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Abstract

We study the linear stochastic bandit problem, relaxing the standard i.i.d. assump-
tion on the observation noise. As an alternative to this restrictive assumption,
we allow the noise terms across rounds to be sub-Gaussian but interdependent,
with dependencies that decay over time. To address this setting, we develop new
confidence sequences using a recently introduced reduction scheme to sequential
probability assignment, and use these to derive a bandit algorithm based on the
principle of optimism in the face of uncertainty. We provide regret bounds for
the resulting algorithm, expressed in terms of the decay rate of the strength of
dependence between observations. Among other results, we show that our bounds
recover the standard rates up to a factor of the mixing time for geometrically mixing
observation noise.

1 Introduction

The linear bandit problem (Abe and Long}, |1999; |Auer, |2003) is an instance of a multi-armed bandit
framework, where the expected reward is linear in the feature vector representing the chosen arm.
More concretely, it is a sequential decision-making problem, where an agent each round picks an arm
X}, and receives a reward Y; = (6*, X;) + &, with 0* a fixed parameter unknown to the agent, and
€; zero-mean random noise. This framework has gained significant attention in the literature as it
yields analytic tools that can be applied to several concrete applications, such as online advertising
(Abe et al.| 2003)), recommendation systems (L1 et al.| 2010; |Korkut and Li, [2021)), and dynamic
pricing (Cohen et al.|[2020).

A popular strategy to tackle linear bandits leverages the principle of optimism in the face of uncertainty,
via upper confidence bound (UCB) algorithms. The idea of optimism can be traced back to|Lai and
Robbins|(1985), and its application to linear bandits was already advanced by |Auer| (2003)). Since
then, this approach has been improved and analysed by several works (Abbasi-Yadkori et al., 2011}
Lattimore and Szepesvari, [2020; [Flynn et al., [2023)). This class of methods requires constructing an
adaptive sequence of confidence sets that, with high probability, contain the true parameter 6*. Each
round, the agent selects the arm maximising the expected reward under the most optimistic parameter
(in terms of reward) in the current confidence set. UCB-based algorithms have become popular as
they are often easy to implement and come with tight worst-case regret guarantees.

For a UCB algorithm to perform well, it is necessary that the confidence sets are tight, which can be
ensured by taking advantage of the structure of the problem. In this paper, our focus is on studying
various assumptions on the observation noise. A commonly studied situation is when (e;);>( consists
of a sequence of i.i.d. realisations of some bounded or sub-Gaussian random variable (see Lattimore
and Szepesvari, [2020, Chapter 20). Often, the standard analysis can be extended to the case in which
the realisation are not independent, but conditionally centred and sub-Gaussian (Abbasi- Yadkori
et al.,2011). Yet, in real-world settings, this assumption is often unrealistic, as one can expect the
presence of interdependencies among the noise at different rounds. For instance, in the context
of advertisement selection, the noise models the ensemble of external factors that influence the
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user’s choice on whether to click or not an ad. The i.i.d. assumption implies that across different
rounds these external factors are completely independent. In practice, the user choice will be affected
by temporally correlated events, such as recent browsing history or exposure to similar content.
Therefore, a more realistic assumption is to allow the dependencies to decay with time, rather than
being completely absent. This way to model dependencies, often referred to as mixing, is common to
study concentration for sums of non-i.i.d. random variables, with applications to machine learning
(Bradleyl 2005; Mohri and Rostamizadeh, [2008} |Abéles et al.| 2025)).

In the present paper we relax the assumption that the noise is conditionally zero-mean in the bandit
problem, and we allow for the presence of dependencies. Concretely, we replace the standard
conditionally sub-Gaussian setting with a more general formulation that accounts for conditional
dependence of the noise on the past, by introducing a natural notion of mixing sub-Gaussianity. Within
this context, we introduce a UCB algorithm for which we rigorously establish regret guarantees.
There are two key challenges for our approach: constructing a valid confidence sequence under
dependent noise, and deriving a regret upper bound for the UCB algorithm that we propose.

We derive the confidence sequence by adapting the online-to-confidence-sets technique to accommo-
date temporal dependencies in the noise. This approach, originally introduced by |Abbasi- Yadkori
et al.|(2011)) and recently extended and improved (Jun et al., 2017} [Lee et al., | 2024; |Clerico et al.,
2025), involves constructing an abstract online learning game whose regret guarantees can be turned
into a confidence sequence. To deal with the dependencies in the noise, we modify the standard
online-to-confidence-sets framework by introducing delays in the feedback received within the ab-
stract online game. This approach is inspired by the recent work of |Abéles et al.| (2025) on extending
online-to-PAC conversions to non-i.i.d. mixing data sets in the context of deriving generalisation
bounds for statistical learning. There, a delayed-feedback trick similar to ours is employed to derive
statistical guarantees (generalisation bounds) from an abstract online learning game.

For the regret analysis of the bandit algorithm, we also need to face some challenges due to the
correlated observation noise. We address these by introducing delays into the decision-making policy
as well. This makes our approach superficially similar to algorithms used in the rich literature on
bandits with delayed feedback (see, e.g.,/Vernade et al.| 2020a; Howson et al.,|2023)). These works
consider delay as part of the problem statement and not part of the solution concept, and are thus
orthogonal to our work. In particular, a simple adaptation of results from this literature would not
suffice for dealing with dependent observations, which we tackle by developing new concentration
inequalities. Another line of work that is conceptually related to ours is that of non-stationary bandits
(Garivier and Moulines, [2008}; Russac et al.|[2019). In that setting, the parameter vector 0} evolves in
time according to a nonstationary stochastic process, and the observation noise remains i.i.d., once
again making for a rather different problem with its own challenges. Namely, the main obstacle
to overcome is that comparing with the optimal sequence of actions becomes impossible unless
strong assumptions are made about the sequence of parameter vectors. A typical trick to deal with
these nonstationarities is to discard old observations (which may have been generated by a very
different reward function), and use only recent rewards for decision-making. This is the polar opposite
of our approach that is explicitly disallowed to use recent rewards, which clearly highlights how
different these problems are. That said, there exists an intersection between the worlds of delayed
and nontationary bandits (Vernade et al., 2020b)), and thus we would not discard the possibility of
eventually building a bridge between bandits with nonstationary reward functions and bandits with
nonstationary observation noise. For simplicity, we focus on the second of these two components in
this paper.

Notation. Throughout the paper, we will often use the following notations. For » and v in R?, we
let {u,v) denote their dot product. ||u||2 = /{u,u) is the Euclidean norm, while for a non-negative
definite (p X p)-matrix A, ||u||a = +/{u, Au) is a semi-norm (a norm if the matrix is strictly positive
definite). For » > 0, B(r) denotes the closed centred Euclidean ball in R” with radius r. Given a
non-empty set U C RP, we let Ay denote the space of (Borel) probability measures on R” whose
support in U. Finally, (u;):>, denotes a sequence indexed on the integers, with £ its smallest index.

2 Preliminaries on linear bandits

We consider a version of the classic problem of regret minimisation in stochastic linear bandits, where
an agent needs to make a sequence of decisions (or pick an arm) from a given contextual decision set
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that may change over the sequence of rounds. We assume that the environment is oblivious to the
actions of the agent, in the sense that the decision sets are determined in advance, and do not depend
neither on the realisations of the noise nor on the agent’s arm-selection strategy.

Concretely, we define the problem as follows. Let 8* € R? be a parameter vector that is unknown
to the learning agent. We assume as known an upper bound B > 0 on its euclidean norm (namely,
0* € B(B)). Fix a sequence of decision sets (X;);>1 in RP. We assume that for all ¢ we have
X; C B(1). Ateach round ¢, the agent is required to pick an arm X; € X}, and receives the reward
Y, = (0%, X;) + £,. The sequence (&;);>1 represents the random feedback noise. The noise across
different rounds is typically assumed to be conditionally centred and to have well behaved tails.
For instance, a common assumption is to ask that E[e;|F;_1] is centred and sub-Gaussian, where
Fi = o(eq,..., &) is the o-field generated by the noise. This is the assumption this work relaxes.
We also remark that, more generally, one can consider the case where the X; as well are randomised,
namely contain additional randomness that is not included in the noise. To take this into account, one
can add this other source or randomness in the filtration. However, since in our case we will only
consider a non-randomised bandit algorithm, we omit this to simplify our analysis.

The agent aims to find a good strategy to pick arms X, that lead to a high expected T-round reward

Zthl (X4, 0*). To compare their performance to that of an agent playing each round the best available
arm (in expectation), we define the regret after T" rounds as

Reg(T) = Z sup ((x,G*) — (Xt,9*>) .

=1 TEX;:

A common approach to tackle the linear bandit problem is to follow an upper confidence bound
(UCB) strategy. This involves the following protocol. At each round ¢, we first derive a confidence
set C;_1, based on the arm-reward pairs (X, Y;)s<¢—1. This is a random set (as it depends on the
past noise realisations), which must be constructed ensuring that §* € C,_; with high probability.
More precisely, the regret can be effectively controlled if one can ensure that 6* uniformly belongs to
every set (C;);>1, with high probability (a property often referred to as anytime validity). Then, for
every available arm z, we let
UCBg,_, (z) = Jmax (x,0).

By definition, this is a high-probability upper bound on (x, #*), which justifies the name “upper
confidence bound”. The idea is then to optimistically pick as X; € X} the arm maximising UCBg, _,.

A key technical challenge in designing a UCB algorithm is to construct the anytime valid confidence
sequence (Cy);>1. Typically, under sub-Gaussian assumptions on the noise, these sets take the form
of an ellipsoid, centred on a (regularised) maximum likelihood estimator. Explicitly, we often have

C={0cO:|0-6]3 <p?},

where 6, is the least-squares estimator of 8*, V; is the feature-covariance matrix and 3 is a radius
carefully chosen so that the high-probability coverage requirement is satisfied. In this work, to
construct the csonfidence sets we will leverage an online-to-confidence-set-conversion approach, a
method that reduces the problem of proving statistical concentration bounds to proving existence of
well-performing algorithms for an associated game of sequential probability assignment. We refer to
Section [ for more details on our technique to construct the confidence sequence.

3 Linear bandits with non-i.i.d. observation noise

We study a variant of the standard linear stochastic bandit problem where the observation-noise
variables feature dependencies across different rounds. We focus on the case of weakly stationary
noise, meaning we assume all the ¢; to have the same marginal distribution. However, the core
assumption we make is what we call mixing sub-Gaussianity. This provides a way to control how
dependencies decay as the time between two observations increases. It is defined in terms of a
sequence of mixing coefficients ¢4, which quantify this decay.

Assumption 1 (Mixing sub-Gaussianity). Fix ¢ > 0 and let ¢ = (¢q)a>0 be a non-negative and
non-increasing sequence. We say that the random sequence (€;);>1 is (o, ¢)-mixing sub-Gaussian if
€ is centred and o-sub-Gaussian for every t, and, for all d > 0 and all t > d, we have

|E [e¢ [ Fi—q]| < ¢a (1)
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2252

]E[exp)\(etf]E[et |~Ft—d])|ft—d] <e 2 s YA >0. (2)

Clearly, the above assumption generalises the standard conditionally sub-Gaussian assumption (that
can be recovered by setting ¢4 = 0 for all ¢), sometimes considered in the bandit literature. Although
this might look like an unusual mixing assumption, it is very natural for our problem at hand, and
can be weaker than standard mixing hypotheses. For instance, if the noise sequence is -mixing
(see[Bradleyl [2005) and each & is centred and bounded in [—a, b], it is straightforward to check that
|Ele¢|Fi—a]| < (a + b)¢q, and so Assumption [1]is satisfied since the boundedness automatically
implies sub-Gaussianity. In the rest of the paper we assume o = 1 for simplicity.

Under Assumption[I} we can build the confidence sequence needed for our UCB algorithm. We state
this result below, but defer the explicit derivation to Section @] (see Corollary [I] there).

Proposition 1. For some given ¢, let the noise satisfy Assumption(l|with o = 1. Fix 6 € (0,1),
A>0,andd > 1. Fort > 1 let

o= {0€ B(E) + 310 -l < % 1og CHEMILED 9B+ 16,5 +1) + alog§)

where V; = 22:1 X X, 4+ \d, and 0, = arg minge g gy Zizl(w,Xt) —Y;)% Then, (Cy)i>1 is
an anytime valid confidence sequence, in the sense that

P(0*€C,Vt>1)>1-36.

Leveraging the confidence sequence above, we can define a UCB approach for our problem (Algo-
rithm[I). At a high level, the algorithm operates by taking the confidence sets defined in Proposition
and selecting the arm optimistically, as in the standard UCB. A key point is that a delay d is
introduced, which at round ¢ restricts the agent to use only the information available from the first
t — d rounds. Although the actual technical reason behind this restriction will become fully clear only
with the analysis of the coming sections, one can intuitively think of it as a way to prevent overfitting
to recent noise, which might be highly correlated. If d is sufficiently large, the noise observed in
each round ¢ will be sufficiently decorrelated from the previous observations, which allows accurate
estimation and uncertainty quantification of the true parameter 6* and the associated rewards.

Algorithm 1 Mixing-LinUCB

setd >0

fori e {1,2,...d} do
play an arbitrary X; and observe Y;

end for

fortc {d+1,...} do
X = argmax,cx, UCBg,_, (), where C;_g4 is as in Proposition
play X; and observe reward Y;

end for

In Section [5] we provide a detailed analysis of the regret of the algorithm that we proposed. For
instance, assuming that the mixing coefficients decay exponentially as ¢y = Ce~%7 (geometric
mixing), we show that the regret can be upper bounded in high probability as

Reg(T) <O (7‘p\/Tlog(T)2 + 7log T+/pT log T) .
We refer to Theorem [2]and Corollary [2)in Section [5|for more details.

4 Constructing the confidence sequence

In this section we derive a confidence sequence for linear models with non-i.i.d. noise. First, we
briefly describe the online-to-confidence-set conversion scheme from [Clerico et al.| (2025)), which
serves as our starting point. We then extend this technique to handle mixing noise.
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4.1 Online-to-confidence set conversion for i.i.d. data

Before proceeding for the analysis of mixing sub-Gaussian noise, which is the focus of this work,
we start by describing how to derive a confidence sequence when the noise is independent (or
conditionally) centred and sub-Gaussian across different rounds, as in |Clerico et al.[(2025). The
online-to-confidence sets framework that we consider instantiates an abstract game played between
an online learner and an environment. We define the squared loss £,(0) = 3((6, X,) — Y;)?. For
eachround s = 1,...,t, the following steps are repeated:

1. the environment reveals X to the learner;
2. the learner plays a distribution Qs € Agp;
3. the environment reveals Y to the learner;
4.

the learner suffers the log loss £4(Q,) = —log [, exp(—£5(6))dQ.(0).

This game is a special case of a well-studied problem called sequential probability assignment
(Cesa-Bianchi and Lugosil 2006). The learner can use any strategy to choose @1, . .., Q¢, as long as
each (), depends only on X1,Y7,..., X1, Ys_1, X,. We define the regret of the learner against a

(possibly data-dependent) comparator 6 € R? as

t t

Regret, (0) = Y L£a(Qs) = > £(6).

s=1 s=1

Clerico et al.[(2025) provide a regret bound upper bound (Proposition 3.1 there) for when the learner’s
strategy is from an exponential weighted average (EWA) forecaster with a centred Gaussian prior
(1. However, to account for the presence of dependencies in our analysis, we will need the prior’s
support to be bounded. We hence state here a regret bound (whose proof is deferred to Appendix
[A.T) for the regret of an EWA forecaster with a uniform prior.

Proposition 2. Fix B > 0 and consider the EWA forecaster with as prior the uniform distribution on
B(B + 1). Then, forall § € B(B) and anyt > 1,

Regret, (9) < (B +1)°e max(p, )
+(0) < .

p

log

[NVJlS]

We remark that, by adding and subtracting the total log loss of the learner, the excess loss of 6*
(relative to 8) can be rewritten as

t t t t

S T(07) = > (0) = Regret, (0) + > £.(0%) = D L(Qs) - 3)

s=1 s=1 s=1 s=1
This simple decomposition is the key idea in the online-to-confidence sets scheme.

Since the noise is conditionally sub-Gaussian and the distributions played by the online learner
are predictable (Q cannot depend on Y3), S0 £,(6*) — S2'_, £.(Q,) is the logarithm of a non-
negative super-martingale (cf. the no-hypercompression inequality in |Griinwald, 2007| or Proposition
2.1 in|Clerico et al.,[2025) with respect to the noise filtration (F;);>1. For simplicity, as already
mentioned in Section 2Jand since this will be the case for our bandit strategy, we assume throughout
the paper that X; is fully determined given the past noise . Henceforth, from Ville’s inequality (a
classical anytime valid Markov-like inequality that holds for non-negative super-martingales) one can
easily derive that 6* € C; (uniformly for all ¢) with probability at least 1 — §, where

t t
Ct = {9 ERP: ZZS(G) - 265(0_) < Regrett(é) + IOg(];} .
s=1 s=1

This result can be relaxed by replacing Regret, (6) by any known regret upper bound for the online
algorithm used in the abstract game (e.g., the bound of Proposition 2| for the EWA forecaster).
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4.2 Confidence sequence under mixing sub-Gaussian noise

The standard online-to-confidence sets scheme relies on the fact that 30| £,(8*) — S0, £(Q,) is
the logarithm of a non-negative super-martingale, whose fluctuations can be controlled uniformly in
time thanks to Ville’s inequality. However, this property hinges on the fact that the noise is assumed
to be conditionally centred and sub-Gaussian, which now is not anymore the case. Yet, thanks to
our mixing assumption, if we restrict our focus on rounds that are sufficiently far apart, the mutual
dependencies get weaker, and the exponential of the sum behaves almost like a martingale. This
insight suggests to partition the rounds into blocks, whose elements are mutually far apart, then apply
concentration results to each block, and finally use a union bound to recover the desired confidence
sequence spanning all rounds. We remark that this is a classical approach to derive concentration
results for mixing processes, often referred to as the blocking technique (Yu, |[1994).

In order for the online-to-confidence sets scheme to leverage the blocking strategy outlined above,
the abstract online game used for the analysis must be designed in a way that is compatible with
the block structure. To address this point, we adopt an approach inspired by |Abéles et al.| (2025]),
who introduced delays in the feedbacks received by the online learner in order to address a similar
challenge. More precisely, we will now consider the following delayed-feedback version of the online
game. Fix a delay d > 0. For each round s = 1, . .., t, the following steps are repeated:

. the environment reveals to the learner X, which is assumed to be F,_ -measurable;
. the learner plays a distribution Qs € Ag»;

W N =

. if s > d, the environment reveals Y;_ 41 to the learner;
4. the learner suffers the log loss £,(Qs) = —log [, exp(—£4(#))dQs(6).

Note that the delay d only applies for the rewards, while () can still depend on X . Indeed, the choice
of X in our mixing UCB algorithm is already “delayed”, as it depends on C;_g (see Algorithm [I)).

Of course, in this setting the decomposition of (3 is still valid. We now want to deal with the
concentration of >>'_, £,(6*) — St £.(Q,) via the blocking technique. For convenience, let

us write D; = £;(6*) — L£:(Q;). We denote as S = (S;(:))kzl the subsequence defined as

S,ii) = 2521 D;y(j—1)a- The key idea is now that each of these S() behaves as the log of a
martingale, up to a cumulative remainder that accounts for the conditional mean shift in the mixing
sub-Gaussianity assumption. In particular, Ville’s inequality and a union bound yield the following.

Lemma 1. Fix a delay d > 0and § € (0,1). We have that

: d
P (Z (€:(07) — L5(Qs)) < thdB—l—dlogg, vt > 1) >1-9.

s=1

Now that we have a concentration result to control .S, we only need to be able to upper bound the
regret of an algorithm for the “delayed” online game that we are considering. To this purpose, we
propose the following approach. We run d independent EWA forecaster (with uniform prior), each
one only making prediction and receiving the feedback once every d rounds. More explicitly, the first
forecaster acts at rounds 1, d + 1, 2d + 1..., the second at round 2, d + 2, 2d + 2..., and so on. As a
direct consequence of Proposition 2] by summing the individual regret upper bounds we get a regret
bound for the joint forecaster, which at each round returns the distribution predicted by the currently
active forecaster. This technique of partitioning rounds into blocks for the regret analysis of online
learning is common in the literature (e.g., see Weinberger and Ordentlich, [2002)).

Lemma 2. Fix B > 0, d > 0, and consider a strategy with d independent EWA forecasters outlined
above, all initialised with the uniform distribution on B(B + 1) as prior. Forall 0 € B(B) and t > 1,
(B + 1)?e max(dp, t + d)

_ dp
Regret, (0) < > log o .

Putting together what we have, we get a confidence sequence suitable for our mixing UCB algorithm.
Theorem 1. Consider the setting introduced above. Fix 6 € (0,1) and a delay d > 0. Assume as
known that 6* € B(B). Let 0; = arg minGEB(B){Zizl 0(0)} and Ay = 3", X X[, Define

Cr = {9 € B(B) : 10— 0.3, < @ log BHWemaxldnird) 4 44, 4 1) +dlog%} .
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Then, (Cy)y>1 is an anytime valid confidence sequence for 0*, namely

P(0* €C, VE>1)<1-6.

Proof. The optimality of 8, implies S0~ b;, V1, (00) >0, forall @ € B(B). As Y ._, £y is
quadratic, it equals its second order Taylor expansion around Gt and its Hessian is everywhere A;. So,

t

1 Iy
Sl6 =GR, < 6 - 9f||At+Z (000, VE:(6)) = (¢ (60)) .
s=1 s=1
for any 6 € B(B). This, together with (3), Lemma|[l} and Lemma[2] yields the conclusion. O

We remark that the confidence sets of Theorem [I]take the form of the intersection between the ball
B(B) and the “ellipsoid” {6 : ||@ — 0:||a, < B:}, for a suitable radius S;. In order to implement and
analyse the bandit algorithm, it will be more convenient to work with a relaxation of these sets, a
pure ellipsoid not intersected with B(B). We make this explicit in the following corollary.

Corollary 1. Fix A > 0, d > 0, and § € (0,1). Fort > 1, let V; = Ay + Ald. Assuming that
0* € B(B), the following compact ellipsoids define an anytime valid confidence sequence for 0*:

C, = {9 € B(B) : 116 — 6,3, < @ log <B+1>2€H;;X<dp’t+d> +2AB? + tgg(B + 1) + dlog g} .

Proof. Let 32 = dplog (BH)%IZZX(@’H@ + 2t¢pa(B + 1) + 2dlog . From Theorem with
probability at least 1 — &, uniformly for every ¢, ||0* — @Hit < 2. Adding to both sides of this
inequality 3/6* — 6;||2. and relaxing the RHS using that [|6* — 8|2 < 4B2, we conclude. O

S Regret bounds for Mixing-LinUCB

In this section, we establish worst-case and gap-dependent cumulative regret bounds for mixing UCB
algorithm (Mixing Lin-UCB). However, to account for the fact that Mixing-LinUCB selects actions
with delays, the standard elliptical potential arguments must be modified. Throughout this section,
we let Ry = (0%, X; — X;) (where X = argmax, y, (0%, 7)) denote the regret in round ¢, and

B2 = dplog { B+1)2€ max(dp ) L ANB? + 2ty(B + 1) + 2d log 2 ¢ denote the squared radius of the
ellipsoid C; in Corollary [

5.1 Worst-case regret bounds

First, following the regret analysis in|Abbasi- Yadkor1 et al.[(2011) (see also Section 19.3 in Lattimore
and Szepesvari, [2020), we upper bound the instantaneous regret. From our boundedness assumptions
(0* € B(B) and X; C B(1)), we easily deduce that R; < 2B. Under the event that our confidence

sequence contains 6* at every step ¢, we have another bound on R;. If we define gt_d € Ci_qtobe
the point at which (f;_4, X;) = UCBe,_,(X;), then from the definition of X; we have

(07, X/) < max max (0, z) = max UCBe,_, (z) = UCBe,_,(X¢) = (61-a, X4)

Recall that, for all s, V; = Ag + Ald, which is invertible as A > 0. Thus, by Cauchy-Schwarz,

Ry < (B1—q— 0", X)) < [|f1—a — 0" lvial Xl < 2B-all Xl -2 -

This means that the instantaneous regret satisfies the bound

R; < 2max(B, ft—q) min(1, ”thlvf—ld) ) %)



248
249

250

251

252
253

254

255

256

257
258

259

260

261
262

264
265
266

267
268

270

271

272
273
274

275

276
277

Next, we separate the regret suffered in the first d rounds and the remaining 7" — d rounds. We then
use Cauchy-Schwarz once more, and the fact that (3, is increasing in ¢, to obtain

Reg(T) < 24B + /(T ~ )Ty, F?

< 2dB + \/4(T — d)max(B?, B3_,)Y",_ g4y min(1, [| X2, ).

At this point, we must depart from the standard linear UCB analysis (Abbasi-Yadkori et al., 201 1} [Latti4
more and Szepesvdri, [2020). We bound the sum of the elliptical potentials Z;‘F: arq min(1, [|X; ||%/,1 )
t—d

using the following variant of the well-known “elliptical potential lemma” (see Appendix), which
accounts for the fact that the feature covariance matrix V;_4 is updated with a delay of d steps.

Lemma 3. Forall T > d -+ 1,

T

> min(L | X[}, ) < 2dplog(1 + x5) -
t=d+1 .

We can now state a worst-case regret upper bound for Mixing-LinUCB.

Theorem 2. Fix A\ = 1/B? d > 0and § € (0, 1). With probability at least 1 — 6, for all T > d, the
regret of Mixing-LinUCB satisfies

Reg(T) < 2dB + \/8dpT max(B2, 53 log(1 + 51).

From the definition of 57, we see that this regret bound is of the order

Reg(T) = O (dB + dpvTlog L2 + T/ Bdpoalog 5 + d\/pT10g 1F ) .

For any fixed (i.e., not depending on T') delay d, this regret bound is linear in 7". To obtain meaningful
regret bounds, it is therefore crucial to set d as a function of 7" and the rate at which the mixing
coefficients decay to zero. We point out that if 7" is unknown, one could probably use a more
general framework where the delay is time dependent which might lead to non-trivial results, but we
do not pursue this here. Under the assumption that the noise variables are either geometrically or
algebraically mixing, we obtain the following worst-case regret bounds.

Corollary 2. Suppose that the noise satisfies Assumption |l|with ¢4 = Ce 7 for some C,7 > 0

(geometric mixing), and set d = [7 log BT?T]. Then, the regret of Mixing-LinUCB satisfies

2
Reg(T) = O (Tp\/T (1og B max(1,C) mzx(l’c)) + pVT'7log TBmax(1.C) m‘";x(l’c) + 7log —BgT \/pT log Ef) }

Corollary 3. Suppose that the noise satisfies Assumptionwith ¢q = Cd~" for some C > 0 and
r > 0 (algebraic mixing), and set d = [CT'/ (“*7)]. Then, the regret of Mixing-LinUCB satisfies

Reg(T) = O (CBT” (1+n) 4 oty (p log ZE + \/ Bplog T "L+ [plog TJ?)) :

Up to a factor of 7log T, the bound for geometrically mixing noise matches the regret bound for
linear UCB with i.i.d. noise. This bound is trivial for » < 1, however for r > 1 we get sublinear
regret, and in particular we recover standard rates up to logarithmic factors in the limit where » — oo.

5.2 Gap-dependent regret bounds

Under the assumption that, each round, the gap between the expected reward of the optimal arm and
the expected reward of any other arm is at least A > 0, we get regret bounds with better dependence
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on T'. More precisely, define the minimum gap A = min,c(p) mingex, .02 x; (X} — x,0%), and
assume that A > 0. Since we either have R; = 0 or R; > A > 0, it follows that

R: < R?/A.

In our worst-case analysis, we showed that

T

> R} <8dpmax(B?,7)log(1 + 555) -
t=d+1

Combined with the previous inequality, we obtain the following gap-dependent regret bound.

Theorem 3. Fix A\ = 1/B2, d > 0, and 6 € (0,1). With probability at least 1 — 6, for all T > d, the
regret of Mixing-LinUCB satisfies
8dp

2
Reg(T) < 2dB + N max(B?, 57.) log (1 + BdT> .
P

Similarly to the worst-case bound in Theorem [2] for any fixed d > 0, this regret bound is linear in 7",
By setting d as a suitable function of 7', we obtain the following gap-dependent regret bounds under
geometrically or algebraically mixing noise.

BCT“

Corollary 4. Suppose that the noise variables are geometrically mixing and set d = |1 log =1

Then the regret of Mixing-LinUCB satisfies

(8 BCT\? BT p. T 7log £CT
Reg(T) =0 (A (log p> log <1 + m 3 log]; + log — .

Corollary 5. Suppose that the noise variables are algebraically mixing and set d = [C’Tl/(p“ﬂ.
Then the regret of Mixing-LinUCB satisfies

A (8Cp, 2 BT p, (B+1)%T T/ 0+

6 Conclusion

We leave several interesting questions open for future research. Some of these are listed below.

An important limitation of our algorithm is that it requires the knowledge of the mixing coefficients
(or at least an upper-bound on them). It would be interesting to explore the possibility of relaxing
this assumption and to design an algorithm which infers the mixing coefficients while minimizing
the regret. We note that the problem of estimating mixing coefficients is already a hard problem on
its own right, with tight sample-complexity results only available in special cases such as Markov
chains (Hsu et al.l 2019; Wolfer, 2020). We also note that in order to recover the standard rate for the
regret bound, the delay d introduced in our algorithm need to be chosen as a function of the horizon
T. We believe that this could be fixed at little conceptual expense by using time-varying delay in the
analysis, but we did not attempt to work out the (potentially non-trivial) details here.

Another limitation is that our analysis assumed throughout that the adversary picking the decision sets
X} is oblivious, which is typically not required in linear bandit problems. For us, this was necessary
to avoid potential statistical dependence between decision sets and the nonstationary observations.
We believe that this issue can be handled at least for some classes of adversaries. For instance, it
is easy to see that our analysis would carry through under the assumption that the decision sets be
selected based on delayed information only. We leave the investigation of this question under more
realistic assumptions open for future work.
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A Technical Appendices and Supplementary Material

A.1 Proof of Proposition 2]

For the EWA forecaster with prior 01, we can rewrite the regret via a standard telescoping argument
(see Lemma B.1 in|Clerico et al.|, [2025)) as

Regret, () = —log/exp (—ZES + ZE > dQq(0) .
s=1

Using the variational representation of the KL divergence th1s can be upper bounded as

Regret, (0 1nf{/Z€ )dQ(6 Zf )+ Dx QHQI)}
< ce%fl]{/Zé )dP.( ;ES(HHDKL(PCIIQH} :

where P. is the uniform measure on the closed Euclidean ball of radius ¢ in R?, centred at 6. We
remark that for all ¢ € (0, 1], P. < Q1. Therefore, for all ¢ € (0, 1],

DKL(PcHQl):/plog L4Q.(0) = plog 1.

Taking a second-order Taylor expansion of the total squared loss around 6, and using the fact that the
mean of P, is 6, we obtain

te 2
Z/ Z/ (0~ 8.90(0) + 5 (6-0,X.)°) aR.0) < 'S,
RP Rp 2
where we used that || X||2 < 1 for all s in the last inequality. Combining everything so far, we obtain

B+1 2 B11)2
inf {plo + i te } <P log (B + 1)*emax(p, t)
ce(0,1] c D)

where the last term is obtained taking ¢ = min(1, \/p/t).

Regret, (0) <

— 3

p

A.2 Proof of Lemmall
Let Dy = £:(0%) — L:(Q¢) and A\¢(0) = (0 — 0*, X;). Tt is easy to check that

D, =log / NN 2aQu(6)

Fix i € {1,...,d}. We denote as S = (S(i))k>1 the subsequence defined as S(i) =

Z] 1 Dit(j—1)q- We also define ]-'( = Fit(k—1)a- It is easy to check that (S( ))k>1 is adapted
with respect to (]-'( Jk>1. Now, let M(Z) = exp(S( D (k—1)(2B + 1)¢q). We will show that
(M, ,g )) k>1 is a super-martingale with respect to (.7-',5 )>k21» with initial expectation bounded by 1.
For this it is enough to show that for any k& > 1 we have E[eDin*l)d_(QBH)W|f,£ill] < 1. This is

true for k = 1 (where we let F () be the trivial o- field, or more generally a o-field independent of the
noise). Indeed, as i < d, X; is .7-'0 measurable and hence independent of ;. From Assumption [T} we
know that ¢; is sub-Gaussian, and so E[ePi] < 1.

Let us now check the case £ > 2. For convenience, we define t,(f) =i+ (k — 1)d. We note that
Foi = .7:,52). We have
k

E[eDw(k_l)r@BH)% |]:151_)1}

=K [/ exp ()\t;i) (Q)Etgj) - )\tgj) (9)2/2 - (2B + 1)¢d)th$)(6‘)’.7:]£i_)1:| .

12
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Now, Q o only depends on the noise up to € {0 g = € R thanks to the delayed bandit framework.

Henceforth we can swap the conditional expectatlon and the integral. In a similar way, we can bring

exp (= A, (0)?/2 — (2B + 1)¢a) outside of the conditional expectation, as it is ]-' | measurable.
k

We get

E[eDﬁr(k—l)d_(?B""l)qﬁd |~7:;§1)1]
= /E [exp ()\tgj) (Q)Ety)) ‘]:Igi)l} exp ( - )\tgj) (9)2/2 - (2B + 1)¢d)th§:) (9)
< /eXp <>\t1(:) (0)2/2 + )\t(ki)E[gt;i) |.7:151)1D exp ( — )\tg) (0)2/2 — (2B + 1)¢d)th§f) (0)

S /exp (|>\t§:) (0)|¢d — (2B + 1)(,25(1)th§;) (9) y

where the two inequalities use the sub-Gaussianity and mixing properties of Assumption[I] Now, by
construction (), ) has support on B(B + 1), and for every 0 € B(B + 1)
k

Ao (0)] <110 = 072

5 <2B+1,

9 <1, as for all £ we are assuming that X; C B(1). We thus conclude

that (M, (i ))k>1 is indeed a super martingale, non-negative and with initial value bounded by 1. By
Ville’s inequality it follows that

P(S\) <k(2B+1)¢g+logd, Vk>1)>1-3.

Now that we have proven that we have a super-martingale for each block, the desired anytime valid
concentration result follows directly from a simple union bound.

A.3 Proof of Lemmal[2l

Fixt > 1,andleti € {1,...,d} and k > 1 be such thatt = i + (k — 1)d. Let I; = {j + dN} N
{1,...,t}, forj € {1,...d}. We consider d independent EWA forecaster (all initialised with the
uniform prior on B(B + 1)). The j forecaster only acts and receive feedback from the rounds in ;.
We note that the jth forecaster acts for ¢; rounds, where t; = kif j > 7, and t; = k — 1 otherwise.
We denote as R the regret of the j™ forecaster (which only takes into account the losses at the
rounds in [, with comparator §. By Propositionwe get

d
) ] B+1)? ts
Regret, () = E RU) < E :glog (B+1) epmax(p, ) .

We conclude by noticing that, for all j, ¢; < (¢t + d)/d.

A.4 Proof of Lemma[3l

We recall the standard Elliptical Potential Lemma (see e.g. Lemma 11 in|Abbasi- Yadkori et al.| [201 1),
which we will use in our proof of Lemma 3]

Lemma 4 (Elliptical Potential Lemma). Ler (X;); be any sequence of vectors in RP satisfying
maxyerr) || X¢llo < L and let Vi = Z;‘F,I X X,” + M, for some \ > 0. Then

2
me (1, ||Xt||v_1) < 2plog(1+ L.

Next, we introduce some notation. For t > d, define (i(t), k(t)) € [d] X [K] such thatt = i(t)+k(t)d
and let

k(t)—1
Vo, = Z X0 T a1,
where X, i) — i(t)+ka- With this notation, we can state the following lemma.

13
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Lemma 5. Foranyt > d, we have

Viea = Viato) 1 »

which implies that HXtHV—l < ||XtH( o) —1foranyt > d.

V(-1

Proof. Notice that we can write V;_g4 = Zt d XX, +)d = Vl((f) Zb 1,5¢5, X, X, where
Sy ={s=1i(t)+ (k—1)d,k € [k(t )]}1stheset0f1ndlces( (t),i(t)+d,...,i(t)+ (k(t) — 1)d).

The statement now follows from the fact that ZS (f s¢S, Xs X, =0. O

We are now ready to prove Lemma 3] For now, let us assume that 7' = K d, for some K > 1. Using
Lemma[5]and then Lemma[d] we have

T T
> min(L, || X¢ 7, 2 ) < > min(l, IIkaII(Vzm )
t=d+1 i t=d+1 )
d K-
=> Z min(L, || Xglfy: )-1)
=1 k=1
< 2dplog(1 + ESUEY)

One can verify that if 7" is not divisible by d, the above inequality still holds if we replace K by [%1
Therefore, regardless of whether 7 is divisible by d, we have
T

. 2
>~ min(L, [ X34 ) < 2dplog(1+ 550).
t=d+1 .

This concludes the proof of Lemma [3]

A.5 Proof of Corollary[2]and Corollary 3]

We start by recalling the general result
Reg(T) = O | dB,+dpVTlog LB + T/ Bdp¢alog ZB +d\/pTlog L2 | . 5)
v ————
= (2 (3) (4)

To simplify the following calculations, we do not force d to be a positive integer. One can always
round d without changing the rates of the regret bounds.

Geometric Mixing:
Assume d = 7 log BT CT . We notice that the term (1) is logarithmic in 7" and thus negligible. From

the definition of geometnc mixing, it holds that ¢4 = Ce % = %. Therefore,
TB
(3) < pv7Tlog o

Substituting the value of d yields the desired bounds for terms (2) and (4) in Equation |5} and hence

the desired statement.

Algebraic mixing:

Assume d = C’Tllﬁ, we notice that in this case since ¢4 = Cd~", we have dpg = Cd'~". In
347

particular this implies that T\/d¢4 = 720+ and thus

TB r
(3) <Cy/Bplog Ry R
b

The same way (2) and (4) are of order dv/T = T 20777 and replacing in Equationyields the desired
statement.
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A.6 Proof of Corollary[d and Corollary
We start by recalling the general result

2
Reg(T) < 2dB + % max(B?, 57.) log (1 + BdT> )
p

where 3. = dplog PHU emsldp.T+d) 4 o7, (B 4 1) +2d log .
—_— Y——

(1) (2) (3)
Geometric Mixing:

Assume d = 7 log %, then (2) = % is a constant. Hence we have

2

8d*p (B+1)%e max(dp,T+d) d  2p(B+1) B*T
Reg(T) < 2dB 1 XD 2log —+ ——— | 1 1
eg(T) < + X (p og o t2log s+ — 5 og |1+ o )

which under the assumption that S > B and replacing d by its definition yields
BCT

Reg(T') < 2Bt log

872p BT BCT\? (Ba1)2er log BTN 9p(B 1 1)
1 1+ ——— I 1 - 2 P .
+ A 0g< +p7-longT> ((og » ) plog - + 27 5 + BC

If A is constant, then for large T, the first term and the constant part coming from (2) become
negligible. Therefore,

872p BT BOT\’ (p,  (syvrer | l08 55T
T) = log [ 14+ ————— | (log=—=) [ %1 c P
Reg(T) O( A og( +pTlOgB§T> <og » ) 5 08— +7 3

Algebraic mixing:

1
Assume d = C'T'1+7, then we have

(B +1)2eT CTT

]

82 < CTT log +20(B + )T + 20T log

Under the regime where 2dB < % maX(BQ’ g%) log (1 + %) and B < fr this leads to

A (8Cp, 2 BT p. (B+1)%T Tt/ 0+
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