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Abstract

Chart-to-code is an emerging task with signif-
icant potential in data analysis, automated re-
porting, and education. It requires accurate
visual interpretation of charts and the ability
to translate this understanding into executable
code. However, existing methods often strug-
gle to generate precise code for more com-
plex charts, resulting in non-executable code
and inaccurate chart reconstructions. To ad-
dress these challenges, we introduce Visual
Sketchbook—a novel framework that employs
a multistage optimization process through iter-
ative multimodal feedback, inspired by recent
test-time scaling techniques. Our method de-
composes the generation process into reflection
and refinement stages, allowing for progressive
reasoning and verification. Experiments show
that Visual Sketchbook achieves substantial im-
provements (on average a 12% gain with a max-
imum of 17%) in chart-to-code tasks compared
to baseline methods. We further demonstrate
that the effectiveness and generalizability of
our proposed method through detailed analysis
and ablation studies.

1 Introduction

Chart-to-code is a rapidly evolving research area fo-
cused on enabling multimodal large language mod-
els (MLLMs) to generate executable code that accu-
rately reproduces visual charts (Zhao et al., 2025;
He et al., 2024). It has significant potential for
application in fields like data analysis, automated
reporting, and education (Han et al., 2023; Yang
et al., 2024; Bendeck and Stasko, 2024), where it
can enhance efficiency and reduce manual effort in
visualizing data.

Chart-to-code requires not only an accurate inter-
pretation of a chart’s visual features such as layout,
scale, labels, and colors, but also their precise trans-
lation into well-structured functional code. How-
ever, exsiting approaches employ a single-pass gen-
eration strategy to produce the entire code at once
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Figure 1: Overview of Visual Sketchbook framework.

based on a static chart input(Shi et al., 2024; Wu
et al., 2024), resulting in deviations in chart details
and reduced code executability.

To address the challenges, we draw inspiration
from test-time scaling techniques, which allow
models to reflect on and adjust their outputs during
inference and improve their performance. Follow-
ing self-correction and self-reflection studies in
reasoning and programming tasks (Saunders et al.,
2022; Ding et al., 2024; Xi et al., 2024), we pro-
pose Visual Sketchbook, an iterative reasoning
framework that incorporates multimodal feedback
to refine chart-to-code generation. Specifically, Vi-
sual Sketchbook provides the model with a space to
generate initial code and chart drafts, which it can
then review and adjust iteratively, much like refin-
ing a rough sketch into a final version. This process
combines feedback from both code execution and
visual analysis, allowing the model to detect and
correct errors by comparing the generated output
with the expected chart. Unlike single-pass meth-
ods, this iterative approach enables the model to
improve with each round of interaction, resulting
in more reliable chart reconstructions.

To evaluate the effectiveness of our proposed
method, we conduct experiments on ChartMimic



benchmark (Shi et al., 2024). The experimental
results show that Visual Sketchbook outperforms
baselines in both chart fidelity and code executabil-
ity, achieving an average gain of 12% with a max-
imum of 17% in task performance. In particular,
our iterative feedback mechanism significantly re-
duces errors related to non-executable code and
discrepant chart details. Additionally, we conduct
ablation studies to assess the framework’s robust-
ness across different refinement strategies. Results
highlight the adaptability of sequential refinement
strategy, underscoring its potential to advance mul-
timodal code generation tasks and offering valuable
directions for future research. In summary, our con-
tributions are as follows:

¢ We introduce Visual Sketchbook, a novel frame-
work for chart-to-code tasks that leverages mul-
timodal feedback to improve performance, and
present a multi-aspect self-reflection approach
that iteratively enhances the fidelity of chart repli-
cations.

* We validate the effectiveness of Visual Sketch-
book through experiments on the ChartMimic
dataset, demonstrating its performance in chart
reconstruction.

* To further explore Visual Sketchbook, we con-
duct ablation experiments to analyze the impact
of different improvement strategies on the final
performance.

2 Visual Sketchbook

We propose the Visual Sketchbook framework to
enhance the chart-to-code performance of mod-
els through an iterative self-reflection mechanism.
This framework enables the model to iteratively re-
fine its generated code by systematically analyzing
and addressing discrepancies between the gener-
ated and original charts. It consists of two stages:
(1) an initial code generation stage, and (2) an it-
erative refinement stage based on self-reflection.
Figure 1 illustrates the workflow of Visual Sketch-
book.

2.1 Code Generation

In the code generation stage, the model receives
the original chart and task description (i.e., repli-
cating the original chart) as input and generates an
initial version of the code. This generated code
serves as the foundation for subsequent iterative

refinement. To enhance the likelihood of success-
ful code execution, we employ the Self-Debugging
mechanism (Chen et al., 2023). Specifically, if the
generated code encounters a run-time error, the
model is instructed to debug based on the error
messages provided by the Python interpreter. The
self-debugging process continues until the code
runs successfully or the maximum iteration limit
is reached, which is set to three to prevent infi-
nite loops. By resolving execution issues at this
stage, the framework ensures that the subsequent
iterative refinement stage operates on functional
code, thereby focusing on improving visual accu-
racy rather than code correctness.

2.2 Iterative Refinement Based on
Self-Reflection

During the iterative refinement stage, the model
refines its generated code by iteratively focusing
on different aspects of the chart, such as layout,
text, color, and data representation. Each aspect
contributes uniquely to the visual and structural
fidelity of the generated chart:

» Layout: Adjusts the overall structure, including
the relative positioning of axes, legends, and la-
bels, to align as closely as possible with the orig-
inal chart.

o Text: Improve the accuracy of textual elements
in terms of both position and content, including
labels, legends, and titles.

* Color: Modifies the color scheme, aligning the
background color and legend hues with those of
the original chart.

Since the code itself does not directly reflect
the differences between the generated and original
charts, the model first produces textual descriptions
for each aspect of both charts. It then compares
these descriptions to identify discrepancies, which
serve as feedback for improving the code. This self-
reflection process is designed to iteratively detect
and address differences in each aspect, enhancing
the visual consistency between the generated and
original charts.

The iterative refinement stage can follow differ-
ent strategies depending on the user-defined iter-
ation budget. Some possible iteration strategies
include:

* Sequential Refinement: The model sequentially
optimizes each aspect in separate iterations, start-
ing with layout, followed by text and color.



Method ‘ Low-Level ‘ High-Level
‘ Text Layout Type Color Avg. ‘ GPT-40

GPT-40-mini 67.1 89.0 760 614 734 73.0
+ Self Debugging 732 921 776 66.1 772 77.4
+ layout 763 934 782 66.5 78.6 79.1
+ text 792 936 77.8 653 79.0 78.9
+ color (Ours) | 79.4  93.6 7777 653 79.0 79.4
GLM-4V-Flash 283 556 493 30.7 41.0 39.3
+ Self Debugging 36.3 62.1 504 372 465 439
+ layout 371 623 527 383 47.6 44.6
+ text 376 63.0 533 398 484 46.2
+ color (Ours) | 36.9  62.7 538 415 48.7 46.2

Table 1: Performance comparison of Visual Sketchbook on GPT-40-mini and GLM-4V-Flash, showing improve-
ments in chart-to-code capability with Self-Debugging and iterative self-reflection.

¢ Grouped Refinement: The model improves mul-
tiple aspects within a single iteration, such as
reflecting on layout, text, and color simultane-
ously.

* Single-Aspect Refinement: The model performs
only one iteration, focusing on a single aspect.

The flexibility of iteration strategies allows adap-
tation to different task requirements, ensuring a
balance between inference efficiency and refine-
ment quality.

3 Experiments and Analysis

3.1 Experimental Setup

We evaluate the performance of Visual Sketchbook
on chart-to-code tasks using two models: GPT-4o-
mini (OpenAl, 2024a) and GLM-4V-Flash (Zhipu,
2024). For GPT-40-mini, we set max_tokens to
4096 and temperature to zero. For GLM-4V-Flash,
we use a lower max_tokens of 1024 and also set
the temperature to zero to maintain consistency in
results. We conduct all experiments on the Chart-
Mimic benchmark (Shi et al., 2024).

3.2 Main Results

Table 1 presents the results of the Visual Sketch-
book on various models. It shows an 8% per-
formance improvement for GPT-40-mini and a
17% improvement for GLM-4V-Flash. The self-
debugging mechanism enhances code execution,
and through sequential refinement of layout, text,
and color, visual fidelity between the generated and
original charts steadily improves. These results

Method ‘ GPT-40-mini GLM-4V-Flash

| Low-Level High-Level | Low-Level High-Level

w/o self-reflection
grouped refinement
sequential refinement (Ours)

71.7 78.6 47.3 45.6
79.0 79.4 48.7 46.2

772 77.4 46.5 439

Table 2: Performance comparison of sequential and
grouped refinement strategies.

highlight Visual Sketchbook’s potential in enhanc-
ing the chart-to-code capabilities of MLLM:s.

3.3 Ablation Study

We conduct various ablation studies to evaluate
the impact of different factors on the Visual Sketch-
book. These studies included comparisons between
sequential and grouped refinement methods, as
well as assessing the necessity of describing the
charts prior to identifying discrepancies.

Table 2 compares the performance of sequential
and grouped refinement across three key aspects:
layout, text, and color. The results demonstrate
that sequential refinement generally outperforms
grouped refinement in both low-level and high-
level evaluations. This superior performance is
attributed to the independent and focused critiques
provided for each aspect during sequential refine-
ment. Conversely, although grouped refinement
is more efficient due to fewer iterations, it tends
to produce conflicting feedback between different
aspects, leading to a slight reduction in overall per-
formance.

To investigate the necessity of describing the
charts in the self-reflection step, we conduct an
ablation study comparing two approaches: one
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Figure 2: Case study of Visual Sketchbook.

Method ‘ GPT-40-mini
‘ Low-Level High-Level
w/o self-reflection 77.2 77.4
self-reflection w/o description 78.4 824
self-reflection w/ description (Ours) 79.0 79.4

Table 3: Performance comparison of sequential and
grouped refinement strategies.

where the model first generates a description of
the original chart and the code-generated chart,
and the other where the model directly inputs both
charts for discrepancy detection without a prior
description. Tabel 3 shows that the approach with-
out descriptions outperforms the description-based
method in High-Level scores. This is likely be-
cause direct discrepancy detection aligns better
with the High-Level evaluation format, where GPT-
40 (Hurst et al., 2024) scores the similarity between
the code-generated chart and the original chart.
Although the no-description approach achieves a
higher High-Level score, it requires more from the
model, as the model must be able to simultane-
ously process both charts. Therefore, we choose
the description-based self-reflection method, which
balances performance and the requirements for
model capability.

3.4 Case Study

We present two examples in Figure 2 to further
demonstrate the advantages of Visual Sketchbook.
In the first case, Visual Sketchbook identifies and
corrects the omission of two entities from the origi-
nal chart. It also adjusted the color scheme to more
closely match the original chart, ensuring a more
accurate visual representation of the data. In the
second case, Visual Sketchbook corrects the chart
type, but it does not fully address the issue with the
color bar y-tick labels, leaving a minor inconsis-
tency that could be improved in future iterations.

4 Conclusion

In this work, we introduce Visual Sketchbook, an
iterative framework designed to improve chart-to-
code generation by leveraging multimodal feed-
back. By combining visual analysis with code ex-
ecution, Visual Sketchbook allows the model to
refine its outputs through multiple cycles, address-
ing errors and enhancing chart fidelity. Our experi-
ments demonstrate the superiority of this approach
over traditional single-pass methods, achieving no-
table improvements in both code executability and
chart accuracy. We believe that Visual Sketchbook
offers a promising step forward in the field of mul-
timodal code generation.



Limitations

There are some limitations to be addressed in future
work. First, this study does not evaluate the Visual
Sketchbook method on open-source models, but
experiments on proprietary models demonstrate its
effectiveness. Future research will expand testing
to a wider range of open-source models, assessing
its performance across models with varying archi-
tectures and performance levels. In addition, this
study focuses primarily on chart replication, which
limits task coverage. While the effectiveness of
the Visual Sketchbook has been shown in this task,
exploring other chart-related tasks will be essential.
Future research will aim to broaden the scope of
chart-to-code generation scenarios.
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A Related Work

Multimodal Large Language Models. Recent de-
velopments in MLLMs have dramatically improved
the processing of complex multimodal inputs. No-
tably, proprietary models such as GPT-4V (Ope-
nAl, 2024b) and Gemini (Team et al., 2023) have
showcased significant advancements. Concurrently,
open-weight models like LLaVA (Liu et al., 2024),
Qwen-VL (Bai et al., 2023), and DeepSeek-VL (Lu
et al., 2024) have made substantial contributions to
the domain, further advancing the state of the art.

Chart Understanding. Driven by advance-
ments in computer vision and natural language
processing, chart understanding has received con-
siderable attention in recent years. This task in-
volves extracting visual information from charts
and integrating it with logical reasoning and se-
mantic understanding to generate accurate descrip-
tions or answer related questions. Key sub-tasks
within chart understanding include chart question
answering (Masry et al., 2022), chart-to-text sum-
marization (Kantharaj et al., 2022), and chart-to-
code generation, among others. Chart-to-code, a
relatively underexplored subfield within chart un-
derstanding, aims to generate executable code (e.g.,
Python scripts) from visual chart data. Early ap-
proaches typically combine computer vision tech-
niques with language models to produce code that
replicates chart patterns or constructs data process-
ing pipelines (Jiang et al., 2024). Howeyver, existing
methodologies have been constrained by limita-
tions in code accuracy and flexibility (Shi et al.,
2024; Wu et al., 2024). This paper seeks to address
these challenges by proposing new advancements
in the field.

B Prompts

Figures 3 to 6 show the prompts used in Visual
Sketchbook.

The Prompt for Code Generation

You are a skilled Al agent specializing
in generating code to replicate or create
charts. Your responses must include well-

commented, efficient, and accurate code
in the specified programming language
(Python with Matplotlib).

Here is the query:
{{query}}

When you complete a plot, remember
to save it. The file name should be

“{{output_image_file}}”.

{{image}}

Figure 3: The prompt for code generation.

The Prompt for Chart Description

Layout: Please describe in detail the layout
of the chart, including the positions and rela-
tive arrangements of the subplots, title, axes,
legends, data points, grid lines, and other
components. You just need to pay attention
to the arrangement of each component.
Text: Please describe the content and posi-
tions of titles, labels, axis and annotations
in the chart.

Color: Please describe the color informa-
tion used in the chart, including background
colors and the colors of data series.

{{image}}

Figure 4: The prompt for chart description.

The Prompt for Self-Reflection

You will receive two charts: the first one
is the reference chart, and the second one
is the Al-generated chart. Your task is to
identify the most significant discrepancy or
omission between the Al-generated chart
and the reference chart.

{{seggestion}}

Your output should match this format:

{

"discrepancy": "<one key discrepancy
where the Al-generated chart does not align
with the reference chart>",



https://www.bigmodel.cn/dev/activities/free/glm-4v-flash

n,on

"correct": "<the correct information of the
reference chart>"

}

Figure 5: The prompt for Self-Reflection.

The Prompt for Self-Refinement

You are an expert in chart visualizations
using Matplotlib. Your task is to modify
the provided Python code to ensure that
the resulting chart closely matches the
reference chart.

The following code is responsible for
reproducing the reference chart:

{{code}}

The chart generated by this code, based on
its description, does not match the reference
chart in the following areas:

{{feedback}}

Now, please generate the improved
code. Once you have completed the plot,
remember to save it. The file should be
named “{{output_image_file}}.”

{{image}}

Figure 6: The prompt for Self-Refinement.

C Statements
C.1 Data Statement

All the data used in our paper are from open-source
datasets, which are permitted for use in scientific
research and publication.

C.2 Al Assistants Using Statement

We only used ChatGPT to assist with writing re-
finement, including correcting grammar errors and
improving readability. However, we did not use the
Al assistant for coding or research innovation.

C.3 Computational Budget

Our proposed method achieves accurate genera-
tion of code from charts at inference time. This
approach avoids the need to train a new model,

thereby saving significant computational resources.
In our experiments, GLM-4V-Flash is free. On av-
erage, generating the code per 1,000 charts using
GPT-40-mini costs approximately $5, and evalu-
ating these charts using ChartMimic (High-Level)
costs about $10.
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