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Abstract001

Chart-to-code is an emerging task with signif-002
icant potential in data analysis, automated re-003
porting, and education. It requires accurate004
visual interpretation of charts and the ability005
to translate this understanding into executable006
code. However, existing methods often strug-007
gle to generate precise code for more com-008
plex charts, resulting in non-executable code009
and inaccurate chart reconstructions. To ad-010
dress these challenges, we introduce Visual011
Sketchbook—a novel framework that employs012
a multistage optimization process through iter-013
ative multimodal feedback, inspired by recent014
test-time scaling techniques. Our method de-015
composes the generation process into reflection016
and refinement stages, allowing for progressive017
reasoning and verification. Experiments show018
that Visual Sketchbook achieves substantial im-019
provements (on average a 12% gain with a max-020
imum of 17%) in chart-to-code tasks compared021
to baseline methods. We further demonstrate022
that the effectiveness and generalizability of023
our proposed method through detailed analysis024
and ablation studies.025

1 Introduction026

Chart-to-code is a rapidly evolving research area fo-027

cused on enabling multimodal large language mod-028

els (MLLMs) to generate executable code that accu-029

rately reproduces visual charts (Zhao et al., 2025;030

He et al., 2024). It has significant potential for031

application in fields like data analysis, automated032

reporting, and education (Han et al., 2023; Yang033

et al., 2024; Bendeck and Stasko, 2024), where it034

can enhance efficiency and reduce manual effort in035

visualizing data.036

Chart-to-code requires not only an accurate inter-037

pretation of a chart’s visual features such as layout,038

scale, labels, and colors, but also their precise trans-039

lation into well-structured functional code. How-040

ever, exsiting approaches employ a single-pass gen-041

eration strategy to produce the entire code at once042

Figure 1: Overview of Visual Sketchbook framework.

based on a static chart input(Shi et al., 2024; Wu 043

et al., 2024), resulting in deviations in chart details 044

and reduced code executability. 045

To address the challenges, we draw inspiration 046

from test-time scaling techniques, which allow 047

models to reflect on and adjust their outputs during 048

inference and improve their performance. Follow- 049

ing self-correction and self-reflection studies in 050

reasoning and programming tasks (Saunders et al., 051

2022; Ding et al., 2024; Xi et al., 2024), we pro- 052

pose Visual Sketchbook, an iterative reasoning 053

framework that incorporates multimodal feedback 054

to refine chart-to-code generation. Specifically, Vi- 055

sual Sketchbook provides the model with a space to 056

generate initial code and chart drafts, which it can 057

then review and adjust iteratively, much like refin- 058

ing a rough sketch into a final version. This process 059

combines feedback from both code execution and 060

visual analysis, allowing the model to detect and 061

correct errors by comparing the generated output 062

with the expected chart. Unlike single-pass meth- 063

ods, this iterative approach enables the model to 064

improve with each round of interaction, resulting 065

in more reliable chart reconstructions. 066

To evaluate the effectiveness of our proposed 067

method, we conduct experiments on ChartMimic 068
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benchmark (Shi et al., 2024). The experimental069

results show that Visual Sketchbook outperforms070

baselines in both chart fidelity and code executabil-071

ity, achieving an average gain of 12% with a max-072

imum of 17% in task performance. In particular,073

our iterative feedback mechanism significantly re-074

duces errors related to non-executable code and075

discrepant chart details. Additionally, we conduct076

ablation studies to assess the framework’s robust-077

ness across different refinement strategies. Results078

highlight the adaptability of sequential refinement079

strategy, underscoring its potential to advance mul-080

timodal code generation tasks and offering valuable081

directions for future research. In summary, our con-082

tributions are as follows:083

• We introduce Visual Sketchbook, a novel frame-084

work for chart-to-code tasks that leverages mul-085

timodal feedback to improve performance, and086

present a multi-aspect self-reflection approach087

that iteratively enhances the fidelity of chart repli-088

cations.089

• We validate the effectiveness of Visual Sketch-090

book through experiments on the ChartMimic091

dataset, demonstrating its performance in chart092

reconstruction.093

• To further explore Visual Sketchbook, we con-094

duct ablation experiments to analyze the impact095

of different improvement strategies on the final096

performance.097

2 Visual Sketchbook098

We propose the Visual Sketchbook framework to099

enhance the chart-to-code performance of mod-100

els through an iterative self-reflection mechanism.101

This framework enables the model to iteratively re-102

fine its generated code by systematically analyzing103

and addressing discrepancies between the gener-104

ated and original charts. It consists of two stages:105

(1) an initial code generation stage, and (2) an it-106

erative refinement stage based on self-reflection.107

Figure 1 illustrates the workflow of Visual Sketch-108

book.109

2.1 Code Generation110

In the code generation stage, the model receives111

the original chart and task description (i.e., repli-112

cating the original chart) as input and generates an113

initial version of the code. This generated code114

serves as the foundation for subsequent iterative115

refinement. To enhance the likelihood of success- 116

ful code execution, we employ the Self-Debugging 117

mechanism (Chen et al., 2023). Specifically, if the 118

generated code encounters a run-time error, the 119

model is instructed to debug based on the error 120

messages provided by the Python interpreter. The 121

self-debugging process continues until the code 122

runs successfully or the maximum iteration limit 123

is reached, which is set to three to prevent infi- 124

nite loops. By resolving execution issues at this 125

stage, the framework ensures that the subsequent 126

iterative refinement stage operates on functional 127

code, thereby focusing on improving visual accu- 128

racy rather than code correctness. 129

2.2 Iterative Refinement Based on 130

Self-Reflection 131

During the iterative refinement stage, the model 132

refines its generated code by iteratively focusing 133

on different aspects of the chart, such as layout, 134

text, color, and data representation. Each aspect 135

contributes uniquely to the visual and structural 136

fidelity of the generated chart: 137

• Layout: Adjusts the overall structure, including 138

the relative positioning of axes, legends, and la- 139

bels, to align as closely as possible with the orig- 140

inal chart. 141

• Text: Improve the accuracy of textual elements 142

in terms of both position and content, including 143

labels, legends, and titles. 144

• Color: Modifies the color scheme, aligning the 145

background color and legend hues with those of 146

the original chart. 147

Since the code itself does not directly reflect 148

the differences between the generated and original 149

charts, the model first produces textual descriptions 150

for each aspect of both charts. It then compares 151

these descriptions to identify discrepancies, which 152

serve as feedback for improving the code. This self- 153

reflection process is designed to iteratively detect 154

and address differences in each aspect, enhancing 155

the visual consistency between the generated and 156

original charts. 157

The iterative refinement stage can follow differ- 158

ent strategies depending on the user-defined iter- 159

ation budget. Some possible iteration strategies 160

include: 161

• Sequential Refinement: The model sequentially 162

optimizes each aspect in separate iterations, start- 163

ing with layout, followed by text and color. 164

2



Method
Low-Level High-Level

Text Layout Type Color Avg. GPT-4o

GPT-4o-mini 67.1 89.0 76.0 61.4 73.4 73.0
+ Self Debugging 73.2 92.1 77.6 66.1 77.2 77.4

+ layout 76.3 93.4 78.2 66.5 78.6 79.1
+ text 79.2 93.6 77.8 65.3 79.0 78.9

+ color (Ours) 79.4 93.6 77.7 65.3 79.0 79.4

GLM-4V-Flash 28.3 55.6 49.3 30.7 41.0 39.3
+ Self Debugging 36.3 62.1 50.4 37.2 46.5 43.9

+ layout 37.1 62.3 52.7 38.3 47.6 44.6
+ text 37.6 63.0 53.3 39.8 48.4 46.2

+ color (Ours) 36.9 62.7 53.8 41.5 48.7 46.2

Table 1: Performance comparison of Visual Sketchbook on GPT-4o-mini and GLM-4V-Flash, showing improve-
ments in chart-to-code capability with Self-Debugging and iterative self-reflection.

• Grouped Refinement: The model improves mul-165

tiple aspects within a single iteration, such as166

reflecting on layout, text, and color simultane-167

ously.168

• Single-Aspect Refinement: The model performs169

only one iteration, focusing on a single aspect.170

The flexibility of iteration strategies allows adap-171

tation to different task requirements, ensuring a172

balance between inference efficiency and refine-173

ment quality.174

3 Experiments and Analysis175

3.1 Experimental Setup176

We evaluate the performance of Visual Sketchbook177

on chart-to-code tasks using two models: GPT-4o-178

mini (OpenAI, 2024a) and GLM-4V-Flash (Zhipu,179

2024). For GPT-4o-mini, we set max_tokens to180

4096 and temperature to zero. For GLM-4V-Flash,181

we use a lower max_tokens of 1024 and also set182

the temperature to zero to maintain consistency in183

results. We conduct all experiments on the Chart-184

Mimic benchmark (Shi et al., 2024).185

3.2 Main Results186

Table 1 presents the results of the Visual Sketch-187

book on various models. It shows an 8% per-188

formance improvement for GPT-4o-mini and a189

17% improvement for GLM-4V-Flash. The self-190

debugging mechanism enhances code execution,191

and through sequential refinement of layout, text,192

and color, visual fidelity between the generated and193

original charts steadily improves. These results194

Method
GPT-4o-mini GLM-4V-Flash

Low-Level High-Level Low-Level High-Level

w/o self-reflection 77.2 77.4 46.5 43.9
grouped refinement 77.7 78.6 47.3 45.6
sequential refinement (Ours) 79.0 79.4 48.7 46.2

Table 2: Performance comparison of sequential and
grouped refinement strategies.

highlight Visual Sketchbook’s potential in enhanc- 195

ing the chart-to-code capabilities of MLLMs. 196

3.3 Ablation Study 197

We conduct various ablation studies to evaluate 198

the impact of different factors on the Visual Sketch- 199

book. These studies included comparisons between 200

sequential and grouped refinement methods, as 201

well as assessing the necessity of describing the 202

charts prior to identifying discrepancies. 203

Table 2 compares the performance of sequential 204

and grouped refinement across three key aspects: 205

layout, text, and color. The results demonstrate 206

that sequential refinement generally outperforms 207

grouped refinement in both low-level and high- 208

level evaluations. This superior performance is 209

attributed to the independent and focused critiques 210

provided for each aspect during sequential refine- 211

ment. Conversely, although grouped refinement 212

is more efficient due to fewer iterations, it tends 213

to produce conflicting feedback between different 214

aspects, leading to a slight reduction in overall per- 215

formance. 216

To investigate the necessity of describing the 217

charts in the self-reflection step, we conduct an 218

ablation study comparing two approaches: one 219
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Original Chart w/o self-reflection Visual Sketchbook

Figure 2: Case study of Visual Sketchbook.

Method
GPT-4o-mini

Low-Level High-Level

w/o self-reflection 77.2 77.4
self-reflection w/o description 78.4 82.4
self-reflection w/ description (Ours) 79.0 79.4

Table 3: Performance comparison of sequential and
grouped refinement strategies.

where the model first generates a description of220

the original chart and the code-generated chart,221

and the other where the model directly inputs both222

charts for discrepancy detection without a prior223

description. Tabel 3 shows that the approach with-224

out descriptions outperforms the description-based225

method in High-Level scores. This is likely be-226

cause direct discrepancy detection aligns better227

with the High-Level evaluation format, where GPT-228

4o (Hurst et al., 2024) scores the similarity between229

the code-generated chart and the original chart.230

Although the no-description approach achieves a231

higher High-Level score, it requires more from the232

model, as the model must be able to simultane-233

ously process both charts. Therefore, we choose234

the description-based self-reflection method, which235

balances performance and the requirements for236

model capability.237

3.4 Case Study 238

We present two examples in Figure 2 to further 239

demonstrate the advantages of Visual Sketchbook. 240

In the first case, Visual Sketchbook identifies and 241

corrects the omission of two entities from the origi- 242

nal chart. It also adjusted the color scheme to more 243

closely match the original chart, ensuring a more 244

accurate visual representation of the data. In the 245

second case, Visual Sketchbook corrects the chart 246

type, but it does not fully address the issue with the 247

color bar y-tick labels, leaving a minor inconsis- 248

tency that could be improved in future iterations. 249

4 Conclusion 250

In this work, we introduce Visual Sketchbook, an 251

iterative framework designed to improve chart-to- 252

code generation by leveraging multimodal feed- 253

back. By combining visual analysis with code ex- 254

ecution, Visual Sketchbook allows the model to 255

refine its outputs through multiple cycles, address- 256

ing errors and enhancing chart fidelity. Our experi- 257

ments demonstrate the superiority of this approach 258

over traditional single-pass methods, achieving no- 259

table improvements in both code executability and 260

chart accuracy. We believe that Visual Sketchbook 261

offers a promising step forward in the field of mul- 262

timodal code generation. 263
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Limitations264

There are some limitations to be addressed in future265

work. First, this study does not evaluate the Visual266

Sketchbook method on open-source models, but267

experiments on proprietary models demonstrate its268

effectiveness. Future research will expand testing269

to a wider range of open-source models, assessing270

its performance across models with varying archi-271

tectures and performance levels. In addition, this272

study focuses primarily on chart replication, which273

limits task coverage. While the effectiveness of274

the Visual Sketchbook has been shown in this task,275

exploring other chart-related tasks will be essential.276

Future research will aim to broaden the scope of277

chart-to-code generation scenarios.278
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A Related Work374

Multimodal Large Language Models. Recent de-375

velopments in MLLMs have dramatically improved376

the processing of complex multimodal inputs. No-377

tably, proprietary models such as GPT-4V (Ope-378

nAI, 2024b) and Gemini (Team et al., 2023) have379

showcased significant advancements. Concurrently,380

open-weight models like LLaVA (Liu et al., 2024),381

Qwen-VL (Bai et al., 2023), and DeepSeek-VL (Lu382

et al., 2024) have made substantial contributions to383

the domain, further advancing the state of the art.384

Chart Understanding. Driven by advance-385

ments in computer vision and natural language386

processing, chart understanding has received con-387

siderable attention in recent years. This task in-388

volves extracting visual information from charts389

and integrating it with logical reasoning and se-390

mantic understanding to generate accurate descrip-391

tions or answer related questions. Key sub-tasks392

within chart understanding include chart question393

answering (Masry et al., 2022), chart-to-text sum-394

marization (Kantharaj et al., 2022), and chart-to-395

code generation, among others. Chart-to-code, a396

relatively underexplored subfield within chart un-397

derstanding, aims to generate executable code (e.g.,398

Python scripts) from visual chart data. Early ap-399

proaches typically combine computer vision tech-400

niques with language models to produce code that401

replicates chart patterns or constructs data process-402

ing pipelines (Jiang et al., 2024). However, existing403

methodologies have been constrained by limita-404

tions in code accuracy and flexibility (Shi et al.,405

2024; Wu et al., 2024). This paper seeks to address406

these challenges by proposing new advancements407

in the field.408

B Prompts409

Figures 3 to 6 show the prompts used in Visual410

Sketchbook.411

The Prompt for Code Generation

You are a skilled AI agent specializing
in generating code to replicate or create
charts. Your responses must include well-

412

commented, efficient, and accurate code
in the specified programming language
(Python with Matplotlib).

Here is the query:
{{query}}

When you complete a plot, remember
to save it. The file name should be
“{{output_image_file}}”.

{{image}}
413

Figure 3: The prompt for code generation.

The Prompt for Chart Description

Layout: Please describe in detail the layout
of the chart, including the positions and rela-
tive arrangements of the subplots, title, axes,
legends, data points, grid lines, and other
components. You just need to pay attention
to the arrangement of each component.
Text: Please describe the content and posi-
tions of titles, labels, axis and annotations
in the chart.
Color: Please describe the color informa-
tion used in the chart, including background
colors and the colors of data series.

{{image}}
414

Figure 4: The prompt for chart description.

The Prompt for Self-Reflection

You will receive two charts: the first one
is the reference chart, and the second one
is the AI-generated chart. Your task is to
identify the most significant discrepancy or
omission between the AI-generated chart
and the reference chart.
{{seggestion}}

Your output should match this format:
{
"discrepancy": "<one key discrepancy
where the AI-generated chart does not align
with the reference chart>",

415
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"correct": "<the correct information of the
reference chart>"
}

416

Figure 5: The prompt for Self-Reflection.

The Prompt for Self-Refinement

You are an expert in chart visualizations
using Matplotlib. Your task is to modify
the provided Python code to ensure that
the resulting chart closely matches the
reference chart.

The following code is responsible for
reproducing the reference chart:
{{code}}

The chart generated by this code, based on
its description, does not match the reference
chart in the following areas:
{{feedback}}

Now, please generate the improved
code. Once you have completed the plot,
remember to save it. The file should be
named “{{output_image_file}}.”

{{image}}
417

Figure 6: The prompt for Self-Refinement.

C Statements418

C.1 Data Statement419

All the data used in our paper are from open-source420

datasets, which are permitted for use in scientific421

research and publication.422

C.2 AI Assistants Using Statement423

We only used ChatGPT to assist with writing re-424

finement, including correcting grammar errors and425

improving readability. However, we did not use the426

AI assistant for coding or research innovation.427

C.3 Computational Budget428

Our proposed method achieves accurate genera-429

tion of code from charts at inference time. This430

approach avoids the need to train a new model,431

thereby saving significant computational resources. 432

In our experiments, GLM-4V-Flash is free. On av- 433

erage, generating the code per 1,000 charts using 434

GPT-4o-mini costs approximately $5, and evalu- 435

ating these charts using ChartMimic (High-Level) 436

costs about $10. 437
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