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ING FOR SINGLE-MOLECULE LOCALIZATION
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ABSTRACT

Single-molecule localization microscopy (SMLM) surpasses the diffraction limit
by detecting and localizing individual fluorophores — fluorescent molecules
stained onto the observed specimen — over time to reconstruct super-resolved
images. Conventional SMLM requires non-overlapping emitting fluorophores,
leading to long acquisition times that hinders live-cell imaging. Although
recent deep-learning approaches can handle denser emissions, they rely on
non-maximum suppression (NMS) layers, which are non-differentiable and may
discard true positives with their local fusion strategy. In this presentation, we re-
formulate the SMLM training objective as a set-matching problem, deriving an
optimal-transport loss that eliminates the need for NMS during inference and en-
ables end-to-end training. Additionally, we propose an iterative neural network
that integrates knowledge of the microscope’s optical system inside our model.
Experiments on synthetic benchmarks and real biological data show that both our
new loss function and architecture surpass the state of the art at moderate and high
emitter densities. Code and data are provided in the supplementary material.

(2)

(3)(1)

Conventional wide-field image
Sparse activations over

multiple frames Super-resolved 3D point cloud

Figure 1: Illustration of the SMLM principle using our method. Data (Fei et al., 2025) show Nup96
in human bone cancer (U2-OS) cells. (1) A conventional wide-field microscope would record an
image with limit resolution of ∼ 200 nm. (2) Instead, SMLM captures many frames where only a
sparse subset of fluorophores actively emit in each one. These can be detected and localized with
sub-pixel precision. (3) The union of all detections is rendered as a 3D point cloud (color encodes
depth), producing a super-resolved representation of the specimen.

1 INTRODUCTION

Fluorescence microscopy is a cornerstone tool of biological research that records photon emissions
from fluorophores (fluorescent molecules) stained onto a specimen to reveal its structure. However,
light diffraction restricts the raw image resolution to approximately half the wavelength of light,
blurring features smaller than ∼ 200 nm in practice (McCutchen, 1967; Schermelleh et al., 2019).
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Multiple techniques have been developed to surpass the diffraction limit (Hell & Wichmann, 1994;
Gustafsson, 2000; Dertinger et al., 2009; Laine et al., 2023), collectively called super-resolution
microscopy methods. Among them, single molecule localization microscopy (SMLM) takes ad-
vantage of the stochastic flickering of fluorophores over a long sequence of images (Betzig et al.,
1991). Compared to conventional fluorescence microscopy, the laser power is tuned to achieve a
low density of simultaneously active fluorophores such that, with high probability, no two emitters
occupy the same diffraction-limited area at the same time (Lelek et al., 2021b). Each emitter can
then be individually detected and precisely located. Compiling detections across all frames yields
a point cloud representation of the underlying specimen (Rust et al., 2006), effectively achieving
super-resolution. Figure 1 illustrates this method. For additional details, see the review by Lelek
et al. (2021b).

However, the low-density constraint inherent to this approach limits the number of active fluo-
rophores that can be captured in a single frame, requiring thousands of frames to reconstruct a com-
plete specimen, which hinders live-cell imaging and the observation of dynamic processes (Heile-
mann et al., 2008). Consequently, high-density setups are desirable, but overlapping fluorophores
within the same diffraction-limited area make accurate detection and localization difficult. Deep
learning methods have shown success at handling higher densities, but to the best of our knowledge,
top models (Sage et al., 2019; Fei et al., 2025) all employ a non-maximum suppression (NMS)
layer (Girshick et al., 2014), which prevents end-to-end learning and may discard valid detections
in a close neighbourhood, which becomes more and more relevant as density increases.

In this paper, we frame supervised learning for SMLM as a set matching problem, from which we
naturally derived a new loss function based on optimal transport (Peyré et al., 2019) that unlocks
end-to-end learning. Furthermore, we propose a novel iterative neural network architecture that
leverages a reconstruction of the expected frame given the current estimated set of fluorophores,
introducing knowledge of the microscope’s optic system into the model. We demonstrate that both
our loss function and architecture choices improve the state of the art at both low- and high-density
regimes on synthetic benchmarks and real data. Our code is available as a supplementary material
and will be released as an open-source software package.

2 RELATED WORK

Single-molecule localization microscopy. SMLM has been enabled by the development of pho-
toactivable and photoswitchable fluorophores, which allows individual molecules to be precisely
localized (Betzig et al., 2006; Hess et al., 2006). Early tools perform detection by locating local
maxima and localizing with a Gaussian estimation of the point-spread function (PSF) (Patterson
et al., 2010; Rust et al., 2006). Shortly after, the introduction of asymmetry along the z-axis of the
PSF enabled 3D localisation (Huang et al., 2008); the most common setup is to introduce astigma-
tism in the microscope optics, which we employ in this work. To improve localisation accuracy, PSF
models has transitioned from being theory-derived to experimentally derived (Babcock et al., 2012).
This requires a pre-calibration step using specially designed fluorescent beads, which are imaged to
capture how a single point of light appears at different locations. Note that while this calibration
phase can be resource- and time-consuming, recent works propose live estimation of the PSF (Liu
et al., 2024). 3D-DAOSTORM (Babcock et al., 2012) is a widely used classical method that uses
experimentally derived PSFs, and we use it as a baseline in our comparisons.

SMLM delivers excellent resolution (10 − 20 nm) and low phototoxicity, but its main draw-
back is slow acquisition speed (Lelek et al., 2021b). Methods such as SIM (Gustafsson, 2000),
SOFI (Dertinger et al., 2009), and eSRRF (Laine et al., 2023) trade speed for reduced resolution,
while STED (Hell & Wichmann, 1994) offers faster imaging at the cost of higher phototoxicity.
MINFLUX (Balzarotti et al., 2017) is a promising young technique with comparable resolution to
SMLM, but suffers from a small field of view and requires costly, ultra-stable microscopes (Schei-
derer et al., 2024). Therefore, SMLM offers an attractive middle ground for biologists among all
super-resolution methods, which explains why enhancing performance for high-density setups is of
major interest (Lelek et al., 2021a).

Deep-learning methods have been widely applied to fluorescence microscopy (Nehme et al., 2018;
Ouyang et al., 2018; Cachia et al., 2023; Li et al., 2023; Mentagui et al., 2024; Fei et al., 2025).
Deep SMLM tools include DECODE (Speiser et al., 2021), which is currently the best on the EPFL
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SMLM challenge (Sage et al., 2019), a popular benchmark for SMLM tools. More recently, Lite-
Loc (Fei et al., 2025) has slightly improved on DECODE’s architecture with additional technical
refinements. We use those two methods for our comparison in our benchmarks.

Optimal transport for set matching. Optimal transport (Peyré et al., 2019; Villani, 2021) has be-
come a fundamental tool for set matching in deep learning. Recent works in object detection (Carion
et al., 2020; Zhu et al., 2020; Zhang et al., 2022; Li et al., 2022) have demonstrated success in pre-
dicting sets of variable and unknown size using loss functions derived from optimal transport theory,
with recent works employing entropic regularization (Cuturi, 2013) to achieve fully differentiable
pipelines (Zareapoor et al., 2025). By framing SMLM as a set matching problem, we draw a direct
connection to this line of work — substituting fluorophores for objects — enabling the design of an
end-to-end training procedure.

Iterative refinement network. Iterative refinement with neural networks has proven effective for
tasks that benefit from sequential solution improvement (Carreira et al., 2016; Yu et al., 2023). In
computer vision, Putzky & Welling (2017) have applied this approach to inverse problems such
as image denoising, super-resolution, and inpainting, while Hur & Roth (2019) proposed iterative
optical-flow refinement using a feedback loop with a rewarping operator. Because the physics of
SMLM is well understood (Etheridge et al., 2022), we show that an accurate simulator of the micro-
scope’s physics can provide similar visual feedback, enabling progressive refinement of the solution.

3 METHOD

3.1 PROBLEM FORMULATION

In this section, we first introduce the image formation model for SMLM and formulate the corre-
sponding inverse problem as a set matching task. We then present a differentiable loss function and
an iterative refinement architecture that explicitly leverages the image formation process.

Image formation model An activation is defined as an emission event from a fluorophore within
a given frame (a single fluorophore may produce several activations accross multiple frames).
Throughout this work, an activation is represented by a 4D vector x = (x, y, z, n), where (x, y)
denote the 2D coordinates in the camera frame (with the origin at the top-left corner), z represents
the axial coordinate relative to the focal plane, and n is the photon count. Given N activations within
a frame, we denote the complete set as X = {xi}1≤i≤N .

Diffraction within the microscope’s optical system is modeled by a convolution with a kernel called
the point spread function (PSF) (Rossmann, 1969). It can be thought of as the image of a single
point source. We represent the PSF as a function P : R3 7−→ RH×W , that outputs the normalized
H ×W image resulting from the diffraction of a single point source given its 3D coordinates. To
ensure photon count independence, the output image is normalized to sum to unity in the focal plane,
i.e. for z = 0. Given the set of activations X in a frame, the observed H ×W image, denoted by
H(X ), is formed as a weighted sum of PSFs, where the weights correspond to the photon count n
for each activation:

H(X ) =
∑

(x,y,z,n)∈X

nP(x, y, z). (1)

The dependence of the PSF on depth z enables 3D localization of activations from the observed
image, see (Ovesný et al., 2014). Following Babcock & Zhuang (2017), we assume that the PSF is
pre-calibrated on synthetic fluorescent beads and implemented as a collection of 3D splines. This
approach is a standard tool in SMLM used in many works (Ries, 2020; Li et al., 2020; Speiser et al.,
2021; Etheridge et al., 2022); see Babcock & Zhuang (2017) for further details.

Noise model. We adopt the noise model of Sage et al. (2019), which combines shot noise (modeled
by a Poisson distribution), amplification noise (modeled by a Gamma distribution only for EM-CCD
camera) and readout noise (modeled by a normal distribution). In-depth description of all camera
parameters is available in Appendix A.1. The noise for each camera sensor being independent and
identically distributed (Fazel & Wester, 2022), it is applied independently to all pixels of H(X ).
Then, we denote by P the distribution of images y produced by a set X of fluorophores under the
noise model such that

y ∼ P (X ) . (2)

3
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(2) Loss function is the optimal transport
cost between X̂ and X .

Figure 2: Illustration of our loss function for end-to-end training. (1) Given a simulated image
and its ground truth activations (see Section 3.1), our model (see Section 3.3) predicts d candidate
activations, each with a detection score quantifying the plausibility of its existence. (2) We solve
a regularized optimal transport problem — conceptually similar to a bi-matching between ground
truths and predictions — over a cost involving both localisation and detection tasks. Our loss func-
tion is the optimal cost yielded by this solution.

Risk minimization formulation for set matching. Because no ground truth is available in most
scientific imaging applications, supervised-learning models for SMLM have to be trained with a
simulator, which is able to generate realistic y from P(X ) given sets X of activations from a dis-
tribution D. Our approach consists of training a neural network fθ which directly predicts a set of
activations given an observation y, by minimizing the risk

θ∗ = argmin
θ∈Θ

EX∼D,y∼P(X ) [L(fθ(y),X )] . (3)

Such a formulation raises two major challenges: we need to design a differentiable loss function L
and an architecture fθ that are appropriate to the context of SMLM.

3.2 OPTIMAL TRANSPORT LOSS FUNCTION

We argue that framing SMLM as a supervised-learning problem leads to a set matching formulation,
for which optimal transport theory is a natural fit. To the best of our knowledge, however, this
framework has not yet been applied to SMLM. Figure 2 provides an overview of our method.

Let X = {xi}1≤i≤N be the ground truth set of activations. The size of this set, N , is unknown and
varies between frames. We simulate an acquisition y ∼ P(X ) and aim to retrieve X from y.

Given y, our neural network fθ outputs a set of candidate activations X̂ = {x̂i}1≤i≤d of fixed size
d, each associated with a detection score ŝi in (0, 1) gathered in a set Ŝ = {ŝi}1≤i≤d. The network
architecture is detailed in Section 3.3. The number of candidates d is a constant hyperparameter that
fixes the maximum possible number of detectable activations, so it should be set large enough to
ensure that the true number of fluorophores N will always be less than or equal to d, see Section 4.

We first define L, a squared cost matrix of size d× d, whose components are:

∀1 ≤ i, j ≤ d, Li,j =

{
(x̂i − xj)

TΣ−1(x̂i − xj) + log det (Σ) if j ≤ N,

0 otherwise,
(4)

where Σ = diag(σ2
x, σ

2
y, σ

2
z , σ

2
n) is a diagonal weighting matrix. Quadratic costs are a natural and

principled choice for regression tasks. Extending this formulation to the negative log-likelihood of
a multivariate normal distribution allows to learn Σ end-to-end, which can be viewed as an auto-
matic weighting strategy that balances the difficulty of predicting each dimension, similar to the
homoscedastic uncertainty weighting method proposed by Kendall et al. (2018).

Similarly, we define D, another d× d cost matrix whose components are:

∀1 ≤ i, j ≤ d,Di,j =

{
− log(si) if j ≤ N,

− log(1− si) otherwise.
(5)
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×K iterations

Encoder
⊕ Refinement

network
+ Decoder

x̂1

x̂d

Image formation
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Encoder

p

p

∅
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Figure 3: Illustration of our iterative refinement model. Within a classic encoder-decoder architec-
ture, we leverage prior knowledge about the known image formation model (not learned) to simulate
the expected frame given the current latent representation. This feedback is used to iteratively refine
the model’s inner latent representation for K steps. The encoders are identical. + and⊕ respectively
denotes element-wise addition and concatenation.

The binary cross-entropy cost is a natural choice for detection tasks. It favors a high score si when
x̂i is paired with an element ofX and low score otherwise, hence promoting good detection. Finally,
we define the total cost matrix C = L+D, which integrates both localization and detection tasks.

Considering the initial set matching problem, the optimal solution (X̂ ∗, Ŝ∗) given a target X would
consist of N elements, each identical to one element of X and with detection scores close to 1.
The remaining d − N elements have detection scores close to 0. Naturally, one would like to
compare each candidate in X̂ ∗ to its nearest counterpart in X and minimize a loss function over
these pairs. This can be achieved by solving an optimal-transport problem over C — conceptually
creating a bipartite matching between the predictions and the ground truths — where the minimal
cost accounts for all pairwise contributions. Therefore, we would ideally like our loss function to be
the optimal-transport cost with respect to C, i.e. solve:

min
Γ∈B
⟨Γ|C⟩F where B =

{
Γ ∈ Rd×d

+ | Γ1d = Γ⊤1d = 1d

}
, (6)

and ⟨.|.⟩F is the Frobenius inner product. However, while the Hungarian algorithm can exactly
solve this problem inO(d3) (Kuhn, 1955), its algorithmic step is non-differentiable, which prevents
end-to-end learning. We circumvent this issue by finding Γ through the entropy-regularized optimal
transport problem, see (Cuturi, 2013), and therefore define our loss function as follows:

L(X̂ , Ŝ,X ) = ⟨Γ∗|C⟩F , where Γ∗ = argmin
Γ∈B

⟨Γ|C⟩F − ϵH(Γ), (7)

H is the Shannon entropy and ϵ the entropic regularization parameter. A good approximation of Γ∗

in Eq. (7) can be found efficiently with a few iterations of the Sinkhorn algorithm, whose steps are
differentiable with respect to the elements of C, enabling its use within a deep learning framework,
see (Genevay et al., 2018; Mialon et al., 2021).

3.3 ITERATIVE REFINEMENT SCHEME

To solve Eq. (3), we investigate architectures that explicitly leverage the image formation process.
To this end, we adopt an iterative architecture, an idea that has proven successful for optical flow
estimation (Hur & Roth, 2019). At each iteration the network produces a set of candidate activations,
turns those proposals into a simulated image, which is then used as feedback to refine the next
proposals. This iterative method is illustrated in Figure 3.

Concretely, let y be the input frame of size H×W . An encoder E : RH×W 7−→ RC×H×W maps y
to a latent representation z(0), where C is a hyperparameter controlling the dimension of the latent
space. A decoder D then maps latent variables to a set of candidate activations X̂ = {x̂i}1≤i≤d and
a corresponding set of detection scores Ŝ = {ŝi}1≤i≤d.

5
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Algorithm 1 Iterative refinement architecture
Require: input frame y ∈ RH×W , encoder E, decoder D, refinement module R, camera model

P(·), number of iterations K ∈ N
Ensure: final proposals (X̂ (K), Ŝ(K))

1: z(0) ← E(y) ▷ encode original frame
2: (X̂ (0), Ŝ(0))←D(z(0)) ▷ decode initial proposals
3: for k = 0 to K − 1 do
4: ŷ(k) ← E[P(X̂ (k), Ŝ(k))] ▷ simulate reconstruction from current proposals
5: ẑ(k) ← E(ŷ(k)) ▷ encode reconstruction
6: z(k+1) ← z(k) +R

(
z(k), ẑ(k), z(0)

)
▷ refine latent iteratively

7: (X̂ (k+1), Ŝ(k+1))←D(z(k+1)) ▷ decode refined proposals
8: end for
9: return (X̂ (K), Ŝ(K))

Given (X̂ , Ŝ), we compute a reconstructed frame ŷ = E[ŷ|X̂ , Ŝ]. ŷ is the expected image pro-
duced by the current proposal set, and thus provides a visual summary of what the model’s output
currently explain in the SMLM frame. Comparing the reconstructed image ŷ to the original frame
y supplies informative feedback, which helps the model correct errors and refine the candidates set
over iterations.

Concretely, we define an iterative refinement operator R : R3×C×H×W 7−→ RC×H×W which
produces a residual update of the latent representation given it’s current estimate, the representation
of the simulated frame, and the encoded original frame. Algorithm 1 shows how this proposal is
updated successively over K steps.

During training, the final decoded output (X̂ (K), Ŝ(K)) is used as input for our loss function, see
Section 3.2. During inference, candidate activations in X̂ (K) are filtered based on their associated
detection scores in Ŝ(K): only activations exceeding a pre-defined threshold τ ∈ (0, 1) are retained;
others are discarded.

Details about the decoder architecture and the computation of ŷ given X̂ and Ŝ can be found in
Appendix A.2.

4 EXPERIMENTS

Implementation and training details. We construct a synthetic target activations setX fromD by
uniformly sampling between 10 and 30 activations per frame, assigning each activation independent
coordinates that are uniformly distributed across all dimensions. This guarantees that the network
cannot learn any specific prior about the activation distribution.

The encoder E is a two-layer U-Net (Ronneberger et al., 2015) with an internal channel width of 48,
mapping the input image to a latent image with C = 96 channels. The iterative refinement stage is
implemented with a similar two-layer U-Net (also 48 channels for the first level). The decoder D is
a three-layer convolutional neural network with a number of predicted candidates d equal to HW/4,
see Appendix A.2 for additional details. The resulting network contains ∼ 3 millions learnable
parameters. Empirically, performance improvement stops after three or more refinement iterations;
we thus use K = 2 in our experiments.

Following (Speiser et al., 2021), we augment y by the previous and the next frame into a tensor
ȳ of size 3 × H ×W . Including these two frames improve the model performance as it provides
additional context about the processed frame.

For training, we use AdamW (Loshchilov & Hutter, 2017) for 100,000 steps with a batch size of
128 on a NVIDIA-H100 gpu, taking approximately 20h. The iterative architecture incurs a higher
computational burden than single-pass models like DECODE or LiteLoc; further details about our
model computational footprint for training and inference is available in Appendix A.3.

At inference, while a threshold τ = 0.5 yields good results, we find better performance by calibrat-
ing τ by maximizing the E3D metric (defined in Section 4) on a separate synthetic dataset.

6
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Density SNR Method Precision ↑ Recall ↑ Jaccard ↑ RMSElat ↓ RMSEax ↓ E3D ↑

0.2

High

3D-DAOSTORM 0.964 0.919 0.914 11.9 16.9 0.821
DECODE 0.961 ± 0.003 0.998 ± 0.001 0.959 ± 0.003 8.8 ± 0.1 10.7 ± 0.1 0.895 ± 0.003
LiteLoc 0.996 ± 0.002 0.987 ± 0.001 0.983 ± 0.001 9.0 ± 0.1 11.7 ± 0.1 0.912 ± 0.001

Ours 0.998 ± 0.002 0.978 ± 0.016 0.980 ± 0.010 7.5 ± 0.4 10.0 ± 3.5 0.920 ± 0.007

Low

3D-DAOSTORM 0.978 0.835 0.833 19.3 29.8 0.685
DECODE 0.918 ± 0.002 0.978 ± 0.001 0.903 ± 0.002 20.5 ± 0.1 26.2 ± 0.1 0.757 ± 0.001
LiteLoc 0.995 ± 0.001 0.939 ± 0.001 0.934 ± 0.001 17.0 ± 0.1 25.0 ± 0.4 0.798 ± 0.001

Ours 0.985 ± 0.001 0.961 ± 0.001 0.947 ± 0.001 18.8 ± 0.2 24.5 ± 0.1 0.802 ± 0.002

2.0

High

3D-DAOSTORM 0.914 0.678 0.643 56.8 76.6 0.373
DECODE 0.923 ± 0.003 0.946 ± 0.002 0.876 ± 0.004 32.2 ± 0.3 33.0 ± 0.4 0.706 ± 0.004
LiteLoc 0.993 ± 0.001 0.863 ± 0.002 0.858 ± 0.001 30.7 ± 0.2 36.0 ± 0.3 0.699 ± 0.001

Ours 0.992 ± 0.002 0.895 ± 0.011 0.883 ± 0.017 24.8 ± 0.6 28.4 ± 0.5 0.750 ± 0.004

Low

3D-DAOSTORM 0.914 0.496 0.475 74.4 120.0 0.116
DECODE 0.859 ± 0.034 0.874 ± 0.006 0.756 ± 0.027 56.4 ± 0.3 65.3 ± 0.4 0.468 ± 0.008
LiteLoc 0.992 ± 0.001 0.729 ± 0.002 0.725 ± 0.001 46.2 ± 0.4 63.8 ± 0.2 0.500 ± 0.002

Ours 0.973 ± 0.003 0.812 ± 0.007 0.794 ± 0.005 48.4 ± 0.6 59.5 ± 0.4 0.536 ± 0.003

8.0∗

High

3D-DAOSTORM 0.914 0.388 0.376 79.6 130.1 0.028
DECODE 0.869 ± 0.032 0.692 ± 0.008 0.632 ± 0.028 60.3 ± 0.7 92.0 ± 2.7 0.341 ± 0.027
LiteLoc 0.992 ± 0.001 0.567 ± 0.004 0.564 ± 0.003 54.2 ± 0.8 71.4 ± 1.6 0.360 ± 0.007

Ours 0.995 ± 0.001 0.603 ± 0.022 0.600 ± 0.028 43.3 ± 1.9 49.2 ± 1.5 0.462 ± 0.007

Low

3D-DAOSTORM 0.899 0.211 0.207 85.8 171.3 −0.196
DECODE 0.824 ± 0.009 0.591 ± 0.028 0.528 ± 0.038 74.6 ± 1.9 89.0 ± 4.4 0.224 ± 0.022
LiteLoc 0.993 ± 0.002 0.349 ± 0.002 0.348 ± 0.002 66.6 ± 0.4 92.5 ± 1.4 0.124 ± 0.002

Ours 0.990 ± 0.002 0.432 ± 0.025 0.433 ± 0.029 58.1 ± 3.5 72.2 ± 2.7 0.244 ± 0.004

Table 1: Comparative evaluation of SMLM algorithms on the EPFL 2016 challenge datasets and
metrics. For each method, means and standard deviations are estimated over four independent train-
ing seeds (3D-DAOSTORM is deterministic). ∗Note: the EPFL 2016 challenge does not include a
density-8.0 dataset; we have created by temporally binning the density-2.0 datasets.

Synthetic data. Because no ground-truth annotations exist for real SMLM acquisitions, we per-
forme the initial evaluation on the open synthetic datasets provided by Sage et al. (2019) on the 2016
EPFL challenge, and adopte their set of metrics.

To evaluate candidate activations in a frame, we first solve a Hungarian assignment between
ground-truths and predicted activations. A prediction is considered a true positive (TP) if it lies
within ±250 nm in both x and y directions, and ±500 nm in z relative to its matched ground-truth
(both thresholds come from the EPFL challenge). Otherwise, predictions (resp. ground truths) are
labeled as false positives (resp. false negatives). Detection performance is quantified by computing
precision, recall and Jaccard Index (area under the curve is not commonly employed in this field).
Localisation performance is evaluated by computing the root-mean-square error (RMSE) for TPs,
both for the lateral plan and the axial dimension. A global performance metric called 3D efficiency
(E3D) is then defined as:

E3D =
Eax + Elat

2
where

Elat = 1−
√
(1− Jaccard)2 + α2

latRMSE2
lat,

Eax = 1−
√
(1− Jaccard)2 + α2

axRMSE2
ax,

(8)

αlat = 1.0 nm−1 and αax = 0.5 nm−1, following definitions of the EPFL challenge. All metrics are
computed frame by frame and averaged.

Our benchmark includes 3D-DAOSTORM (Babcock et al., 2012), DECODE (Ouyang et al., 2018)
and LiteLoc (Fei et al., 2025). All algorithms are evaluated on the open-access EPFL 2016 challenge
datasets (Sage et al., 2019), all with astigmatism PSFs. To assess performance in a very high-density
regime, we have synthesized a density-8.0 benchmark by temporally binning groups of 4 frames in
the original density-2.0 sequences. Note that this procedure boosts the SNR through noise averaging.

Results are reported in Table 1. We observe that while our approach yields lower recall than the other
methods, it preserves excellent precision and almost always achieves the lowest RMSE in all spatial
dimensions. Most notably, it also outperforms all competitors on the E3D metric for all densities and
SNRs, establishing itself as the most ”complete” method in this evaluation.

Real data. We have evaluated our method on three publicly available datasets, all of which provide
beads for calibrating their astigmatic PSFs. The Tubulin and NPC-Nup107 datasets from Li et al.
(2018) depict, respectively, the microtubule network and nuclear pore complexes in U2OS cells.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ours
entire image

3D-DAOSTORM
zoom

LiteLoc
zoom

Ours
zoom

T
16

-T
ub

ul
in

T
16

-N
PC

-N
up

10
7

T
32

-N
PC

-N
up

96

Figure 4: Qualitative comparison of SMLM methods on real data. Although ground truths are un-
available, results show that our approach yields fewer grid-reconstruction artifacts (line 1), improved
depth estimation consistency (line 2), and more accurate nuclear pore complex reconstruction (line
3). Refer to the main text for a more thorough discussion.

Dataset Bin size Method FRC (nm) ↓ RSP ↑

Tubulin Li et al. (2018)
×1

LiteLoc 29.7 ± 0.3 0.708
Ours 31.9± 0.2 0.692

×16
LiteLoc 63.0± 0.8 0.649

Ours 58.1 ± 1.1 0.672

NPC-Nup107 Li et al. (2018)
×1

LiteLoc 19.3± 0.3 0.696
Ours 18.8 ± 0.4 0.686

×16
LiteLoc 25.9± 0.3 0.682

Ours 22.1 ± 0.1 0.684

NPC-Nup96 Fei et al. (2025)
×1

LiteLoc 29.8 ± 0.1 0.713
Ours 31.7± 0.1 0.693

×32
LiteLoc 71.5± 0.5 0.671

Ours 44.2 ± 0.4 0.689

Table 2: Quantitative results on real datasets. We temporally binned them to simulate very
high-density setups. Our method consistently scored first in those denser regimes.

The NPC-Nup96 dataset from Fei et al. (2025) also features nuclear pore complexes in the same
cell line. All datasets were acquired with conventional SMLM activation densities; therefore, to test
our method’s robustness at higher densities, we applied 16-frame temporal binning to Tubulin and

8
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Iterative arch. OT loss func. Jaccard ↑ RMSEvol ↓ E3D ↑
p p 0.876± 0.004 47.9± 0.5 0.705± 0.004
p ✓ 0.867± 0.004 39.6± 0.3 0.740± 0.002
✓ p 0.883± 0.007 41.6± 0.2 0.725± 0.003
✓ ✓ 0.883 ± 0.007 39.2 ± 0.5 0.750 ± 0.003

Table 3: Ablation study of our different modules over EPFL synthetic with high SNR and a density
of 2.0. p means we used DECODE’s original loss function or model architecture.

NPC-Nup107 and 32-frame binning to NPC-Nup96. We refer to the temporally-binned versions
as T16-Tubulin, T16-NPC-Nup107, and T32-NPC-Nup96. Note that this approach is an imperfect
proxy for truly high-density imaging, as it improves the signal-to-noise ratio via noise averaging.

Figure 4 compares 3D SMLM reconstructions, rendered with SMAP (Ries, 2020), for 3D-
DAOSTORM (Babcock et al., 2012), LiteLoc (Fei et al., 2025) and our method. We omit DE-
CODE because its output is similar to LiteLoc. On the T16-Tubulin dataset, our algorithm yields
a higher-fidelity reconstruction than 3D-DAOSTORM and eliminates the artefacts that appear with
LiteLoc. On the T16-NPC-Nup107 dataset, all methods recover comparable structures; however, our
method delivers more consistent depth estimates (as indicated by colors), whereas 3D-DAOSTORM
and LiteLoc exhibit spatially varying detections. On the T32-NPC-Nup96 dataset, our approach
reconstructed NPC’s structures with clear greater fidelity than LiteLoc and 3D-DAOSTORM.

Quantitatively, the absence of ground-truth data prevents the use of the metrics introduced in
section 4. To evaluate the resolution and fidelity of a reconstructed super-resolution image, we
adopted two widely used metrics: Fourier ring correlation (FRC) (Banterle et al., 2013) and the
resolution-scaled Pearson’s coefficient (RSP) Culley et al. (2018). FRC reconstructs two super-
resolution images by splitting localisations into two subsets, computing their Fourier transforms,
and then measuring the correlation of their spatial frequency signals against each other. The result-
ing curve provides an estimate of the spatial frequency at which signal can no longer be distinguished
from noise (Banterle et al., 2013). RSP is defined as the Pearson correlation coefficient between the
reconstructed super-resolution image and a reference image, typically the mean of all raw wide-field
frames. Values close to one indicate strong agreement between the reconstruction and the reference.

Results with these metrics on real datasets are reported in Table 2. In dense-activations regimes, our
approach consistently yields lower FRC and higher RSP values than other methods, confirming the
visual improvements illustrated in Figure 4.

Ablation study. We have conducted an ablation study on synthetic data to validate the effective-
ness of our loss function and our iterative architecture. Results are reported in Table 3. It can be
seen that the loss function drives most of the improvement, with our iterative architecture providing a
modest boost. Given the additional memory and compute overhead of our architecture, a lightweight
variant that retains only the optimal loss function can be considered for deployment scenarios with
constrained resources.

5 DISCUSSION AND CONCLUDING REMARKS

We have presented a novel deep-learning SMLM method that surpasses existing methods in medium
and high-density regimes, all without the need for handcrafted layers. By enabling faster data ac-
quisition, our approach extend SMLM’s temporal resolution, allowing more accurate observation of
rapid biological processes. Furthemore, the integration of optimal transport theory to SMLM could
open a path to new localization algorithms.

The main limitation of our method is the longer training and inference times that result from its iter-
ative design. However, training is a one-time cost per experimental setup, and inference remains fast
enough (∼ 200 fps on a modern GPU) to let biologists run multiple experiments sequentially with
minimal delay. Another limitation that nearly all top-performing methods share is the dependence
for precise PSF calibration (Lelek et al., 2021a). Future work could focus on robust methods invari-
ant to PSF variations, or even pursue blind SMLM super-resolution without sacrificing precision.
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ETHICS STATEMENT

In this work, we explore new model architecture and loss function to improve single-molecule lo-
calization microscopy (SMLM) reconstruction. We do not anticipate ethical or societal harms: the
work is computational only and all biological data used are public and were used according to their
licenses. We believe that by improving SMLM reconstruction and releasing our code openly, this
work can broadly benefit biological research and make advanced tools accessible to communities
worldwide.

REPRODUCIBILITY STATEMENT

The project repository includes all requirements to reproduce our results. We provide the full source
code and model implementation, all datasets are publicly available, training and evaluation scripts
are provided with all hyperparameters set (including random seeds), and python environment speci-
fication are supplied, making all experiments from section 4 reproducible.
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A APPENDIX

A.1 IMAGE FORMATION PROCESS

SMLM experimental setups typically employ either Electron-Multiplying CCD (EM-CCD) or sci-
entific CMOS (sCMOS) cameras. Their sensors converts incident photons into a digital intensity
value (ADU) through a sequence of physical processes, each of which introduces noise.

Let n be the incident photon count on the camera sensor. Initially, photon detection is modeled as a
Poisson process — known as shot noise — with a mean proportional to n and the quantum efficiency
(QE), and an offset known as the spurious charge (c):

ne,1 ∼ P (QE× n+ c) . (9)

EM-CCD cameras introduce an additional amplification stage, modeled as a Gamma distribution
with parameters ne,1 and the electromagnetic gain (EM):

ne,2 ∼ Γ(ne,1,EM) for EM-CCD, or ne,2 = ne,1 for sCMOS. (10)

Subsequently, read noise is modeled by a normal distribution with mean ne,2 and standard deviation
σR:

ne,3 ∼ N (ne,2, σR). (11)

Finally, the analog-to-digital conversion process yields the observed ADU, scaled by the electrons
per ADU (eADU) and offset by a baseline (B):

y = min

(⌊
ne,3

eADU

⌋
+B , 65535

)
(12)

Table 4 presents the parameters for two cameras commonly used in SMLM. Evolve Delta 512 is
used by in the Tubulin and NPC-Nup107 datasets (Li et al., 2018), while Dhyana 400BSI V3 is used
in the NPC-Nup96 dataset (Fei et al., 2025).
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Parameter Evolve Delta 512 Dhyana 400BSI V3

Camera type EMCCD sCMOS
Quantum efficiency (QE) 0.90 0.95
Spurious charge (c) 0.002 0.002
EM gain (EM) 300 —
Readout noise (σR) 74.4 1.535
Electrons per ADU (eADU) 45 0.7471
ADU baseline (B) 100 100

Table 4: Parameters for two typical cameras used in SMLM.

A.2 ARCHITECTURE DETAILS

Decoder architecture. The decoder is responsible for mapping a C ×H ×W tensor to a d × 5
matrix, therefore its architecture is, and foremost, driven by the choice of d. In DECODE, Speiser
et al. (2021) picked d = H×W and predicts one candidate per pixel in the original frame y. This led
to an enormous amount of predictions, even at extremely high densities. Conversely, object detection
using transformer architectures like DETR (Carion et al., 2020) typically predicts 100 candidates,
which is an order of magnitude larger than the expected number of objects to detect in a normal
object detection task. We picked a middle ground and chose d = H ×W/4. We found that one
candidate per four original pixels offers an effective balance between coverage and computational
cost.

Therefore, our decoder is formally defined as D : RC×H×W 7−→ R5×H/2×W/2, mapping a latent
variable to a H/2×W/2 map with 5 channels, where each pixel is an activation prototype.

Consider a single pixel i of D’s output, and let (x̃i, ỹi) be its 2D coordinates in the camera coor-
dinate system. The five elements output for this pixel encode the characteristics of the underlying
candidate activation: the detection score ŝi, the relative lateral coordinates (∆x̂i,∆ŷi), the depth ẑi
and the number of emitted photons n̂i. The absolute lateral coordinates (x̂i, ŷi) are reconstructed
by summing (∆x̂i,∆ŷi) with (x̃i, ỹi). The magnitude of the relative coordinate offsets (∆x̂,∆ŷ)
predicted by the decoder is set to three times the pixel size. This extended range permits multiple
activations to be mapped within a single pixel area, as neighbouring activations can contribute to
their surroundings.

Finally, the output is formatted into a candidate set X̂ = {(x̂i, ŷi, ẑi, n̂i)}1≤i≤d and a detection
scores set S = {ŝi}1≤i≤d. We integrate this reconstruction process into the decoder, meaning
D(z) = (X̂ , Ŝ).
The practical implementation of the decoder consists sequentially of a 2×2 max pooling layer, fol-
lowed by a single residual block (He et al., 2016) and a linear projection.

Differentiable simulation within our model. During inference, our algorithm selects a subset
of candidate detections by thresholding their confidence scores. However, this operation is non-
differentiable, preventing direct gradient propagation during training. To mimic this behaviour while
retaining differentiability, we replace it by a soft weighting that scales the photon count of each
candidate by its detection confidence. For each candidate xi in X̂ , the network outputs the 3D
coordinates (x̂i, ŷi, ẑi), the raw photon count n̂i, and a detection confidence ŝi ∈ (0, 1). We choose
to modulate the photon count by the confidence, producing the weighted activation

x̃i =
(
x̂i, ŷi, ẑi, ŝi n̂i

)
,

and the set of all such activations is denoted X̃ = {x̃i}di=1. This causes activations with low
detection scores to have a number of emitted photons near zero, making them almost non-existent,
while keeping almost untouched activations with a detection score close to one, mimicking the effect
of a hard threshold while remaining fully differentiable.

After derivation, the expected image ŷ is obtained by:

ŷ = E[ŷ|X̃ ] = QE× EM

eADU
H(X̃ ) +B, (13)
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Subpart Multiply-Accumulate operations Parameters

Encoder 1.03 GMac 1.05 M
Decoder 512.56 MMac 499.4 k
Residual Network 1.87 GMac 1.26 M
Renderer 94.64 MMac 0

Table 5: Multiply-Accumulate operations and number of parameters of our model subparts.

and with EM = 1 for sCMOS camera. ỹ is an end-to-end differentiable approximation of the
reconstructed output, and can be used inside our iterative refinement scheme.

A.3 COMPUTATIONAL FOOTPRINT

Training is performed using an NVIDIA H100 GPU using the AdamW optimizer with a learning
rate of 4 × 10−4, a weight decay of 0.01, and a cosine annealing scheduler. We chose a batch size
of 128 to maximize GPU usage, filling all 80GB of VRAM. It can be lowered using smaller batch
sizes or gradient accumulation.

We trained for 14 hours 100 epochs of 1024 steps each, totaling approximately 100,000 steps. Ex-
cellent results (E3D ≥ 0.72 on EPFL’s density=2.0 and high SNR dataset) are achieved after only 20
minutes of training, at around 2000 steps.

During inference, a batch size of 16 produces a peak VRAM usage of 8.7GB and processes 2500
64x64 images in 30 s, or 12ms/frame.

Table 5 shows an overview of the computational resources for each subpart of our model.
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