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ABSTRACT

Single-molecule localization microscopy (SMLM) allows reconstructing biology-
relevant structures beyond the diffraction limit by detecting and localizing indi-
vidual fluorophores — fluorescent molecules stained onto the observed specimen
— over time to reconstruct super-resolved images. Currently, efficient SMLM
requires non-overlapping emitting fluorophores, leading to long acquisition times
that hinders live-cell imaging. Recent deep-learning approaches can handle denser
emissions, but they rely on variants of non-maximum suppression (NMS) layers,
which are unfortunately non-differentiable and may discard true positives with
their local fusion strategy. In this presentation, we reformulate the SMLM train-
ing objective as a set-matching problem, deriving an optimal-transport loss that
eliminates the need for NMS during inference and enables end-to-end training.
Additionally, we propose an iterative neural network that integrates knowledge
of the microscope’s optical system inside our model. Experiments on synthetic
benchmarks and real biological data show that both our new loss function and ar-
chitecture surpass the state of the art at moderate and high emitter densities. Code
is available at anonymized_url.

(2)

(3)(1)

Conventional wide-field image
Sparse activations over

multiple frames Super-resolved 3D point cloud

Figure 1: Illustration of the SMLM principle using our method. Data (Fei et al., 2025) show Nup96
in human bone cancer (U2-OS) cells. (1) A conventional wide-field microscope would record an
image with limit resolution of ∼ 200 nm. (2) Instead, SMLM captures many frames where only a
sparse subset of fluorophores actively emit in each one. These can be detected and localized with
sub-pixel precision. (3) The union of all detections is rendered as a 3D point cloud (color encodes
depth), producing a super-resolved representation of the specimen.

1 INTRODUCTION

Fluorescence microscopy remains a cornerstone tool of biological research, recording photon emis-
sions from fluorophores (fluorescent molecules) stained onto a specimen to characterized its struc-
ture. However, light diffraction restricts the final image resolution to approximately half the wave-
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length of light, preventing analysis of structures or organelles feature smaller than ∼ 200 nm in
practice (Mccutchen, 1967; Schermelleh et al., 2019).

Multiple experimental techniques have been developed to surpass the diffraction limit (Hell & Wich-
mann, 1994; Gustafsson, 2000; Dertinger et al., 2009; Laine et al., 2023), collectively described
as super-resolution microscopy methods. Among them, single molecule localization microscopy
(SMLM) takes advantage of the stochastic flickering of fluorophores over a long sequence of im-
ages (Betzig et al., 1991). Compared to conventional fluorescence microscopy, the laser power is
tuned to achieve a low density of simultaneously active fluorophores such that, with high probability,
no two emitters occupy the same diffraction-limited area at the same time (Lelek et al., 2021). As
modelling light propagation for point emitters in the microscope can be approximated, each emitter
pixel pattern can be deconvolved into point localisation with positionning error massively inferior
to the diffraction limit. Accumulating detections across all frames yields a point cloud representa-
tion of the underlying specimen (Rust et al., 2006), effectively achieving super-resolution. Figure 1
illustrates this method. For additional details, on both experimental methods and deconvolution
approaches see the review by Lelek et al. (2021).

However, the low-density constraint inherent to this approach limits the number of active fluo-
rophores that can be captured in a single frame, requiring thousands of frames to reconstruct a com-
plete specimen, which hinders live-cell imaging and the observation of dynamic processes (Heile-
mann et al., 2008). Consequently, high-density setups are desirable, but overlapping fluorophores
within the same diffraction-limited area usually led to uncertainties in the number of fluorophores
and reduced spatial resolution, yielding deteriorated reconstruction.

Deep learning methods have shown success at handling higher densities. Top methods (Speiser
et al., 2021; Fei et al., 2025) predict a detection map trained with pixel-wise objectives, and decide at
inference whether a candidate exists or not by binarizing their map using a variant of non-maximum
suppression (NMS) (Girshick et al., 2014). This NMS-variant uses two thresholds to (i) suppress
spurious local maxima while (ii) not merging nearby emitters. We see three main issues with this
framework. (1) These pixel-wise loss functions do not account for multiple emitters within the same
pixel. (2) Objectives (i) and (ii) are inherently in conflict, and this issue only worsens as density
increases, where the probability of multiple emitters activating simultaneously at sub-pixel distance
rises. (3) The precision–recall tradeoff is difficult to tune due to the two required hand-set thresholds.
Figure 5 in the Appendix illustrates problems (1) and (2).

In this paper, we frame the SMLM training objective based on one-to-one matching between pre-
dicted and true emitters, using a new loss function constructed from optimal transport (Peyré et al.,
2019), and solve the decision problem at inference with a simple individual one-threshold filter-
ing. These changes solve problem (1) by removing pixel-wise assignments in the training objective,
problem (2) by removing decision pipelines based on spatial proximity like NMS, and problem (3)
by using a single threshold during filtering, which directly controls the precision-recall tradeoff.
Furthermore, NMS non-differentiability prevents the model from optimizing for it: discarding it
allows us to benefit from the flexibility of deep neural networks at the final model layer, unlocking
end-to-end learning. Additionally, inspired by the success of iterative refinement networks for op-
tical flow estimation (Teed & Deng, 2020; Hur & Roth, 2019), we propose a novel iterative neural
network architecture that leverages a reconstruction of the expected frame given the current esti-
mated set of fluorophores, introducing knowledge of the microscope’s optic system into the model.
We demonstrate that both our loss function and architecture choices improve the state of the art at
both low- and high-density regimes on synthetic benchmarks and real data.

2 RELATED WORK

Single-molecule localization microscopy. SMLM has been enabled by the development of pho-
toactivable and photoswitchable fluorophores, which allows individual molecules to emit efficiently
and in a controllable manner sufficient amount of photons to be individually located (Betzig et al.,
2006; Hess et al., 2006). Early tools perform detection by locating local maxima and localizing
with a Gaussian estimation of the point-spread function (PSF) (Patterson et al., 2010; Rust et al.,
2006), assuming simplified light propagation in the microscope. Shortly after, the introduction of
asymmetry along the z-axis of the PSF enabled 3D localisation (Huang et al., 2008); the most com-
mon setup is to introduce astigmatism in the microscope optics, which we employ in this work. To
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improve localisation accuracy, PSF models has transitioned from being only theory-derived to ex-
perimentally augmented, in order to incorporate effects of real light propagation in the microscope
and unmodelled effect of light propagation in the cell (Babcock et al., 2012). This usually requires
a pre-calibration step using specially designed fluorescent beads, which are imaged to capture how
a single point of light appears at different locations. Note that while this calibration phase can be
resource- and time-consuming, recent works propose live estimation of the PSF (Liu et al., 2024).
3D-DAOSTORM (Babcock et al., 2012) is a widely used classical method that uses experimentally
derived PSFs, and we use it as a baseline in our comparisons.

SMLM can deliver high resolution (10−20 nm) in optimised experimental conditions and low pho-
totoxicity at the cost of slow acquisition speed (Lelek et al., 2021). Methods such as SIM (Gustafs-
son, 2000), SOFI (Dertinger et al., 2009), and eSRRF (Laine et al., 2023) trade speed for reduced
resolution, while STED (Hell & Wichmann, 1994) offers faster imaging at the cost of higher photo-
toxicity. MINFLUX (Balzarotti et al., 2017) is a promising novel technique with comparable reso-
lution to SMLM, but suffers from a small field of view and requires ultra-stable microscopes (Schei-
derer et al., 2025). Therefore, SMLM offers an attractive middle ground for biologists among all
super-resolution methods, which explains why enhancing performance for high-density setups is of
major interest (Lelek et al., 2021).

Deep-learning methods have been widely applied to fluorescence microscopy (Nehme et al., 2018;
Ouyang et al., 2018; Boyd et al., 2018; Cachia et al., 2023; Li et al., 2023; Mentagui et al., 2024;
Fei et al., 2025). Among these, DeepLoco (Boyd et al., 2018) introduces a set formulation like ours
with a loss function based on maximum mean discrepancy (Gretton et al., 2012). DECODE (Speiser
et al., 2021) combines pixel-wise detection and Gaussian-mixture localization losses, and at the time
of writing is ranked first on the EPFL SMLM challenge (Sage et al., 2019), a popular benchmark
for SMLM tools. More recently, LiteLoc (Fei et al., 2025) has slightly improved on DECODE’s
architecture with additional technical refinements. We use those last two methods for comparison in
our benchmarks.

Optimal transport for set matching. Optimal transport (Peyré et al., 2019; Villani, 2021) has
become a popular tool for set matching by deep learning. Recent works in object detection (Carion
et al., 2020; Zhu et al., 2021; Zhang et al., 2023; Li et al., 2022) have demonstrated success in
predicting sets of variable and unknown size using bipartite matching loss functions, while other
modern works have employed entropic regularization (Cuturi, 2013) to achieve fully differentiable
pipelines (Zareapoor et al., 2024). By framing SMLM as a set matching problem, we draw a direct
connection to this line of work — substituting objects for fluorophores — enabling the design of an
end-to-end training procedure.

Iterative refinement network. Iterative refinement within neural networks has proven effective
for tasks that benefit from sequential solution improvement (Carreira et al., 2016; Yu et al., 2023).
In computer vision, Putzky & Welling (2017) have applied this approach to inverse problems such
as image denoising, super-resolution, and inpainting, while Hur & Roth (2019) proposed iterative
optical-flow refinement using a feedback loop with a rewarping operator. As the physics of SMLM
is well understood (Etheridge et al., 2022), we show that an accurate simulator of the microscope’s
physics can provide similar visual feedback, enabling progressive refinement of the solution.

3 METHOD

3.1 PROBLEM FORMULATION

In this section, we first introduce the image formation model for SMLM and formulate the corre-
sponding inverse problem as a set matching task. We then present a differentiable loss function and
an iterative refinement architecture that explicitly leverages the image formation process.

Image formation model An activation is defined as an emission event from a fluorophore within
a given frame (a single fluorophore may produce several activations accross multiple frames).
Throughout this work, an activation is represented by a 4D vector x = (x, y, z, n), where (x, y)
denote the 2D coordinates in the camera frame (with the origin at the top-left corner), z represents
the axial coordinate relative to the focal plane, and n is the photon count. Given N activations within
a frame, we denote the complete set as X = {xi}1≤i≤N .

3
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(2) Loss function is the optimal transport
cost between X̂ and X .

Figure 2: Illustration of our loss function for end-to-end training. (1) Given a simulated image
and its ground truth activations (see Section 3.1), our model (see Section 3.3) predicts d candidate
activations, each with a detection score quantifying the plausibility of its existence. (2) We solve
a regularized optimal transport problem — conceptually similar to a bi-matching between ground
truths and predictions — over a cost involving both localisation and detection tasks. Our loss func-
tion is the optimal cost yielded by this solution.

Diffraction within the microscope’s optical system is modeled by a convolution where the kernel
is called the point spread function (PSF) (Rossmann, 1969). It can be thought of as the image
of a single point source. We represent the PSF as a function P : R3 7−→ RH×W , that outputs
the normalized H ×W image resulting from the diffraction of a single point source given its 3D
coordinates. To ensure photon count independence, the output image is normalized to sum to unity
in the focal plane, i.e. for z = 0. Given the set of activations X in a frame, the observed H ×W
image, denoted by H(X ), is formed as a weighted sum of PSFs, where weights are the photon count
n for each activation:

H(X ) =
∑

(x,y,z,n)∈X

nP(x, y, z). (1)

The dependence of the PSF on depth z enables 3D localization of activations from the observed
image, see (Ovesnỳ et al., 2014). Following Babcock & Zhuang (2017), we assume that the PSF is
pre-calibrated on synthetic fluorescent beads and implemented as a collection of 3D splines. This
approach is a standard tool in SMLM used in many works (Ries, 2020; Li et al., 2020; Speiser et al.,
2021; Etheridge et al., 2022); see Babcock & Zhuang (2017) for further details.

Noise model. We adopt the noise model of Sage et al. (2019), which combines shot noise (stem-
ming from the photon detector, and modeled by a Poisson distribution), amplification noise (which
allow to increase the number of generated electron per photon, and modeled by a Gamma distri-
bution only for EM-CCD camera) and readout noise (modeled by a normal distribution). In-depth
description of all camera parameters is available in Appendix A.1. The noise for each camera sen-
sor being independent and identically distributed (Fazel & Wester, 2022), it is applied independently
to all pixels of H(X ). Then, we denote by P the distribution of images y produced by a set X of
fluorophores under the noise model such that

y ∼ P (X ) . (2)

Risk minimization formulation for set matching. As no ground truth is available in most scien-
tific imaging applications, supervised-learning models for SMLM have to be trained with a simula-
tor, which is able to generate realistic y from P(X ) given sets X of activations from a distribution
D. Our approach consists of training a neural network fθ which directly predicts a set of activations
given an observation y, by minimizing the risk

θ∗ = argmin
θ∈Θ

EX∼D,y∼P(X ) [L(fθ(y),X )] . (3)

Such a formulation raises two major challenges: we need to design a differentiable loss function L
and an architecture fθ that are appropriate to the context of SMLM.
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3.2 OPTIMAL TRANSPORT LOSS FUNCTION

We argue that framing SMLM as a supervised-learning problem leads to a set matching formulation,
for which optimal transport theory is a natural fit. To the best of our knowledge, however, this
framework has not yet been applied to SMLM. Figure 2 provides an overview of our method.

Let X = {xi}1≤i≤N be the ground truth set of activations. The size of this set, N , is unknown and
varies between frames, but it can be bounded by the physics of the fluorophore and the experimental
protocol. We simulate an acquisition y ∼ P(X ) and aim to retrieve X from y.

Given y, our neural network fθ outputs a set of candidate activations X̂ = {x̂i}1≤i≤d of fixed size
d, each associated with a detection score ŝi in (0, 1) gathered in a set Ŝ = {ŝi}1≤i≤d. The network
architecture is detailed in Section 3.3. The number of candidates d is fixed by the architecture,
and defines the maximum possible number of detectable activations, see Appendix A.2 for further
analyze on the impact of this parameter.

We first define L, a squared cost matrix of size d× d, whose components are:

∀1 ≤ i, j ≤ d, Li,j =

{
(x̂i − xj)

TΣ−1(x̂i − xj) + log det (Σ) if j ≤ N,

0 otherwise,
(4)

where Σ = diag(σ2
x, σ

2
y, σ

2
z , σ

2
n) is a diagonal weighting matrix. Quadratic costs are a natural and

principled choice for regression tasks. Extending this formulation to the negative log-likelihood of
a multivariate normal distribution allows to learn Σ end-to-end, which can be viewed as an auto-
matic weighting strategy that balances the difficulty of predicting each dimension, similar to the
homoscedastic uncertainty weighting method proposed by Kendall et al. (2018). Experimentally,
we have found σ2

z to be ∼ 2× larger than σ2
x and σ2

y after training, which is consistent with the
optical theory of confocal microscopy (Pawley, 2006).

Similarly, we define D, another d× d cost matrix whose components are:

∀1 ≤ i, j ≤ d,Di,j =

{
− log(si) if j ≤ N,

− log(1− si) otherwise.
(5)

The binary cross-entropy cost is a natural choice for detection tasks. It favors a high score si when
x̂i is paired with an element ofX and low score otherwise, hence promoting good detection. Finally,
we define the total cost matrix C = L+D, which integrates both localization and detection tasks.

Considering the initial set matching problem, the optimal solution (X̂ ∗, Ŝ∗) given a target X would
consist of N elements, each identical to one element of X and with detection scores close to 1.
The remaining d − N elements have detection scores close to 0. Naturally, one would like to
compare each candidate in X̂ ∗ to its nearest counterpart in X and minimize a loss function over
these pairs. This can be achieved by solving an optimal-transport problem over C — conceptually
creating a bipartite matching between the predictions and the ground truths — where the minimal
cost accounts for all pairwise contributions. Therefore, we would ideally like our loss function to be
the optimal-transport cost with respect to C, i.e. solve:

min
Γ∈B
⟨Γ | C⟩F where B =

{
Γ ∈ Rd×d

+ | Γ1d = Γ⊤1d = 1d

}
, (6)

and ⟨. | .⟩F is the Frobenius inner product. However, while the Hungarian algorithm can exactly
solve this problem inO(d3) (Kuhn, 1955), its algorithmic step is non-differentiable, which prevents
end-to-end learning. We circumvent this issue by finding Γ through the entropy-regularized optimal
transport problem, see (Cuturi, 2013), and therefore define our loss function as follows:

L(X̂ , Ŝ,X ) = ⟨Γ∗ | C⟩F , where Γ∗ = argmin
Γ∈B

⟨Γ | C⟩F − ϵH(Γ), (7)

H is the Shannon entropy and ϵ the entropic regularization parameter. A good approximation of Γ∗

in Eq. (7) can be found efficiently with a few iterations of the Sinkhorn algorithm, whose steps are
differentiable with respect to the elements of C, enabling its use within a deep learning framework,
see (Genevay et al., 2018; Mialon et al., 2021). A more detailed analysis of the impact of ϵ and a
comparison with the Hungarian algorithm are available in Appendix A.4.
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×K iterations

Encoder
⊕ Refinement

network
+ Decoder

x̂1

x̂d

Image formation
model

Encoder

p

p

∅
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Figure 3: Illustration of our iterative refinement model. Within a classic encoder-decoder architec-
ture, we leverage prior knowledge about the known image formation model (not learned) to simulate
the expected frame given the current latent representation. This feedback is used to iteratively refine
the model’s inner latent representation for K steps. The encoders are identical. + and⊕ respectively
denotes element-wise addition and concatenation.

Algorithm 1 Iterative refinement architecture
Require: input frame y ∈ RH×W , encoder E, decoder D, refinement module R, camera model

P(·), number of iterations K ∈ N
Ensure: final proposals (X̂ (K), Ŝ(K))

1: z(0) ← E(y) ▷ encode original frame
2: (X̂ (0), Ŝ(0))←D(z(0)) ▷ decode initial proposals
3: for k = 0 to K − 1 do
4: ŷ(k) ← E[P(X̂ (k), Ŝ(k))] ▷ simulate reconstruction from current proposals
5: ẑ(k) ← E(ŷ(k)) ▷ encode reconstruction
6: z(k+1) ← z(k) +R

(
z(k), ẑ(k), z(0)

)
▷ refine latent iteratively

7: (X̂ (k+1), Ŝ(k+1))←D(z(k+1)) ▷ decode refined proposals
8: end for
9: return (X̂ (K), Ŝ(K))

3.3 ITERATIVE REFINEMENT SCHEME

To solve Eq. (3), we investigate architectures that explicitly leverage the image formation process.
To this end, we adopt an iterative architecture, an idea that has proven successful for optical flow
estimation (Hur & Roth, 2019). At each iteration the network produces a set of candidate activations,
turns those proposals into a simulated image, which is then used as feedback to refine the next
proposals. This iterative method is illustrated in Figure 3.

Concretely, let y be the input frame of size H×W . An encoder E : RH×W 7−→ RC×H×W maps y
to a latent representation z(0), where C is a hyperparameter controlling the dimension of the latent
space. A decoder D then maps latent variables to a set of candidate activations X̂ = {x̂i}1≤i≤d and
a corresponding set of detection scores Ŝ = {ŝi}1≤i≤d.

Given (X̂ , Ŝ), we compute a reconstructed frame ŷ = E[ŷ|X̂ , Ŝ]. ŷ is the expected image pro-
duced by the current proposal set, and thus provides a visual summary of what the model’s output
currently explain in the SMLM frame. Comparing the reconstructed image ŷ to the original frame
y supplies informative feedback, which helps the model correct errors and refine the candidates set
over iterations.

Concretely, we define an iterative refinement operator R : R3×C×H×W 7−→ RC×H×W which
produces a residual update of the latent representation given it’s current estimate, the representation
of the simulated frame, and the encoded original frame. Algorithm 1 shows how this proposal is
updated successively over K steps.
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During training, the final decoded output (X̂ (K), Ŝ(K)) is used as input for our loss function, see
Section 3.2. Details about the decoder architecture and the computation of ŷ given X̂ and Ŝ can be
found in Appendix A.2.

4 EXPERIMENTS

Implementation and training details. We construct a synthetic target activations setX fromD by
uniformly sampling between 10 and 30 activations per frame, assigning each activation independent
coordinates that are uniformly distributed across all dimensions. This guarantees that the network
cannot learn any specific prior about the activation distribution.

Following (Speiser et al., 2021), we augment y by the previous and the next frame into a tensor ȳ
of size 3×H ×W . Including these provides additional context, without introducing a too complex
prior about the physics of the fluorophore, about the frame of interest, and yield improved perfor-
mance. We also randomly scaled each camera parameters by a coefficient eρ, where ρ ∼ N (0, 0.03):
this data-augmentation ”trick” increases the model robustness to experimental complexities in fully
controlling and characterising experimental parameters.

The encoder E is a two-layer U-Net (Ronneberger et al., 2015) with SiLU activation func-
tions (Hendrycks & Gimpel, 2016), LayerNorm normalization layers (Ba et al., 2016), and an
internal channel width of 48. It maps the input image to a latent image with C = 96 channels.
The iterative refinement stage is implemented with a similar two-layer U-Net. For the decoder D,
instead of adopting a vision transformer (Dosovitskiy et al., 2021) as done in DETR-like object de-
tectors (Carion et al., 2020), we found that a light CNN yields better performance, see Appendix A.2
for additional details and benchmarks. The resulting network predicts d = HW/4 candidates and
contains∼ 3 millions learnable parameters. Empirically, performance improvement stops after three
or more refinement iterations; we thus use K = 2 in our experiments.

For training, we use AdamW (Loshchilov & Hutter, 2019) for 100,000 steps with a batch size of
128 on a NVIDIA-H100 gpu, taking approximately 20h. The iterative architecture incurs a higher
computational burden than single-pass models like DECODE or LiteLoc; further details about our
model computational footprint for training and inference is available in Appendix A.3.

Inference and detection-localisation trade-off. During inference, we only retain candidate acti-
vations from X̂ (K) whose associated detection scores in Ŝ(K) exceed a user-defined threshold τ in
[0, 1]. This simple filtering strategy makes τ an easy lever to control the precision-recall trade-off:
τ = 0 keeps every candidate while τ = 1 discards all. By contrast, DECODE and LiteLoc use a
two-threshold variant of a NMS strategy (Speiser et al., 2021; Fei et al., 2025) that may be harder to
tune and harder to adapt to changing dynamics during the recording.

As the default value for τ , we propose using the one maximizing the E3D metric (defined in Sec-
tion 4) on a separate synthetic dataset generated by our simulator. This procedure yields a thresh-
old that achieves the same detection–localisation trade-off as the one proposed by the EPFL chal-
lenge (Sage et al., 2019). To ensure that this choice does not bias the results of Table 1 in our favor,
we performed the same optimization for DECODE’s and LiteLoc’s NMS parameters. When per-
forming experimental data analysis hyperparameters can be tuned to match experimental settings
and ensure consistent precision for long time recordings.

Synthetic data. Because no ground-truth annotations exist for real SMLM acquisitions, we per-
forme the initial evaluation on the open synthetic datasets provided by Sage et al. (2019) on the 2016
EPFL challenge, and adopte their set of metrics.

To evaluate candidate activations in a frame, we first solve a Hungarian assignment between
ground-truths and predicted activations. A prediction is considered a true positive (TP) if it lies
within ±250 nm in both x and y directions, and ±500 nm in z relative to its matched ground-truth
(both thresholds come from the EPFL challenge). Otherwise, predictions (resp. ground truths) are
labeled as false positives (resp. false negatives). Detection performance is quantified by computing
precision, recall and Jaccard Index (area under the curve is not commonly employed in this field).
Localisation performance is evaluated by computing the root-mean-square error (RMSE) for TPs,
for the lateral plan (RMSElat), the axial dimension (RMSEax), and all three dimensions together

7
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Density SNR Method Precision ↑ Recall ↑ Jaccard ↑ RMSElat ↓ RMSEax ↓ E3D ↑

0.2

High

3D-DAOSTORM 0.964 0.919 0.914 11.9 16.9 0.821
DECODE 0.961 ± 0.003 0.998 ± 0.001 0.959 ± 0.003 8.8 ± 0.1 10.7 ± 0.1 0.895 ± 0.003
LiteLoc 0.996 ± 0.002 0.987 ± 0.001 0.983 ± 0.001 9.0 ± 0.1 11.7 ± 0.1 0.912 ± 0.001

Ours 0.998 ± 0.002 0.978 ± 0.016 0.980 ± 0.010 7.5 ± 0.4 10.0 ± 3.5 0.920 ± 0.007

Low

3D-DAOSTORM 0.978 0.835 0.833 19.3 29.8 0.685
DECODE 0.918 ± 0.002 0.978 ± 0.001 0.903 ± 0.002 20.5 ± 0.1 26.2 ± 0.1 0.757 ± 0.001
LiteLoc 0.995 ± 0.001 0.939 ± 0.001 0.934 ± 0.001 17.0 ± 0.1 25.0 ± 0.4 0.798 ± 0.001

Ours 0.985 ± 0.001 0.961 ± 0.001 0.947 ± 0.001 18.8 ± 0.2 24.5 ± 0.1 0.802 ± 0.002

2.0

High

3D-DAOSTORM 0.914 0.678 0.643 56.8 76.6 0.373
DECODE 0.923 ± 0.003 0.946 ± 0.002 0.876 ± 0.004 32.2 ± 0.3 33.0 ± 0.4 0.706 ± 0.004
LiteLoc 0.993 ± 0.001 0.863 ± 0.002 0.858 ± 0.001 30.7 ± 0.2 36.0 ± 0.3 0.699 ± 0.001

Ours 0.992 ± 0.002 0.895 ± 0.011 0.883 ± 0.007 24.8 ± 0.6 28.4 ± 0.5 0.750 ± 0.004

Low

3D-DAOSTORM 0.914 0.496 0.475 74.4 120.0 0.116
DECODE 0.859 ± 0.034 0.874 ± 0.006 0.756 ± 0.027 56.4 ± 0.3 65.3 ± 0.4 0.468 ± 0.008
LiteLoc 0.992 ± 0.001 0.729 ± 0.002 0.725 ± 0.001 46.2 ± 0.4 63.8 ± 0.2 0.500 ± 0.002

Ours 0.973 ± 0.003 0.812 ± 0.007 0.794 ± 0.005 48.4 ± 0.6 59.5 ± 0.4 0.536 ± 0.003

8.0∗

High

3D-DAOSTORM 0.910 0.392 0.379 83.3 133.9 0.009
DECODE 0.973 ± 0.001 0.627 ± 0.002 0.617 ± 0.002 59.58 ± 0.02 71.5 ± 0.5 0.371 ± 0.006
LiteLoc 0.988 ± 0.001 0.557 ± 0.003 0.553 ± 0.003 60.4 ± 0.2 80.5 ± 0.5 0.319 ± 0.004

Ours 0.989 ± 0.001 0.578 ± 0.008 0.574 ± 0.008 52.5 ± 0.4 64.3 ± 0.7 0.384 ± 0.003

Low

3D-DAOSTORM 0.908 0.211 0.217 92.6 175.8 −0.216
DECODE 0.93 ± 0.03 0.415 ± 0.005 0.402 ± 0.009 80.25 ± 0.04 105.2 ± 1.0 0.090 ± 0.007
LiteLoc 0.986 ± 0.001 0.339 ± 0.002 0.338 ± 0.002 76.1 ± 0.1 110.1 ± 0.8 0.055 ± 0.002

Ours 0.983 ± 0.002 0.376 ± 0.008 0.374 ± 0.008 74.3 ± 0.5 99.4 ± 1.1 0.103 ± 0.002

Table 1: Comparative evaluation of SMLM algorithms on the EPFL 2016 challenge datasets and
metrics. Densities are expressed in activations/µm/frame. For each method, means and standard
deviations are estimated over four independent training seeds (3D-DAOSTORM is deterministic).
∗The EPFL 2016 challenge does not include a dataset with a density of 8.0; see the main text for
details about its creation process.

(RMSEvol). A global performance metric called 3D efficiency (E3D) is then defined as:

E3D =
Eax + Elat

2
where

Elat = 1−
√
(1− Jaccard)2 + α2

latRMSE2
lat,

Eax = 1−
√
(1− Jaccard)2 + α2

axRMSE2
ax,

(8)

αlat = 1.0 nm−1 and αax = 0.5 nm−1, following definitions of the EPFL challenge. All metrics are
computed frame by frame and averaged.

Our benchmark includes 3D-DAOSTORM (Babcock et al., 2012), DECODE (Speiser et al., 2021)
and LiteLoc (Fei et al., 2025). All algorithms are evaluated on the open-access EPFL 2016 challenge
datasets (Sage et al., 2019), all with astigmatism PSFs. To assess performance in a very high-density
regime, we have synthesized a density-8.0 benchmark by temporally binning groups of 4 frames in
the original density-2.0 sequences. For each newly binned frame, we have re-sampled camera noise
using the known camera parameters. This extra step prevents an artificial SNR improvement caused
by the frame-averaging process.

Results are reported in Table 1. We observe that while our approach yields lower recall than the other
methods, it preserves excellent precision and almost always achieves the lowest RMSE in all spatial
dimensions. Most notably, it also outperforms all competitors on the E3D metric for all densities and
SNRs, establishing itself as the most balanced method with respect to this criterion.

Real data. We have evaluated our method on three publicly available datasets, all of which provide
beads for calibrating their astigmatic PSFs. The Tubulin and NPC-Nup107 datasets from Li et al.
(2018) depict, respectively, the microtubule network and nuclear pore complexes in U2OS cells.
The NPC-Nup96 dataset from Fei et al. (2025) also features nuclear pore complexes in the same
cell line. All datasets were acquired with conventional SMLM activation densities; therefore, to test
our method’s robustness at higher densities, we applied 16-frame temporal binning to Tubulin and
NPC-Nup107 and 32-frame binning to NPC-Nup96. We refer to the temporally-binned versions
as T16-Tubulin, T16-NPC-Nup107, and T32-NPC-Nup96. Note that this approach is an imperfect
proxy for truly high-density imaging, as it improves the signal-to-noise ratio via noise averaging.

Figure 4 compares 3D SMLM reconstructions, rendered with SMAP (Ries, 2020), for 3D-
DAOSTORM (Babcock et al., 2012), LiteLoc (Fei et al., 2025) and our method. We chose to include
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Figure 4: Qualitative comparison of SMLM methods on real data. Although ground truths are un-
available, results show that our approach yields fewer grid-reconstruction artifacts (line 1), improved
depth estimation consistency (line 2), and more accurate nuclear pore complex reconstruction (line
3). Refer to the main text for a more thorough discussion.

LiteLoc over DECODE because the former delivers comparable or slightly better performance. In
addition, the authors of DECODE note that their method may benefit from an extra filtering step
applied to the predicted uncertainties associated with each activation. However, this post-processing
step requires selecting additional arbitrary thresholds that are difficult to tune, making it challenging
to perform a fair and objective comparison with other methods.

On the T16-Tubulin dataset, our algorithm yields a higher-fidelity reconstruction than
3D-DAOSTORM and eliminates the artefacts that appear with LiteLoc. On the T16-NPC-Nup107
dataset, all methods recover comparable structures; however, our method delivers more consistent
depth estimates (as indicated by colors), whereas 3D-DAOSTORM and LiteLoc exhibit spatially
varying detections. On the T32-NPC-Nup96 dataset, our approach reconstructed NPC’s structures
with clear greater fidelity than LiteLoc and 3D-DAOSTORM.

Quantitatively, the absence of ground-truth data prevents the use of the metrics introduced in
Section 4. To evaluate the resolution and fidelity of a reconstructed super-resolution image, we
adopted two widely used metrics: Fourier ring correlation (FRC) (Banterle et al., 2013) and the
resolution-scaled Pearson’s coefficient (RSP) Culley et al. (2018). FRC reconstructs two super-
resolution images by splitting localisations into two subsets, computing their Fourier transforms,
and then measuring the correlation of their spatial frequency signals against each other. The result-
ing curve provides an estimate of the spatial frequency at which signal can no longer be distinguished
from noise (Banterle et al., 2013). RSP is defined as the Pearson correlation coefficient between the
reconstructed super-resolution image and a reference image, typically the mean of all raw wide-field
frames. Values close to one indicate strong agreement between the reconstruction and the reference.
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Dataset Bin size Method FRC (nm) ↓ RSP ↑

Tubulin (Li et al., 2018)
×1 LiteLoc 29.7 ± 0.3 0.708

Ours 31.9± 0.2 0.692

×16 LiteLoc 63.0± 0.8 0.649
Ours 58.1 ± 1.1 0.672

NPC-Nup107 (Li et al., 2018)
×1 LiteLoc 19.3± 0.3 0.696

Ours 18.8 ± 0.4 0.686

×16 LiteLoc 25.9± 0.3 0.682
Ours 22.1 ± 0.1 0.684

NPC-Nup96 (Fei et al., 2025)
×1 LiteLoc 29.8 ± 0.1 0.713

Ours 31.7± 0.1 0.693

×32 LiteLoc 71.5± 0.5 0.671
Ours 44.2 ± 0.4 0.689

Table 2: Quantitative results on real datasets. We temporally binned them to simulate very
high-density setups. Our method consistently scored first in those denser regimes.

Iterative arch. OT loss func. Jaccard ↑ RMSEvol ↓ E3D ↑
p p 0.876± 0.004 47.9± 0.5 0.705± 0.004
p ✓ 0.867± 0.004 39.6± 0.3 0.740± 0.002
✓ p 0.854± 0.005 45.4± 0.7 0.703± 0.005
✓ ✓ 0.883 ± 0.007 39.2 ± 0.5 0.750 ± 0.004

Table 3: Ablation study of our different modules over EPFL synthetic with high SNR and a density
of 2.0. p means we used DECODE’s original loss function or model architecture.

Results with these metrics on real datasets are reported in Table 2. In dense-activations regimes, our
approach consistently yields lower FRC and higher RSP values than other methods, confirming the
visual improvements illustrated in Figure 4.

Ablation study. We have conducted an ablation study on synthetic data to validate the effective-
ness of our loss function and our iterative architecture. Results are reported in Table 3. It can be
seen that the loss function drives most of the improvement, with our iterative architecture providing a
modest boost. Given the additional memory and compute overhead of our architecture, a lightweight
variant that retains only the optimal loss function can be considered for deployment scenarios with
constrained resources.

5 DISCUSSION AND CONCLUDING REMARKS

We have presented a novel deep-learning SMLM method that surpasses existing methods in medium
and high-density regimes, all without the need for handcrafted layers. By enabling faster data ac-
quisition, our approach extend SMLM’s temporal resolution, allowing more accurate observation
of rapid biological processes but also stable inference precision to degrading conditions induced by
evolution of recording parameters during time. Furthermore, the integration of optimal transport
theory to SMLM could open a path to new localization algorithms.

The main limitation of our method is the longer training and inference times that result from its iter-
ative design. However, training is a one-time cost per experimental setup, and inference remains fast
enough (∼ 200 fps on a modern GPU) to let biologists run multiple experiments sequentially with
minimal delay. Another systemic limitation shared by most top-performing methods is the depen-
dence for precise PSF calibration (Lelek et al., 2021). Future work could focus on robust methods
invariant to PSF variations, pursue blind SMLM super-resolution without sacrificing precision or
include PSF optimisation to the microscopy setup design during training and to adapt to celullar
based optical anomalies affecting the PSF at inference time.
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ETHICS STATEMENT

In this work, we explore new model architecture and loss function to improve single-molecule lo-
calization microscopy (SMLM) reconstruction. We do not anticipate ethical or societal harms: the
work is computational only and all biological data used are public and were used according to their
licenses. We believe that by improving SMLM reconstruction and releasing our code openly, this
work can broadly benefit biological research and make advanced tools accessible to communities
worldwide.

REPRODUCIBILITY STATEMENT

The project repository includes all requirements to reproduce our results. We provide the full source
code and model implementation, all datasets are publicly available, training and evaluation scripts
are provided with all hyperparameters set (including random seeds), and python environment speci-
fication are supplied, making all experiments from section 4 reproducible.
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Fluorescence image deconvolution microscopy via generative adversarial learning (FluoGAN).
Inverse Problems, 39(5), 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference
on Computer Vision (ECCV), pp. 213–229, 2020.

Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik. Human pose estimation
with iterative error feedback. In Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4733–4742, 2016.

Siân Culley, David Albrecht, Caron Jacobs, Pedro Matos Pereira, Christophe Leterrier, Jason Mer-
cer, and Ricardo Henriques. Quantitative mapping and minimization of super-resolution optical
imaging artifacts. Nature Methods, 15:263–266, 2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
Neural Information Processing Systems (NeurIPS), 26:2292–2300, 2013.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Dertinger, Ryan Colyer, Gopal Iyer, Shimon Weiss, and Jörg Enderlein. Fast, background-
free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National
Academy of Sciences (PNAS), 106(52):22287–22292, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. International Conference on Learning Representations (ICLR), 2021.

Thomas J Etheridge, Antony M Carr, and Alex D Herbert. GDSC SMLM: Single-molecule locali-
sation microscopy software for ImageJ. Wellcome open research, 7(241), 2022.

Mohamadreza Fazel and Michael J Wester. Analysis of super-resolution single molecule localization
microscopy data: A tutorial. AIP Advances, 12(010701), 2022.

Yue Fei, Shuang Fu, Wei Shi, Ke Fang, Ruixiong Wang, Tianlun Zhang, and Yiming Li. Scalable and
lightweight deep learning for efficient high accuracy single-molecule localization microscopy.
Nature Communications, 16(7217), 2025.
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Figure 5: Toy illustration of the negative effects of pixel-wise loss functions and NMS post pro-
cessing. (1) A synthetic image y with a zoomed version. White crosses represent the ground truth
emitters. (2) DECODE’s pixel-wise loss function enforces a high score for the bottom-right pixel,
but does not consider that it is shared by two targets. By contrast, our optimal transport loss function
also assigns a high score to a neighboring pixel, which can contribute to its neighborhood with an
extended localization range. (3) DECODE’s NMS variant merges the two adjacent predictions in
the top-left corner if one of the prediction scores isn’t high enough to be automatically retained.
By contrast, our simple single-threshold filtering keeps all scores above the threshold, regardless of
their spatial distribution. (4) Models’ final outputs, showing the predicted emitters for each method
with yellow crosses.

A APPENDIX

A.1 IMAGE FORMATION PROCESS

SMLM experimental setups typically employ either Electron-Multiplying CCD (EM-CCD) or sci-
entific CMOS (sCMOS) cameras. Their sensors converts incident photons into a digital intensity
value (ADU) through a sequence of physical processes, each of which introduces noise.

Let n be the incident photon count on the camera sensor. Initially, photon detection is modeled as a
Poisson process — known as shot noise — with a mean proportional to n and the quantum efficiency
(QE), and an offset known as the spurious charge (c):

ne,1 ∼ P (QE× n+ c) . (9)

EM-CCD cameras introduce an additional amplification stage, modeled as a Gamma distribution
with parameters ne,1 and the electromagnetic gain (EM):

ne,2 ∼ Γ(ne,1,EM) for EM-CCD camera, or ne,2 = ne,1 for sCMOS camera. (10)

Subsequently, read noise is modeled by a normal distribution with mean ne,2 and standard deviation
σR:

ne,3 ∼ N (ne,2, σR). (11)

Finally, the analog-to-digital conversion process yields the observed ADU, scaled by the electrons
per ADU (eADU) and offset by a baseline (B):

y = min

(⌊
ne,3

eADU

⌋
+B , 65535

)
(12)
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Parameter Evolve Delta 512 Dhyana 400BSI V3

Camera type EMCCD sCMOS
Quantum efficiency (QE) 0.90 0.95
Spurious charge (c) 0.002 0.002
EM gain (EM) 300 —
Readout noise (σR) 74.4 1.535
Electrons per ADU (eADU) 45 0.7471
ADU baseline (B) 100 100

Table 4: Reported parameters of two typical cameras used in SMLM by their manufacturer.

Architecture d Parameters↓ Jaccard ↑ RMSEvol ↓ E3D ↑

CNN
HW 2.31M 0.866± 0.003 41.4 ± 0.7 0.732± 0.002
HW/4 2.81M 0.883 ± 0.007 39.2 ± 0.5 0.750 ± 0.004
HW/16 3.48M 0.875± 0.008 40.5 ± 0.5 0.739± 0.002

ViT HW/4 5.95M 0.852± 0.006 40.6 ± 0.7 0.722± 0.001

Table 5: Evaluation of different decoder architectures with different number of predicted candidates
over the MT0N1HDAS dataset (Sage et al., 2019), with standard deviations computed for three dif-
ferent training seeds. CNNs differ by the architecture of their head module, composed of alternating
2× 2 max-pooling layers and double-convolution blocks.

No algebraic solution exists for the resulting distribution relating n and y (Ryan et al., 2021). Table 4
presents the parameters for two commonly used cameras in SMLM: the Evolve Delta 512 camera
for the Tubulin and NPC-Nup107 datasets (Li et al., 2018) and the Dhyana 400BSI V3 camera for
the NPC-Nup96 dataset (Fei et al., 2025).

A.2 ARCHITECTURE DETAILS

Decoder architecture. The decoder maps a latent representation z of the image - implemented
as a C × H ×W tensor - to a set of d activations, implemented as a d × 5 matrix (one activation
contains five elements: the three spatial coordinates (x, y, z), the number of emitted photons n and
the detection score s).

As we aim to predict a set from an image, and given the recent success of object detection by
transformer architectures (Carion et al., 2020), we have considered using a vision transformer (ViT)

Range factor Jaccard ↑ RMSEvol ↓ E3D ↑
1.0 0.869 47.0 0.710
1.1 0.874 45.1 0.722
1.2 0.880 42.6 0.737
1.5 0.889 39.8 0.750
2.0 0.884 40.1 0.749
3.0 0.880 41.3 0.738 1.01.11.2 1.5 2.0 3.0

Maximum offset range factor

0.71

0.72

0.73

0.74

0.75

E 3
D

Figure 6: Evaluation of the impact of the maximum offset range of our CNN decoder. The max-
imum prediction range is controlled by a range factor; the final range equals the range factor mul-
tiplied by the output pixel size (which is 2× larger than the original image pixel size). Our results
show that a range factor of 1.5 times the output pixel size, i.e. 3× the original pixel size, yields the
best performance. Reported results are computed on the MT0N1HDAS dataset.
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(Dosovitskiy et al., 2021). However, this architecture produced unsatisfactory results, see Table 5.
We attribute this to two factors:

1. SMLM requires sub-pixel precision, but each ViT’s token spans the whole image, so a
small prediction error can severely affect the output.

2. The individual localisation-detection problem is highly local. Hence, ViT’s global attention
mechanism offers little benefit.

Therefore, we propose a convolution-based decoder architecture, composed of 2 × 2 max-pooling
layers and residual blocks (He et al., 2016). We experimented with different numbers of max-pooling
operations and found that a single max-pooling layer, followed by a residual block and an element-
wise output layer yield the best results, see Table 5.

Formally, given the latent image z, our decoder is defined as D : RC×H×W 7−→ R5×H/2×W/2,
mapping a latent variable to a H/2 ×W/2 map with 5 channels, where each pixel is an activation
prototype. Consider a single pixel i of D’s output, and let (x̃i, ỹi) be its 2D coordinates in the
camera coordinate system. The five elements output for this pixel encode the characteristics of the
underlying candidate activation: the detection score ŝi, the relative lateral coordinates (∆x̂i,∆ŷi),
the depth ẑi and the number of emitted photons n̂i. The absolute lateral coordinates (x̂i, ŷi) are
reconstructed by summing (∆x̂i,∆ŷi) with (x̃i, ỹi). The magnitude of the relative coordinate offsets
(∆x̂,∆ŷ) predicted by the decoder is set to 1.5 times the output pixel size (or in other words 3× the
pixel size of the original image, given the final max pooling). This extended range permits multiple
activations to be mapped within a single pixel area, as neighbouring activations can contribute to
their surroundings. Figure 6 shows experiments for various magnitude of the coordinate offsets.
With a factor of 1× the output pixel size, each output pixel can predict locations only on the exact
surface it covers. In this regime, the optimal transport solution reduces to an identity pixel-wise
mapping.

Finally, the output is formatted into a candidate set X̂ = {(x̂i, ŷi, ẑi, n̂i)}1≤i≤d and a detection
scores set S = {ŝi}1≤i≤d. We integrate this reconstruction process into the decoder, meaning
D(z) = (X̂ , Ŝ).

Differentiable simulation within our model. During inference, our algorithm selects a subset
of candidate detections by thresholding their confidence scores. However, this operation is non-
differentiable, preventing direct gradient propagation during training. To mimic this behaviour while
retaining differentiability, we replace it by a soft weighting that scales the photon count of each
candidate by its detection confidence. For each candidate xi in X̂ , the network outputs the 3D
coordinates (x̂i, ŷi, ẑi), the raw photon count n̂i, and a detection confidence ŝi ∈ (0, 1). We choose
to modulate the photon count by the confidence, producing the weighted activation

x̃i =
(
x̂i, ŷi, ẑi, ŝi n̂i

)
,

and the set of all such activations is denoted X̃ = {x̃i}di=1. This causes activations with low
detection scores to have a number of emitted photons near zero, making them almost non-existent,
while keeping almost untouched activations with a detection score close to one, mimicking the effect
of a hard threshold while remaining fully differentiable.

After derivation, the expected image ŷ is obtained by:

ŷ = E[ŷ|X̃ ] = QE× EM

eADU
H(X̃ ) +B, (13)

and with EM = 1 for sCMOS camera. ỹ is an end-to-end differentiable approximation of the
reconstructed output, and can be used inside our iterative refinement scheme.

A.3 COMPUTATIONAL FOOTPRINT

Training is performed using an NVIDIA H100 GPU using the AdamW optimizer with a learning
rate of 4 × 10−4, a weight decay of 0.01, and a cosine annealing scheduler. We chose a batch size
of 128 to maximize GPU usage, filling all 80GB of VRAM. It can be lowered using smaller batch
sizes or gradient accumulation.
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Subpart Multiply-Accumulate operations Parameters

Encoder 1.03 GMac 1.05 M
Decoder 512.56 MMac 499.4 k
Residual Network 1.87 GMac 1.26 M
Renderer 94.64 MMac 0

Table 6: Multiply-Accumulate operations and number of parameters of our model subparts.

Algorithm Jaccard ↑ RMSEvol ↓ E3D ↑

Sinkhorn’s

ϵ = 10−2 0.531± 0.007 67.0 ± 5.2 0.397± 0.011
ϵ = 10−3 0.883± 0.006 42.0 ± 1.3 0.739± 0.002
ϵ = 10−4 0.883± 0.007 39.2 ± 0.5 0.750 ± 0.004
ϵ = 10−5 0.877± 0.012 39.1 ± 1.1 0.747± 0.002

Hungarian 0.873± 0.007 39.7 ± 0.9 0.742± 0.001

Table 7: Evaluation of different algorithms for solving the optimal transport problem used during
the computation of our loss function. Results are reported for the MT0N1HDAS dataset (Sage et al.,
2019), with standard deviations computed for three different training seeds.

We trained for 14 hours 100 epochs of 1024 steps each, totaling approximately 100,000 steps. Ex-
cellent results (E3D ≥ 0.72 on EPFL’s density=2.0 and high SNR dataset) are achieved after only 20
minutes of training, at around 2000 steps.

During inference, a batch size of 16 produces a peak VRAM usage of 8.7GB and processes 2500
64x64 images in 30 s, or 12ms/frame.

Table 6 shows an overview of the computational resources for each subpart of our model.

A.4 REGULARIZED OPTIMAL TRANSPORT

As explained in the main text, we solve the regularized optimal transport problem of Eq. (7) with
Sinkhorn’s algorithm. Our motivations are both analytical and computational: compared to the
standard bipartite matching, Sinkhorn’s algorithm avoids the need for stop-gradient operations, is
differentiable, and is computationally efficient on GPUs. In our implementation, we run Sinkhorn’s
algorithm in log space and compute gradients automatically via PyTorch’s autograd module. Our
implementation uses 20 iterations, as we have found that additional iterations do not improve per-
formance. Additionally, we have included a masking step to ensure that candidates are only assign
to target activations if they are capable of reaching it within their limited prediction range. The
observed performance boosts for increased range factors highlight the benefits of using optimal
transport rather than pixel-wise assignments.

Table 7 compares results for various regularization constant ϵ in regularized optimal transport prob-
lem. We also report results with a bipartite matching performed by the Hungarian algorithm, that
yields lower performance. We observe that smaller values for ϵ yield better performance, with no
improvement beyond ϵ = 10−4; thus our we set ϵ = 10−4 in our implementation. Note that our
implementation of the Sinkhorn’s algorithm includes the common practical heuristic of scaling ϵ by
the median of the cost matrix (Flamary et al., 2021).

A.5 ROBUSTNESS TO CAMERA PARAMETER MISMATCH

We have conducted a study to analyze the robustness of our model to mismatch in all camera pa-
rameters listed in Table 4.

To this end, we have generated a synthetic dataset of 2048 frames with a mean density of 2.0, each
rendered with camera parameters independently jittered by noise from a log-normal distribution, i.e.
scaled by eρ where ρ ∼ N (0, σ). Note that we apply a similar data augmentation process during
training, with σ = 0.03.
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Jitter strength Jaccard ↑ RMSEvol ↓ E3D ↑
σ = 0 0.956± 0.001 34.31± 0.26 0.811± 0.001

σ = 0.03 0.958± 0.002 34.52± 0.20 0.810± 0.001
σ = 0.10 0.957± 0.001 34.50± 0.25 0.810± 0.001
σ = 0.30 0.954± 0.001 35.21± 0.32 0.805± 0.002

Table 8: Evaluation of the robustness of our model to domain mismatch. Multiplicative noise of
increasing strength, sampled from a zero-mean log-normal distribution, is applied to the simulator’s
camera parameters. Our model demonstrates strong resilience to this perturbation.

We have evaluated our model performance under increasing noise strength, to assess performance
for increasing domain gap between training and test data. The results are reported in Table 8. In-
terestingly, our model appears extremely resilient to this type of mismatch. From an architecture
standpoint, the use of LayerNorm and 2D convolutions without additive bias makes the network
insensitive to scaling. We hypothesize that this architectural choice paired with the small data aug-
mentation during training results in remarkably stable performance with respect to this issue.
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