
Linear Bandits with Non-i.i.d. Noise

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the linear stochastic bandit problem, relaxing the standard i.i.d. assump-1

tion on the observation noise. As an alternative to this restrictive assumption,2

we allow the noise terms across rounds to be sub-Gaussian but interdependent,3

with dependencies that decay over time. To address this setting, we develop new4

confidence sequences using a recently introduced reduction scheme to sequential5

probability assignment, and use these to derive a bandit algorithm based on the6

principle of optimism in the face of uncertainty. We provide regret bounds for7

the resulting algorithm, expressed in terms of the decay rate of the strength of8

dependence between observations. Among other results, we show that our bounds9

recover the standard rates up to a factor of the mixing time for geometrically mixing10

observation noise.11

1 Introduction12

The linear bandit problem (Abe and Long, 1999; Auer, 2003) is an instance of a multi-armed bandit13

framework, where the expected reward is linear in the feature vector representing the chosen arm.14

More concretely, it is a sequential decision-making problem, where an agent each round picks an arm15

Xt, and receives a reward Yt = ⟨θ⋆, Xt⟩+ εt, with θ⋆ a fixed parameter unknown to the agent, and16

εt zero-mean random noise. This framework has gained significant attention in the literature as it17

yields analytic tools that can be applied to several concrete applications, such as online advertising18

(Abe et al., 2003), recommendation systems (Li et al., 2010; Korkut and Li, 2021), and dynamic19

pricing (Cohen et al., 2020).20

A popular strategy to tackle linear bandits leverages the principle of optimism in the face of uncertainty,21

via upper confidence bound (UCB) algorithms. The idea of optimism can be traced back to Lai and22

Robbins (1985), and its application to linear bandits was already advanced by Auer (2003). Since23

then, this approach has been improved and analysed by several works (Abbasi-Yadkori et al., 2011;24

Lattimore and Szepesvári, 2020; Flynn et al., 2023). This class of methods requires constructing an25

adaptive sequence of confidence sets that, with high probability, contain the true parameter θ⋆. Each26

round, the agent selects the arm maximising the expected reward under the most optimistic parameter27

(in terms of reward) in the current confidence set. UCB-based algorithms have become popular as28

they are often easy to implement and come with tight worst-case regret guarantees.29

For a UCB algorithm to perform well, it is necessary that the confidence sets are tight, which can be30

ensured by taking advantage of the structure of the problem. In this paper, our focus is on studying31

various assumptions on the observation noise. A commonly studied situation is when (εt)t≥0 consists32

of a sequence of i.i.d. realisations of some bounded or sub-Gaussian random variable (see Lattimore33

and Szepesvári, 2020, Chapter 20). Often, the standard analysis can be extended to the case in which34

the realisation are not independent, but conditionally centred and sub-Gaussian (Abbasi-Yadkori35

et al., 2011). Yet, in real-world settings, this assumption is often unrealistic, as one can expect the36

presence of interdependencies among the noise at different rounds. For instance, in the context37

of advertisement selection, the noise models the ensemble of external factors that influence the38
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user’s choice on whether to click or not an ad. The i.i.d. assumption implies that across different39

rounds these external factors are completely independent. In practice, the user choice will be affected40

by temporally correlated events, such as recent browsing history or exposure to similar content.41

Therefore, a more realistic assumption is to allow the dependencies to decay with time, rather than42

being completely absent. This way to model dependencies, often referred to as mixing, is common to43

study concentration for sums of non-i.i.d. random variables, with applications to machine learning44

(Bradley, 2005; Mohri and Rostamizadeh, 2008; Abélès et al., 2025).45

In the present paper we relax the assumption that the noise is conditionally zero-mean in the bandit46

problem, and we allow for the presence of dependencies. Concretely, we replace the standard47

conditionally sub-Gaussian setting with a more general formulation that accounts for conditional48

dependence of the noise on the past, by introducing a natural notion of mixing sub-Gaussianity. Within49

this context, we introduce a UCB algorithm for which we rigorously establish regret guarantees.50

There are two key challenges for our approach: constructing a valid confidence sequence under51

dependent noise, and deriving a regret upper bound for the UCB algorithm that we propose.52

We derive the confidence sequence by adapting the online-to-confidence-sets technique to accommo-53

date temporal dependencies in the noise. This approach, originally introduced by Abbasi-Yadkori54

et al. (2011) and recently extended and improved (Jun et al., 2017; Lee et al., 2024; Clerico et al.,55

2025), involves constructing an abstract online learning game whose regret guarantees can be turned56

into a confidence sequence. To deal with the dependencies in the noise, we modify the standard57

online-to-confidence-sets framework by introducing delays in the feedback received within the ab-58

stract online game. This approach is inspired by the recent work of Abélès et al. (2025) on extending59

online-to-PAC conversions to non-i.i.d. mixing data sets in the context of deriving generalisation60

bounds for statistical learning. There, a delayed-feedback trick similar to ours is employed to derive61

statistical guarantees (generalisation bounds) from an abstract online learning game.62

For the regret analysis of the bandit algorithm, we also need to face some challenges due to the63

correlated observation noise. We address these by introducing delays into the decision-making policy64

as well. This makes our approach superficially similar to algorithms used in the rich literature on65

bandits with delayed feedback (see, e.g., Vernade et al., 2020a; Howson et al., 2023). These works66

consider delay as part of the problem statement and not part of the solution concept, and are thus67

orthogonal to our work. In particular, a simple adaptation of results from this literature would not68

suffice for dealing with dependent observations, which we tackle by developing new concentration69

inequalities. Another line of work that is conceptually related to ours is that of non-stationary bandits70

(Garivier and Moulines, 2008; Russac et al., 2019). In that setting, the parameter vector θ⋆t evolves in71

time according to a nonstationary stochastic process, and the observation noise remains i.i.d., once72

again making for a rather different problem with its own challenges. Namely, the main obstacle73

to overcome is that comparing with the optimal sequence of actions becomes impossible unless74

strong assumptions are made about the sequence of parameter vectors. A typical trick to deal with75

these nonstationarities is to discard old observations (which may have been generated by a very76

different reward function), and use only recent rewards for decision-making. This is the polar opposite77

of our approach that is explicitly disallowed to use recent rewards, which clearly highlights how78

different these problems are. That said, there exists an intersection between the worlds of delayed79

and nontationary bandits (Vernade et al., 2020b), and thus we would not discard the possibility of80

eventually building a bridge between bandits with nonstationary reward functions and bandits with81

nonstationary observation noise. For simplicity, we focus on the second of these two components in82

this paper.83

Notation. Throughout the paper, we will often use the following notations. For u and v in Rp, we84

let ⟨u, v⟩ denote their dot product. ∥u∥2 =
√

⟨u, u⟩ is the Euclidean norm, while for a non-negative85

definite (p× p)-matrix A, ∥u∥A =
√
⟨u,Au⟩ is a semi-norm (a norm if the matrix is strictly positive86

definite). For r > 0, B(r) denotes the closed centred Euclidean ball in Rp with radius r. Given a87

non-empty set U ⊆ Rp, we let ∆U denote the space of (Borel) probability measures on Rp whose88

support in U . Finally, (ut)t≥t0 denotes a sequence indexed on the integers, with t0 its smallest index.89

2 Preliminaries on linear bandits90

We consider a version of the classic problem of regret minimisation in stochastic linear bandits, where91

an agent needs to make a sequence of decisions (or pick an arm) from a given contextual decision set92
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that may change over the sequence of rounds. We assume that the environment is oblivious to the93

actions of the agent, in the sense that the decision sets are determined in advance, and do not depend94

neither on the realisations of the noise nor on the agent’s arm-selection strategy.95

Concretely, we define the problem as follows. Let θ⋆ ∈ Rp be a parameter vector that is unknown96

to the learning agent. We assume as known an upper bound B > 0 on its euclidean norm (namely,97

θ⋆ ∈ B(B)). Fix a sequence of decision sets (Xt)t≥1 in Rp. We assume that for all t we have98

Xt ⊆ B(1). At each round t, the agent is required to pick an arm Xt ∈ Xt, and receives the reward99

Yt = ⟨θ⋆, Xt⟩+ εt. The sequence (εt)t≥1 represents the random feedback noise. The noise across100

different rounds is typically assumed to be conditionally centred and to have well behaved tails.101

For instance, a common assumption is to ask that E[εt|Ft−1] is centred and sub-Gaussian, where102

Ft = σ(ε1, . . . , εt) is the σ-field generated by the noise. This is the assumption this work relaxes.103

We also remark that, more generally, one can consider the case where the Xt as well are randomised,104

namely contain additional randomness that is not included in the noise. To take this into account, one105

can add this other source or randomness in the filtration. However, since in our case we will only106

consider a non-randomised bandit algorithm, we omit this to simplify our analysis.107

The agent aims to find a good strategy to pick arms Xt that lead to a high expected T -round reward108 ∑T
t=1⟨Xt, θ

⋆⟩. To compare their performance to that of an agent playing each round the best available109

arm (in expectation), we define the regret after T rounds as110

Reg(T ) =

t∑
t=1

sup
x∈Xt

(
⟨x, θ⋆⟩ − ⟨Xt, θ

⋆⟩
)
.

A common approach to tackle the linear bandit problem is to follow an upper confidence bound
(UCB) strategy. This involves the following protocol. At each round t, we first derive a confidence
set Ct−1, based on the arm-reward pairs (Xs, Ys)s≤t−1. This is a random set (as it depends on the
past noise realisations), which must be constructed ensuring that θ⋆ ∈ Ct−1 with high probability.
More precisely, the regret can be effectively controlled if one can ensure that θ⋆ uniformly belongs to
every set (Ct)t≥1, with high probability (a property often referred to as anytime validity). Then, for
every available arm x, we let

UCBCt−1
(x) = max

θ∈Ct−1

⟨x, θ⟩ .

By definition, this is a high-probability upper bound on ⟨x, θ⋆⟩, which justifies the name “upper111

confidence bound”. The idea is then to optimistically pick as Xt ∈ Xt the arm maximising UCBCt−1
.112

A key technical challenge in designing a UCB algorithm is to construct the anytime valid confidence
sequence (Ct)t≥1. Typically, under sub-Gaussian assumptions on the noise, these sets take the form
of an ellipsoid, centred on a (regularised) maximum likelihood estimator. Explicitly, we often have

Ct =
{
θ ∈ Θ : ∥θ − θ̂t∥2Vt

≤ β2
t

}
,

where θ̂t is the least-squares estimator of θ⋆, Vt is the feature-covariance matrix and βt is a radius113

carefully chosen so that the high-probability coverage requirement is satisfied. In this work, to114

construct the csonfidence sets we will leverage an online-to-confidence-set-conversion approach, a115

method that reduces the problem of proving statistical concentration bounds to proving existence of116

well-performing algorithms for an associated game of sequential probability assignment. We refer to117

Section 4 for more details on our technique to construct the confidence sequence.118

3 Linear bandits with non-i.i.d. observation noise119

We study a variant of the standard linear stochastic bandit problem where the observation-noise120

variables feature dependencies across different rounds. We focus on the case of weakly stationary121

noise, meaning we assume all the εt to have the same marginal distribution. However, the core122

assumption we make is what we call mixing sub-Gaussianity. This provides a way to control how123

dependencies decay as the time between two observations increases. It is defined in terms of a124

sequence of mixing coefficients ϕd, which quantify this decay.125

Assumption 1 (Mixing sub-Gaussianity). Fix σ > 0 and let ϕ = (ϕd)d≥0 be a non-negative and126

non-increasing sequence. We say that the random sequence (ϵt)t≥1 is (σ, ϕ)-mixing sub-Gaussian if127

εt is centred and σ-sub-Gaussian for every t, and, for all d ≥ 0 and all t > d, we have128 ∣∣E [ϵt |Ft−d ]
∣∣ ≤ ϕd (1)
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and129

E [expλ(ϵt − E [ϵt |Ft−d ]) |Ft−d ] ≤ e
λ2σ2

2 , ∀λ > 0 . (2)

Clearly, the above assumption generalises the standard conditionally sub-Gaussian assumption (that130

can be recovered by setting ϕd = 0 for all t), sometimes considered in the bandit literature. Although131

this might look like an unusual mixing assumption, it is very natural for our problem at hand, and132

can be weaker than standard mixing hypotheses. For instance, if the noise sequence is φ-mixing133

(see Bradley, 2005) and each εt is centred and bounded in [−a, b], it is straightforward to check that134

|E[εt|Ft−d]| ≤ (a + b)ϕd, and so Assumption 1 is satisfied since the boundedness automatically135

implies sub-Gaussianity. In the rest of the paper we assume σ = 1 for simplicity.136

Under Assumption 1, we can build the confidence sequence needed for our UCB algorithm. We state137

this result below, but defer the explicit derivation to Section 4 (see Corollary 1 there).138

Proposition 1. For some given ϕ, let the noise satisfy Assumption 1 with σ = 1. Fix δ ∈ (0, 1),
λ > 0, and d ≥ 1. For t ≥ 1 let

Ct =
{
θ ∈ B(B) : 1

2∥θ − θ̂t∥2Vt
≤ dp

2 log (B+1)2emax(dp,t+d)
dp + 2λB2 + tϕd(B + 1) + d log d

δ

}
,

where Vt =
∑t

s=1 XtX
⊤
t + λId, and θ̂t = arg minθ∈B(B)

∑t
s=1(⟨θ,Xt⟩ − Yt)

2. Then, (Ct)t≥1 is
an anytime valid confidence sequence, in the sense that

P
(
θ⋆ ∈ Ct , ∀t ≥ 1

)
≥ 1− δ .

Leveraging the confidence sequence above, we can define a UCB approach for our problem (Algo-139

rithm 1). At a high level, the algorithm operates by taking the confidence sets defined in Proposition140

1, and selecting the arm optimistically, as in the standard UCB. A key point is that a delay d is141

introduced, which at round t restricts the agent to use only the information available from the first142

t− d rounds. Although the actual technical reason behind this restriction will become fully clear only143

with the analysis of the coming sections, one can intuitively think of it as a way to prevent overfitting144

to recent noise, which might be highly correlated. If d is sufficiently large, the noise observed in145

each round t will be sufficiently decorrelated from the previous observations, which allows accurate146

estimation and uncertainty quantification of the true parameter θ⋆ and the associated rewards.147

Algorithm 1 Mixing-LinUCB
set d > 0
for i ∈ {1, 2, . . . d} do

play an arbitrary Xi and observe Yi

end for
for t ∈ {d+ 1, . . . } do

Xt = argmaxx∈Xt
UCBCt−d

(x), where Ct−d is as in Proposition 1
play Xt and observe reward Yt

end for

In Section 5 we provide a detailed analysis of the regret of the algorithm that we proposed. For148

instance, assuming that the mixing coefficients decay exponentially as ϕd = Ce−d/τ (geometric149

mixing), we show that the regret can be upper bounded in high probability as150

Reg(T ) ≤ O
(
τp

√
T log(T )2 + τ log T

√
pT log T

)
.

We refer to Theorem 2 and Corollary 2 in Section 5 for more details.151

4 Constructing the confidence sequence152

In this section we derive a confidence sequence for linear models with non-i.i.d. noise. First, we153

briefly describe the online-to-confidence-set conversion scheme from Clerico et al. (2025), which154

serves as our starting point. We then extend this technique to handle mixing noise.155
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4.1 Online-to-confidence set conversion for i.i.d. data156

Before proceeding for the analysis of mixing sub-Gaussian noise, which is the focus of this work,157

we start by describing how to derive a confidence sequence when the noise is independent (or158

conditionally) centred and sub-Gaussian across different rounds, as in Clerico et al. (2025). The159

online-to-confidence sets framework that we consider instantiates an abstract game played between160

an online learner and an environment. We define the squared loss ℓs(θ) = 1
2 (⟨θ,Xs⟩ − Ys)

2. For161

each round s = 1, . . . , t, the following steps are repeated:162

1. the environment reveals Xs to the learner;163

2. the learner plays a distribution Qs ∈ ∆Rp ;164

3. the environment reveals Ys to the learner;165

4. the learner suffers the log loss Ls(Qs) = − log
∫
Rp exp(−ℓs(θ))dQs(θ).166

This game is a special case of a well-studied problem called sequential probability assignment167

(Cesa-Bianchi and Lugosi, 2006). The learner can use any strategy to choose Q1, . . . , Qt, as long as168

each Qs depends only on X1, Y1, . . . , Xs−1, Ys−1, Xs. We define the regret of the learner against a169

(possibly data-dependent) comparator θ̄ ∈ Rp as170

Regrett(θ̄) =

t∑
s=1

Ls(Qs)−
t∑

s=1

ℓs(θ̄) .

Clerico et al. (2025) provide a regret bound upper bound (Proposition 3.1 there) for when the learner’s171

strategy is from an exponential weighted average (EWA) forecaster with a centred Gaussian prior172

Q1. However, to account for the presence of dependencies in our analysis, we will need the prior’s173

support to be bounded. We hence state here a regret bound (whose proof is deferred to Appendix174

A.1) for the regret of an EWA forecaster with a uniform prior.175

Proposition 2. Fix B > 0 and consider the EWA forecaster with as prior the uniform distribution on176

B(B + 1). Then, for all θ̄ ∈ B(B) and any t ≥ 1,177

Regrett(θ̄) ≤
p

2
log

(B + 1)2emax(p, t)

p
.

178

We remark that, by adding and subtracting the total log loss of the learner, the excess loss of θ⋆179

(relative to θ̄) can be rewritten as180

t∑
s=1

ℓs(θ
⋆)−

t∑
s=1

ℓs(θ̄) = Regrett(θ̄) +

t∑
s=1

ℓs(θ
⋆)−

t∑
s=1

Ls(Qs) . (3)

This simple decomposition is the key idea in the online-to-confidence sets scheme.181

Since the noise is conditionally sub-Gaussian and the distributions played by the online learner
are predictable (Qs cannot depend on Ys),

∑t
s=1 ℓs(θ

⋆)−
∑t

s=1 Ls(Qs) is the logarithm of a non-
negative super-martingale (cf. the no-hypercompression inequality in Grünwald, 2007 or Proposition
2.1 in Clerico et al., 2025) with respect to the noise filtration (Ft)t≥1. For simplicity, as already
mentioned in Section 2 and since this will be the case for our bandit strategy, we assume throughout
the paper that Xt is fully determined given the past noise . Henceforth, from Ville’s inequality (a
classical anytime valid Markov-like inequality that holds for non-negative super-martingales) one can
easily derive that θ⋆ ∈ Ct (uniformly for all t) with probability at least 1− δ, where

Ct =

{
θ ∈ Rp :

t∑
s=1

ℓs(θ)−
t∑

s=1

ℓs(θ̄) ≤ Regrett(θ̄) + log
1

δ

}
.

This result can be relaxed by replacing Regrett(θ̄) by any known regret upper bound for the online182

algorithm used in the abstract game (e.g., the bound of Proposition 2 for the EWA forecaster).183
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4.2 Confidence sequence under mixing sub-Gaussian noise184

The standard online-to-confidence sets scheme relies on the fact that
∑t

s=1 ℓs(θ
⋆)−

∑t
s=1 Ls(Qs) is185

the logarithm of a non-negative super-martingale, whose fluctuations can be controlled uniformly in186

time thanks to Ville’s inequality. However, this property hinges on the fact that the noise is assumed187

to be conditionally centred and sub-Gaussian, which now is not anymore the case. Yet, thanks to188

our mixing assumption, if we restrict our focus on rounds that are sufficiently far apart, the mutual189

dependencies get weaker, and the exponential of the sum behaves almost like a martingale. This190

insight suggests to partition the rounds into blocks, whose elements are mutually far apart, then apply191

concentration results to each block, and finally use a union bound to recover the desired confidence192

sequence spanning all rounds. We remark that this is a classical approach to derive concentration193

results for mixing processes, often referred to as the blocking technique (Yu, 1994).194

In order for the online-to-confidence sets scheme to leverage the blocking strategy outlined above,195

the abstract online game used for the analysis must be designed in a way that is compatible with196

the block structure. To address this point, we adopt an approach inspired by Abélès et al. (2025),197

who introduced delays in the feedbacks received by the online learner in order to address a similar198

challenge. More precisely, we will now consider the following delayed-feedback version of the online199

game. Fix a delay d > 0. For each round s = 1, . . . , t, the following steps are repeated:200

1. the environment reveals to the learner Xs, which is assumed to be Fs−d-measurable;201

2. the learner plays a distribution Qs ∈ ∆Rp ;202

3. if s > d, the environment reveals Ys−d+1 to the learner;203

4. the learner suffers the log loss Ls(Qs) = − log
∫
Rp exp(−ℓs(θ))dQs(θ).204

Note that the delay d only applies for the rewards, while Qs can still depend on Xs. Indeed, the choice205

of Xs in our mixing UCB algorithm is already “delayed”, as it depends on Ct−d (see Algorithm 1).206

Of course, in this setting the decomposition of (3) is still valid. We now want to deal with the207

concentration of
∑t

s=1 ℓs(θ
⋆) −

∑t
s=1 Ls(Qs) via the blocking technique. For convenience, let208

us write Dt = ℓt(θ
⋆) − Lt(Qt). We denote as S(i) = (S

(i)
k )k≥1 the subsequence defined as209

S
(i)
k =

∑k
j=1 Di+(j−1)d. The key idea is now that each of these S(i) behaves as the log of a210

martingale, up to a cumulative remainder that accounts for the conditional mean shift in the mixing211

sub-Gaussianity assumption. In particular, Ville’s inequality and a union bound yield the following.212

Lemma 1. Fix a delay d > 0 and δ ∈ (0, 1). We have that

P

(
t∑

s=1

(
ℓs(θ

⋆)− Ls(Qs)
)
≤ tϕdB + d log

d

δ
, ∀t ≥ 1

)
≥ 1− δ .

Now that we have a concentration result to control St, we only need to be able to upper bound the213

regret of an algorithm for the “delayed” online game that we are considering. To this purpose, we214

propose the following approach. We run d independent EWA forecaster (with uniform prior), each215

one only making prediction and receiving the feedback once every d rounds. More explicitly, the first216

forecaster acts at rounds 1, d+ 1, 2d+ 1..., the second at round 2, d+ 2, 2d+ 2..., and so on. As a217

direct consequence of Proposition 2, by summing the individual regret upper bounds we get a regret218

bound for the joint forecaster, which at each round returns the distribution predicted by the currently219

active forecaster. This technique of partitioning rounds into blocks for the regret analysis of online220

learning is common in the literature (e.g., see Weinberger and Ordentlich, 2002).221

Lemma 2. Fix B > 0, d > 0, and consider a strategy with d independent EWA forecasters outlined222

above, all initialised with the uniform distribution on B(B+1) as prior. For all θ̄ ∈ B(B) and t ≥ 1,223

Regrett(θ̄) ≤
dp

2
log

(B + 1)2emax(dp, t+ d)

dp
.

Putting together what we have, we get a confidence sequence suitable for our mixing UCB algorithm.224

Theorem 1. Consider the setting introduced above. Fix δ ∈ (0, 1) and a delay d > 0. Assume as
known that θ⋆ ∈ B(B). Let θ̂t = arg minθ∈B(B){

∑t
s=1 ℓs(θ)} and Λt =

∑t
s=1 XsX

⊤
s . Define

Ct =
{
θ ∈ B(B) : 1

2∥θ − θ̂t∥2Λt
≤ dp

2 log (B+1)2emax(dp,t+d)
dp + tϕd(B + 1) + d log d

δ

}
.
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Then, (Ct)t≥1 is an anytime valid confidence sequence for θ⋆, namely

P
(
θ⋆ ∈ Ct , ∀t ≥ 1

)
≤ 1− δ .

Proof. The optimality of θ̂t implies
∑t

s=1⟨θ − θ̂t,∇ℓs(θ̂t)⟩ ≥ 0, for all θ ∈ B(B). As
∑t

s=1 ℓs is
quadratic, it equals its second order Taylor expansion around θ̂t and its Hessian is everywhere Λt. So,

1

2
∥θ − θ̂t∥2Λt

≤ 1

2
∥θ − θ̂t∥2Λt

+

t∑
s=1

〈
θ − θ̂t,∇ℓs(θ̂t)

〉
=

t∑
s=1

(
ℓs(θ)− ℓs(θ̂t)

)
,

for any θ ∈ B(B). This, together with (3), Lemma 1, and Lemma 2, yields the conclusion.225

We remark that the confidence sets of Theorem 1 take the form of the intersection between the ball226

B(B) and the “ellipsoid” {θ : ∥θ − θ̂t∥Λt
≤ βt}, for a suitable radius βt. In order to implement and227

analyse the bandit algorithm, it will be more convenient to work with a relaxation of these sets, a228

pure ellipsoid not intersected with B(B). We make this explicit in the following corollary.229

Corollary 1. Fix λ > 0, d > 0, and δ ∈ (0, 1). For t ≥ 1, let Vt = Λt + λId. Assuming that
θ⋆ ∈ B(B), the following compact ellipsoids define an anytime valid confidence sequence for θ⋆:

Ct =
{
θ ∈ B(B) : 1

2∥θ − θ̂t∥2Vt
≤ dp

2 log (B+1)2emax(dp,t+d)
dp + 2λB2 + tϕd(B + 1) + d log d

δ

}
.

Proof. Let β2
t = dp log (B+1)2emax(dp,t+d)

dp + 2tϕd(B + 1) + 2d log d
δ . From Theorem 1, with230

probability at least 1 − δ, uniformly for every t, ∥θ⋆ − θ̂t∥2Λt
≤ β2

t . Adding to both sides of this231

inequality λ
2 ∥θ

⋆ − θ̂t∥22, and relaxing the RHS using that ∥θ⋆ − θ̂t∥22 ≤ 4B2, we conclude.232

5 Regret bounds for Mixing-LinUCB233

In this section, we establish worst-case and gap-dependent cumulative regret bounds for mixing UCB234

algorithm (Mixing Lin-UCB). However, to account for the fact that Mixing-LinUCB selects actions235

with delays, the standard elliptical potential arguments must be modified. Throughout this section,236

we let Rt = ⟨θ⋆, X⋆
t − Xt⟩ (where X⋆

t = arg maxx∈Xt
⟨θ⋆, x⟩) denote the regret in round t, and237

β2
t = dp log (B+1)2emax(dp,t+d)

dp +4λB2 +2tϕd(B+1)+2d log d
δ denote the squared radius of the238

ellipsoid Ct in Corollary 1.239

5.1 Worst-case regret bounds240

First, following the regret analysis in Abbasi-Yadkori et al. (2011) (see also Section 19.3 in Lattimore241

and Szepesvári, 2020), we upper bound the instantaneous regret. From our boundedness assumptions242

(θ⋆ ∈ B(B) and Xt ⊆ B(1)), we easily deduce that Rt ≤ 2B. Under the event that our confidence243

sequence contains θ⋆ at every step t, we have another bound on Rt. If we define θ̃t−d ∈ Ct−d to be244

the point at which ⟨θ̃t−d, Xt⟩ = UCBCt−d
(Xt), then from the definition of Xt we have245

⟨θ⋆, X⋆
t ⟩ ≤ max

x∈Xt

max
θ∈Ct−d

⟨θ, x⟩ = max
x∈Xt

UCBCt−d
(x) = UCBCt−d

(Xt) = ⟨θ̃t−d, Xt⟩ .

Recall that, for all s, Vs = Λs + λId, which is invertible as λ > 0. Thus, by Cauchy-Schwarz,246

Rt ≤ ⟨θ̃t−d − θ⋆, Xt⟩ ≤ ∥θ̃t−d − θ⋆∥Vt−d
∥Xt∥V −1

t−d
≤ 2βt−d∥Xt∥V −1

t−d
.

This means that the instantaneous regret satisfies the bound247

Rt ≤ 2max(B, βt−d)min(1, ∥Xt∥V −1
t−d

) . (4)
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Next, we separate the regret suffered in the first d rounds and the remaining T − d rounds. We then248

use Cauchy-Schwarz once more, and the fact that βt is increasing in t, to obtain249

Reg(T ) ≤ 2dB +

√
(T − d)

∑T
t=d+1R

2
t

≤ 2dB +

√
4(T − d)max(B2, β2

T−d)
∑T

t=d+1 min(1, ∥Xt∥2V −1
t−d

) .

At this point, we must depart from the standard linear UCB analysis (Abbasi-Yadkori et al., 2011; Latti-250

more and Szepesvári, 2020). We bound the sum of the elliptical potentials
∑T

t=d+1 min(1, ∥Xt∥2V −1
t−d

)251

using the following variant of the well-known “elliptical potential lemma” (see Appendix), which252

accounts for the fact that the feature covariance matrix Vt−d is updated with a delay of d steps.253

Lemma 3. For all T ≥ d+ 1,254

T∑
t=d+1

min(1, ∥Xt∥2V −1
t−d

) ≤ 2dp log(1 + T
λdp ) .

255

We can now state a worst-case regret upper bound for Mixing-LinUCB.256

Theorem 2. Fix λ = 1/B2, d > 0 and δ ∈ (0, 1). With probability at least 1− δ, for all T > d, the257

regret of Mixing-LinUCB satisfies258

Reg(T ) ≤ 2dB +
√
8dpT max(B2, β2

T ) log(1 +
B2T
dp ) .

259

From the definition of βT , we see that this regret bound is of the order260

Reg(T ) = O
(
dB + dp

√
T log TB

dp + T
√
Bdpϕd log

TB
dp + d

√
pT log TB

pδ

)
.

For any fixed (i.e., not depending on T ) delay d, this regret bound is linear in T . To obtain meaningful261

regret bounds, it is therefore crucial to set d as a function of T and the rate at which the mixing262

coefficients decay to zero. We point out that if T is unknown, one could probably use a more263

general framework where the delay is time dependent which might lead to non-trivial results, but we264

do not pursue this here. Under the assumption that the noise variables are either geometrically or265

algebraically mixing, we obtain the following worst-case regret bounds.266

Corollary 2. Suppose that the noise satisfies Assumption 1 with ϕd = Ce−
d
τ for some C, τ > 0267

(geometric mixing), and set d = ⌈τ log BCT
p ⌉. Then, the regret of Mixing-LinUCB satisfies268

Reg(T ) = O
(
τp

√
T
(
log TBmax(1,C)

p

)2
+ p

√
Tτ log TBmax(1,C)

p + τ log BCT
p

√
pT log TB

pδ

)
.

Corollary 3. Suppose that the noise satisfies Assumption 1 with ϕd = Cd−r for some C > 0 and269

r > 0 (algebraic mixing), and set d = ⌈CT 1/(1+r)⌉. Then, the regret of Mixing-LinUCB satisfies270

Reg(T ) = O
(
CBT 1/(1+r) + CT

3+r
2(1+r)

(
p log TB

p +
√
Bp log T r/(1+r)B

Cp +
√
p log TB

pδ

))
.

271

Up to a factor of τ log T , the bound for geometrically mixing noise matches the regret bound for272

linear UCB with i.i.d. noise. This bound is trivial for r ≤ 1, however for r > 1 we get sublinear273

regret, and in particular we recover standard rates up to logarithmic factors in the limit where r → ∞.274

5.2 Gap-dependent regret bounds275

Under the assumption that, each round, the gap between the expected reward of the optimal arm and276

the expected reward of any other arm is at least ∆ > 0, we get regret bounds with better dependence277
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on T . More precisely, define the minimum gap ∆ = mint∈[T ] minx∈Xt:x ̸=X⋆
t
⟨X⋆

t − x, θ⋆⟩, and278

assume that ∆ > 0. Since we either have Rt = 0 or Rt ≥ ∆ > 0, it follows that279

Rt ≤ R2
t /∆ .

In our worst-case analysis, we showed that280

T∑
t=d+1

R2
t ≤ 8dpmax(B2, β2

T ) log(1 +
T

λdp ) .

Combined with the previous inequality, we obtain the following gap-dependent regret bound.281

Theorem 3. Fix λ = 1/B2, d > 0, and δ ∈ (0, 1). With probability at least 1− δ, for all T > d, the282

regret of Mixing-LinUCB satisfies283

Reg(T ) ≤ 2dB +
8dp

∆
max(B2, β2

T ) log

(
1 +

B2T

dp

)
.

284

Similarly to the worst-case bound in Theorem 2, for any fixed d > 0, this regret bound is linear in T .285

By setting d as a suitable function of T , we obtain the following gap-dependent regret bounds under286

geometrically or algebraically mixing noise.287

Corollary 4. Suppose that the noise variables are geometrically mixing and set d = ⌈τ log BCT
p ⌉.288

Then the regret of Mixing-LinUCB satisfies289

Reg(T ) = O

(
8τp

∆

(
log

BCT

p

)2

log

(
1 +

B2T

pτ log BCT
p

)(
p

2
log

T

pτ
+ log

τ log BCT
p

δ

))
.

290

Corollary 5. Suppose that the noise variables are algebraically mixing and set d = ⌈CT 1/(1+r)⌉.291

Then the regret of Mixing-LinUCB satisfies292

Reg(T ) = O
(
8Cp

∆
T

2
1+r log

(
1 +

B2T

pCT 1/(1+r)

)(
p

2
log

(B + 1)2eT

p
+ log

CT 1/(1+r)

δ

))
.

293

6 Conclusion294

We leave several interesting questions open for future research. Some of these are listed below.295

An important limitation of our algorithm is that it requires the knowledge of the mixing coefficients296

(or at least an upper-bound on them). It would be interesting to explore the possibility of relaxing297

this assumption and to design an algorithm which infers the mixing coefficients while minimizing298

the regret. We note that the problem of estimating mixing coefficients is already a hard problem on299

its own right, with tight sample-complexity results only available in special cases such as Markov300

chains (Hsu et al., 2019; Wolfer, 2020). We also note that in order to recover the standard rate for the301

regret bound, the delay d introduced in our algorithm need to be chosen as a function of the horizon302

T . We believe that this could be fixed at little conceptual expense by using time-varying delay in the303

analysis, but we did not attempt to work out the (potentially non-trivial) details here.304

Another limitation is that our analysis assumed throughout that the adversary picking the decision sets305

Xt is oblivious, which is typically not required in linear bandit problems. For us, this was necessary306

to avoid potential statistical dependence between decision sets and the nonstationary observations.307

We believe that this issue can be handled at least for some classes of adversaries. For instance, it308

is easy to see that our analysis would carry through under the assumption that the decision sets be309

selected based on delayed information only. We leave the investigation of this question under more310

realistic assumptions open for future work.311
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A Technical Appendices and Supplementary Material375

A.1 Proof of Proposition 2376

For the EWA forecaster with prior Q1, we can rewrite the regret via a standard telescoping argument
(see Lemma B.1 in Clerico et al., 2025) as

Regrett(θ̄) = − log

∫
exp

(
−

t∑
s=1

ℓs(θ) +

t∑
s=1

ℓs(θ̄)

)
dQ1(θ) .

Using the variational representation of the KL divergence, this can be upper bounded as377

Regrett(θ̄) = inf
Q

{∫ t∑
s=1

ℓs(θ)dQ(θ)−
t∑

s=1

ℓs(θ̄) +DKL(Q||Q1)

}

≤ inf
c∈(0,1]

{∫ t∑
s=1

ℓs(θ)dPc(θ)−
t∑

s=1

ℓs(θ̄) +DKL(Pc||Q1)

}
,

where Pc is the uniform measure on the closed Euclidean ball of radius c in Rp, centred at θ̄. We378

remark that for all c ∈ (0, 1], Pc ≪ Q1. Therefore, for all c ∈ (0, 1],379

DKL(Pc||Q1) =

∫
p log

B + 1

c
dQ1(θ) = p log

B + 1

c
.

Taking a second-order Taylor expansion of the total squared loss around θ̄, and using the fact that the380

mean of Pc is θ̄, we obtain381

t∑
s=1

∫
Rp

(
ℓs(θ)− ℓs(θ̄)

)
dPc(θ) =

t∑
s=1

∫
Rp

(〈
θ − θ̄,∇ℓs(θ̄)

〉
+ 1

2

〈
θ − θ̄, Xs

〉2)
dPc(θ) ≤

tc2

2
,

where we used that ∥Xs∥2 ≤ 1 for all s in the last inequality. Combining everything so far, we obtain382

Regrett(θ̄) ≤ inf
c∈(0,1]

{
p log

B + 1

c
+

tc2

2

}
≤ p

2
log

(B + 1)2emax(p, t)

p
,

where the last term is obtained taking c = min(1,
√
p/t).383

A.2 Proof of Lemma 1384

Let Dt = ℓt(θ
⋆)− Lt(Qt) and λt(θ) = ⟨θ − θ⋆, Xt⟩. It is easy to check that

Dt = log

∫
eλt(θ)εt−λt(θ)

2/2dQt(θ) .

Fix i ∈ {1, . . . , d}. We denote as S(i) = (S
(i)
k )k≥1 the subsequence defined as S

(i)
k =385 ∑k

j=1 Di+(j−1)d. We also define F (i)
k = Fi+(k−1)d. It is easy to check that (S(i)

k )k≥1 is adapted386

with respect to (F (i)
k )k≥1. Now, let M (i)

k = exp(S
(i)
k − (k − 1)(2B + 1)ϕd). We will show that387

(M
(i)
k )k≥1 is a super-martingale with respect to (F (i)

k )k≥1, with initial expectation bounded by 1.388

For this it is enough to show that for any k ≥ 1 we have E[eDi+(k−1)d−(2B+1)ϕd |F (i)
k−1] ≤ 1. This is389

true for k = 1 (where we let F (i)
0 be the trivial σ-field, or more generally a σ-field independent of the390

noise). Indeed, as i ≤ d, Xi is F0 measurable and hence independent of εi. From Assumption 1, we391

know that εi is sub-Gaussian, and so E[eDi ] ≤ 1.392

Let us now check the case k ≥ 2. For convenience, we define t
(i)
k = i + (k − 1)d. We note that393

F
t
(i)
k

= F (i)
k . We have394

E[eDi+(k−1)d−(2B+1)ϕd |F (i)
k−1]

= E
[∫

exp
(
λ
t
(i)
k

(θ)ε
t
(i)
k

− λ
t
(i)
k

(θ)2/2− (2B + 1)ϕd

)
dQ

t
(i)
k

(θ)

∣∣∣∣F (i)
k−1

]
.
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Now, Q
t
(i)
k

only depends on the noise up to ε
t
(i)
k −d

= ε
t
(i)
k−1

, thanks to the delayed bandit framework.395

Henceforth, we can swap the conditional expectation and the integral. In a similar way, we can bring396

exp
(
− λ

t
(i)
k

(θ)2/2− (2B + 1)ϕd

)
outside of the conditional expectation, as it is F (i)

k−1 measurable.397

We get398

E[eDi+(k−1)d−(2B+1)ϕd |F (i)
k−1]

=

∫
E
[
exp

(
λ
t
(i)
k

(θ)ε
t
(i)
k

)∣∣∣F (i)
k−1

]
exp

(
− λ

t
(i)
k

(θ)2/2− (2B + 1)ϕd

)
dQ

t
(i)
k

(θ)

≤
∫

exp
(
λ
t
(i)
k

(θ)2/2 + λ
t
(i)
k

E[ε
t
(i)
k

|F (i)
k−1]

)
exp

(
− λ

t
(i)
k

(θ)2/2− (2B + 1)ϕd

)
dQ

t
(i)
k

(θ)

≤
∫

exp
(∣∣λ

t
(i)
k

(θ)
∣∣ϕd − (2B + 1)ϕd

)
dQ

t
(i)
k

(θ) ,

where the two inequalities use the sub-Gaussianity and mixing properties of Assumption 1. Now, by
construction Q

t
(i)
k

has support on B(B + 1), and for every θ ∈ B(B + 1)∣∣λ
t
(i)
k

(θ)
∣∣ ≤ ∥θ − θ⋆∥2∥Xt

(i)
k

∥2 ≤ 2B + 1 ,

where we also used that ∥X
t
(i)
k

∥2 ≤ 1, as for all t we are assuming that Xt ⊆ B(1). We thus conclude

that (M (i)
k )k≥1 is indeed a super-martingale, non-negative and with initial value bounded by 1. By

Ville’s inequality it follows that

P
(
S
(i)
k ≤ k(2B + 1)ϕd + log d

δ , ∀k ≥ 1
)
≥ 1− δ

d .

Now that we have proven that we have a super-martingale for each block, the desired anytime valid399

concentration result follows directly from a simple union bound.400

A.3 Proof of Lemma 2401

Fix t ≥ 1, and let i ∈ {1, . . . , d} and k ≥ 1 be such that t = i + (k − 1)d. Let Ij = {j + dN} ∩
{1, . . . , t}, for j ∈ {1, . . . d}. We consider d independent EWA forecaster (all initialised with the
uniform prior on B(B + 1)). The jth forecaster only acts and receive feedback from the rounds in Ij .
We note that the jth forecaster acts for tj rounds, where tj = k if j ≥ i, and tj = k − 1 otherwise.
We denote as R(j) the regret of the jth forecaster (which only takes into account the losses at the
rounds in Ij , with comparator θ̄. By Proposition 2 we get

Regrett(θ̄) =

d∑
j=1

R(j) ≤
d∑

j=1

p

2
log

(B + 1)2emax(p, tj)

p
.

We conclude by noticing that, for all j, tj ≤ (t+ d)/d.402

A.4 Proof of Lemma 3403

We recall the standard Elliptical Potential Lemma (see e.g. Lemma 11 in Abbasi-Yadkori et al., 2011),404

which we will use in our proof of Lemma 3.405

Lemma 4 (Elliptical Potential Lemma). Let (Xt)t be any sequence of vectors in Rp satisfying406

maxt∈[T ] ∥Xt∥2 ≤ L and let VT =
∑T

t=1 XtX
⊤
t + λI , for some λ > 0. Then407

T∑
t=1

min(1, ∥Xt∥2V −1
t−1

) ≤ 2p log(1 + TL2

λp ) .

Next, we introduce some notation. For t > d, define (i(t), k(t)) ∈ [d]×[K] such that t = i(t)+k(t)d
and let

V
i(t)
k(t)−1 =

k(t)−1∑
k=0

X
i(t)
k (X

i(t)
k )⊤ + λId ,

where X
i(t)
k = Xi(t)+kd. With this notation, we can state the following lemma.408
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Lemma 5. For any t > d, we have409

Vt−d ≽ V
i(t)
k(t)−1 ,

which implies that ∥Xt∥2V −1
t−d

≤ ∥Xt∥2(
V

i(t)

k(t)−1

)−1 for any t > d.410

Proof. Notice that we can write Vt−d =
∑t−d

s=1 XsX
⊤
s + λId = V

i(t)
k(t) +

∑t−d
s=1,s/∈St

XsX
⊤
s where411

St := {s = i(t) + (k − 1)d, k ∈ [k(t)]} is the set of indices (i(t), i(t) + d, . . . , i(t) + (k(t)− 1)d).412

The statement now follows from the fact that
∑t−d

s=1,s/∈St
XsX

⊤
s ≽ 0.413

We are now ready to prove Lemma 3. For now, let us assume that T = Kd, for some K > 1. Using414

Lemma 5 and then Lemma 4, we have415

T∑
t=d+1

min(1, ∥Xt∥2V −1
t−d

) ≤
T∑

t=d+1

min(1, ∥Xi(t)
k(t)∥

2

(V
i(t)

k(t)−1
)−1

)

=

d∑
i=1

K−1∑
k=1

min(1, ∥Xi
k∥2(V i

k−1)
−1)

≤ 2dp log(1 + (K−1)L2

λp ) .

One can verify that if T is not divisible by d, the above inequality still holds if we replace K by ⌈T
d ⌉.416

Therefore, regardless of whether T is divisible by d, we have417

T∑
t=d+1

min(1, ∥Xt∥2V −1
t−d

) ≤ 2dp log(1 + TL2

λdp ) .

This concludes the proof of Lemma 3.418

A.5 Proof of Corollary 2 and Corollary 3419

We start by recalling the general result420

Reg(T ) = O

 dB︸︷︷︸
(1)

+ dp
√
T log TB

dp︸ ︷︷ ︸
(2)

+T
√

Bdpϕd log
TB
dp︸ ︷︷ ︸

(3)

+ d
√

pT log TB
pδ︸ ︷︷ ︸

(4)

 . (5)

To simplify the following calculations, we do not force d to be a positive integer. One can always421

round d without changing the rates of the regret bounds.422

Geometric Mixing:423

Assume d = τ log BCT
p . We notice that the term (1) is logarithmic in T and thus negligible. From424

the definition of geometric mixing, it holds that ϕd = Ce−
d
τ = p

BT . Therefore,425

(3) ≤ p
√
τT log

TB

p
.

Substituting the value of d yields the desired bounds for terms (2) and (4) in Equation 5, and hence426

the desired statement.427

Algebraic mixing:428

Assume d = CT
1

1+r , we notice that in this case since ϕd = Cd−r, we have dϕd = Cd1−r. In429

particular this implies that T
√
dϕd = T

3+r
2(1+r) and thus430

(3) ≤ C

√
Bp log

TB

p
T

3+r
2(1+r)

The same way (2) and (4) are of order d
√
T = T

3+r
2(1+r) and replacing in Equation 5 yields the desired431

statement.432
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A.6 Proof of Corollary 4 and Corollary 5433

We start by recalling the general result434

Reg(T ) ≤ 2dB +
8dp

∆
max(B2, β2

T ) log

(
1 +

B2T

dp

)
,

where β2
T = dp log (B+1)2emax(dp,T+d)

dp︸ ︷︷ ︸
(1)

+2Tϕd(B + 1)︸ ︷︷ ︸
(2)

+2d log d
δ︸ ︷︷ ︸

(3)

.435

Geometric Mixing:436

Assume d = τ log BCT
p , then (2) = 2p(B+1)

BC is a constant. Hence we have437

Reg(T ) ≤ 2dB +
8d2p

∆

(
p log (B+1)2emax(dp,T+d)

dp + 2 log
d

δ
+

2p(B + 1)

dBC

)
log

(
1 +

B2T

dp

)
,

which under the assumption that βT ≥ B and replacing d by its definition yields438

Reg(T ) ≤ 2Bτ log
BCT

p

+
8τ2p

∆
log

(
1 +

B2T

pτ log BCT
p

)((
log

BCT

p

)2
(
p log (B+1)2eT

p + 2τ
log BCT

p

δ

)
+

2p(B + 1)

BC

)
.

If ∆ is constant, then for large T , the first term and the constant part coming from (2) become439

negligible. Therefore,440

Reg(T ) = O

(
8τ2p

∆
log

(
1 +

B2T

pτ log BCT
p

)(
log

BCT

p

)2
(
p

2
log (B+1)2eT

p + τ
log BCT

p

δ

))

Algebraic mixing:441

Assume d = CT
1

1+r , then we have442

β2
T ≤ CT

1
1+r log

(B + 1)2eT

p
+ 2C(B + 1)T

2
1+r + 2CT

1
1+r log

CT
1

1+r

δ
.

Under the regime where 2dB ≤ 8dp
∆ max(B2, β2

T ) log
(
1 + B2T

dp

)
and B ≤ βT this leads to443

Reg(T ) = O
(
8Cp

∆
T

2
1+r log

(
1 +

B2T

pCT 1/(1+r)

)(
p

2
log

(B + 1)2eT

p
+ log

CT 1/(1+r)

δ

))
.
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