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Abstract

Chain-of-thought (CoT) reasoning exposes the intermediate thinking process of
large language models (LLMs), yet verifying those traces at scale remains un-
solved. In response, we introduce the idea of decision pivots—minimal, verifiable
checkpoints that any correct reasoning path must visit. We hypothesize that correct
reasoning, though stylistically diverse, converge on the same pivot set; incorrect
ones violate at least one pivot. Leveraging this property, we propose a self-training
pipeline that (i) samples diverse reasoning paths and mines shared decision pivots,
(ii) compresses each trace into pivot-focused short-path reasoning using an auxil-
iary verifier, and (iii) post-trains the model using its self-generated outputs. The
proposed method aligns reasoning without ground truth reasoning data or external
metrics. Experiments on standard benchmarks such as LogiQA, MedQA, and
MATH500 show the effectiveness of our method.

1 Introduction

Large language models (LLMs) can now solve diverse problems when prompted to articulate
their chain-of-thought (CoT) reasoning [38]. Yet these reasoning paths are often redundant,
self-contradictory, or logically unsound, even when they culminate in the right answer. Current
training pipelines such as reinforcement learning from human feedback (RLHF) [28] evaluate entire
responses, providing only coarse signals that do little to supervise the underlying reasoning process.
As a result, we still lack a scalable way to verify and train high-quality explanations without resorting
to expensive human annotation. We claim that many reasoning tasks are governed by decision pivots:
minimal, verifiable checkpoints (e.g., keyword, key logic) that every sound explanation must traverse.
Echoing the proverb “All roads lead to Rome”, correct CoTs succeed for the same reason: they visit
the shared pivot set; whereas incorrect paths fail in many different ways, omitting or contradicting
at least one pivot. Exploiting this observation, we propose a self-training method, ROMA (Rea-
soning Optimization via Multi-path Aggregation), that aligns a model’s reasoning without utilizing
human-annotated rationales or handcrafted metrics.

Our method operates in three stages. First, we draw K diverse CoT reasoning paths for each input
sample, bootstrapping the pivots shared by the successful reasoning paths [41]. Second, we merge
multiple reasoning paths into a short-path reasoning (SPR) that focuses on the pivots and removes
redundant steps. Finally, we post-train the model with RLHF [31], treating SPRs as preferred positives
and individual reasoning paths as negatives. The entire loop is model-driven and repeatable at scale
[32]. Experiments on LOGIQA[22], MEDQA[16], and MATH500[13] yield simultaneous gains in
solving downstream task accuracy and in reasoning quality, while confirming the method’s generality
across commonsense, expert (e.g., medical), and math domains.
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Contributions.

• We formalize decision pivots and show that correct reasoning concentrates on a compact pivot set.
• We propose ROMA, a bootstrap→rewrite framework that aggregates K paths and, via a fine-tuned

verifier, distills a compact, pivot-consistent short-path reasoning.
• We build a self-training pipeline that leverages the short-path data (e.g., with DPO) to improve both

task accuracy and explanation quality across benchmarks (LogiQA, MedQA, MATH500).
• We introduce a decision pivot-based reasoning metric and show it complements general CoT

metrics (e.g., ROSCOE) for preference-data selection.

2 Preliminaries & Positioning

Post-training. Post-training adapts a pre-trained model to produce human-aligned outputs. Typ-
ically, this involves supervised fine-tuning (SFT) on curated human-aligned data, followed by re-
inforcement learning (RL) [28] on preference-labeled examples. A key challenge is constructing
reliable preference data. One line of work derives labels from explicit metrics [9, 10, 30] or from
model-based feedback [3, 17, 19, 23] (LLM-as-judge). RLVR (reinforcement learning with verifiable
rewards) removes human preference signals entirely by using programmatic verifiers to assign binary
rewards—effective in domains like math or coding, where correctness is objectively checkable [6].
Extensions seek to broaden this to more open ended reasoning [15, 24], but still require task-specific
verifiers. Self-Training. In parallel, self-training approaches leverage the model’s own outputs as
training data. STaR [41] bootstraps from reasoning paths that yield correct answers; Self-Refine [25]
uses iterative self-critique; and other works exploit self-consistency as a proxy reward for RL [32],
build self-editing/verifying systems [42], or study the generation–verification gap theoretically [34].
These methods improve reasoning quality by filtering or refining full reasoning paths, but generally
treat each correct reasoning in isolation. In contrast, our approach intersects multiple successful
reasoning paths to identify decision pivots—minimal, verifiable checkpoints that all correct solutions
share—and rewrites them into concise short-path reasoning before preference optimization. This
distillation step targets reasoning faithfulness and verifiability without relying on handcrafted verifiers
or general reasoning metrics [9].

Reasoning Models. Chain-of-thought (CoT) prompting [39] established that models reason more
effectively when they articulate intermediate steps, with later work showing that even a simple
prompt (“Let’s think step by step”) can elicit this behavior [18]. Research since has explored richer
reasoning supervision: scratchpad-style intermediates [27], self-consistency via majority voting over
multiple reasoning paths [36], and targeted data curation—aggregating reasoning corpora [8], actively
selecting informative queries [21], or varying difficulty adaptively [7]. Recent trends also include
compressing CoTs for efficiency or readability, but these typically focus on token length reduction
[4, 12, 26] rather than identifying core, verifiable reasoning elements. Our method differs in that it
uses multi-path intersection to recover a shared, verifiable reasoning core, rewrites it into a short path
form, and uses this distilled form as a high-quality supervision signal—bridging the gap between raw
reasoning data generation and verifiable, minimal-step reasoning refinement.

3 Problem Formulation: In search of Short-Path Reasoning

In this section, we formally introduce the problem setting. Specifically, we consider the general
setting where, for each input–output pair (x, y), x ∈ X is a question and y ∈ Y is its ground-truth
answer (e.g., a class label). A pre-trained reasoning model pθ(r, ŷ | x) [2, 40] jointly generates a
chain-of-thought reasoning path r = (t1, t2, . . . , tl) of length l and a prediction ŷ given x. When
convenient we use the induced conditionals pθ(y | x, r) (label probability given a trace) and pθ(r |
x, y) ∝ pθ(r, y | x) (reasoning path distribution given the label). We denote the unobserved ground
truth reasoning as r∗ = (t∗1, t

∗
2, . . . , t

∗
d) with d ≪ l. The dataset D = {(xi, yi)}Ni=1 contains N

supervised examples.

Here, the main goal is to produce high-quality reasoning that closely resembles the ground-truth
reasoning r∗. More specifically, we aim to obtain reasoning that is (1) correct with respect to the
final answer, (2) concise in containing only the information necessary to support that answer, and (3)
faithful in the sense of being causally responsible and correct for the model’s prediction. However,
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Question: 1+ 1 + 1 = ?

1 + 1 = 21 x 1 = 1 1 + 1 = 1

(2) + 1 = 3 Wait, user requests addition,
not multiplication.

(1) x 1 = 1

1 + 1 = 2

(2) + 1 = 3

(1 + 1) + 1 = 1

The answer is 3

The answer is 3

The answer is 1

Wait, 1 + 1 is 2, not 1 

The answer is 1 1 + 1 = 2

(2) + 1 = 3

The answer is 3

(2) + 1 = 2

The answer is 2

Number of Steps Visited: 4

Number of Steps Visited: 2

Short-Path Reasoning

Number of Steps Visited: 4

Reasoning Step Decision Pivot Correct Answer Wrong Answer

Figure 1: A model’s chain-of-thought reasoning may take various paths to reach a final decision,
naturally visiting redundant or incorrect thought steps. However, such errors are not easily captured
by existing methods. Instead, we introduce the concept of decision pivots, which are a set of key
information that a model’s reasoning path must visit to reach a certain decision. In this sense, we aim
to generate a concise, factual reasoning path that focuses on the decision-pivots, which we denote as
Short-Path Reasoning (SPR).

several factors make this problem challenging. First, the absence of ground-truth reasoning. While
the correct label y is observed, the true reasoning process leading to the label is not. Hence, there is
no direct supervision for which intermediate reasoning steps are valid. Second, verifying intermediate
reasoning steps is difficult, especially in open-ended reasoning tasks (e.g., general language tasks).
Hence, individual reasoning steps are hard to verify automatically, while human verification is costly
and lacks scalability. Formally, the objective can be stated as finding a reasoning trace r that

max
r

pθ
(
y | x, r

)
(1)

subject to r being as concise as possible while preserving correctness. This requires identifying
and retaining only the key information necessary to support the answer, despite the lack of explicit
supervision and step-level verifiability [44].

Limitations of Prior Approaches. Several existing paradigms attempt to address this challenge
but face inherent limitations in this general setting. Self-training methods such as STaR [41] boot-
strap from model-generated reasoning that yield correct answers, but treat each reasoning path
independently and do not explicitly seek minimality or commonality across multiple successful paths.
Self-consistency [36] aggregates predictions from multiple sampled reasoning paths, improving
answer accuracy but producing no refined intermediate reasoning for training. RLVR [6, 42, 43]
uses verifiable rewards to supervise reasoning, but is restricted to domains where intermediate verifi-
cation is feasible, such as math and code, and does not generalize to open-ended reasoning. Other
metric-based or LLM-as-judge feedback methods [3, 9, 23] depend on either handcrafted metrics
or opaque model judgments, which do not reflect the task. In other words, existing metrics do not
reliably capture whether the reasoning truly contains only the information necessary for the decision,
which we empirically show in Section 5. In the following section, we seek to address the general
problem of producing reasoning in the absence of ground-truth reasoning and automated verifiers.

4 Reasoning Optimization via Multi-path Aggregation

In this section, we present a self-training framework that bootstraps a concise, human-aligned
reasoning path for self-improvement of the model’s reasoning capability. The key idea of our method
lies in the concept of decision pivots, which are key logics / key words that are shared across reasoning
paths that reach the same decision (See Figure 1). Under this assumption, our method bootstraps a
pivot-focusing CoT reasoning by distilling multiple reasoning paths into a concise reasoning path
that yields the correct prediction (i.e., short-path reasoning), then feeds the short-path reasoning back
into the model to self-improve its reasoning capability, boosting its generalization.
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ReasoningPrediction
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ReasoningPrediction
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GT Label
Short-Path Reasoning

B. Short-Path Synthesis

Chosen:

Reject:
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C. Reinforcement Learning

Fine-tuned
Verifier

Fine-tune 
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Figure 2: We present a novel self-training framework ROMA that leverages the concept of decision-
pivots. Our self-training framework works in 3 stages. Given a question: (A) model produces multiple
PREDICTION + REASONING pairs, ensuring we collect K reasoning paths using re-sampling. (B)
Then, a fine-tuned verifier synthesizes a short-path reasoning that focuses on shared decision-pivots,
generating a preference data pair. (C) Use the generated data for Reinforcement Learning (i.e.,
preference learning with DPO). This process can be repeated as a self-training loop that improves the
model’s reasoning capabilities.

Notation. Let x ∈ X be an input (e.g., a question) and y ∈ Y its ground-truth label. We use a pre-
trained reasoning model pθ(r, ŷ | x) that, given x, jointly produces a reasoning path r = (t1, . . . , tl)
and a prediction ŷ [2, 40]. We write pθ(y | x, r) for the model’s conditional over labels given a
reasoning, and pθ(r | x, y) ∝ pθ(r, y | x) for the conditional over the reasoning given the label.
The training corpus is D = {(xi, yi)}Ni=1 of size N . For each input-label pair (xi, yi), define a
candidate set of joint samples Si = {(rik, ŷik)}Kk=1 drawn from pθ(· | xi), and the successful
subset R+

i = { rik : ŷik = yi }. Separate from the reasoner pθ, we adopt a fine-tuned verifier
vψ : (x,R) 7→ r̂ trained on D (namely using LoRA adapters [14] on pθ) synthesizes a short path
reasoning r̂i = vψ(xi,R+

i ).

4.1 Stage A: Multi-sample bootstrapping

For each (xi, yi), sample K pairs

Si =
{
(rik, ŷik) ∼ pθ(· | xi)

}K
k=1

, R+
i = { rik : ŷik = yi } (2)

If R+
i is empty, resample traces from pθ(r | xi, yi) to ensure coverage (See Step A in Figure 2). This

step explores diverse reasoning paths while keeping supervision verifiable via the paired prediction;
conditioning on yi functions as a fallback to avoid empty pools. Intuitively, the two sources of
reasoning widen the coverage of the model’s reasoning. Zero-shot correct reasoning paths reveal
the model’s canonical, high-probability pivot sets (i.e., what the model already trusts), while guided
traces (re-sampled after revealing the hint yi on the initial incorrect prediction [1, 41]) allow the
model to route around its default heuristics and adopt novel paths that still rationalize yi.

4.2 Stage B: Short-path synthesis with Fine-tuned Verifier

Given a candidate pool of multiple reasoning paths that reach the correct decision R+
i , the verifier vψ

aggregates overlapping content across candidates and produces a refined short-path reasoning that
focuses on the decision pivots, and preserves the correct decision (See Step B in Figure 2):

r̂i = vψ(xi,R+
i ) subject to argmax

y
pθ(y | xi, r̂i) = yi. (3)

The rewriting aggregates shared decision-pivots while discarding redundant reasoning steps; the
correctness check guarantees that the resulting explanation leads to the correct decision. Please note
that the verifier vψ is used only to synthesize r̂i and is not our final model.

Discussion: Fine-tuned Verifiers. An important aspect of our method is adopting a fine-tuned
verifier vψ to rewrite short-path reasoning, separate from the reasoner pθ that produces a pool of K
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candidate traces. This way, the reasoner pθ remains domain-agnostic, while a lightweight verifier vψ
(pθ added with LoRA trained on D) acquires domain priors to synthesize short-path traces during
training and is discarded at test time. The motivation is the specialization–generalization trade-off:
fine-tuning on D can inject domain knowledge but tends to deteriorate general reasoning ability
[5, 24, 37]. By isolating this specialization in vψ, we preserve the general capability of pθ while
leveraging the verifier’s domain priors to filter spurious steps, align traces to decision pivots, and
consolidate them into faithful short paths. The cost is minimal—vψ is obtained via small LoRA
adapters on the same backbone—and, empirically, verifier-guided rewriting provides stronger learning
signals than self-rewriting with pθ (see Figure 4 and Table 1).

4.3 Stage C: Pairwise preference optimization (DPO)

Lastly, we train the model pθ with the short-path reasoning we have obtained. Specifically, we treat
r̂i as chosen and each r ∈ R+

i \ {r̂i} as a rejected sample for preference learning, forming

Pi =
{
(r̂i, r) : r ∈ R+

i \ {r̂i}
}
. (4)

Using this, we update the main model’s conditional pθ(r | x, y) with DPO [31] against a frozen
reference pref(r | x, y):

LDPO(θ) = −
N∑
i=1

∑
(r+,r−)∈Pi

log σ

(
β
[
log pθ(r

+ | xi, yi)− log pθ(r
− | xi, yi)︸ ︷︷ ︸

policy preference

− log pref(r
+ | xi, yi) + log pref(r

− | xi, yi)︸ ︷︷ ︸
implicit KL correction

])
,

(5)

with temperature β > 0 and logistic σ. (See Step C in Figure 2) This preference learning increases
the relative likelihood of the synthesized short-paths while regularizing toward the reference, aligning
the model to favor concise, pivot-focused reasoning.

5 Experiments

5.1 Experimental Setting

Benchmarks. We validate our approach across three public benchmarks to demonstrate cross-
domain effectiveness. LOGIQA [22] is a general question-answer dataset that assesses logical
reasoning with expert-written multiple choice questions (MCQs) where the models are evaluated
mainly by accuracy. MEDQA [16] is a medical MCQ benchmark built from professional licensing
exams (e.g., USMLE), designed to evaluate clinical knowledge and reasoning based on accuracy.
Lastly, MATH500 [13] is a mathematical reasoning benchmark commonly used to assess a model’s
reasoning capabilities. On these benchmarks, we compare different types of self-training methods
that utilize their own generated outputs to improve their reasoning capability, which in turn improves
a model’s downstream task performance [10, 34, 41]. In all experiments, we used a held-out set of
test data for evaluation.

Architectures and protocol. We evaluate our method on variants from the Qwen-3 family
(0.6/1.7/4/8B/14B) [40], each of which already demonstrates strong zero-shot reasoning ability.
Unless mentioned, the default model is set as the Qwen-3-0.6B model, considering the generation
cost/latency of self-training (see Table 9). We further use several larger models (e.g., Claude 3 [2],
LLama-3 [11]. Every experiment is repeated five times with independent random seeds, and we
report the mean performance together with the corresponding standard errors. Details regarding the
hyperparameters are presented in the sequel. We assess the effectiveness of our method in two aspects.
(1) Downstream Task: Using the generated reasoning, we post-train the model and then assess the
trained model on the downstream task (Table 1). (2) Qualitative analysis: Assess the output reasoning
using general metrics e.g., ROSCOE[9] (Table 2). Further detail regarding the experimental setting is
included in Section A.3
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Figure 3: Comparison of self-training results on LOGIQA and MEDQA. Our proposed method
provides large self-improvement gains in domains (e.g., MEDQA – healthcare, LOGIQA – general
language) that are generally difficult to verify the generated reasoning, compared to math/coding
domains (e.g., MATH500 – math). S-T (ROSCOE) refers to self-training with ROSCOE-filtered
reasoning. The error bars indicate the standard error over 5 runs.

Table 1: Accuracy on LogiQA, MEDQA, and MATH500 using various types of generated reasoning,
across different post-training methods (e.g., SFT, RL). We report the standard error across 5 runs.

Method Post-Training LogiQA MedQA MATH500
Zero-Shot – 0.420±0.006 0.159±0.009 0.636±0.006

Trained without Reasoning SFT 0.412±0.003 0.204±0.004 0.649±0.004

Self-Trained (Zero-Shot) SFT 0.395±0.003 0.215±0.003 0.655±0.005

Self-Trained (ROSCOE [9])
SFT 0.446±0.002 0.232±0.003 0.673±0.003

SFT+RL 0.477±0.003 0.239±0.003 0.681±0.004

RL 0.469±0.004 0.233±0.005 0.677±0.005

STAR [41] SFT 0.422±0.004 0.229±0.004 0.653±0.005

PATHFINDER [10]
SFT 0.450±0.004 0.238±0.004 0.668±0.005

SFT+RL 0.476±0.004 0.241±0.003 0.679±0.005

RL 0.468±0.006 0.232±0.003 0.671±0.005

GV-GAP [33]
SFT 0.459±0.005 0.235±0.004 0.670±0.003

SFT+RL 0.493±0.005 0.254±0.004 0.688±0.004

RL 0.494±0.004 0.253±0.003 0.686±0.004

Ours (w/o verifier)
SFT 0.462±0.003 0.234±0.003 0.669±0.004

SFT+RL 0.495±0.004 0.251±0.002 0.684±0.003

RL 0.489±0.003 0.250±0.003 0.681±0.003

Ours
SFT 0.465±0.004 0.249±0.003 0.671±0.004

SFT+RL 0.493±0.003 0.264±0.002 0.686±0.002

RL 0.504±0.002 0.286±0.003 0.692±0.003

5.2 Experimental Results

We aim to answer the following questions to assess the effectiveness, efficiency, and generality
of our proposed method: (1) Can it generate high-quality reasoning that improves (e.g., after
training or zero-shot) generalization? (Table 1) (2) How do key design components—bootstrapping,
rewriting—contribute to its effectiveness? Can the proposed self-training method provide good
learning signals continually, improving the model on each loop? (Table 3) (3) Do decision pivots
truly exist, and are they retrievable? (Table 4)

Main Results Across general logic (LOGIQA), clinical (MEDQA), and math (MATH500) bench-
marks, we see a repeated pattern (see Table 1): the more training directs supervision onto the decision
pivots, the better the model performs. When we fine-tune only on labels or reuse zero-shot reasoning
data, accuracy stalls or even drops, because the model is not guided to distinguish which reasoning
steps to keep and which to omit (for LOGIQA, 0.420 → 0.412 and 0.395). On the other hand, filtering
the self-generated reasoning data with a general metric like ROSCOE [9] helps, but its effect plateaus
because “general quality” misses task-specific pivots (e.g., LOGIQA SFT+DPO ≈ 0.477). By
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compressing several successful traces into one short-path reasoning (SPR), supervision concentrates
on those pivots paired with preference optimization (DPO); this reliably surpasses metric-filtered
baselines across tasks (LOGIQA SPR+DPO 0.495; MEDQA ≈ 0.25; MATH500 0.684). The largest
gains appear when a domain fine-tuned verifier vψ helps synthesize the short path (vs. using the
reasoner pθ). Intuitively, the verifier brings in the right priors, prunes spurious steps, and sharpens
the learning signal through verification. The effect scales with domain knowledge needs—largest on
MEDQA (DPO 0.316, an improvement of +0.066 over SPR without a verifier), clear on LOGIQA
(0.518, +0.029), and smaller yet consistent on already-verifiable math (MATH500 0.702, +0.021).
In short, our pivot-centric rewriting method (ROMA), especially with a verifier, yields both better
accuracy and more faithful, compact explanations than label-only training, naive self-training, or
generic-metric selection.

SFT SFT+RL RL0.45
0.46
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0.49
0.50
0.51
0.52
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cu

ra
cy

LogiQA

SFT SFT+RL RL0.22
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0.30 MedQA

SFT SFT+RL RL0.66
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0.69

0.70 MATH500

w/o verifier with verifier
SFT SFT+RL RL

Figure 4: Effect of the fine-tuned verifier on downstream accuracy across post-training regimes. We
compare our method with vs without a verifier on LogiQA, MedQA, and MATH500. The verifier
yields consistent gains and is most impactful in the expert MedQA domain, supporting our claim that
a domain-tuned verifier synthesizes higher-quality, pivot-focused short-path reasoning. Improvements
are present but smaller on MATH500 (where an external verification signal already exists) and modest
on LogiQA, aligning with our hypothesis and analysis.

Effect of Fine-tuned Verifiers. Here, we show that using a fine-tuned verifier can synthesize
higher-quality reasoning by incorporating the domain knowledge it has obtained through fine-tuning.
In Table 1, we find that adding a fine-tuned verifier synthesizes higher-quality reasoning than omitting
it (Also see Figure 4). Beyond the aggregate improvements across SFT, SFT+RL, and RL, the verifier
works by filtering spurious steps, aligning traces to decision pivots, and injecting domain priors
during consolidation—raising pivot density and widening decision margins. The effect tracks task
characteristics: it is most pronounced on knowledge-intensive MEDQA (e.g., RL: +0.036, SFT:
+0.015), smaller but consistent on MATH500 where an external correctness signal already exists
(RL: +0.011), and modest on LOGIQA (SFT: +0.003; SFT+RL: −0.002; RL: +0.015) (Figure 4).
In practice, we implement the verifier with LoRA adapters [14] for a favorable accuracy–compute
trade-off; when domains shift, we retune the verifier to refresh its priors (Table 1).

Are General Reasoning Metrics sufficient for preference data selection? In this section, we
investigate the effectiveness of existing reasoning metrics. We report three observations. (1) As
model size scales, most ROSCOE facets are nearly flat or idiosyncratic—e.g., FAITHFULNESS
stays in 0.872–0.902, INFORMATIVENESS (STEP) in 0.875–0.893, and FAITHFULNESS (WW) in
0.939–0.948—while downstream accuracy rises substantially (from 0.486 at 1.7B to 0.672 at 14B; cf.
0.552 at 0.6B and 0.664 at 8B; Table 2). (2) Cross-size correlations make the misalignment explicit
(Figure 5): several scores are near-zero or negative with respect to accuracy (e.g., INFORMATIVENESS
(CHAIN) r≈−0.50, FAITHFULNESS (WW) r≈−0.40, PERPLEXITY (CHAIN) r≈−0.46), and
the best positives are only modest (e.g., COHERENCE r ≈ +0.49). (3) The resulting “flat-high”
profile suggests ceiling effects that obscure the changes most predictive of correctness. However,
this is an expected behavior. By design, ROSCOE emphasizes internal consistency and fluency of a
chain, not whether its pivots land on the correct answer. Hence, selecting by a general metric like
ROSCOE reliably removes obvious errors but does not prioritize decision-critical steps. As a result,
selecting the preference data pair using ROSCOE scores yields modest, but inconsistent gains: it
filters flawed or redundant traces yet fails to target what drives task competence. On the other hand,
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Table 2: ROSCOE scores and the downstream
LogiQA accuracy across model sizes.

Metric 0.6B 1.7B 4B 8B 14B

Faithfulness 0.902 0.872 0.885 0.892 0.888
Informativeness (Step) 0.893 0.875 0.886 0.889 0.883
Informativeness (Chain) 0.934 0.938 0.944 0.928 0.924
Faithfulness (WW) 0.948 0.941 0.944 0.940 0.939
Repetition (Word) 0.023 0.012 0.009 0.018 0.021
Repetition (Step) 0.020 0.012 0.014 0.016 0.019
Discourse Rep. 0.007 0.002 0.001 0.002 0.004
Coherence 0.004 0.001 0.002 0.001 0.052
Perplexity (Step) 0.002 0.005 0.006 0.004 0.005
Perplexity (Chain) 0.068 0.128 0.116 0.076 0.084
Grammar (Step) 0.901 0.891 0.889 0.894 0.890
Grammar (Step Max) 0.557 0.355 0.371 0.339 0.442

Accuracy 0.552 0.486 0.629 0.664 0.672

0.4 0.2 0.0 0.2 0.4
Correlation w.r.t Accuracy

Informativeness (Chain)
Perplexity (Chain)
Faithfulness (WW)

Grammar (Step)
Discourse Rep.

Grammar (Step Max)
Repetition (Word)
Perplexity (Step)

Faithfulness
Repetition (Step)

Informativeness (Step)
Coherence

Figure 5: Pearson Correlation between ROSCOE
scores and downstream LogiQA accuracy.

Table 3: Ablation study of our method. (Left) Varying the number of candidate reasoning paths K;
(Right) varying the number of self-training loops.

(a) Effect of K (candidate pool size).

Method K LogiQA MedQA MATH500

Ours 1 0.437 0.252 0.649
Ours 3 0.499 0.273 0.680
Ours 5 0.504 0.286 0.692
Ours 7 0.509 0.292 0.695
Ours 10 0.511 0.296 0.699

(b) Effect of the number of self-training loops.

Method Loops LogiQA MedQA MATH500

Ours 1 0.504 0.286 0.692
Ours 2 0.522 0.290 0.699
Ours 3 0.525 0.294 0.683
Ours 4 0.526 0.297 0.694
Ours 5 0.522 0.297 0.693

aggregating multiple correct trajectories into short-path reasoning focuses supervision on decision
pivots and—when paired with a lightweight verifier—delivers larger, more reliable improvements
than metric-based selection.

Ablation Study. In this section, we provide the results of the ablation study on our method. Specifi-
cally, we study (1) the effect of K (the number of reasoning paths collected in the candidate pool),
and (2) the number of self-training loops. K (candidate pool size). As shown in Table 3a, increas-
ing K consistently improves performance across all benchmarks, with the largest gains occurring
when moving from K=1 to K=3 (better pivot coverage and fewer single-path idiosyncrasies). Re-
turns diminish beyond K=5, indicating that the verifier can consolidate a relatively small, diverse
set of traces into an equally effective short path. In practice, K=7 recovers ≈95–100% of the
K=10 peak while reducing sampling and verification cost, so we adopt K=7 as our default for
the accuracy–compute trade-off. Self-training loops. Table 3b shows steady improvements from
one to two loops as the model internalizes the synthesized short-path signals. A third loop often
yields smaller but still positive gains; beyond that, improvements saturate and can slightly regress on
math-heavy tasks (likely pivot-set saturation and mild distributional drift toward synthesized traces).

Table 4: Pivot retrieval rate (%) as a func-
tion of model size and number of zero-
shot samples Q per prompt. A retrieval
is counted when the generated reasoning
visits (i.e., mentions) the ground truth
decision pivot.

Model Q=10 Q=100 Q=500

Qwen-3 0.6B 87% 89% 93%
Qwen-3 1.7B 85% 92% 95%
Qwen-3 4B 90% 95% 97%
Qwen-3 8B 94% 95% 97%
Qwen-3 14B 96% 96% 97%
Llama-3-70B 94% 95% 96%
Claude-3.7-Sonnet 95% 96% 95%

We therefore use three loops in the main results, with early
stopping on validation accuracy to avoid overfitting to
the generated distribution. To sum up, the takeaways are
as follows: (i) Larger candidate pools primarily help by
increasing pivot diversity rather than sheer quantity; once
the verifier sees enough distinct routes, additional traces
add little value. (ii) Iterative self-training is beneficial but
exhibits diminishing returns; modest loop counts (2–3)
strike a good balance between quality and compute.

Qualitative Analysis on Decision Pivots. The core of
our method lies in the concept of decision pivots. More
specifically, our method assumes that a decision pivot must
be visited in order to reach a correct decision. In order to
validate this claim, we perform a qualitative analysis us-
ing a human-labeled set of decision pivots, where human
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annotators highlight the keywords/key logic that justify the label (i.e., decision pivots). The dataset
consists of 500 Q&A samples with questions, answers, and human-annotated decision pivots. Then,
for each sample, we run multiple (Q) zero-shot inferences and see how often the model can retrieve
the ground truth decision pivots. In Table 4, we report the pivot-retrieval rate as the fraction of the
zero-shot reasoning among the Q candidates that explicitly visits the human-labeled pivot (Table 4).
Across all backbones, retrieval increases monotonically with K, with the largest gains observed when
moving from Q=10 to Q=100 and markedly smaller gains beyond Q=100 (diminishing returns).
Larger models begin closer to the ceiling even with small q (e.g., 8–14B already exceed ∼94–96%
at Q=10), while smaller models benefit more from additional resampling. In other words, even the
smallest 0.6B model was able to visit the decision pivot in its reasoning path, suggesting that correct
solutions repeatedly traverse a sparse, shared set of decision pivots, and that modest resampling
suffices to surface those pivots with high probability.

Table 5: Effect of generated reasoning
on the trained model’s average output
reasoning length across 1.5k samples.

Trained with. Average #. of Tokens
Zero-Shot Reasoning 1184.46
Metric-filtered Reasoning 1038.82
STAR41 1060.95
PATHFINDER10 761.53
Short-Path Reasoning (Ours) 750.40

Effect of reasoning data on the reasoning output length
of the trained model. We also study the effect of the
generated reasoning data on the output reasoning length in
Table 5. Specifically, we compare the length of the model
output trained with various types of reasoning. We find
that training on shorter, curated reasoning path data yields
markedly more compact generations. This aligns with re-
cent observations in Munkhbat et al. [26], that self-training
elicits shorter reasoning outputs. Relative to zero-shot
reasoning (1184.46 tokens on average), Max-ROSCOE
reduces length to 1, 038.82 (−145.64 tokens), while our
Short-Path Reasoning (SPR) compresses further to 750.40 (−434.06 tokens). Model trained with
SPR is also roughly a quarter (27.8%) shorter than Max-ROSCOE (−288.42 tokens), without any
explicit filtering over the reasoning length.

Table 6: Comparison of different preference data
selection methods on LOGIQA, MEDQA, and
MATH500. We report the downstream task accu-
racy after RL (DPO) training.

Preference Data LogiQA MedQA MATH500
N/A (Zero-Shot) 0.420±0.006 0.159±0.009 0.636±0.006

ROSCOE [9] 0.469±0.004 0.233±0.005 0.677±0.005

PAS (Ours) 0.466±0.003 0.236±0.004 0.680±0.003

PAS + ROSCOE 0.470±0.004 0.238±0.003 0.682±0.003

Decision Pivots as Metrics for Reasoning.
We introduce a pivot-based verifiability score
for reasoning assessment. Given a pool of K
candidates {rk} and the ROMA short-path r̂
(our best available reasoning), let P (r) denote
pivots extracted and validated by the verifier vψ
from path r, and let P ⋆ = P (r̂). We score
each candidate by the F1 overlap with the short-
path pivots, 2 |P (r)∩P⋆|

|P (r)|+|P⋆|+ε (with small ε > 0 for
stability). The intuition is that r̂ consolidates
the necessary decision pivots, so a verifiable
candidate should cover most of P ⋆ while avoiding spurious pivots. In practice, we use vψ (LLM-
as-judge [3]) for the scoring. For preference-data selection (Table 6), the pivot score alone matches
ROSCOE on LogiQA (0.466 vs. 0.469) and yields modest gains on MedQA (0.236 vs. 0.233) and
MATH500 (0.680 vs. 0.677). Crucially, combining the pivot score with ROSCOE delivers the best
results across all three benchmarks (0.470 / 0.238 / 0.682), indicating that verifiability via decision
pivots is complementary to general CoT quality metrics and leads to more effective data curation.
While our experiments employ DPO, the signal is algorithm-agnostic and can extend to other RLHF
variants (e.g., GRPO, PPO) for both offline selection and on-policy filtering.

6 Concluding Remarks

Decision pivots provide a principled lens for improving and refining reasoning models at scale.
By mining these pivots and compressing explanations into short-path reasoning, our self-training
framework delivers concurrent gains in task accuracy and reasoning quality, all without human-
annotated reasoning. Crucially, we decouple reasoning and rewriting: the reasoner supplies diverse
reasoning paths while a lightweight, domain-tuned verifier rewrites them. Although such fine-tuned
verifiers tend to sacrifice broad, general-purpose reasoning ability, they rewrite more precisely within
their domain; using the reasoner for coverage and the verifier for consolidation makes the resulting
traces more verifiable, pivot-focused, and ultimately more effective supervision. The improvements
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on multiple benchmarks (e.g., LogiQA, MedQA, MATH500) suggest that the concept decision pivots
are broadly applicable and open a path toward human-level reasoning.
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A Appendix

Algorithm 1: Reasoning Optimization via Multi-path Aggregation
1. Inputs: pθ (reasoner), vψ (verifier; LoRA on pθ), dataset D, samples K, rounds L, DPO temp. β,

batch size B
2. Output: Updated parameters θ

3. pref ← StopGradient(pθ) ; // Frozen DPO reference
4. for ℓ← 1 to L do
5. P ← ∅ ;
6. foreach (xi, yi) ∈ D do

// A: sample and filter candidates using eq. (2); stop when K paths
collected

7. Si ← ∅, R+
i ← ∅;

8. while |Si| < K do
9. draw r ∼ pθ(r | xi) ; // per eq. (2)

10. Si ← Si ∪ {r};
11. if argmaxy pθ(y | xi, r) = yi then
12. R+

i ← R+
i ∪ {r}

13. if |R+
i | = 0 then

14. continue
// B: synthesize short path (eq. (3))

15. r̂i ← vψ(xi, R
+
i );;

16. if argmaxy pθ(y | xi, r̂i) ̸= yi then
17. r̂i ← argmax

r∈R+
i
pθ(yi | xi, r)

// C: build preferences (eq. (4))
18. P ← P ∪ {(r̂i, r) : r ∈ R+

i \ {r̂i}};
19. foreach minibatch B ⊂ P of size B do
20. Update θ with LDPO(θ;B, pref , β) using eq. (5);

21. return θ

A.1 Discussion on Method

Listing 1: Prompt for consolidating K reasoning paths into a single refined Short-Path Reason-
ing (SPR).

You are an expert analyst. You will be given several correct reasoning paths.
Rewrite a refined reasoning that focuses on shared key
information/keywords.

↪→
↪→

I have the following reasoning paths:
{chr(10).join([f"Reasoning {i+1}: {r}" for i, r in enumerate(k_reasonings)])}

Begin by providing a list of shared decision pivots. Only include the decision
pivots when they are visited by the majority of the provided reasoning
paths in the candidate pool.

↪→
↪→

Then, aggregate the multiple reasoning paths and provide a single refined
reasoning that:↪→

1) focuses on the decision pivots (keywords/key information) that are shared
across the candidate paths↪→

2) Avoids repetition

Intuition. Reasoning traces that reach the same correct decision tend to converge on a small set of
decision pivots—minimal, verifiable facts or logical checkpoints that are causally responsible for
the answer—while differing in style and superfluous steps. Our method exploits this structure: (i)
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surface diverse but successful paths, (ii) intersect them to recover the shared pivots, and (iii) rewrite a
compact Short-Path Reasoning (SPR) that keeps only pivot-bearing content. Preference learning then
aligns the model toward these concise, faithful explanations.

Backbone and thinking mode. We use the Qwen-3 family, which supports two output channels:
thinking content (intermediate chain-of-thought) and output content (the final, externally visible
answer or explanation). Unless stated otherwise, we enable thinking mode by default during data
generation so that the model emits both channels; we selectively log these channels, as detailed below
in Stage A.

Stage A: Multi-sample bootstrapping (diversity with guardrails). For each (xi, yi), we obtain a
candidate pool of size K by interleaving zero-shot sampling and a guided fallback:

1. Zero-shot pass. Prompt the model to predict the label. It returns thinking (reasoning for
its prediction) plus result (predicted label). If the predicted label matches yi, we save the
thinking trace into the pool R+

i ; these paths reflect the model’s canonical high-probability
pivots.

2. Guided fallback on errors. If the prediction is incorrect, we provide the ground-truth label
yi and ask the model to justify it step-by-step (without revealing that yi was given as a hint).
The model again emits thinking plus result (an external, stepwise explanation for yi). To
avoid hint-contamination of internals, we discard the thinking and save only the external
explanation (result) into R+

i . These guided traces widen pivot coverage by routing around
the model’s default heuristics.

We repeat until |R+
i | = K (resampling as needed). This produces a pool of successful paths that

agree on the label while differing in which pivots they articulate and how they organize them.

Stage B: Short-path synthesis with a lightweight verifier (pivot recovery). Given R+
i , a small

verifier vψ (a LoRA-tuned adapter on the same backbone) aggregates overlapping content and rewrites
a single concise reasoning r̂i that (a) enumerates the shared decision pivots visited by the majority of
candidates and (b) produces a compact chain that foregrounds only those pivots. We use the prompt
in Listing 1, summarized as:

• Step 1 (pivot mining). List the shared decision pivots and include only those visited by
the majority of paths. This majority rule suppresses idiosyncratic steps and raises the
signal-to-noise ratio of the pivot set.

• Step 2 (pivot-centric rewrite). Aggregate the paths and provide a single refined reasoning
that focuses on shared pivots and avoids repetition. This enforces minimality and fluency
while preserving causal sufficiency.

Finally, we verify that argmaxy pθ(y | xi, r̂i) = yi before accepting r̂i (a simple correctness check).
The verifier is used only at training time for synthesis; it is discarded at test time to keep inference
cost unchanged. See also Listing 1 for the exact template.

Stage C: Preference optimization (DPO over pairs). We treat the synthesized r̂i as chosen and
each remaining r ∈ R+

i \ {r̂i} as rejected, forming pairs (r̂i, r). Direct Preference Optimization
(DPO) then increases the relative likelihood of r̂i under the policy while regularizing toward a frozen
reference. Intuitively, DPO turns the pivot-dense rewrite into a stronger learning signal than any
single raw path.

How each component contributes. (i) Bootstrapping supplies diverse, label-consistent evidence,
mixing the model’s canonical routes (zero-shot) with counter-heuristic routes (guided) to stabilize
pivot extraction. (ii) Verifier-guided synthesis converts many paths into one faithful, minimal SPR by
explicitly mining majority pivots and pruning spurious steps; this raises pivot density and tightens
decision margins. (iii) Preference learning aligns the generator toward SPR—rewarding causal
sufficiency and compactness rather than length or stylistic goodness—and does so without hand-
crafted external metrics or human rationales.
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Prompt for Step B (exact). See Listing 1 for the full template used to (1) list shared pivots and (2)
produce the refined SPR. This two-stage instruction was crucial in practice: eliciting pivots before
rewriting makes the subsequent consolidation measurably more stable than asking for a single rewrite
in one shot.

Remark on modes. Thinking mode is leveraged only to collect richer raw material in Stage A (and
we carefully choose which channel to retain); the final trained model can be deployed with or without
thinking mode at inference, since the verifier is not required at test time.

A.2 Experimental Results and Analysis

Table 7: Zero-Shot Classification accuracy on LogiQA Classification with various types of generated
reasoning.

Additional Reasoning Acc.
None (Zero-Shot) 0.420
Random Reasoning 0.405
Max ROSCOE reasoning 0.438
Short-path reasoning (Ours) 0.459

Does reasoning affect downstream task performance? Alternatively, we can assess the quality of
generated reasoning by adding the generated reasoning during zero-shot prediction. Specifically, we
compare three different types of generated reasoning (1) Zero-Shot Reasoning, (2) Max ROSCOE
Reasoning, and (3) Short-Path Reasoning (Ours) by appending the chain-of-thought reasoning in-
context. We report the results in Table 7. Here, we observe three takeaways. First, merely appending
random zero-shot reasoning provides a small benefit over using no reasoning at all (↑ 0.012),
suggesting a generic “reasoning-priming” effect. Second, higher-quality reasoning paths help more:
Max-ROSCOE improves to 0.571 accuracy (↑ 0.025). Third, our pivot-focused Short-Path Reasoning
yields the largest gains (↑ 0.053), outperforming Max-ROSCOE by ↑ 0.028 accuracy. Notably, the F1
improvements consistently exceed accuracy gains, indicating that concise, pivot-dense paths improve
positive/negative discrimination rather than only shifting the decision threshold. These results support
our hypothesis that the transfer signal comes from shared decision pivots rather than from longer or
stylistically rich explanations.

Table 8: Zero-Shot accuracy on LogiQA with different backbones.
Method Overall Acc.
Zero-Shot (Qwen-3 0.6B) 0.420
Zero-Shot (Qwen-3 1.7B) 0.643
Zero-Shot (Qwen-3 4B) 0.726
Zero-Shot (Qwen-3 8B) 0.747

Effect of backbone on downstream task. In Table 8, we analyze the effect of the model on the
zero-shot downstream task accuracy. In zero-shot classification, accuracy improves monotonically
with model scale from 0.420 (Qwen-3 0.6B) to 0.643 (1.7B), 0.726 (4B), and 0.747 (8B), a net gain of
+0.327. The largest jump occurs between 0.6B→1.7B (+0.223), with diminishing returns thereafter
(+0.083 from 1.7B→4B; +0.021 from 4B→8B). Consistent with our experimental setup, we use the
0.6B backbone as the default for controlled ablations and self-training loops, and treat larger models
as scale references to contextualize improvements.

Comparison of Inference Latency As shown in Table 9, end-to-end latency with chain-of-thought
increases with model size—8–12 s (Qwen-3 0.6B), 14–20 s (1.7B), 25–27 s (4B), 42–48 s (8B),
and 55–60 s (14B) per sample. Because our data-generation pipeline emits K reasoning traces per
example (with possible re-sampling), the wall-clock cost grows approximately linearly with K. For
instance, at K=10 this corresponds to ∼1.3–2.0 min (0.6B), ∼4.2–4.5 min (4B), ∼7–8 min (8B), and
∼9–10 min (14B) per example. Thus, both model size and K are key efficiency knobs; our short-path
synthesis (which yields shorter traces) helps amortize corpus-generation costs at scale.
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Table 9: Average Inference Time of varying models.
Method (with Thinking) Latency per Sample
Qwen-3-0.6B 8–12 s
Qwen-3-1.7B 14–20 s
Qwen-3-4B 25–27 s
Qwen-3-8B 42–48 s
Qwen-3-14B 55–60 s

Zero-shot vs. Guided Reasoning for Pivot Diversity At a high level, we exploit two sources
of generated reasoning to widen coverage of the task’s decision-pivot space. Zero-shot correct
reasoning paths reveal the model’s canonical, high-probability pivot sets (i.e., what the model already
trusts), while guided traces (generated after revealing y on initial mispredictions) allow the model
to route around its default heuristics and surface counter-heuristic or novel pivots that still justify y.
Aggregating both sources before short-path synthesis yields a pool of successful paths that agree on
the label yet differ in which pivots they invoke and how they organize them. This, in turn, improves
the stability of pivot extraction and increases the chance that the final short-path reasoning captures
minimal but diverse justifications that generalize.

A.3 Experimental Details

In this section, we report the experimental details of our paper. In all of our experiments, we have
used the HuggingFace’s TRL (Transformer Reinforcement Learning ) library [35]. Regarding the
datasets mentioned throughout our work, we use three public benchmarks, LogiQA [22], MedQA
[16], and MATH500 [13], all available through Huggingface’s DATASETS library [20]. In all datasets,
we used the default train-test split provided in the original papers. Regarding the hyperparameters
(e.g., SFT learning rate and RL learning rate, number of training epochs), we used the default setting
provided in the TRL library. For instance, the DPO learning rate was set as 1e− 06, the epochs set
as 3, using LoRA attention dimension of 16 with alpha of 32. When performing SFT, we used 2
epochs with a learning rate of 4e− 05. Regarding unique hyperparameters, we set K (the number
of reasoning candidate pool) as 5 and evaluated on a single self-training loop. Please see Table 3 in
Section 5 for a detailed explanation of the hyperparameter-tuning results. For all experiments, we
used the Qwen-3 0.6B model [40]. Lastly, regarding the computing resources, we used five NVIDIA
A100 GPUs for all experiments. For our experiments, we used the 2.2.1 version of Pytorch [29].
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Figure 6: Comparison of self-training results on LogiQA.
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Figure 7: Comparison of self-training results on MedQA.
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Figure 8: Comparison of self-training results on MATH500.
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Figure 9: Effect of the candidate pool size K on downstream accuracy for LogiQA, MedQA, and
MATH500. Larger K steadily improves performance, with diminishing returns near K=10.
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Figure 10: Effect of the number of self-training loops on downstream accuracy. Moderate looping
(e.g., 2–4) helps, while excessive looping can overfit or oscillate.
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