2D Gaussian with a mean of 0
and a standard deviation of 1, i.e., p(z) = N (0, Id). We
pick the best model based on hyperparameter searching.

Visualization. To better understand how our model per-
forms in generative tasks and latent representation learning,
we visualize the random samples from models along with
the training reconstructions. The samples are obtained by

1VAE-NF means VAE with normalizing flow. In particular, We
used 10 layers of planar flow.

2WAE has penalty parameter equaling 1 for Mixture of Gaus-
sians and 2 for MNIST.

3InfoVAE has hyperparameters α = 0, λ = 2 for Mixture of
Gaussians and α = 0, λ = 3 for MNIST.

6



Coupled Variational Autoencoder

VA
E

VA
E

-N
F

W
A

E
In

fo
VA

E
C

-V
A

E

Figure 1. Columns from left to right represent (1) random samples, (2) reconstructions, (3) latent representations, (4) samples from
aggregated posteriors and (5) posterior, respectively. Each row represents a model. Colors correspond to the classes. We can see that
C-VAE has the best sample quality (1), the prior hole problem is resolved in C-VAE (4), C-VAE and VAE-NF can have non-isotropic-
Gaussian posterior in contrast to Gaussians posteriors in others but VAE-NF is still approximately Gaussian-like (5).

generating a latent code from p(z) first and then decoding it
by pθ(x|z). We also show the latent representation learned
from the whole dataset, the aggregate posterior of the model,
and the posterior distribution for the individual data point. In
order to visualize the encoding distribution, we choose the
mean of the encoding distribution as latent representations.
Aggregated posterior is produced by ancestral sampling of
q(z|x)pD(x). Figure 1 displays the results of all models in
this experiment. We observe:

1. For the data reconstruction (column 2), all models do
well. But VAE, VAE-NF, WAE, and InfoVAE all gen-
erate samples (column 1) lying on the edges and inside
between different components of mixture Gaussians,
which implies the learned model distribution Pθ fails

to match the data distribution PD, which lives only on
the grids.

2. All models have learned well-separated representations
(column 3). Prior holes—mismatch of aggregated pos-
terior and prior—are visible for VAE, VAE-NF, WAE,
and InfoVAE (column 4). Compared with VAE, In-
foVAE has smaller holes and better random sample
quality. The difference between two models is the
explicit penalty term on the discrepancy of q(z) and
p(z), which is consistent with our hypothesis about
the importance of closing the holes inside the prior.
C-VAE outperforms InfoVAE by implicitly having an
infinite penalty on the gap. WAE ends with an almost-
deterministic encoder as the σ2

ϕ(x) ≈ 0 for all x. This
makes the holes even larger than VAE.
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3. The last column of figure 1 is the density plots of poste-
riors of a single data point. VAE, WAE, and InfoVAE
all have Gaussian posteriors by assumption. WAE’s
posterior collapsed to a point. VAE-NF shows a non-
isotropic-Gaussian posterior. It’s clear that the poste-
rior has non-zero covariance between z1 and z2. But
overall it’s still close to Gaussian with single mode.
C-VAE presents a very different posterior which has
multiple modes.

Table 1. Quantitative results on the mixture of Gaussians

MODEL HIGH DENSITY RATIO STD W/I MODES

VAE 71.5± 0.005 0.0778± 0.0004
VAE-NF 53.6± 0.006 0.0833± 0.0006
WAE 60.8± 0.006 0.0764± 0.0005
INFOVAE 86.0± 0.004 0.0673± 0.0004

C-VAE 98.5± 0.001 0.0478± 0.0003

Table 2. MMD between prior and aggregate posterior

MODEL MMD

VAE 0.0106± 0.0004
VAE-NF 0.0161± 0.0005
WAE 0.0060± 0.0002
INFOVAE 0.0045± 0.0002

C-VAE 0.0032± 0.0005

(a) VAE (b) VAE-NF

(c) WAE (d) InfoVAE (e) C-VAE

Figure 3. Samples from aggregated posterior q(z). Each color
represents a digit. C-VAE matches p(z) best among the 5 models.

Quantitative results. To measure performance quantita-
tively, we follow the metrics used in (Azadi et al., 2020). We
will assign each sample to its closest mixture component. A
sample is considered as a high-density sample if it is within
four standard deviations of its closest mixture component.
The fraction of high-density samples in all samples will be
calculated. Table 1 shows that C-VAE has attained the best

high density ratio and the standard deviation of the learned
model is 0.0478 which is closest to the ground truth of 0.05.
We reported the Maximum Mean Discrepancy (MMD) be-
tween prior and aggregate posterior for all models in Table
2. C-VAE has the smallest MMD.
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Figure 4. columns from left to right represent (1) random sam-
ples, (2) reconstructions, (3) interpolations. Each row represents
a model. The quality of random samples generated by C-VAE is
better in the sense that samples are sharper and there are fewer
samples that look like an average of digits. In the right column, we
could see the decoded images of linear interpolation in the latent
space. The C-VAE interpolation is smoother and more realistic.
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MNIST. We then run our model on a subset of MNIST
which consists of 2560 different hand-written digits images
from 10 classes. We again compare our model with VAE,
VAE-NF, WAE, and InfoVAE on similar tasks of synthetic
examples. We also examine the interpolation in the latent
space of all models. Latent dimension dz = 2. All the
autoencoder networks have the same architecture. We use
convolutional layers paired with ReLU as the building block
for the encoding/decoding networks. We choose Bernoulli
likelihood in the experiments. Models are trained through
Adam optimizer with β1 = 0.9 and β2 = 0.999.

The results are reported in figure 3 and figure 4. As ex-
pected, the quality of random samples and interpolation in
latent space depends on how accurately q(z) matches p(z).
figure 3 shows that C-VAE eliminates holes in the prior
without hurting the performance of the model. WAE cannot
match p(z) perfectly because the encoder is collapsed to a
deterministic map, which means q(z) will have support on
a finite number of z. The number is given by the number
of data in the training set. InfoVAE mitigates but does not
resolve the hole problem. Matching q(z) to p(z) better will
need a larger penalty on the discrepancy, which will trade off
against generative capacity. Interpolations, reconstructions,
and samples are in figure 4.

6. Conclusion
By recasting VAE as EOT, we introduced an EOT-based
training scheme for latent variable models, which enables
flexible posterior approximation and prior selection. Our
model resolved the prior hole problem naturally by EOT. We
verify our claims on synthetic mixture of Gaussians dataset
and MNIST.
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