
NLDL
#26

NLDL
#26

NLDL 2026 Full Paper Submission #26. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Comparing Foundation Models for Medical Images:
A Study on Limited Data and Generalization

Anonymous Full Paper
Submission 26

Abstract001

In this study we have investigated how vision foun-002

dation models, pretrained on different domains, com-003

pete with a specialized model for classification as004

a function of the size of the labeled training set of005

medical images. Furthermore, we have looked into006

the different models’ ability to generalize to difficult007

cases.008

Our experiments are conducted for cardiac ul-009

trasound images and the downstream task of view010

recognition. Still, this classification task is meant to011

serve as a demonstrative example, where we think012

that the findings should be transferable to other013

classification tasks and other domains.014

Through these experiments we found that the015

foundation models were able to beat the performance016

of our task-specific supervised model when labelled017

training data were limited. This was true even for018

models trained on natural images and when using019

the simple linear probing method to create a classi-020

fier. We observed that more domain-specific foun-021

dation models achieved an even higher performance022

with limited data. On the other hand, the more023

general models showed a greater ability to general-024

ize and perform well on difficult, out-of-distribution025

cases. Still, for typical in-domain cases with suffi-026

cient labeled data, a task-specific ResNet model was027

competitive with the foundation models, while also028

being both smaller and faster.029

1 Introduction030

The scarcity of high-quality, labeled data is a signif-031

icant challenge in medical imaging, often hindering032

the development of robust machine learning mod-033

els. Traditional supervised learning methods, which034

require large annotated datasets to achieve high per-035

formance, are frequently impractical in this domain.036

This limitation highlights the need for alternative037

approaches that can leverage models trained on vast038

amounts of data to perform well with limited spe-039

cialized annotations.040

Foundation models, which are trained on large,041

diverse datasets in a self-supervised or unsupervised042

manner, have demonstrated remarkable success in043

fields like natural language processing and computer044

vision. These models learn rich, general-purpose045

feature representations from their pre-training data,046

allowing them to be adapted for a wide range of 047

downstream tasks with minimal fine-tuning. How- 048

ever, their effectiveness in specialized domains like 049

medical imaging, and specifically their ability to 050

generalize from natural images to complex medical 051

data, remains a critical area of investigation. 052

This study investigates the performance of pre- 053

trained foundation models against a specialized, su- 054

pervised model in the context of cardiac ultrasound 055

imaging. We use view recognition, a fundamental 056

classification task, as a demonstrative example to 057

assess model performance as a function of the size 058

of the labeled training set. While our experiments 059

are focused on this specific domain, we think our 060

findings on model performance and generalization 061

are transferable to other tasks and domains. 062

Our main aim in this study is to determine if 063

foundation models, even those pre-trained on natu- 064

ral images, could achieve classification performance 065

comparable to or superior to a specialized supervised 066

model when trained with limited labeled medical 067

data. We also aim to investigate how these general 068

foundation models perform against more domain- 069

specific ones. Finally, we want to analyze their 070

ability to generalize to difficult and ambiguous cases 071

and compare this against a specialized model trained 072

on the same data. 073

2 Related work 074

With the growing interest in using foundation models 075

for medical imaging, recent studies have investigated 076

their performance and other aspects in comparison 077

to both domain-specific foundation models and task 078

specific models. 079

Huix et al [1] tested the performance of five gen- 080

eral foundation models trained on natural images on 081

downstream tasks for four medical image datasets 082

under different adaptation schemes. They found 083

that most models underperformed, but DINOv2 per- 084

formed well with minimal fine-tuning. Cekmeceli 085

et al [2] have focused specifically on medical im- 086

age segmentation investigating whether foundation 087

models enhance domain generalization. In their ex- 088

periments various anatomies and modalities encom- 089

pass the different domains, where foundation models 090

show a better performance across domains than a 091

Unet segmentation. Performance across domains is 092

still very far from the in-domain performance, and 093
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for the in-domain experiments Unet competes well094

with the foundation models. A study by Chao et095

al [3] is even more focused, investigating the perfor-096

mance of foundation models versus domain-specific097

models for left ventricular segmentation on cardiac098

ultrasound. They found that a fine-tuned SAM099

model outperformed EchoNet and U-Net models100

and demonstrated strong generalization.101

In our study we want to investigate more specif-102

ically how the models perform for varying sizes of103

labeled training sets and also compare different types104

of models, both general and domain specific, where105

all the foundation models that are investigated are106

easily available for everyone. Furthermore, we want107

to compare the different models’ ability to generalize108

to more difficult out-of-distribution cases.109

3 Methods110

3.1 Pretrained foundation models111

Pretrained foundation models are models that have112

been trained using self-supervised learning (SSL),113

a method that trains a model to perform a pretext114

task – like reconstructing missing regions or aligning115

different augmented views – thereby eliminating116

the need for labels required in standard supervised117

learning.118

Several pretrained foundation models for vision119

exist and are available as open-source models. We120

have investigated a selection of general state-of-121

the-art foundation models in addition to a selec-122

tion of more specialized models. Our selection was123

made to get a comprehensive comparison across well-124

established, open-source foundation models, includ-125

ing both general-purpose and medically specialized126

models.127

We selected three well-established general mod-128

els: ViTMAE [4] and DINOv2 [5], which are pure129

vision models trained on standard RGB images, and130

CLIP [6], a multimodal text-image model trained131

on captioned internet images. We also chose two132

models more specialized for the medical field: Med-133

ImageInsight [7], trained on images and text from134

various medical domains, and EchoCLIP [8], a model135

focused on cardiac ultrasound that was trained on136

pairs of cardiac ultrasound videos and reports. In137

addition to being state-of-the-art and easily available138

these models are also in general well-documented139

and well-proven and have robust and well-designed140

codebases that make them easier to implement and141

adapt compared to many specialized, ad-hoc archi-142

tectures.143

3.1.1 ViTMAE144

The ViTMAE (Vision Transformer Masked Autoen-145

coder) model is built based on a self-supervised learn-146

ing (SSL) approach that relies on an asymmetric 147

encoder-decoder architecture. During pre-training 148

a high portion (75%) of the image patches is ran- 149

domly masked out. Then the encoder is used to 150

encode the unmasked patches. Next, a learnable 151

(shared) mask token is added at the positions of the 152

masked patches. The decoder takes the encoded 153

visual patches and mask tokens as input and recon- 154

structs raw pixel values for the masked positions. 155

By pre-training the model, it learns an inner repre- 156

sentation of images that can then be used to extract 157

features useful for downstream tasks. The model is 158

trained on ImageNet. 159

3.1.2 DINOv2 160

DINOv2 (self-DIstillation with NO labels) is a 161

self-supervised learning model that employs a self- 162

distillation technique. This model has been trained 163

on a curated dataset consisting of around 140 mil- 164

lion images from a publicly available repository of 165

crawled web data. During training, two variations 166

of an image are passed through two separate net- 167

works with identical architecture: a student (which 168

receives a local view) and a teacher (which sees the 169

whole image). Both the student and teacher are Vi- 170

sion Transformers (ViT) models. The teacher is the 171

exponential moving average of the student weights, 172

rather than being updated with backpropagation. 173

The student network is trained to mimic the output 174

of the teacher network. 175

3.1.3 CLIP 176

CLIP (Contrastive Language-Image Pre-training) 177

is a multimodal model trained to map text-image 178

pairs to the same embedding space. The model 179

has been trained in a self-supervised way from 400 180

million text-image pairs publicly available on the 181

internet. It has two main components, a text en- 182

coder (which embeds the text) and an image encoder 183

(which embeds the images). For the text encoder a 184

Transformer is used. For the image encoder a few 185

variants have been used, where the Hugging Face 186

variety uses the Vision Transformer. The encoders 187

are trained to maximize the similarity of (image, 188

text) pairs via a contrastive loss. The CLIP model 189

has been shown to have good zero-shot capabilities 190

on various computer vision tasks. 191

3.1.4 EchoCLIP 192

The EchoCLIP model is built on the CLIP frame- 193

work, but while the original CLIP model is trained 194

on general image-text pairs from the Internet, this 195

model is trained specifically on cardiac ultrasound 196

data. An image encoder and a text encoder have 197

been trained on one million pairs of sampled im- 198

ages from echo videos and EHRs (electronic health 199
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records). All the videos show the transthoracic four200

chamber (4CH) view, a standard view acquired dur-201

ing diagnostic echocardiography. The training has202

followed the approach of the original CLIP paper203

with a few minor tweaks., e.g. the image encoder is204

a ConvNeXt architecture.205

3.1.5 MedImageInsight206

MedImageInsight is an open-source medical imaging207

embedding model which is built on a contrastive208

learning framework, similar to CLIP with both an209

image and a text encoder. The image encoder uses210

a Dynamic Vision Transformer (DaViT) [9] and is211

trained using Unified Contrastive Learning (UniCL)212

[10]. The model is trained on around 3.8M medi-213

cal images with associated text and labels across214

a diverse collection of domains, including X-Ray,215

CT, MRI, dermoscopy, OCT, fundus photography,216

ultrasound, histopathology, and mammography.217

3.2 Task-specific supervised model218

3.2.1 ResNet50219

The task-specific model used for comparison with220

the foundation models, is a CNN-model based on221

the ResNet architecture that we trained supervised222

specifically for our downstream classification task.223

3.3 Overview of model characteristics224

Table 1 gives an overview of the type and dimen-225

sions of the different models we have studied. The226

MedImageInsight model has a very large number of227

parameters compared to all the other models, while228

our specialized model has the lowest number of pa-229

rameters and the highest embedding dimensions.230

Table 1. Overview of the models, including the em-
bedding dimension and number of parameters for their
image encoder and the size of the pretraining dataset.

Model Type Emb. #Params #Pretrain

ViTMAE Img 768 85.8M 1.2M
DINOv2 Img 768 86.6M 140M
CLIP Img+Txt 512 87.5M 400M
EchoCLIP Img+Txt 512 88.1M 1M
MedImageInsight Img+Txt 768 360M 3.8M
ResNet50 Img 2048 25.6M

3.4 Adaption to downstream tasks231

Adapting foundation models to downstream tasks232

typically involves fine-tuning the model’s parameters233

using a smaller, task-specific dataset. The methods234

for this range from keeping the underlying foun-235

dation model untouched, to modifying only a few236

parameters or updating the entire model.237

Our investigation explores two common methods 238

that represent opposite ends of this spectrum: linear 239

probing and full fine-tuning. Linear probing is a 240

computationally efficient method that only modifies 241

a final classification layer, whereas full fine-tuning 242

updates all parameters for a more thorough, but 243

costly, adaptation. 244

3.4.1 Linear probing 245

Linear probing is a common, lightweight method to 246

evaluate a pretrained model on a downstream clas- 247

sification task. It involves freezing all parameters 248

of the pretrained model, and training only a linear 249

classification layer on top of the frozen model. In 250

our case we do this by training a linear support vec- 251

tor machine (SVM) model on features extracted by 252

the pre-trained foundation models, without chang- 253

ing the pre-trained model. Probing the foundation 254

models in this way allows us to evaluate their per- 255

formance ”out-of-the-box” on the ultrasound data. 256

The approach is also computationally efficient, as it 257

requires only a small number of parameters to be 258

trained. However, its performance may be limited 259

if the target task is very different from the origi- 260

nal pre-training task, or when the features are not 261

linearly separable. 262

3.4.2 Full finetuning 263

Linear probing has been a common and simple way 264

to compare and evaluate performance, but in 2022 265

He et al [4] re-introduced fine-tuning as the main 266

evaluation metrics. Their main arguments were that 267

linear-probing performances were uncorrelated with 268

that of fine-tuning, and that simple heads do not 269

evaluate the strength of the method to create strong 270

but non-linear features. 271

For our experiments we have therefore also in- 272

cluded finetuning, where we do full finetuning to 273

fully leverage the models’ capabilities. With this 274

approach, all of the model’s parameters are unfrozen 275

and updated during training on labelled data from 276

the target task. This method often achieves better 277

performance as the model may develop better fea- 278

ture representations for the target task during the 279

training. However, this method is more computa- 280

tionally heavy than linear probing and also requires 281

that suitable hyperparameters are found for the fine- 282

tuning, e.g. a lower learning rate than training from 283

scratch is usually required. 284

4 Experiments 285

The aim of the experiments has been to investigate 286

how the different models perform as a function of the 287

size of the training set as well as the different models’ 288
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ability to generalize, where this is demonstrated for289

the downstream task of view recognition.290

4.1 Downstream task291

View recognition in cardiac ultrasound is the task292

of automatically identifying the specific anatomi-293

cal view of the heart from an ultrasound image or294

video clip. This is a critical step in the diagnostic295

workflow as the heart’s complex 3D structure is vi-296

sualized through multiple 2D planes, and each view297

provides unique diagnostic information. The ASE298

(American society of echocardiography) [11] pub-299

lished guidelines to suggest several standard views300

in diagnostic TTE (transthoracic echocardiography)301

that cover different probe positions and view port302

poses. Having an automated solution for identify-303

ing those standard views is helpful to improve the304

cardiologists’ workflow efficiency, and many such305

solutions based on deep neural networks exist.306

In our experiments we have chosen to use this as307

a downstream task to investigate and compare the308

performance of different types of models for varying309

amounts of training data. This task was chosen310

as larger amounts of training data are more easily311

available than for tasks requiring more difficult and312

time-consuming annotation needed e.g. for specific313

diagnoses. Furthermore, this is a case where special-314

ized models generally perform well already. For that315

reason, it is interesting to investigate whether and316

when foundation models may still have an advantage317

for example in limited data settings.318

4.2 Dataset319

The dataset used for our experiments consisted of320

scan-converted cardiac ultrasound sequences from321

the following 10 different view classes: apical two322

chamber (2CH), apical four chamber (4CH), apical323

five chamber (A-5CH) , apical four chamber view324

with focus on the right ventricle (A-RV), apical325

three chamber view (APLAX), view without the326

heart visible (NO-ORGAN), parasternal short axis327

view (P-SAX), parasternal long axis View (PLAX),328

parasternal short axis view with aortic valve (SAX-329

AV) and subcostal probe position (SUBCOSTAL).330

Our main dataset came from four different hospi-331

tals, where images from three of the hospitals were332

reserved for training while images from the fourth333

hospital were used for testing (T1). The total train-334

ing set consisted of around 7000 sequences ( 700 000335

frames). From the original images, sector width and336

tilt augmentations were applied to create nearly 2.9337

million images for training. The number of frames338

per sequence varied between the different sequences339

in the training set. All the images had a size of340

256x256 pixels.341

The T1 test set consisted of around 1000 sequences342

( 5000 frames), where five frames had been selected at343

intervals from one heart cycle of each sequence. This 344

test set represents a cross-section of examinations 345

typically performed in a hospital. 346

In addition to this test set, we also included a sec- 347

ond dataset (T2) from a separate external clinical 348

site, for which particularly difficult cases were col- 349

lected representing a range of abnormal pathologies 350

where correct view categorization can be difficult. 351

Due to this specific selection, this set is much smaller 352

(320 images) than T1 and not all 10 classes are in- 353

cluded. Similarly to T1, five frames were selected 354

from each of the sequences. The datasets were all 355

prepared and curated by clinical experts. 356

The classes, along with the respective sizes of their 357

training and test sets, are summarized in Table 2. 358

The class imbalance observed in this data mirrors the 359

typical distribution of views encountered in clinical 360

practice during cardiac ultrasound examinations. 361

Table 2. Overview of training- and testsets

Class Training set Test T1 Test T2
Img seq img seq img seq

2CH 318845 1033 600 120 20 4
4CH 706160 1433 880 176 95 19
A-5CH 166955 354 205 41 15 3
A-RV 196266 347 450 92 10 2
APLAX 397240 775 535 107 79 14
NO-ORGAN 84815 305 380 76 0 0
P-SAX 288171 904 800 160 0 0
PLAX 383551 844 915 183 105 21
SAX-AV 222246 828 350 70 0 0
SUBCOST. 107325 171 5 1 5 1
SUM 2871574 6994 5130 1026 320 64

4.3 Sampling of training subsets 362

The experiments have been carried out using two 363

different strategies for sampling from the training 364

data; image-based and sequence-based sampling. 365

Using the image-based scheme, we sample ran- 366

domly from all images, including augmented ver- 367

sions. This strategy allows for the use of a large and 368

diverse selection from the training set. 369

When working with cardiac ultrasounds, it is how- 370

ever more realistic to sample entire sequences rather 371

than individual images, since a full sequence is al- 372

ways available. We have therefore also performed ex- 373

periments where we sample entire sequences (includ- 374

ing augmentations) rather than just single frames. 375

The sequence-based sampling has, differently from 376

the image-based sampling, been performed in a bal- 377

anced way, sampling the same number of sequences 378

from all classes. As some classes are much smaller, 379

this means that the total number of samples in the 380

largest subset sampled from sequences is much lower 381

than for the largest subset sampled from random 382

images. 383
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4.4 Implementation details384

The models all take three channels (RGB) as input,385

and the grayscale ultrasound images are therefore386

represented by three (equal) channels. The images387

are then center cropped from 256x256 to 224x224.388

All models except the specialized ResNet model389

were fetched from Huggingface using the initial390

weights that were included there.391

The models were all finetuned and trained on392

a single GPU, an NVIDIA RTX 4000 Ada, where393

the number of epochs was set to ensure that the394

model processed at least 214 (16384) samples in395

total, independent of the size of the training set.396

4.5 Evaluation metrics397

As evaluation metric for the prediction performance,398

we have in all experiments used total accuracy. We399

have chosen to use this metric as it directly reflects400

the model’s performance on the actual, real-world401

data distribution.402

4.6 Experiments with linear probing403

In these experiments we have tested the performance404

of the specialized ResNet model compared to that of405

the five different foundation models when training406

on increasing amounts of labelled data from our407

downstream task of view recognition. We kept the408

foundation models and their resulting embeddings409

unchanged; only the Support Vector Machine (SVM)410

classifier that was applied on top of them was trained411

with the labeled data.412

The experiments have been carried out using two413

different strategies for sampling from the training414

data; image-based and sequence-based sampling. For415

the experiments on linear probing with sequence-416

based sampling we created multiple datasets with417

the same size, but with different random seeds, to418

get an impression of the variation due to sampling419

differences. For the other more computationally420

heavy experiments, only one seed point was used421

creating one sampled training set.422

The results from the experiments are shown in423

Figure 1 and Figure 2 . The X-axes, showing the424

amount of labelled training data, are for all plots425

shown on a logarithmic scale to better visualize the426

performance with low numbers of training samples.427

What we see from these experiments is that using428

frozen foundation models with a simple SVM classi-429

fier can achieve a reasonable performance even with430

minimal labeled training data. In these scenarios431

with limited labelled training sets, the foundation432

models significantly outperform a specialized ResNet433

model. However, while the foundation models out-434

perform the ResNet model with limited data, the435

ResNet model closes the performance gap and sur-436

passes them as the labeled training set becomes437

Figure 1. Results of linear probing with image-based
random sampling. (Note: logscale on x-axis).

Figure 2. Results of linear probing with sequence-
based balanced sampling. The shaded area represents
the 95% confidence interval for the mean at each x-value,
calculated from 20 different random seeds (Note: logscale
on x-axis)

larger. We see that the more specialized models, 438

MedImageInsight and EchoCLIP, perform better 439

than the general models. Notably, MedImageIn- 440

sight performs slightly better than EchoCLIP in the 441

linear probing scheme. This is likely because Med- 442

ImageInsight is a larger model that also has a larger 443

embedding dimension, allowing it to encode more 444

diversity. 445

For the sequence-based sampling the X-axis gives 446

the number of sequences that were sampled per class. 447

All frames for each sequence, including augmenta- 448

tions were then used, which approximates around 449

300 images per sequence. Hence, the X-axis here 450

corresponds to a range of about 3000 to 400.000 451

images. Comparing the results from the sequence- 452

based sampling with that of the image-based, we 453

see that the performance relative to the number of 454

images is much higher for the image-based sampling. 455
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This shows that the models benefit more from a456

diverse training set than a large training set.457

4.7 Experiments with full finetuning458

The same experiments as for linear probing were459

carried out with models where full finetuning was460

used instead, but comparing the same selection of461

models, the same sampling schemes and the same462

amounts of training data. The results are shown in463

Figure 3 and Figure 4 for image-based and sequence-464

based sampling respectively. Again, the amounts of465

training data are shown on a logarithmic scale.466

We see from these experiments that with this full467

finetuning of the foundation models, high perfor-468

mance is reached already for very low amounts of469

labelled training data. Again, we see that the more470

specialized foundation models perform slightly bet-471

ter than the general models. In contrast to what we472

observed for the linear probing, we observe that the473

foundation model specialized on cardiac ultrasound,474

EchoCLIP, here perform slightly better than the475

large medical model, MedImageInsight.476

Using finetuning rather than linear probing is477

somewhat more demanding in terms of both the478

work and training time required. The reward is that479

higher performance is achieved for lower amounts of480

labelled training data.481

Figure 3. Results of full finetuning with image based
random sampling. (Note: logscale on x-axis)

4.8 Comparing maximum perfor-482

mance483

In the following experiments we have compared the484

maximum performance of a selected group of mod-485

els after they were supervisedly fine-tuned on the486

entire training set of approximately 2.9 million sam-487

ples (including augmentations). We performed these488

comparisons on both the large test set (T1) used489

in the previous experiments and the smaller, more490

challenging test set (T2).491

Figure 4. Results of full finetuning with sequence-based
balanced sampling. (Note: logscale on x-axis)

We selected four models, each representing a dif- 492

ferent level of specialization for cardiac ultrasound 493

view recognition: DINOv2 as a general model, Med- 494

ImageInsight as a general medical model, EchoCLIP 495

as a cardiac ultrasound model, and the ResNet50 496

model specifically trained for this task. 497

Table 3 presents the results of this comparison, 498

reporting accuracies at both the image and sequence 499

levels. For sequence-level accuracy, we used a ma- 500

jority vote over the five frames that represent each 501

sequence. 502

From the T1 results we see that all models 503

achieved very high accuracy, with the foundation 504

models performing marginally better than the task- 505

specific model. The performance of the foundation 506

models also slightly increased with greater special- 507

ization toward the specific domain. The results for 508

the set of difficult cases (T2) are given in the two 509

rightmost columns of Table 3, and here we see a 510

quite different situation. For these data the most 511

specialized foundation model, EchoCLIP, actually 512

has the lowest performance of all the foundation 513

models, and performs even slightly worse than the 514

task-specific model when evaluated at sequence level. 515

Furthermore, the large MedImageInsight model for 516

medical images, shows a significantly lower perfor- 517

mance than the general DINOv2 model. 518

For the T2 test set, we also observe a significant 519

increase in performance when using all five images 520

from a sequence compared to single images. This is 521

a reasonable finding, as these cases represent people 522

with very specific conditions where a sequence can 523

provide valuable contextual information that a single 524

image may not convey. 525

Choosing the right model may not always be only 526

about performance in terms of accuracy. We have 527

therefore also compared the characteristics of these 528

models in terms of both size and computational 529

requirements in relation to accuracy. Figure 5 il- 530
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Table 3. Results for models trained on the entire
dataset, for both our testset of typical cases (T1) and
our testset of difficult cases (T2).

Models T1 accuracy T2 accuracy
img seq img seq

DINOv2 98.4% 99.1% 85.6% 92.2%
MedImageInsight 99.1% 99.7% 78.1% 84.4%
EchoCLIP 99.3% 99.9% 71.3% 75.0%
ResNet50 98.4% 98.9% 70.6% 76.6%

lustrates this for both T1 (typical cases) and T2531

(abnormal cases). The ResNet model is the smallest532

and fastest and for the typical cases (T1) the perfor-533

mance is also on level with the larger models. For534

the abnormal out-of-distribution cases we see that535

the DINOv2 model gives the best accuracy as well536

as providing the best trade-off when taking speed537

and size into account.538

Figure 5. Inference time and model size (in terms of
the number of parameters) vs accuracy for experiments
on the two test sets with typical images (T1, top) and
abnormal (T2, bottom).

5 Discussion539

A major finding through our experiments is that540

foundation models significantly outperform the spe-541

cialized ResNet model when trained with very lim-542

ited labeled data. This demonstrates the power of543

transfer learning from large-scale pretraining, which544

provides a strong starting point. Even with a sim-545

ple linear classifier (SVM) and frozen foundation546

model, the models achieve reasonable performance547

with very few samples, highlighting that the learned 548

features from pretraining can be highly effective. 549

For linear probing, the more specialized models 550

perform better than the general ones. However, 551

the larger MedImageInsight model performs slightly 552

better than EchoCLIP. This is likely due to its larger 553

size and embedding dimension, which enables it to 554

capture more diverse features. 555

This trend shifts with full fine-tuning where the 556

most specialized model, EchoCLIP, which is specifi- 557

cally trained on cardiac ultrasound, is slightly better 558

than the general medical model, MedImageInsight. 559

This suggests that when models are allowed to up- 560

date all their parameters, the domain-specific pre- 561

training becomes a more significant advantage. In 562

general, we see that the full finetuning, as expected, 563

yields higher performance than linear probing, par- 564

ticularly with lower amounts of labeled data. The 565

trade-off here is that the full fine-tuning is more 566

time-consuming and computationally demanding. 567

The results on the T1 test set with models fully 568

finetuned on the entire training set, show that re- 569

gardless of the model choice, if sufficient training 570

data is available, all the models including the task 571

specific ResNet can reach a very high accuracy of 572

near or above 99%. The most domain-specific foun- 573

dation model, EchoCLIP, gives a marginally higher 574

accuracy than the others. 575

In contrast, on the T2 test set with unusual, 576

difficult cases not well represented in the training 577

dataset, we see a more unexpected result where the 578

general foundation model, DINOv2, performs sig- 579

nificantly better than the domain-specific models 580

EchoCLIP and MedImageInsight. This is an interest- 581

ing finding, which suggests that models pretrained 582

on a broad range of natural images may have a bet- 583

ter ability to generalize and handle ambiguous or 584

difficult-to-classify cases. This could be because the 585

diversity of features learned from a massive, varied 586

dataset helps prevent overfitting. 587

This result suggests that selecting a domain- 588

specific foundation model is not always beneficial. 589

When presented with atypical or out-of-distribution 590

medical images, generalist models such as DINOv2 591

may be more robust. This also shows the importance 592

of using diverse evaluation sets, where systematic 593

evaluation also on challenging, out-of-distribution 594

test sets can be key to assessing the models’ relia- 595

bility in real-world clinical scenarios. It should be 596

noted that in our experiments further optimizing 597

the hyperparameters when finetuning the founda- 598

tion models or changing the dataset sampling could 599

influence the accuracy levels. Hence, the reported 600

results should be viewed as overall trends. 601
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6 Conclusion602

We have compared the performance of several foun-603

dation models against a specialized ResNet model.604

Our results show that foundation models achieve su-605

perior performance when limited amounts of labeled606

training data are available, a common challenge in607

medical imaging.608

The highest performance for the foundation mod-609

els is achieved when they are fully finetuned to the610

downstream task, but this comes at a computational611

cost. Still, we have shown that these models can612

be fine-tuned and run on relatively limited GPU613

hardware. Hence, high performance in specialized614

tasks is achievable without the need for extensive615

computational resources.616

Generally, the more domain-specific foundation617

models have shown better performance than the618

general models in our experiments. However, we619

observed an important exception to this for more620

difficult out-of-distribution cases, where the more621

general model had a greater ability to generalize and622

perform well.623

In conclusion the choice of a foundation model624

should be guided by the specific application’s needs.625

For scenarios with limited labeled data and a fo-626

cus on standard, in-distribution cases, a fine-tuned627

domain-specific model can be the best choice. Still,628

if enough labelled training data are available a task-629

specific model competes well in terms of accuracy,630

while being both faster and smaller. However, for631

applications requiring a model to contend with a632

variety of difficult or out-of-distribution cases, a633

generalist foundation model may be more reliable.634
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