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Abstract

It is a great challenge for any-to-any machine
translation in achieving robust performance
across diverse language pairs, primarily due
to the scarcity of non-English parallel cor-
pora. Existing approaches often rely on mas-
sive multilingual datasets or cascaded trans-
lation pipelines, which introduce inefficien-
cies, computational costs, and error propaga-
tion. Models trained on limited language pairs
struggle to generalize to unseen language direc-
tions, hindering practical deployment in real-
world multilingual scenarios. To address these
limitations, we propose UniLoRA, a novel in-
struction fine-tuning framework for Large Lan-
guage Models (LLMs) that enables efficient
any-to-any translation with minimal reliance
on limited multilingual parallel data. Our ap-
proach leverages English-centric parallel cor-
pora alongside limited multilingual translation
examples to align cross-lingual representations,
effectively bridging language gaps without re-
quiring exhaustive language-specific supervi-
sion. UniLoRA employs parameter-efficient
Low-Rank Adaptation (LoRA) modules along-
side Mixture-of-Experts (MoE) framework to
enable dynamic adaptation to arbitrary trans-
lation directions. Experiments demonstrate
that our approach achieves competitive perfor-
mance on diverse translation directions. This
work provides a resource-efficient paradigm for
democratizing high-quality any-to-any transla-
tion capabilities across linguistically diverse en-
vironments. Our code is available at: https://
anonymous. 4open.science/r/UniL-1BD1/.

1 Introduction

Recent large language models have demonstrated
exceptional performance across numerous NLP
tasks while exhibiting robust multilingual capabili-
ties (Grattafiori et al., 2024; Ustiin et al., 2024).
In particular, LLMs-based Multilingual Neural
Machine Translation (MNMT) systems have at-
tained broad language coverage while maintain-

ing high translation quality (Zeng et al., 2024).
These systems, however, exhibit performance dis-
parity across translation directions, especially in
non-English-involved directions (Zhu et al., 2024;
Xu et al., 2025). This disparity largely arises from
the scarcity of non-English Parallel Corpora,
which constitute only a minor fraction of publicly
available datasets, making it difficult to develop
robust any-to-any MNMT models (Arivazhagan
et al., 2019; Schwenk et al., 2021; Kreutzer et al.,
2022).

To address this issue, existing approaches mainly
adopt two divergent paradigms. The first involves
training multilingual models on massive aggregated
datasets with synthetic data (Chen et al., 2017; Fan
et al., 2021; NLLB Team et al., 2022), but these
approaches suffer from the inferior quality of the
synthetic parallel corpus. The second strategy uti-
lizes cascaded pivot-based pipelines. For example,
the source language is translated into the pivot lan-
guage (e.g., English), and then into the target lan-
guage as seen in Figure 1(a). Though reducing the
dependency of the non-English parallel corpus, this
pivot-based paradigm still suffers from the uncer-
tainty of the pivot language selection and the error
propagation issue (Liu et al., 2018; Zhang et al.,
2020).

The key issue of MNMT is to establish a uni-
fied any-to-any translation with as little multilin-
gual parallel corpus as possible. With the general
representation ability of LLMs, most researchers
currently turn to study the any-representation-any
MNMT as seen in Figure 1(b). Based on LLMs,
researchers can fine-tune a Low-Rank Adaptor
(LoRA) (Hu et al., 2022) for the specialized trans-
lation direction as seen in Figure 2(a) (Chen et al.,
2024; Gao et al., 2024). The straightforward ex-
tension for any-to-any translation is to fine-tune
one LoRA network for any translation direction.
We argue that this extension will introduce a non-
uniform fine-tune representation and suffer from
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(a) Pivot-based Paradigm
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Figure 1: Paradigms for achieving any-to-any translation: (a) Pivot-based paradigm, where translations between
language pairs are mediated through a pivot language (typically English). (b) Representation paradigm based on
LLM, where languages share a unified representation space, facilitating direct translation between any language

pair.

unscaled LoRA network increase with the lan-
guage increase. Specifically, though the backbone
LLMs generate a uniform representation for all lan-
guages, the multiple LoRAs (Zadouri et al., 2024)
will generate a specific (non-uniform) representa-
tion for each translation direction. Meanwhile, the
LoRA networks will scale up heavily with the in-
crease of language pairs.

To solve these problems, we present UniLoRA,
which fine-tunes LLMs with unified multiple LoORA
networks as illustrated in Figure 2(c). Inspired by
Mixture-of-Experts (MoE) (Shazeer et al., 2017),
our UniLoRA approach assigns a language with
only one language expert, and the matrices A and
B in LoRA are represented as the input encoder
and output decoder of the assigned language, re-
spectively. This language expert’s design greatly
alleviates the LoRA scaling-up problem. To unify
the fine-tuning representation, a UniCore Module
is introduced to merge the multiple LoORA embed-
dings. Furthermore, a two-stage fine-tune strategy
is employed with English-centric parallel corpora
in the first stage and limited multilingual corpora
in the second stage. We conduct extensive experi-
ments on our two-stage UniLoRA approach, which
demonstrates that UniLoRA with hundreds of mul-
tilingual parallel sentences outperforms the SoTA
MNMT systems with billions of parallel sequences
for training. Our main contributions are summa-
rized as follows:

* We introduce the UniLoRA approach, which
treats one LoRA network for a specific lan-
guage. Through the UniCore Module, our
UniLoRA approach generates uniform repre-

sentations from both LLMs backbones and the
fine-tuned LoRA network.

* Our UniLoRA approach eliminates depen-
dency on massive non-English parallel cor-
pora through English-involved fine-tuning and
multilingual activation with hundreds of high-
quality sentence pairs.

» Extensive experiments demonstrate that our
UniLoRA approach outperforms existing
LoRA-based approaches in quality metrics,
enabling fine-tuned general-purpose LLMs to
achieve competitive performance of sophisti-
cated MNMT models.

2 Related Works

While contemporary multilingual translation re-
sources demonstrate broad linguistic coverage with
substantial parallel data availability (e.g., OPUS
(Tiedemann, 2012), IWSLT datasets (Cettolo et al.,
2017) and WMT datasets (Specia et al., 2021;
Kocmi et al., 2022)), these resources predomi-
nantly feature English-centric alignment. Uncom-
mon translation directions exhibit scarce or en-
tirely unavailable coverage in publicly accessible
datasets, with existing materials for such directions
often exhibiting notable quality degradation (Fan
et al., 2021). Therefore, synthetic data augmen-
tation addresses this by enhancing NMT training
for under-resourced directions (Zhang et al., 2018),
with innovations including: pseudo-corpus refine-
ment (Zhang and Matsumoto, 2019; Adjeisah et al.,
2021), monolingual-to-parallel expansion (Marie
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Figure 2: Comparison of LLM-based NMT fine-tuning approaches. (a) Standard LoRA for NMT, (b) MoLoRA
framework, a straightforward extension for MNMT, and (c) our proposed UniLoRA framework. The UniLoRA
architecture distinguishes itself through interconnected language-specific expert design and a shared UniCore
module that facilitates unified cross-lingual transfer across all language pairs.

and Fujita, 2021), and noise-reduced generation via
graph-prompting LLMs (Pan et al., 2024). Recent
works further optimize augmentation strategies dur-
ing fine-tuning LLLMs on the MNMT task (Liu et al.,
2023; Luetal., 2024). In contrast to data-centric ap-
proaches, inspired by (Xu et al., 2024), our frame-
work introduces a staged fine-tuning protocol that
achieves any-to-any translation proficiency with
minimal parallel data requirements, circumvent-
ing both synthetic data generation overhead and
English-centric bias.

In addition, achieving balanced translation qual-
ity across language pairs remains a central chal-
lenge in multilingual translation (Tan et al., 2019).
Recent innovations in MoE frameworks address
this through specialized parameter allocation:
typology-aware language group routing (Li et al.,
2023), dynamic path optimization (Kudugunta
et al., 2021), and task-specific expert decompo-
sition (Tourni and Naskar, 2024). Token-level fea-
ture mixing via smoothed gating networks further
enhances language-specific feature representation
(Liu et al., 2022). Diverging from these structural
adaptations, our work mainly focuses on parameter-
efficient fine-tuning and eliminating reliance on
scarce training data.

3 Methodology

3.1 Preliminaries

Our approach builds upon two core components:
the low-rank adaptation paradigm shown in Fig-
ure 2(a), and its extension, Mixture-of-LoRAs

(MoLoRA) (Zhu et al., 2023; Zadouri et al., 2024),
as illustrated in Figure 2(b).

When employing the LoRA adapter, the pre-
trained LLMs’ weight matrix Wy remains frozen,
while a trainable low-rank decomposition matrix
AW = BA is superimposed onto the selected lin-
ear layers. This decomposition consists of two
low-rank matrices: A € R"™*% (LoRA A) and
B € R%*" (LoRA B), where r < min(d;,d,).
The updated forward computation can be formu-
lated as:

Yy = (AW + Wo)x = (BA + Wo)x, (1

where z € R% and y € R% denotes the input and
output sequence, respectively.

Building upon the LoRA method, the MoLoRA
method integrates the MoE paradigm. A MoLoRA
module consists of N LoRA experts, denoted as
Ey, B, ..., E,, which are used to adapt the pre-
trained layer during fine-tuning. Each expert E;
is decomposed into two trainable low-rank matri-
ces: F;j4 and E;p, corresponding to the LoRA
A and LoRA B components, respectively. The
MoLoRA module further incorporates a trainable
token-level expert router 8*°L, which computes
routing weights siM °L for each expert E;. The rout-
ing weight can be calculated as:

ok = g (3), = softmaz(W L), (@)

5

where WML ¢ RN*di is the router’s weight ma-
trix. The final output y is computed by aggregating
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Figure 3: Overview of the proposed UniLoRA approach.
The shared UniCore module facilitating cross-lingual
transfer comprises LORA A and LoRA B components,
which are structurally interconnected with their respec-
tive counterparts in each language-specific expert mod-
ule.

the contributions of all LoRA experts:

n
y=Wor+Y sMlEpEx 3)
=1

3.2 Union-Merged Language Experts with
UniCore Module

Our UniLoRA approach establishes union-
connections between experts in the MoE structure
along with a shared UniCore module as seen in
Figure 2(c). In this design, each expert in the
MoE structure is assigned to a specific language,
while interconnected expert pairs jointly model
translation relationships between distinct language
pairs.

For an N-language multilingual translation task,
a dedicated LoRA expert F; is assigned to each
language (e.g., F1, Es, ..., Ey), where E; corre-
sponds to the i-th language. Each language-specific
expert is further decomposed into two low-rank ma-
trices:

e F;4 € R%*7: Activated when the corre-
sponding language is the source (e.g., Zha
for Chinese as the source language).

» ;g € R"™9: Activated when the corre-
sponding language is the target (e.g., Enp
for English as the target language).

During translation, only the expert modules rele-
vant to the source-target pair and the shared Uni-
Core layer are activated. For example, in the trans-
lation direction Chinese — English, the Zh and
En experts are engaged while all other LoRA ex-
perts (e.g., C's) remain inactivated.

To ensure precise activation of the source and
target language-specific low-rank matrices during
translation, we implement a static language router
that routes inputs based on pre-defined language
labels, as is shown in Figure 2(c). For a given input
sequence x with the source language (src) and the
target language tgt, the output (y) is computed as:

y=Wor+»_ > f(x;i,j)EjpAWuniEiax,

i=1 j=1
“)
where AW,,,; is the weight matrix of UniCore
layer, which can be further decomposed into two
trainable low-rank matrices: Unigq € R"™ni*" and
Unip € R"*"wni as shown in Figure 3. Besides,
f(z;1,j) is the gating function of the static router:

o 1 ifi=srcand j =tgt
f(w;z,J)z{ TEWE(s)

0 otherwise

3.3 Staged Fine-Tuning on UniLoRA

Our framework implements a two-stage fine-tune to
enable comprehensive any-to-any translation with
limited parallel data, as formalized below:

Stage 1: English-Centric Specialization. The
first stage focuses on training the UniLoRA mod-
ule using English-involved corpora across all lan-
guages. The objective is to enhance the model’s
translation capabilities in both En=-Any and
Any=-En directions, and facilitate cross-lingual
transfer via the UniCore layer by designating En-
glish as the pivot language.

Consider a simplified case, where only three
language experts are involved: Chinese (Zh), En-
glish (En), and Czech (Cs). Let . = {Zh, En, Cs}
denote the set of all supported languages, and a
translation direction can be defined as (src, tgt) €
Zx.Z. In Stage 1, the UniLoRA module is trained
on the subset of English-pivoted pairs: Zgy =
{(En, Zh), (En, Cs), (Zh, En), (Cs, En)}. For the
subset of non-English pairs {(Cs, Zh), (Zh, Cs)},
the corresponding routing paths in the UniLoRA
module remain inactive. However, all expert
weight matrices (in both UniLoRA and UniCore
layers) are updated during this stage, enabling the



model to learn robust representations for English-
involved translation directions.

Stage 2: Ant-to-Any Activation. In the second
stage, the pre-trained UniLoRA model is further
fine-tuned on a limited-size parallel corpus cov-
ering all translation directions (e.g., six language
pairs in the simplified case). This stage activates
all routing paths, allowing each language expert
to adapt to both source and target roles across ar-
bitrary language pairs via the UniCore layer. By
leveraging the knowledge acquired in Stage 1, the
model achieves comprehensive translation capabili-
ties in all directions, ensuring optimal performance
regardless of the specific source-target pair.

4 Experiments

4.1 Dataset and Metrics

Following the ALMA model’s configuration (Xu
et al., 2024), six languages(i.e., English (En), Ger-
man (De), Chinese (Zh), Russian (Ru), Czech (Cs),
and Icelandic (Is))are selected for evaluation. To
comprehensively assess translation performance,
we test the model across all 30 possible language
directions.

For Stage 1 fine-tuning, the English-centric train-
ing set is selected from the OPUS-100 dataset
(Tiedemann, 2012). 20k parallel sentence pairs per
direction are randomly sampled from 10 English-
involved translation directions for Stage 1 train-
ing. For Stage 2 activation, all available pairs
(with fewer than 1k parallel sentence pairs per
direction) are employed from the Flores-200 de-
velopment set(NLLB Team et al., 2022). Due to
the limited availability of non-English-centric test
data in OPUS-100, our final evaluation combines
the OPUS-100 test sets involving English with the
Flores-200 test sets for non-English directions.

We adopt the widely used sentence-level trans-
lation prompt template (Hendy et al., 2023), struc-
tured as “Translate the following {src} sentences
into {tgt}: ”. The training loss is not computed for
the prompt template or the source sentence itself.

For evaluation metrics, the SacreBLEU (Post,
2018) and COMET-22 (Rei et al., 2022) are se-
lected to evaluate translation quality.

4.2 Implementation Details

The UniLoRA framework is implemented on state-
of-the-art backbone LLMs, including LLaMA-3-
8B-Instruct (Grattafiori et al., 2024) and Qwen2.5-
7B-Instruct (Qwen et al., 2025).

For Stage 1 fine-tuning, the training setup in-
cludes a batch size of 32, 2 training epochs, and 1
epoch for Stage 2 activation. The initial learning
rate is set to Se-4. Given the six languages involved
in the translation task, the number of experts in the
MOoE structure is fixed at 6. For LoRA configura-
tions, the hyperparameters are set as follows: lora
rank r = 16, lora alpha o = 32, and lora dropout p
=0.1. The UniCore module uses a rank of r,,,; =
1024.

4.3 Baselines

To ensure a fair comparison, we evaluate UniLoRA
against the following LoRA-based methods under
identical staged fine-tuning configurations:

* LoRA. We scale up the lora rank and lora al-
pha parameters within a single LoRA adapter
to match the total number of trainable param-
eters used in the UniLoRA setup.

MoLoRA (Top-k). We employ MoLoRA
adapter with the same number of experts as
UniLoRA alongwith a top-1 router, activating
only one expert per translation process.

e MoLoRA (Static). A variant of MoLoRA
equipped with a static router, where each trans-
lation direction is assigned a dedicated expert,
increases the total number of experts to 30.
While this ensures deterministic activation and
eliminates routing instability, it incurs 3.8x
higher training overhead due to redundant ex-
pert allocation.

In addition, we benchmark the UniLoRA frame-
work against state-of-the-art multilingual transla-
tion models based on LLMs, including M2M100-
12B (Fan et al., 2021), BigTranslate-13B (Yang
et al., 2023), and NLLB-3.3B (NLLB Team et al.,
2022). These models represent leading end-to-end
paradigms for multilingual translation. To further
contextualize our findings, we include ALMA-7B
(Xu et al., 2024), an English-centric model that em-
ploys a staged fine-tuning strategy similar to our
framework. Notably, ALMA-7B’s performance in
non-English-centric directions is evaluated via an
English pivot translation pipeline.

4.4 Main Experiments

The comprehensive performance across all trans-
lation directions is presented in Table 1. Overall,



.. En-Centric non-En-centric Average
Models Training Tokens
BLEU COMET | BLEU COMET | BLEU COMET
ALMA-7B (En-pivot) >20B | 2445 78.12 17.66 80.79 19.92 79.90
M2M100-12B >7.5B | 24.06 74.59 18.98 82.52 | 20.68 79.88
BigTranslate-13B 89.8B | 22.02 72.95 18.94 81.88 | 19.98 78.90
NLLB-3.3B >21.5B | 27.85 77.01 20.53 82.88 | 22.97 80.92
LLaMA-3-8B-Instruct Trainable | Training En-Centric non-En-centric Average
Parameters | Tokens | BLEU COMET | BLEU COMET | BLEU COMET
Base — — | 1841 68.61 13.94 77.41 15.43 74.48
“4LoRA | 209% || 2545 7534 | 1577 79.60 | 19.00 7818
+MoLoRA (Top-k) 2.14% 12.4M | 26.03 75.25 15.97 80.02 | 19.32 78.43
+MoLoRA (Static) 10.18% 27.46 77.10 | 16.39 81.27 | 20.08 79.88
C4UniloRA [
— Stage 1 2.12% 124M | 29.97 77.54 5.13 58.72 | 1341 64.99
— Stage 2 27.61 77.21 17.98 81.91 | 21.19 80.35
Qwen2.5-7B-Instruct Trainable | Training En-Centric non-En-centric Average
Parameters | Tokens | BLEU COMET | BLEU COMET | BLEU COMET
Base — — | 19.09 70.37 12.85 76.55 14.93 74.49
C4LoRA | 208% | | 2476 7483 | 1620  79.89 | 19.05 7820
+MoLoRA (Top-k) 2.14% 12.4M | 25.37 74.96 | 16.35 80.04 | 19.36 78.35
+MoLoRA (Static) 10.17% 26.15 76.61 17.09 80.62 | 20.11 79.28
C#UniLoRA [ |
— Stage 1 2.12% 12.4M | 27.97 78.51 7.44 59.40 | 14.28 65.77
— Stage 2 26.92 77.63 | 18.35 81.70 | 21.21 80.34

Table 1: The overall results in all directions. We mark the amount of tokens in training data and the proportion of
trainable parameters in the table as well. Except for UniLoRA, all LoRA-based fine-tuning approaches report only
Stage 2 results. UniLoRA outperforms all other fine-tuning configurations and is comparable to the state-of-the-art
translation models on multilingual translation tasks. Bold results indicate the highest scores among fine-tuning

methods on the same backbone model.

the proposed UniLoRA method demonstrates supe-
rior effectiveness after Stage 2 fine-tuning, outper-
forming other LoRA-based fine-tuning approaches.
The optimized model achieves competitive perfor-
mance relative to state-of-the-art multilingual trans-
lation systems, with results closely aligning with
the NLLB model.

Compared with backbone LLMs. After Stage
1 English-centric fine-tuning, UniLoRA signifi-
cantly enhances translation quality for all English-
involved directions. Following Stage 2 any-to-any
activation, UniLoRA exhibits statistically signifi-
cant improvements across all language pairs, with
particularly pronounced gains in non-English trans-
lation directions, achieving an average BLEU score
increase of +6.28. However, notable performance
degradation can be observed in English-centric di-
rections compared to Stage 1 results, attributed to
the knowledge forgetting of English-specific pat-
terns during the activation phase.

Comparison with LoRA-based fine-tuning
methods. The experiments reveal that UniLoRA

achieves the most significant performance gains
among all LoRA-based approaches under identical
or less parameter budgets, with consistent improve-
ments observed across key evaluation metrics. No-
tably, while MoLoRA’s top-k routing strategy out-
performs standard LoRA by dynamically selecting
experts, its static routing variant, though achieving
enhanced accuracy, demands multiplied computa-
tional resources due to its fixed expert assignment.
After Stage 2 fine-tuning, MoLoRA with top-k rout-
ing experiences expert fluctuations when the num-
ber of experts is insufficient, leading to a general
performance decline. In contrast, UniLoRA consis-
tently outperforms both MoLoRA configurations,
demonstrating superior efficiency.

Compared with prior multilingual translation
models. The UniLLoRA-fine-tuned model outper-
forms most existing multilingual translation sys-
tems and achieves performance comparable to the
NLLB model in average metrics. Notably, while
the ALMA model exhibits strong performance in
English-centric translation directions compared to



Methods English-Centric non-English-centric Average
BLEU COMET | BLEU COMET | BLEU COMET
UniLoRA
— Stage 1 29.97 77.54 5.13 58.72 | 1341 64.99
— Stage 2 27.61 77.21 17.98 8191 | 21.19 80.35
CwjoStage1 | 2348 7317 | 1736 8111 | 19.40 7847
“w/oUniCore | [ |
— Stage 1 29.50 78.26 | 13.95 77.35 19.13 77.65
— Stage 2 26.59 7522 | 1722 81.30 | 20.34 79.27

Table 2: The results of the ablation study on UniLoRA with different framework and fine-tuning configurations,
based on the LLaMA-3-8B-Instruct model. The best scores are marked in bold.

Methods English-Centric non-English-centric Average Trainable
BLEU COMET | BLEU COMET | BLEU COMET | Parameters
1 Shared Source Expert | 26.49 76.37 17.70 80.52 | 20.63 79.14 1.98%
1 Shared Target Expert 26.18 76.10 17.81 80.55 | 20.60 79.07
3Experts | 2732 7694 | 1804 8127 | 2113 7983 | 110%
6 Experts | 2761 7721 | 1798 8§1.91 | 21.19 8035 | 2.12%

Table 3: The results of the ablation study on UniLoRA with different configurations of merged language experts,
based on the LLaMA-3-8B-Instruct model. The best scores are marked in bold.

other baselines, its effectiveness in non-English-
centric directions is significantly limited when re-
lying on an English pivot pipeline for any-to-any
translation. This performance gap highlights the in-
herent limitations of English-centric architectures
in direct cross-lingual scenarios. UniLoRA’s advan-
tages are further underscored by its ability to reduce
dependency on large-scale non-English parallel cor-
pora, which have traditionally been considered es-
sential for robust multilingual translation. Despite
this reduction in data requirements, the framework
maintains competitive performance across diverse
language pairs, showcasing its efficiency in param-
eter utilization without compromising translation
quality.

5 Ablation Studies

We conduct further research on the UniLoRA
framework with diverse configurations to gain a
more comprehensive understanding. All experi-
ments for analysis are conducted on the LLaMA-3-
8B-Instruct model.

5.1 Component and Staged Training Analysis

To validate the necessity of the UniCore module
in the UniLoRA framework and the effectiveness
of staged fine-tuning, we perform ablation exper-
iments by modifying the UniLoRA framework or
training process. As shown in Table 2, we systemat-
ically evaluate the impact of individual components

and training strategies, with corresponding results
presented for comparative analysis. The results
reveal two critical findings:

The UniCore module is essential for any-to-
any translation. After Stage 1 fine-tuning, the
model without the UniCore module achieves com-
parable performance to the full UniLoRA model
in English-centric directions (notably with higher
COMET scores) and retains the backbone model’s
translation capability in non-English-centric direc-
tions. However, following Stage 2 fine-tuning, the
UniCore-free variant underperforms the baseline
UniLoRA model in both English-centric and non-
English-centric directions, demonstrating its criti-
cal role in enabling robust any-to-any translation
capabilities.

Staged fine-tuning is indispensable. When
Stage 1 fine-tuning is omitted and the model is
trained directly on a limited any-to-any corpus, per-
formance drops significantly compared to the opti-
mal configuration. This decline is observed across
all translation directions, including non-English-
centric ones, highlighting the importance of Stage
1 in transferring and preserving cross-lingual capa-
bilities before any-to-any activation.

5.2 Merged Language Experts

Exploring the application of expert compression
techniques within the UniLoRA framework is criti-
cal for advancing parameter efficiency. To further
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Figure 4: Data Requirements for Stage 2 activation.

optimize resource allocation, we conduct experi-
ments employing two distinct expert compression
strategies.

Shared source-target language experts. In-
spired by the asymmetric architecture in Hy-
dralLoRA (Tian et al., 2024), we implement con-
figurations where a unified expert module handles
either all source language inputs or all target lan-
guage outputs. This design enables shared exper-
tise between source and target modalities, thereby
reducing redundancy and optimizing parameter us-
age. By consolidating language-specific adapta-
tions into fewer specialized experts, the framework
achieves greater efficiency without compromising
directional translation performance.

Linguistically-informed group experts. Draw-
ing from the integration of language typology in
MoE-based translation systems (Li et al., 2023), we
propose linguistically-informed group experts. As
detailed in Table 4, selected languages are clustered
into typological groups. For instance, English, Ger-
man and Icelandic are consolidated into a single
expert. This approach reduces the total number of
language experts, decreasing trainable parameters
from 2.12% to 1.10% of the total model parameters
while maintaining the core UniLoRA architecture.

Experimental results in Table 3 demonstrate
that these strategies achieve significant param-
eter compression with performance trade-offs.
The linguistically-informed grouping configuration
even shows improved performance on non-English-
centric directions, while maintaining robustness
across major language pairs. These findings estab-
lish a scalable pathway for expanding the UniLoRA
framework to additional languages, demonstrating
its capacity for efficient multilingual adaptation
without compromising translation quality.

5.3 Data Requirements for Any-to-any
Activation

We further investigate the data requirements for
Stage 2 any-to-any adaptation in the UniLoRA
framework. To analyze scalability, we subsample
the original training data into subsets with varying
sizes, where the number of parallel sentences per
translation direction ranges from 32 to 997 (i.e., the
Flores-200 development set size). Notably, larger
subsets hierarchically include smaller ones to en-
sure consistent comparisons. Using these subsets
for Stage 2 training, we evaluate how translation
performance scales with data quantity, with results
visualized in Figure 4.

Experimental results reveal two critical phenom-
ena: First, Stage 2 fine-tuning temporarily degrades
performance in English-centric directions, but this
knowledge degradation diminishes as training data
increases; Second, non-English-centric directions
require approximately 128 parallel sentence pairs
to activate translation capabilities comparable to
the backbone model, with further performance
gains achieved through additional data scaling.

6 Conclusion

We present UniLoRA, a framework that integrates
LoRA with an MoE architecture to enable efficient
multilingual translation in large language models.
By combining language-specific expert modules
with a shared unified layer, UniLoRA achieves ro-
bust any-to-any translation capabilities through a
two-stage training approach that eliminates reliance
on extensive non-English parallel corpora. Exten-
sive experiments demonstrate that UniLoRA is a
scalable solution for multilingual translation, offer-
ing both technical innovation and practical value
for resource-constrained deployment scenarios.



Limitations

This work provides an efficient framework for mul-
tilingual neural machine translation via LLM fine-
tuning, yet several key limitations remain and war-
rant further investigation.

Language Coverage Constraints. While the
UniLoRA framework demonstrates potential to re-
duce reliance on non-English training corpora, our
experiments are limited to six languages (including
one low-resource language: Icelandic). Although
ablation studies on linguistically-informed expert
groups in Section 5.2 suggest language scalabil-
ity of UniLoRA, empirical validation is required
to evaluate performance across diverse language
pairs, particularly in low-resource settings.

Knowledge Forgetting in Staged Training.
The staged fine-tuning process leads to degraded
performance in English-centric directions due to
knowledge forgetting of Stage 1 capabilities. This
highlights the need for architectural innovations to
preserve cross-stage knowledge retention.

Model-Specific Generalization. Our experi-
ments are conducted on LLaMA-3-8B-Instruct and
Qwen2.5-7B-Instruct, which represent strong base-
lines but limit insights into model diversity and size
scalability. Future work should systematically eval-
uate UniLoRA’s effectiveness across models with
varying capabilities to ensure broader applicability.

Diversified Training Process. Our research pri-
marily explores supervised fine-tuning of LLMs
using parallel corpora. However, recent studies in-
dicate that translation capabilities can be further
enhanced through techniques such as continual pre-
training with monolingual data (Xu et al., 2024)
and preference learning (Xu et al., 2025). Fur-
ther exploration of integrating these methods with
UniLoRA is essential for enhancing its versatility.
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A Appendix
A.1 Training Details

We hereby supplement the model training config-
uration not mentioned in the main text. For both
backbone LLMs, we fine-tune the models using a
warm-up ratio of 5e-4, a maximum sequence length
of 512 tokens, and a weight decay of 0.02. LoRA
adapters are applied to the gate_proj, up_proj, and
down_proj modules of the backbone LLMs. Stage
1 fine-tuning requires 3 epochs, while Stage 2 ac-
tivation requires 1 epoch. Model training process
is conducted on 4 NVIDIA A100 GPUs, with each
GPU handling batches with batch_size of 2 and
employing a gradient_accumulation_step of 4.

A.2 Data Settings

For the staged fine-tuning data details:

Stage 1 English-Centric Specialization: The
pre-divided development subset from OPUS-100
serves as our development set. The training data
consists of the randomly sampled subset from the
OPUS-100 training dataset.

Stage 2 Ant-to-Any Activation: In this stage,
non-English-centric directions use the full Flores-
200 development subsets for training, with 20% of
the randomly sampled training data serving as the
development set. For English-centric directions,
the training data consists of 5% of the randomly
sampled subset from Stage 1’s training data. De-
tailed configurations are summarized in Table 5.

A.3 Self-Contrastive Semantic Enhancement

To further improve regularization capability, we
take R-Drop (Liang et al., 2021) to reduce the in-
consistency existing in training and inference. In
each training step, the R-Drop method seeks to
regularize the model’s predictions by minimizing
the bidirectional Kullback-Leibler (KL) divergence
between the two output distributions for the same
sample.

Language Language Family

(En) English

(De) German | Germanic, Indo-European
(Is) Icelandic

(Cs) Czec}-1 Balto-Slavic, Indo-European
(Ru) Russian

(Zh) Chinese | Sino-Tibetan

Table 4: The languages selected in the main experiment
and their corresponding language families.
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Training Stage | Directions ?arallel data pairs
train dev test
Stage 1 EnsAny | 20000 2000 2000
En< Any 1000 200 2000
Stage 2
Others 997 200 1012

Table 5: The statistics for the data we utilize for the
main experiment.

We evaluate its impact via ablation studies on the
UniLoRA model based on LLaMA-3-8B-Instruct,
comparing fine-tuning with and without R-Drop.
Results in Table 6 demonstrate that self-contrastive
semantic enhancement significantly boosts the gen-
eralization capability of UniLoRA, achieving con-
sistent performance improvements across all trans-
lation directions relative to the baseline, while in-
curring no additional inference cost. This high-
lights the effectiveness of R-Drop in stabilizing
training dynamics without compromising computa-
tional efficiency.

A.4 Full Results of the Main Experiment

We present in Table 7 and Table 8 the specific
performance of the UniLoRA model based on
the LLaMA-3-8B-Instruct backbone model across
all translation directions in the main experiment.
The performance metrics include BLEU scores,
ROUGE-L, and COMET scores. For comparison,
the table also includes the performance of prior
studies and the backbone LLM baseline.



. English-Centric non-English-centric Average
Configurations
BLEU COMET | BLEU COMET | BLEU COMET
w/o R-Drop 27.33 76.79 | 17.47 81.46 | 20.76 79.90
with R-Drop 27.61 77.21 | 17.98 81.91 | 21.19 80.35

Table 6: Results of the ablation study on the effect of R-Drop regularization, based on the LLaMA-3-8B-Instruct
backbone model. Higher scores are marked in bold. Employing the R-Drop method results in a comprehensive
performance improvement.

Models Zh=-En En=-Zh De=-En
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 29.75 50.11 79.51 28.07 44.35 80.58 28.08 45.06 75.24
M2M100-12B 27.66 51.72 78.97 27.76 45.06 79.81 30.90 50.48 78.27
" LLaMA-3-8B-Instruct | 20.84  39.64 7493 | 1876 3386 7347 | 2307 3775 7110
UniLoRA Stage 1 35.28 58.52 81.26 36.19 53.84 82.49 33.45 54.47 78.46
UniLoRA Stage 2 33.08 56.40 81.75 34.56 52.85 82.73 31.70 52.51 79.03
Models En=-De Ru=En En=-Ru
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 27.54 43.22 78.24 29.03 47.86 76.80 28.41 43.21 82.51
M2M100-12B 27.29 45.93 76.48 26.65 46.34 76.97 23.39 36.81 79.54
" LLaMA-3-8B-Instruct | 2126  34.14 7036 | 2254 3850 7110 | 1874 30.84  73.84
UniLoRA Stage 1 28.34 48.77 76.45 32.69 55.36 78.25 26.44 46.54 80.92
UniLoRA Stage 2 27.61 47.87 78.31 31.25 54.02 79.07 22.81 41.53 78.63
Models Cs=En En=-Cs Is=En
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 31.10 47.71 76.15 28.11 41.25 81.39 25.47 43.63 72.63
M2M100-12B 26.12 41.56 76.31 21.19 32.69 77.70 16.41 38.40 64.67
" LLaMA-3-8B-Instruct | 2258 3845 70.06 | 1538 2564 7102 [ 1189 2146 5551
UniLoRA Stage 1 33.86 57.03 78.82 24.89 46.60 80.19 26.55 51.01 71.08
UniLoRA Stage 2 30.97 53.90 77.96 22.82 43.61 79.67 22.90 45.78 69.62
Models En=-Is De=-Z7h Zh=-De
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 22.98 38.37 67.03 25.11 43.38 79.31 18.17 41.43 80.52
M2M100-12B 13.21 32.84 57.15 27.24 48.11 84.06 16.47 39.34 80.09
" LLaMA-3-8B-Instruct | 9.05 1729 5471 | 1681 3270 76.69 | 1326 3307 7725
UniLoRA Stage 1 21.98 45.42 67.45 5.39 10.34 51.08 9.74 26.48 70.88
UniLoRA Stage 2 18.36 40.46 65.35 27.61 48.59 83.56 15.28 40.58 79.95
Models De=Ru Ru=-De De=-Cs
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 25.29 46.45 87.12 24.17 49.12 81.89 24.13 47.40 89.48
M2M100-12B 22.07 43.26 86.55 21.30 45.92 80.52 23.35 46.50 89.61
' LLaMA-3-8B-Instruct | 17.79 3624 8252 | 17.84 3978 7734 [ 1711 3773 8510
UniLoRA Stage 1 1.79 2.20 52.71 1.99 2.82 49.45 1.86 2.92 58.89
UniLoRA Stage 2 21.58 45.51 86.48 20.81 47.84 81.24 19.87 45.66 89.09

Table 7: Part 1 of the full results for all translation directions of the main experiment.
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Models Cs=De De=1Is Is=De
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 26.02 51.21 84.59 18.19 43.15 82.37 | 20.63 44.89 78.80
M2M100-12B 24.00 49.15 83.55 13.72 37.02 79.35 18.99 4291 78.30
" LLaMA-3-8B-Instruct | 2026 4271 8047 [ 806 2690 7205 | 992 2422 66.90
UniLoRA Stage 1 433 8.63 61.52 2.02 4.50 52.84 7.12 17.78 59.31
UniLoRA Stage 2 22.35 49.43 83.80 11.56 35.19 74.37 18.02 43.79 77.75
Models Zh=Ru Ru=Zh Zh=-Cs
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 17.50 36.90 85.57 | 24.96 42.84 80.22 15.64 36.42 86.20
M2M100-12B 15.76 34.68 85.39 | 26.10 46.57 83.60 14.87 35.39 86.59
" LLaMA-3-8B-Instruct | 1225 2787 8179 | 23.02 7113 7993 | 1129 2805  82.84
UniLoRA Stage 1 9.03 22.22 66.63 5.12 9.02 49.33 9.77 25.83 81.13
UniLoRA Stage 2 15.55 37.14 86.15 | 27.87 49.56 84.03 13.71 37.34 86.08
Models Cs=Zh Zh=-Is Is=Zh
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 24.38 42.81 79.50 12.81 34.72 79.63 | 20.83 38.99 77.27
M2M100-12B 26.96 47.80 84.38 9.89 30.84 7744 | 21.14 42.30 80.73
" LLaMA-3-8B-Instruct | 1849 3499 7771 [ 634 2153 7112 [ 1620 3311 7370
UniLoRA Stage 1 3.99 7.15 45.90 2.52 8.54 51.92 0.93 2.64 46.18
UniLoRA Stage 2 30.86 51.94 85.04 7.26 29.21 72.07 | 22.12 44.14 80.06
Models Cs=Ru Ru=-Cs Cs=1Is
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 24.26 45.55 87.82 | 21.10 43.93 88.36 16.43 40.52 81.39
M2M100-12B 21.65 43.34 87.76 | 20.18 42.64 88.99 12.49 35.55 76.42
" LLaMA-3-8B-Instruct | 17.69 3625 83.09 [ 1504 3502 8393 [ 797 2607 7136
UniLoRA Stage 1 16.77 34.99 81.83 1.62 2.32 53.20 7.74 24.53 71.23
UniLoRA Stage 2 20.43 44.02 87.53 17.80 43.20 87.73 10.04 34.97 76.22
Models Is=Cs Ru=Is Is=Ru
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 17.32 38.99 84.35 15.23 39.21 80.58 18.43 38.32 82.64
M2M100-12B 16.05 36.89 82.39 11.49 33.54 74.37 15.96 35.35 80.20
" LLaMA-3-8B-Instruct | 10.77 2758 7763 | 731 2506 7051 | 11.60 2748 7628
UniLoRA Stage 1 4.01 9.53 58.41 3.88 13.65 60.07 2.98 6.42 51.88
UniLoRA Stage 2 13.74 36.94 83.63 8.65 32.76 71.77 14.53 35.98 81.68

Table 8: Part 2 of the full results for all translation directions of the main experiment.

14



	Introduction
	Related Works
	Methodology
	Preliminaries
	Union-Merged Language Experts with UniCore Module
	Staged Fine-Tuning on UniLoRA

	Experiments
	Dataset and Metrics
	Implementation Details
	Baselines
	Main Experiments

	Ablation Studies
	Component and Staged Training Analysis
	Merged Language Experts
	Data Requirements for Any-to-any Activation

	Conclusion
	Appendix
	Training Details
	Data Settings
	Self-Contrastive Semantic Enhancement
	Full Results of the Main Experiment


