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ABSTRACT

Leveraging vast datasets on the Internet, large-scale Vision-Language Models
(VLMs) demonstrates great potential in learning open-world visual concepts, and
exhibit remarkable performance across a wide range of downstream tasks through
efficient fine-tuning. In this work, we propose a simple yet effective fine-tuning
approach called DualAdapter, which for the first time investigates the inference
capabilities of VLMs along both positive and negative directions. Unlike conven-
tional approaches that solely rely on positive adapter-style fine-tuning, DualAdapter
uniquely incorporate negative text descriptions and image samples, enabling fine-
tuning from a dual perspective. During the few-shot adaptation process, our
DualAdapter explicitly enhances correct alignments while simultaneously mini-
mizing incorrect associations. Our rigorous evaluation across 15 datasets reveals
that DualAdapter significantly surpasses existing state-of-the-art methods in terms
of both adaptation efficiency and robustness to distribution shifts.

1 INTRODUCTION

Extensive pre-trained Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021) and CoCa (Yu et al., 2022), provide a new paradigm for multi-modal learning
and generalizable visual recognition (Radford et al., 2021). Recently, researchers have demonstrated
the versatility and effectiveness of these VLMs in interpreting complex visual and textual inputs, as ev-
idenced by their superior performance in a variety of vision-language tasks, e.g., visual reasoning (Shu
et al., 2022; Zhang et al., 2023), and visual question answering (Zhou et al., 2022c; Duan et al., 2022).

To transfer well-learned knowledge from VLMs to downstream datasets, a variety of efficient fine-
tuning approaches from two main categories have been developed: prompt tuning methods and
adapter-style methods. (1) Prompt tuning methods are designed to create adaptive input prompts,
which update the textual classifier for the specific downstream task. For instance, CoOp (Zhou
et al., 2022b) firstly introduces the prompt tuning method to fine-tune CLIP. Building on this,
CoCoOp (Zhou et al., 2022a) enhances the generalizability of CoOp by learning prompts conditioned
on each input image. (2) Adapter-style methods, on the other hand, directly modulate the textual
or/and visual features produced by CLIP’s encoders (Zhang et al., 2023; 2024). Notable approaches
include Tip-Adapter (Zhang et al., 2022) and TaskRes (Yu et al., 2023), which focus on adjusting the
visual and textual features for enhanced task-specific performance, respectively.

In this work, we propose DualAdapter to further explore the potential of adapter-style fine-tuning for
VLMs. Unlike prior methods that solely rely on standard text descriptions (“A photo of a {CLASS}”)
and few-shot image samples to encourage positive class predictions, we introduce negative prompts
(“A photo of no {CLASS}”) and negative image pseudo-samples, which enables a reverse prediction
problem. The idea behind this approach is also straightforward: we aim to enhance the model’s ability
to discern not just what an image is, but also what it is not. By designing our DualAdapter to adapt
VLMs in both positive and negative directions, our method achieves state-of-the-art performance
across 11 few-shot learning datasets, surpassing the second-best by 1.92% in 16-shot average accuracy.

Our key contributions are as follows: (1) We explore and exploit the negative inference capabilities
of VLMs, and for the first time adopt a dual-path inference approach for adapting CLIP. (2) We
introduce DualAdapter, a novel framework that incorporates positive and negative adapters across both
vision and language modalities, ensuring efficient and effective adaptation. (3) Through extensive
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Figure 1: An overview of our proposed DualAdapter. The positive/negative adapter caches features
from positive/negative text descriptions and positive/negative image samples. Given an image to be
classified, the classification logit for a specific class increases when the image feature closely aligns
with the features in the positive cache and diverges from those in the negative cache.

experiments, we demonstrate that our DualAdapter significantly improves adaptation performance
and achieves superior generalizability across out-of-domain datasets.

2 METHOD

2.1 A REVISIT OF CLIP

In this work, we employ CLIP’s pretrained visual encoder FV : Rh×w×3 → Rd and textual encoder
FT : Rm×dt → Rd to map the images and textual descriptions into a unified d-dimensional
embedding space. Consider an N -class classification task, CLIP conducts zero-shot predictions by
evaluating the similarity between the image feature and N class-specific text features as follows:

fv = FV(I), f+
ti = FT(T +

i ), P(y = yi|x) =
exp

(
sim

(
f+
ti , fv

)
/τ

)∑
t′ exp

(
sim

(
f+
t′ , fv

)
/τ

) , (1)

where I denotes the input image in Rh×w×3, and T +
i represents the m-word sentence embedding of

the class descriptor prompt “A photo of a {CLASSi}” in Rm×dt . The term τ refers to the temperature
parameter in the softmax function, and sim(·, ·) computes the cosine similarity. Given that both the
image and text features are L2-normalized (∥ft∥2 = ∥fv∥2 = 1), the cosine similarity is effectively a
dot product, i.e., cos (ft, fv) = f⊤

v ft.

To streamline this process, a weight matrix can be precomputed and stored in a textual cache, which
concatenates the textual features associated with each class, denoted as T+

cache = [f+
t1 f

+
t2 · · · f

+
tN ]⊤ ∈

RN×d. Subsequently, we can efficiently obtain the logit S and the final prediction P(y|I) via
vectorized computation:

S = fV T
+ ⊤
cache ∈ R1×N , P(y|I) = Softmax (S) . (2)

2.2 OUR PROPOSED DUALADAPTER

We propose a novel framework DualAdapter, as illustrated in Figure 1, to enable a more efficient
dual-path adaptation of VLMs. We introduce the each component of our DualAdapter in detail below.
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Positive Textual Adapter. To adapt the VLMs to downstream tasks, we introduce a group of
learnable parametersR+

T ∈ RN×d. These parameters are added element-wise to the text cache in a
residual form, updating the positive text cache. Using this updated text cache, we then calculate the
logit S+T given the input image feature fv . This process can be formally denoted as:

T+
cache ← Normalize

(
T+
cache +R+

T

)
, S+T = fvT

+ ⊤
cache ∈ R1×N . (3)

Note that both fv and T+
cache are L2-normalized, thus the cosine similarity simplifies to a dot product.

Negative Textual Adapter. Recall that the positive textual cache, denoted as T+
cache, is constructed

based on the class descriptor prompt “A photo of a {CLASSi}”. In a corresponding manner, we
introduce negative prompts in the form of “A photo of no {CLASSi}”, and extract the text embeddings
f−
ti = FT(T −

i ) using CLIP’s textual encoder. For all N classes, we store the negative text embeddings
{f−

ti }
N
i=1 in a cache matrix T−

cache ∈ RN×d. We similarly incorporate a learnable residual R−
T ∈

RN×d to refine the text embedding throughout task-specific training.

The intuition behind this approach is straightforward: if an image is associated with a particular class,
its feature representation should align closely with the positive prompt embeddings and diverge from
those of the negative prompts. Specifically, the logit S−T for the negative textual adapter is given by:

T−
cache ← Normalize

(
T−
cache +R−

T

)
, S−T = δT

(
1− fvT

− ⊤
cache

)
∈ R1×N , (4)

where δT is a fixed scaling parameter that adjusts S−T to match the mean value of S+T .

Positive Visual Adapter. Given an N -class K-shot training dataset, we utilize the NK annotated
images to classify the input image from a visual perspective. Utilizing the pre-trained visual encoder
of CLIP, we first extract the image features {f+

v }NK
i=1 and store them in a positive visual cache

V+
cache ∈ RNK×d. To update the training features during the training stage, we introduce a set

of learnable parameters R+
V ∈ RN×d, which are broadcast to RNK×d and added to the positive

visual cache: V+
cache ← Normalize

(
V+
cache +R+

V

)
. Given an image feature fv to be classified, we

calculate its image-image affinities A+ with all the training images following Zhang et al. (2022),
then multiplied by their corresponding one-hot labels L ∈ RNK×N to obtain the classification logit:

A+ = exp
(
−β

(
1− fvV

+ ⊤
cache

))
∈ R1×NK , S+V = αA+L ∈ R1×N , (5)

where α represents a balance factor and β denotes a modulating hyper-parameter.

Negative Visual Adapter. Drawing inspirations from contrastive learning (Khosla et al., 2020), we
generate some pseudo-negative prototypes from the few-shot training set. More specifically, for class
i, we consider the K-shot images from the remaining N − 1 classes as negative samples. To mitigate
individual biases, we randomly select one image from each of the for each of the N − 1 classes
and compute the average of their extracted features to represent the pseudo-negative prototypes. In
this way, we can get a total of K pseudo-negative prototypes for each of the N classes, thereby
constructing a negative visual cache V−

cache ∈ RNK×d. The cache is further refined using a set of
learnable parametersR−

V ∈ RN×d: V−
cache ← Normalize

(
V−
cache +R−

V

)
.

Following the same intuition with the negative textual adapter, we consider the reverse classification
problem and calculate the logit as:

A− = δV exp
(
−βfvV− ⊤

cache

)
∈ R1×NK , S−V = αA−L ∈ R1×N , (6)

where δV is another fixed scaling parameter that adjusts A− to match the mean value of A+.

DualAdapter Inference. To derive the final classification scores, we aggregate the outputs from both
the positive and negative adapters across textual and visual modalities. This is formalized as:

Sfinal = λ
(
S+T + S+V

)
+ (1− λ)

(
S−T + S−V

)
. (7)

Here, λ serves as a tuning hyper-parameter to balance the contribution of positive and negative
adapter logits. During the training process, the set of learnable parameters {R+

T ,R
−
T ,R

+
V ,R

−
V } is

updated through gradient descent, leveraging a cross-entropy loss function.
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3 EXPERIMENTS

To validate the effectiveness of our proposed DualAdapter, we evaluate our proposed method on
two standard benchmarking tasks: few-shot learning and domain generalization, respectively. We
compare our proposed method with the following state-of-the-art methods: zero-shot and linear
probe CLIP (Radford et al., 2021), CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), CLIP-
Adapter (Gao et al., 2023), Tip-Adapter-F (Zhang et al., 2022), TPT (Shu et al., 2022), TaskRes (Yu
et al., 2023), and GraphAdapter (Li et al., 2023).

3.1 IMPLEMENTATION DETAILS

Following previous works (Zhou et al., 2022a; Zhang et al., 2022), we adopt ResNet-50 (He et al.,
2016) backbone as the visual encoder of CLIP in our experiments by default. We adopt prompt
ensembling, leveraging textual prompts from both CLIP (Radford et al., 2021) and CuPL (Pratt et al.,
2023) to enhance model performance. Our DualAdapter is trained using the AdamW optimizer with
a cosine scheduler. The batch size is set to 256. ForR+

T andR+
V , the learning rate is set to 0.0001,

while forR−
T andR−

V , the learning rate is set to 0.0005. Additionally, our model is trained for 200
epochs on the EuroSAT Helber et al. (2019) dataset, and for 20 epochs on all other datasets. All
experiments are conducted on a single NVIDIA RTX 6000 Ada GPU.

3.2 FEW-SHOT LEARNING

Following previous literature on efficient fine-tuning of the CLIP model (Zhou et al., 2022b; Zhang
et al., 2022), we comprehensively evaluate our method on 11 well-known image classification
benchmarks: ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), OxfordPets (Parkhi
et al., 2012), StandfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food-101 (Bossard et al., 2014), FGVC Aircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014),
SUN397 (Xiao et al., 2010), EuroSAT (Helber et al., 2019), and UCF101 (Soomro et al., 2012).

In Figure 2, we compare the few-shot learning performance of our proposed DualAdapter with other
state-of-the-art methods on 11 image classification datasets. In the top-left sub-figure, we also present
the average classification accuracy across all 11 datasets. The results indicate that our proposed
DualAdapter consistently outperforms other methods across various few-shot learning protocols by
large margins (e.g., by an average of 1.92% in the 16-shot setting).

3.3 ROBUSTNESS TO NATURAL DISTRIBUTION SHIFTS

Table 1: Performance comparison on robustness to
distribution shifts. All the models are trained on 16-shot
ImageNet and directed tested on the OOD target datasets.
The best results are in bold and the second are underlined.

Method Source Target

ImageNet -V2 -Sketch -A -R Avg.

Zero-Shot CLIP21 60.33 53.27 35.44 21.65 56.00 41.59
Linear Probe CLIP21 56.13 45.61 19.13 12.74 34.86 28.09
CoOp22 63.33 55.40 34.67 23.06 56.60 42.43
CoCoOp22 62.81 55.72 34.48 23.32 57.74 42.82
TPT22 60.74 54.70 35.09 26.67 59.11 43.89
TaskRes23 64.75 56.47 35.83 22.80 60.70 43.95
GraphAdapter23 64.94 56.58 35.89 23.07 60.86 44.10
DualAdapter (Ours) 66.52 57.87 36.38 25.73 61.12 45.28

We follow CoOp (Zhou et al., 2022b)
to investigate the generalization
capability of our proposed method
on 4 variant datasets of ImageNet:
ImageNet-V2 (Recht et al., 2019),
ImageNet-Sketch (Wang et al., 2019),
ImageNet-A (Hendrycks et al.,
2021b), and ImageNet-R (Hendrycks
et al., 2021a). In Table 1, we
compare the performance results
of our proposed DualAdapter and
other methods using ResNet-50
visual backbone in the presence of
distribution shifts. We can observe that our proposed DualAdapter outperforms other state-of-the-art
methods on both source and target domains, showcasing its remarkable generalizability.

3.4 ABLATION STUDIES

In Table 2, we conduct a systematic analysis of the impacts of various components within our Dual-
Adapter framework. More specifically, we assess the performance of four distinct DualAdapter vari-
ants, each configured to allow two adapters to be updated while keeping the others fixed. We have the
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Figure 2: Performance comparisons on few-shot learning on 11 image classification datasets.
For each dataset, we report the accuracy on 1-/2-/4-/8-/16-shot settings.

Table 2: Ablation studies for different variants of DualAdapter. We evaluate the few-shot
adaptation capabilities of four DualAdapter variants on ImageNet (Deng et al., 2009).

# Method R+
T R−

T R+
V R−

V 1-shot 2-shot 4-shot 8-shot 16-shot

1 DualAdapterT ! ! % % 62.86 63.36 64.01 65.23 66.34
2 DualAdapterV % % ! ! 62.21 62.37 62.68 63.72 65.30
3 DualAdapter+ ! % ! % 62.83 63.31 63.95 65.13 66.27
4 DualAdapter− % ! % ! 62.65 63.07 63.60 64.36 65.12
5 DualAdapter ! ! ! ! 62.89 63.47 64.12 65.37 66.52

following main observations: (1) Compared to zero-shot CLIP, all four variants demonstrate a perfor-
mance improvement of approximately 5%∼6% (from 60.33%) with 16-shot samples, indicating that
each variant can operate effectively; (2) Relatively, the textual variant (DualAdapterT) and the positive
variant (DualAdapter+) demonstrate superior efficiency over the visual and negative counterparts.

4 CONCLUSION

In this work, we propose DualAdapter for effectively adapting vision-language models to downstream
datasets. We innovatively design both positive and negative adapters spanning visual and textual
modalities. Based on this, we further introduce a set of learnable residual parameters to learn task-
specific knowledge efficiently with limited training data. Our extensive empirical evaluation across
15 diverse datasets demonstrates that DualAdaptor outperforms the state-of-the-art methods in both
few-shot learning and domain generalization tasks.
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