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Abstract

In this study we investigated how vision foundation
models, pretrained on different domains, compete
with a specialized model for classification as a func-
tion of the size of the labeled training set of medical
images. Furthermore, we looked into the different
models’ ability to generalize to difficult cases.

Our experiments are conducted for cardiac ul-
trasound images and the downstream task of view
recognition. Still, this classification task is meant to
serve as a demonstrative example, where we think
that the findings should be transferable to other
classification tasks and other domains.

Through these experiments we found that the
foundation models were able to beat the performance
of our task-specific supervised model when labelled
training data were limited. This was true even for
models trained on natural images and when using
the simple linear probing method to create a classi-
fier. We observed that more domain-specific foun-
dation models achieved an even higher performance
with limited data. On the other hand, the more
general models showed a greater ability to general-
ize and perform well on difficult, out-of-distribution
cases. Still, for typical in-domain cases with suffi-
cient labeled data, a task-specific ResNet model was
competitive with the foundation models, while also
being both smaller and faster.

1 Introduction

The scarcity of high-quality, labeled data is a signif-
icant challenge in medical imaging, often hindering
the development of robust machine learning mod-
els. Traditional supervised learning methods, which
require large annotated datasets to achieve high per-
formance, are frequently impractical in this domain.
This limitation highlights the need for alternative
approaches that can leverage models trained on vast
amounts of data to perform well with limited spe-
cialized annotations.

Foundation models, which are trained on large,
diverse datasets in a self-supervised or unsupervised
manner, have demonstrated remarkable success in
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fields like natural language processing and computer
vision. These models learn rich, general-purpose
feature representations from their pre-training data,
allowing them to be adapted for a wide range of
downstream tasks with minimal fine-tuning. How-
ever, their effectiveness in specialized domains like
medical imaging, and specifically their ability to
generalize from natural images to complex medical
data, remains a critical area of investigation.

This study investigates the performance of pre-
trained foundation models against a specialized, su-
pervised model in the context of cardiac ultrasound
imaging. We use view recognition, a fundamental
classification task, as a demonstrative example to
assess model performance as a function of the size
of the labeled training set. While our experiments
are focused on this specific domain, we think our
findings on model performance and generalization
may be of interest also for other tasks and domains.

Our main aim in this study is to determine if
foundation models, even those pre-trained on natu-
ral images, could achieve classification performance
comparable to or superior to a specialized supervised
model when trained with limited labeled medical
data. We also aim to investigate how these general
foundation models perform against more domain-
specific ones. Finally, we want to analyze their
ability to generalize to difficult and ambiguous cases
and compare this against a specialized model trained
on the same data.

2 Related work

With the growing interest in using foundation models
for medical imaging, recent studies have investigated
their performance and other aspects in comparison
to both domain-specific foundation models and task
specific models.

Huix et al. [1] tested the performance of five gen-
eral foundation models trained on natural images on
downstream tasks for four medical image datasets
under different adaptation schemes. They found
that most models underperformed, but DINOv2 per-
formed well with minimal fine-tuning. Cekmeceli
et al. [2] have focused specifically on medical im-
age segmentation investigating whether foundation
models enhance domain generalization. In their ex-
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periments various anatomies and modalities encom-
pass the different domains, where foundation models
show a better performance across domains than a
Unet segmentation. Performance across domains is
still very far from the in-domain performance, and
for the in-domain experiments Unet competes well
with the foundation models. A study by Chao et
al. [3] is even more focused, investigating the perfor-
mance of foundation models versus domain-specific
models for left ventricular segmentation on cardiac
ultrasound. They found that a fine-tuned SAM
model outperformed EchoNet and U-Net models
and demonstrated strong generalization.

In our study we want to investigate more specif-
ically how the models perform for varying sizes of
labeled training sets and also compare different types
of models, both general and domain specific, where
all the foundation models that are investigated are
easily available for everyone. Furthermore, we want
to compare the different models’ ability to generalize
to more difficult out-of-distribution cases.

3 Methods

3.1 Pretrained foundation models

Pretrained foundation models are models that have
been trained using self-supervised learning (SSL),
a method that trains a model to perform a pretext
task — like reconstructing missing regions or aligning
different augmented views — thereby eliminating
the need for labels required in standard supervised
learning.

Several pretrained foundation models for vision ex-
ist and are available as open-source models. We have
investigated a selection of general state-of-the-art
and more specialized open-source pretrained foun-
dation models for vision. Our analysis focused on
well-established, easily accessible models on Hug-
gingFace, drawing from general-purpose, general
medical, and specialized echo-cardiac models for a
broad comparison.

We selected three well-established general mod-
els: VITMAE [4] and DINOv2 [5], which are pure
vision models trained on standard RGB images, and
CLIP [6], a multimodal text-image model trained
on captioned internet images. We also chose two
models more specialized for the medical field: Med-
Imagelnsight [7], trained on images and text from
various medical domains, and EchoCLIP [8], a model
focused on cardiac ultrasound that was trained on
pairs of cardiac ultrasound videos and reports. In
addition to being state-of-the-art and easily available
these models are also in general well-documented
and well-proven and have robust and well-designed
codebases that make them easier to implement and
adapt compared to many specialized, ad-hoc archi-
tectures. Other specialized medical models exist [9],

[10] [11], but were not selected because they were
not available on HuggingFace, were not sufficiently
general or sufficiently specific or were not directly
suitable for downstream classification tasks.

3.1.1 General-purpose models

The VITMAE (Vision Transformer Masked Au-
toencoder) model is built based on a self-supervised
learning (SSL) approach that relies on an asym-
metric encoder-decoder architecture. During pre-
training a high portion (75%) of the image patches
is randomly masked out. Then the encoder is used
to encode the unmasked patches. Next, a learnable
(shared) mask token is added at the positions of the
masked patches. The decoder takes the encoded
visual patches and mask tokens as input and recon-
structs raw pixel values for the masked positions.
By pre-training the model, it learns an inner repre-
sentation of images that can then be used to extract
features useful for downstream tasks. The model is
trained on ImageNet.

DINOv2 (self-DIstillation with NO labels) is a
self-supervised learning model that employs a self-
distillation technique. This model has been trained
on a curated dataset consisting of around 140 mil-
lion images from a publicly available repository of
crawled web data. During training, two variations
of an image are passed through two separate net-
works with identical architecture: a student (which
receives a local view) and a teacher (which sees the
whole image). Both the student and teacher are Vi-
sion Transformers (ViT) models. The teacher is the
exponential moving average of the student weights,
rather than being updated with backpropagation.
The student network is trained to mimic the output
of the teacher network.

CLIP (Contrastive Language-Image Pre-training)
is a multimodal model trained to map text-image
pairs to the same embedding space. The model
has been trained in a self-supervised way from 400
million text-image pairs publicly available on the
internet. It has two main components, a text en-
coder (which embeds the text) and an image encoder
(which embeds the images). For the text encoder a
Transformer is used. For the image encoder a few
variants have been used, where the Hugging Face
variety uses the Vision Transformer. The encoders
are trained to maximize the similarity of (image,
text) pairs via a contrastive loss. The CLIP model
has been shown to have good zero-shot capabilities
on various computer vision tasks.

3.1.2 General Medical model

MedImagelInsight is an open-source medical imag-
ing embedding model which is built on a contrastive
learning framework, similar to CLIP with both an
image and a text encoder. The image encoder uses



a Dual Attention Vision Transforme (DaViT) [12]
and is trained using Unified Contrastive Learning
(UniCL) [13]. The model is trained on around 3.8M
medical images with associated text and labels across
a diverse collection of domains, including X-Ray, CT,
MRI, dermoscopy, OCT, fundus photography, ultra-
sound, histopathology, and mammography.

3.1.3 Echocardiac model

The EchoCLIP model is built on the CLIP frame-
work, but while the original CLIP model is trained
on general image-text pairs from the Internet, this
model is trained specifically on cardiac ultrasound
data. An image encoder and a text encoder have
been trained on one million pairs of sampled im-
ages from echo videos and EHRs (electronic health
records). All the videos show the transthoracic four
chamber (4CH) view, a standard view acquired dur-
ing diagnostic echocardiography. The training has
followed the approach of the original CLIP paper
with a few minor tweaks., e.g. the image encoder is
a ConvNeXt architecture.

3.2 Task-specific supervised model
3.2.1 ResNet50

The task-specific model used for comparison with
the foundation models, is a CNN-model based on
the ResNet architecture that we trained supervised
specifically for our downstream classification task.

3.3 Overview of model characteristics

Table 1 gives an overview of the type and dimen-
sions of the different models we have studied. The
MedImagelnsight model has a very large number of
parameters compared to all the other models, while
our specialized model has the lowest number of pa-
rameters and the highest embedding dimensions.

Table 1. Overview of the models, including the em-
bedding dimension and number of parameters for their
image encoder and the size of the pretraining dataset.

‘ Model ‘ Type ‘ Emb. ‘ #Params ‘ #Pretrain ‘
ViTMAE Img 768 85.8M 1.2M
DINOv2 Img 768 86.6M 140M
CLIP Img+Txt 512 87.5M 400M
EchoCLIP Img+Txt 512 88.1M 1M
MedImagelnsight | Img+Txt 768 360M 3.8M
ResNet50 Img 2048 25.6M

3.4 Adaption to downstream tasks

Adapting foundation models to downstream tasks
typically involves fine-tuning the model’s parameters
using a smaller, task-specific dataset. The methods

for this range from keeping the underlying foun-
dation model untouched, to modifying only a few
parameters or updating the entire model.

Our investigation explores two common methods
that represent opposite ends of this spectrum: linear
probing and full fine-tuning. Linear probing is a
computationally efficient method that only modifies
a final classification layer, whereas full fine-tuning
updates all parameters for a more thorough, but
costly, adaptation.

3.4.1 Linear probing

Linear probing is a common, lightweight method
to evaluate a pretrained model on a downstream
classification task. It involves freezing all parame-
ters of the pretrained model, and training only a
linear classification on top of the frozen model. In
our case we do this by training a linear support vec-
tor machine (SVM) model on features extracted by
the pre-trained foundation models, without chang-
ing the pre-trained model. Probing the foundation
models in this way allows us to evaluate their per-
formance ”out-of-the-box” on the ultrasound data.
The approach is also computationally efficient, as it
requires only a small number of parameters to be
trained. However, its performance may be limited
if the target task is very different from the origi-
nal pre-training task, or when the features are not
linearly separable.

3.4.2 Full finetuning

Linear probing has been a common and simple way
to compare and evaluate performance, but in 2022
He et al. [4] re-introduced fine-tuning as the main
evaluation metrics. Their main arguments were that
linear-probing performances were uncorrelated with
that of fine-tuning, and that simple heads do not
evaluate the strength of the method to create strong
but non-linear features.

For our experiments we have therefore also in-
cluded finetuning, where we do full finetuning to
fully leverage the models’ capabilities. With this
approach, all of the model’s parameters are unfrozen
and updated during training on labelled data from
the target task. This method often achieves better
performance as the model may develop better fea-
ture representations for the target task during the
training. However, this method is more computa-
tionally heavy than linear probing and also requires
that suitable hyperparameters are found for the fine-
tuning, e.g. a lower learning rate than training from
scratch is usually required.



4 Experiments

The aim of the experiments has been to investigate
how the different models perform as a function of the
size of the training set as well as the different models’
ability to generalize, where this is demonstrated for
the downstream task of view recognition.

4.1 Downstream task

View recognition in cardiac ultrasound is the task
of automatically identifying the specific anatomi-
cal view of the heart from an ultrasound image or
video clip. This is a critical step in the diagnostic
workflow as the heart’s complex 3D structure is vi-
sualized through multiple 2D planes, and each view
provides unique diagnostic information. The ASE
(American society of echocardiography) [14] pub-
lished guidelines to suggest several standard views
in diagnostic TTE (transthoracic echocardiography)
that cover different probe positions and view port
poses. Having an automated solution for identify-
ing those standard views is helpful to improve the
cardiologists’ workflow efficiency, and many such
solutions based on deep neural networks exist.

In our experiments we have chosen to use this as
a downstream task to investigate and compare the
performance of different types of models for varying
amounts of training data. This task was chosen
as larger amounts of training data are more easily
available than for tasks requiring more difficult and
time-consuming annotation needed e.g. for specific
diagnoses. Furthermore, this is a case where special-
ized models generally perform well already. For that
reason, it is interesting to investigate whether and
when foundation models may still have an advantage
for example in limited data settings.

4.2 Dataset

The dataset used for our experiments consisted of
scan-converted cardiac ultrasound sequences from
10 different view classes: apical two chamber (2CH),
apical four chamber (4CH), apical five chamber
(A-5CH), apical four chamber view with focus on
the right ventricle (A-RV), apical three chamber
view (APLAX), view without the heart visible (NO-
ORGAN), parasternal short axis view (P-SAX),
parasternal long axis view (PLAX), parasternal
short axis view with aortic valve (SAX-AV) and
subcostal probe position (SUBCOSTAL).

Our main dataset came from four different hospi-
tals, where images from three of the hospitals were
reserved for training while images from the fourth
hospital were used for testing (T1). The total train-
ing set consisted of around 7000 sequences ( 700 000
frames). Each sequence covers at least one full heart
cycle with the original full time-resolution. The
number of frames per sequence varies considerably

between patients. On average, there are around
100 frames per sequence. In addition, comes four
augmented versions of each image in the full train-
ing dataset (2 images augmented with tilt and 2
images augmented with width variations). From the
original images, creating nearly 2.9 million images
for training. All the images had a size of 256x256
pixels.

The T1 test set consisted of around 1000 sequences
(5000 frames), where five frames had been selected at
intervals from one heart cycle of each sequence. This
test set represents a cross-section of examinations
typically performed in a hospital.

In addition to this test set, we also included a sec-
ond dataset (T2) from a separate external clinical
site, for which particularly difficult cases were col-
lected representing a range of abnormal anatomies,
pathologies and low image quality where correct
view categorization can be difficult. Due to this
specific selection, this set is much smaller (320 im-
ages) than T1 and not all 10 classes are included.
Similarly to T1, five frames were selected from each
of the sequences. The datasets were all prepared
and curated by clinical experts.

The classes, along with the respective sizes of their
training and test sets, are summarized in Table 2.
The class imbalance observed in this data mirrors the
typical distribution of views encountered in clinical
practice during cardiac ultrasound examinations.

Table 2. Overview of training- and testsets

Class Training set Test T1 Test T2
Img seq | img seq | img seq
2CH 318845 1033 | 600 120 20 4
4CH 706160 1433 | 880 176 95 19
A-5CH 166955 354 | 205 41 15 3
A-RV 196266 347 | 450 92 10 2
APLAX 397240 775 | 535 107 79 14
NO-ORGAN 84815 305 | 380 76 0 0
P-SAX 288171 904 | 800 160 0 0
PLAX 383551 844 | 915 183 | 105 21
SAX-AV 222246 828 | 350 70 0
SUBCOST. 107325 171 5 1 5 1
SUM 2871574 6994 | 5130 1026 | 320 64

4.3 Sampling of training subsets

The experiments have been carried out using two
different strategies for sampling from the training
data; image-based and sequence-based sampling.

Using the image-based scheme, we sample ran-
domly from all images, including augmented ver-
sions. This strategy allows for the use of a large and
diverse selection from the training set.

When working with cardiac ultrasounds, it is how-
ever more realistic to sample entire sequences rather
than individual images, since a full sequence is al-



ways available. We have therefore also performed ex-
periments where we sample entire sequences (includ-
ing augmentations) rather than just single frames.
The sequence-based sampling has, differently from
the image-based sampling, been performed in a bal-
anced way, sampling the same number of sequences
from all classes. As some classes are much smaller,
this means the total number of samples in the largest
subset sampled from sequences is much lower than
for the largest subset sampled from random images.

4.4 Implementation details

The models all take three channels (RGB) as input,
and the grayscale ultrasound images are therefore
represented by three (equal) channels. The images
are then center cropped from 256x256 to 224x224.

All models except the specialized ResNet model
were fetched from Huggingface using the initial
weights that were included there.

The models were all finetuned and trained on
a single GPU, an NVIDIA RTX 4000 Ada, where
the number of epochs was set to ensure that the
model processed at least 24 (16384) samples in
total, independent of the size of the training set (for
more details see the Appendix).

4.5 FEvaluation metrics

We used total classification accuracy as the evalua-
tion metric for prediction performance in all experi-
ments. In view recognition, no single error type is
more costly than another (unlike, for instance, in
diagnostic classification); thus, the main objective
is to minimize the total number of errors and, con-
sequently, the number of corrections the clinician
needs to do. Since the distribution of samples in
our dataset reflects the typical clinical situation —
where some views are collected more frequently than
others — we found total accuracy to be a well-suited
comparison metric. The metric then directly reflects
the model’s performance on the expected, real-world
data distribution.

4.6 Experiments with linear probing

In these experiments we have tested the performance
of the specialized ResNet model compared to that of
the five different foundation models when training
on increasing amounts of labelled data from our
downstream task of view recognition. We kept the
foundation models and their resulting embeddings
unchanged; only the Support Vector Machine (SVM)
classifier that was applied on top of them was trained
with the labeled data.

The experiments have been carried out using two
different strategies for sampling from the training
data; image-based and sequence-based sampling. For

the experiments on linear probing with sequence-
based sampling we created multiple datasets with
the same size, but with different random seeds, to
get an impression of the variation due to sampling
differences. For the other more computationally
heavy experiments, only one seed point was used
creating one sampled training set.

The results from the experiments are shown in
Figure 1 and Figure 2. The X-axes, showing the
amount of labelled training data, are for all plots
shown on a logarithmic scale to better visualize the
performance with low numbers of training samples.
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Figure 1. Results of linear probing with image-based
random sampling. (Note: logscale on x-axis).
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Figure 2. Results of linear probing with sequence-
based balanced sampling. The shaded area represents
the 95% confidence interval for the mean at each x-value,
calculated from 20 different random seeds (Note: logscale
on x-axis)

What we see from these experiments is that using
frozen foundation models with a simple SVM classi-
fier can achieve a reasonable performance even with
minimal labeled training data. In these scenarios
with limited labelled training sets, the foundation



models significantly outperform a specialized ResNet
model. However, while the foundation models out-
perform the ResNet model with limited data, the
ResNet model closes the performance gap and sur-
passes them as the labeled training set becomes
larger. We see that the more specialized models,
MedImagelnsight and EchoCLIP, perform better
than the general models. Notably, MedImagelnsight
performs slightly better than EchoCLIP in the linear
probing scheme. This is likely because MedImageln-
sight is a larger model with a larger embedding
dimension, allowing it to encode more diversity.
For the sequence-based sampling the X-axis gives
the number of sequences that were sampled per class.
All frames for each sequence, including augmenta-
tions were then used, which approximates around
300 images per sequence. Hence, the X-axis here
corresponds to a range of about 3000 to 400.000
images. Comparing the results from the sequence-
based sampling with that of the image-based, we
see that the performance relative to the number of
images is much higher for the image-based sampling.
This shows that the models benefit more from a
diverse training set than a large training set.

4.7 Experiments with full finetuning

The same experiments as for linear probing were
carried out with models where full finetuning was
used instead, but comparing the same selection of
models, the same sampling schemes and the same
amounts of training data. The results are shown in
Figure 3 and Figure 4 for image-based and sequence-
based sampling respectively. Again, the amounts of
training data are shown on a logarithmic scale.

We see from these experiments that with this full
finetuning of the foundation models, high perfor-
mance is reached already for very low amounts of
labelled training data. Again, we see that the more
specialized foundation models perform slightly bet-
ter than the general models. In contrast to what we
observed for the linear probing, we observe that the
foundation model specialized on cardiac ultrasound,
EchoCLIP, here perform slightly better than the
large medical model, MedImageInsight.

Using finetuning rather than linear probing is
somewhat more demanding in terms of both the
work and training time required. The reward is that
higher performance is achieved for lower amounts of
labelled training data.

4.8 Comparing maximum perfor-
mance

In the following experiments we have compared the
maximum performance of a selected group of mod-
els after they were supervisedly fine-tuned on the
entire training set of approximately 2.9 million sam-
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Figure 3. Results of full finetuning with image based
random sampling. (Note: logscale on x-axis)
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Figure 4. Results of full finetuning with sequence-based
balanced sampling. (Note: logscale on x-axis)

ples (including augmentations). We performed these
comparisons on both the large test set (T1) used
in the previous experiments and the smaller, more
challenging test set (T2).

We selected four models, each representing a dif-
ferent level of specialization for cardiac ultrasound
view recognition: DINOv2 as a general model, Med-
Imagelnsight as a general medical model, EchoCLIP
as a cardiac ultrasound model, and the ResNet50
model specifically trained for this task. Table 3
presents the results of this comparison, reporting
accuracies at both the image and sequence levels.
For sequence-level accuracy, we used a majority vote
over the five frames that represent each sequence.

From the T1 results we see that all models
achieved very high accuracy, with the foundation
models performing marginally better than the task-
specific model. The performance of the foundation
models also slightly increased with greater special-
ization toward the specific domain. The results for
the set of difficult cases (T2) are given in the two



rightmost columns of Table 3, and here we see a
quite different situation. For these data the most
specialized foundation model, EchoCLIP, actually
has the lowest performance of all the foundation
models, and performs even slightly worse than the
task-specific model when evaluated at sequence level.
Furthermore, the large MedImagelnsight model for
medical images, shows a significantly lower perfor-
mance than the general DINOv2 model.

For the T2 test set, we also observe a significant
increase in performance when using all five images
from a sequence compared to single images. This is
a reasonable finding, as these cases represent people
with very specific conditions where a sequence can
provide valuable contextual information that a single
image may not convey.

Table 3. Results for models trained on the entire
dataset, for both our testset of typical cases (T1) and
our testset of difficult cases (T2).

Models T1 accuracy | T2 accuracy

img seq img seq
DINOv2 98.4% 99.1% | 85.6% 92.2%
MedImagelnsight | 99.1% 99.7% | 78.1% 84.4%
EchoCLIP 99.3% 99.9% | 71.3% 75.0%
ResNet50 98.4% 98.9% | 70.6% 76.6%

Choosing the right model may not always be only
about performance in terms of accuracy. We have
therefore also compared the characteristics of these
models in terms of both size and computational
requirements in relation to accuracy. Figure 5 il-
lustrates this for both T1 (typical cases) and T2
(abnormal cases). The ResNet model is the smallest
and fastest and for the typical cases (T1) the perfor-
mance is also on level with the larger models. For
the abnormal out-of-distribution cases we see that
the DINOv2 model gives the best accuracy as well
as providing the best trade-off when taking speed
and size into account.

5 Discussion

A major finding through our experiments is that
foundation models significantly outperform the spe-
cialized ResNet model when trained with very lim-
ited labeled data. This demonstrates the power of
transfer learning from large-scale pretraining, which
provides a strong starting point. Even with a sim-
ple linear classifier (SVM) and frozen foundation
model, the models achieve reasonable performance
with very few samples, highlighting that the learned
features from pretraining can be highly effective.
For linear probing, the more specialized models
perform better than the general ones. However,
the larger MedImagelnsight model performs slightly
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Figure 5. Inference time and model size (in terms of
the number of parameters) vs accuracy for experiments
on the two test sets with typical images (T1, top) and
abnormal (T2, bottom).

better than EchoCLIP. This is likely due to its larger
size and embedding dimension, which enables it to
capture more diverse features.

This trend shifts with full fine-tuning where the
most specialized model, EchoCLIP, which is specifi-
cally trained on cardiac ultrasound, is slightly better
than the general medical model, MedImageInsight.
This suggests that when models are allowed to up-
date all their parameters, the domain-specific pre-
training becomes a more significant advantage. In
general, we see that the full finetuning, as expected,
yields higher performance than linear probing, par-
ticularly with lower amounts of labeled data. The
trade-off here is that the full fine-tuning is more
time-consuming and computationally demanding.

The results on the T1 test set with models fully
finetuned on the entire training set, show that re-
gardless of the model choice, if sufficient training
data is available, all the models including the task
specific ResNet can reach a very high accuracy of
near or above 99%. The most domain-specific foun-
dation model, EchoCLIP, gives a marginally higher
accuracy than the others.

In contrast, on the T2 test set with unusual,
difficult cases not well represented in the training
dataset, we see a more unexpected result where the
general foundation model, DINOv2, performs sig-
nificantly better than the domain-specific models
EchoCLIP and MedImagelnsight. This is an interest-
ing finding, which suggests that models pretrained
on a broad range of natural images may have a bet-
ter ability to generalize and handle ambiguous or
difficult-to-classify cases. This could be because the



diversity of features learned from a massive, varied References

dataset helps prevent overfitting.

This result suggests that selecting a domain-
specific foundation model is not always beneficial.
When presented with atypical or out-of-distribution
medical images, generalist models such as DINOv2
may be more robust. This also shows the importance
of using diverse evaluation sets, where systematic
evaluation also on challenging, out-of-distribution
test sets can be key to assessing the models’ relia-
bility in real-world clinical scenarios. It should be
noted that in our experiments further optimizing
the hyperparameters when finetuning the founda-
tion models or changing the dataset sampling could
influence the accuracy levels. Hence, the reported
results should be viewed as overall trends.

6 Conclusion

We have compared the performance of several foun-
dation models against a specialized ResNet model.
Our results show that foundation models achieve su-
perior performance when limited amounts of labeled
training data are available, a common challenge in
medical imaging.

The highest performance for the foundation mod-
els is achieved when they are fully finetuned to the
downstream task, but this comes at a computational
cost. Still, we have shown that these models can
be fine-tuned and run on relatively limited GPU
hardware. Hence, high performance in specialized
tasks is achievable without the need for extensive
computational resources.

Generally, the more domain-specific foundation
models have shown better performance than the
general models in our experiments. However, we
observed an important exception to this for more
difficult out-of-distribution cases, where the more
general model had a greater ability to generalize and
perform well.

In conclusion the choice of a foundation model
should be guided by the specific application’s needs.
For scenarios with limited labeled data and a fo-
cus on standard, in-distribution cases, a fine-tuned
domain-specific model can be the best choice. Still,
if enough labelled training data are available a task-
specific model competes well in terms of accuracy,
while being both faster and smaller. However, for
applications requiring a model to contend with a
variety of difficult or out-of-distribution cases, a
generalist foundation model may be more reliable.
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Appendix

This section gives some more details on the models
and the parameters used for training.

Linear Probing

For linear probing, we used the default parameters
for sci-kit learn’s Linear Support Vector Machine
functions (LinearSVC): L2 norm for penalization
and squared Hinge loss.

Full Finetuning

All model weights, except the specialized ResNet
model, were downloaded from HuggingFace
(https://huggingface.co/). We used largely the de-
fault parameters in the ” Trainer” class from Hug-

gingFace’s transformers library to run the train-
ing for all the foundation models, including the
default optimizer AdamW. The learning rates for
each model are included in Table 4.

Table 4. Overview of models, source (under
https://huggingface.co/) and learning rates

‘ Model ‘ Source ‘ L-rate ‘
DINOv2 facebook /dinov2-base-imagenet 1k-1-layer | 5.0 - 1076
ViTMAE facebook /vit-mae-base 2.0-1074
CLIP openai/clip-vit-base-patch16 1.0-107°
EchoClip mkaichristensen/echo-clip 5.0-107°
MedIm.Ins. | lion-ai/MedImagelnsights 5.0-107¢

No pre-processing or specific adaptations to
echocardiography was performed apart from the
center-cropping, repeating the single channel if a
model demanded a three-channel input and using
the same normalization as in the original model
pre-training. ViTMAE, DINOv2 and MedImageln-
sights normalize the input using ImageNet’s means
and standard deviations. CLIP and EchoCLIP nor-
malize the input using WebImageText’s means and
standard deviations. For all models these are the
means and standard deviations that accompany the
models upon download from HuggingFace. Augmen-
tations consisted of slight angle tilts and resampling
of widths.

We adjusted the number of epochs based on the
dataset size to ensure that the models processed
at least 2% (16384) samples. Table 5. shows the
number of epochs used for each dataset derived
using the image-based sampling scheme, and table
6. shows the number of epochs used for the datasets
derived using the sequence-based sampling scheme.

Table 5. Overview of the number of epochs used when
finetuning on the datasets derived using the image-based
sampling scheme, where the number of epochs is reduced
with higher numbers of images. For 16384 images and
upwards only one epoch is used.

| #images | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 — |
| #epochs | 64 | 32| 16 | 8| 4 | 2| 1|

Table 6. Overview of the number of epochs used when
finetuning on the datasets derived using the sequence-
based sampling scheme, along with the number of se-
quences and the number of images in the datasets.

| #seqperclass | 1| 2|4 |8]16 3264|128 |
[sf3f2f1] s t] 1] 1]

‘ #epochs
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