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Abstract001

It is a great challenge for any-to-any machine002
translation in achieving robust performance003
across diverse language pairs, primarily due004
to the scarcity of non-English parallel cor-005
pora. Existing approaches often rely on mas-006
sive multilingual datasets or cascaded trans-007
lation pipelines, which introduce inefficien-008
cies, computational costs, and error propaga-009
tion. Models trained on limited language pairs010
struggle to generalize to unseen language direc-011
tions, hindering practical deployment in real-012
world multilingual scenarios. To address these013
limitations, we propose UniLoRA, a novel in-014
struction fine-tuning framework for Large Lan-015
guage Models (LLMs) that enables efficient016
any-to-any translation with minimal reliance017
on limited multilingual parallel data. Our ap-018
proach leverages English-centric parallel cor-019
pora alongside limited multilingual translation020
examples to align cross-lingual representations,021
effectively bridging language gaps without re-022
quiring exhaustive language-specific supervi-023
sion. UniLoRA employs parameter-efficient024
Low-Rank Adaptation (LoRA) modules along-025
side Mixture-of-Experts (MoE) framework to026
enable dynamic adaptation to arbitrary trans-027
lation directions. Experiments demonstrate028
that our approach achieves competitive perfor-029
mance on diverse translation directions. This030
work provides a resource-efficient paradigm for031
democratizing high-quality any-to-any transla-032
tion capabilities across linguistically diverse en-033
vironments. Our code is available at: https://034
anonymous.4open.science/r/UniL-1BD1/.035

1 Introduction036

Recent large language models have demonstrated037

exceptional performance across numerous NLP038

tasks while exhibiting robust multilingual capabili-039

ties (Grattafiori et al., 2024; Üstün et al., 2024).040

In particular, LLMs-based Multilingual Neural041

Machine Translation (MNMT) systems have at-042

tained broad language coverage while maintain-043

ing high translation quality (Zeng et al., 2024). 044

These systems, however, exhibit performance dis- 045

parity across translation directions, especially in 046

non-English-involved directions (Zhu et al., 2024; 047

Xu et al., 2025). This disparity largely arises from 048

the scarcity of non-English Parallel Corpora, 049

which constitute only a minor fraction of publicly 050

available datasets, making it difficult to develop 051

robust any-to-any MNMT models (Arivazhagan 052

et al., 2019; Schwenk et al., 2021; Kreutzer et al., 053

2022). 054

To address this issue, existing approaches mainly 055

adopt two divergent paradigms. The first involves 056

training multilingual models on massive aggregated 057

datasets with synthetic data (Chen et al., 2017; Fan 058

et al., 2021; NLLB Team et al., 2022), but these 059

approaches suffer from the inferior quality of the 060

synthetic parallel corpus. The second strategy uti- 061

lizes cascaded pivot-based pipelines. For example, 062

the source language is translated into the pivot lan- 063

guage (e.g., English), and then into the target lan- 064

guage as seen in Figure 1(a). Though reducing the 065

dependency of the non-English parallel corpus, this 066

pivot-based paradigm still suffers from the uncer- 067

tainty of the pivot language selection and the error 068

propagation issue (Liu et al., 2018; Zhang et al., 069

2020). 070

The key issue of MNMT is to establish a uni- 071

fied any-to-any translation with as little multilin- 072

gual parallel corpus as possible. With the general 073

representation ability of LLMs, most researchers 074

currently turn to study the any-representation-any 075

MNMT as seen in Figure 1(b). Based on LLMs, 076

researchers can fine-tune a Low-Rank Adaptor 077

(LoRA) (Hu et al., 2022) for the specialized trans- 078

lation direction as seen in Figure 2(a) (Chen et al., 079

2024; Gao et al., 2024). The straightforward ex- 080

tension for any-to-any translation is to fine-tune 081

one LoRA network for any translation direction. 082

We argue that this extension will introduce a non- 083

uniform fine-tune representation and suffer from 084
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Figure 1: Paradigms for achieving any-to-any translation: (a) Pivot-based paradigm, where translations between
language pairs are mediated through a pivot language (typically English). (b) Representation paradigm based on
LLM, where languages share a unified representation space, facilitating direct translation between any language
pair.

unscaled LoRA network increase with the lan-085

guage increase. Specifically, though the backbone086

LLMs generate a uniform representation for all lan-087

guages, the multiple LoRAs (Zadouri et al., 2024)088

will generate a specific (non-uniform) representa-089

tion for each translation direction. Meanwhile, the090

LoRA networks will scale up heavily with the in-091

crease of language pairs.092

To solve these problems, we present UniLoRA,093

which fine-tunes LLMs with unified multiple LoRA094

networks as illustrated in Figure 2(c). Inspired by095

Mixture-of-Experts (MoE) (Shazeer et al., 2017),096

our UniLoRA approach assigns a language with097

only one language expert, and the matrices A and098

B in LoRA are represented as the input encoder099

and output decoder of the assigned language, re-100

spectively. This language expert’s design greatly101

alleviates the LoRA scaling-up problem. To unify102

the fine-tuning representation, a UniCore Module103

is introduced to merge the multiple LoRA embed-104

dings. Furthermore, a two-stage fine-tune strategy105

is employed with English-centric parallel corpora106

in the first stage and limited multilingual corpora107

in the second stage. We conduct extensive experi-108

ments on our two-stage UniLoRA approach, which109

demonstrates that UniLoRA with hundreds of mul-110

tilingual parallel sentences outperforms the SoTA111

MNMT systems with billions of parallel sequences112

for training. Our main contributions are summa-113

rized as follows:114

• We introduce the UniLoRA approach, which115

treats one LoRA network for a specific lan-116

guage. Through the UniCore Module, our117

UniLoRA approach generates uniform repre-118

sentations from both LLMs backbones and the 119

fine-tuned LoRA network. 120

• Our UniLoRA approach eliminates depen- 121

dency on massive non-English parallel cor- 122

pora through English-involved fine-tuning and 123

multilingual activation with hundreds of high- 124

quality sentence pairs. 125

• Extensive experiments demonstrate that our 126

UniLoRA approach outperforms existing 127

LoRA-based approaches in quality metrics, 128

enabling fine-tuned general-purpose LLMs to 129

achieve competitive performance of sophisti- 130

cated MNMT models. 131

2 Related Works 132

While contemporary multilingual translation re- 133

sources demonstrate broad linguistic coverage with 134

substantial parallel data availability (e.g., OPUS 135

(Tiedemann, 2012), IWSLT datasets (Cettolo et al., 136

2017) and WMT datasets (Specia et al., 2021; 137

Kocmi et al., 2022)), these resources predomi- 138

nantly feature English-centric alignment. Uncom- 139

mon translation directions exhibit scarce or en- 140

tirely unavailable coverage in publicly accessible 141

datasets, with existing materials for such directions 142

often exhibiting notable quality degradation (Fan 143

et al., 2021). Therefore, synthetic data augmen- 144

tation addresses this by enhancing NMT training 145

for under-resourced directions (Zhang et al., 2018), 146

with innovations including: pseudo-corpus refine- 147

ment (Zhang and Matsumoto, 2019; Adjeisah et al., 148

2021), monolingual-to-parallel expansion (Marie 149
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Figure 2: Comparison of LLM-based NMT fine-tuning approaches. (a) Standard LoRA for NMT, (b) MoLoRA
framework, a straightforward extension for MNMT, and (c) our proposed UniLoRA framework. The UniLoRA
architecture distinguishes itself through interconnected language-specific expert design and a shared UniCore
module that facilitates unified cross-lingual transfer across all language pairs.

and Fujita, 2021), and noise-reduced generation via150

graph-prompting LLMs (Pan et al., 2024). Recent151

works further optimize augmentation strategies dur-152

ing fine-tuning LLMs on the MNMT task (Liu et al.,153

2023; Lu et al., 2024). In contrast to data-centric ap-154

proaches, inspired by (Xu et al., 2024), our frame-155

work introduces a staged fine-tuning protocol that156

achieves any-to-any translation proficiency with157

minimal parallel data requirements, circumvent-158

ing both synthetic data generation overhead and159

English-centric bias.160

In addition, achieving balanced translation qual-161

ity across language pairs remains a central chal-162

lenge in multilingual translation (Tan et al., 2019).163

Recent innovations in MoE frameworks address164

this through specialized parameter allocation:165

typology-aware language group routing (Li et al.,166

2023), dynamic path optimization (Kudugunta167

et al., 2021), and task-specific expert decompo-168

sition (Tourni and Naskar, 2024). Token-level fea-169

ture mixing via smoothed gating networks further170

enhances language-specific feature representation171

(Liu et al., 2022). Diverging from these structural172

adaptations, our work mainly focuses on parameter-173

efficient fine-tuning and eliminating reliance on174

scarce training data.175

3 Methodology176

3.1 Preliminaries177

Our approach builds upon two core components:178

the low-rank adaptation paradigm shown in Fig-179

ure 2(a), and its extension, Mixture-of-LoRAs180

(MoLoRA) (Zhu et al., 2023; Zadouri et al., 2024), 181

as illustrated in Figure 2(b). 182

When employing the LoRA adapter, the pre- 183

trained LLMs’ weight matrix W0 remains frozen, 184

while a trainable low-rank decomposition matrix 185

∆W = BA is superimposed onto the selected lin- 186

ear layers. This decomposition consists of two 187

low-rank matrices: A ∈ Rr×di (LoRA A) and 188

B ∈ Rdo×r (LoRA B), where r ≪ min(di, do). 189

The updated forward computation can be formu- 190

lated as: 191

y = (∆W +W0)x = (BA+W0)x, (1) 192

where x ∈ Rdi and y ∈ Rdo denotes the input and 193

output sequence, respectively. 194

Building upon the LoRA method, the MoLoRA 195

method integrates the MoE paradigm. A MoLoRA 196

module consists of N LoRA experts, denoted as 197

E1, E2, . . . , En, which are used to adapt the pre- 198

trained layer during fine-tuning. Each expert Ei 199

is decomposed into two trainable low-rank matri- 200

ces: EiA and EiB , corresponding to the LoRA 201

A and LoRA B components, respectively. The 202

MoLoRA module further incorporates a trainable 203

token-level expert router θMoL, which computes 204

routing weights sMoL
i for each expert Ei. The rout- 205

ing weight can be calculated as: 206

sMoL
i = θMoL(x)i = softmax(WMoLx)i, (2) 207

where WMoL ∈ RN×di is the router’s weight ma- 208

trix. The final output y is computed by aggregating 209
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Figure 3: Overview of the proposed UniLoRA approach.
The shared UniCore module facilitating cross-lingual
transfer comprises LoRA A and LoRA B components,
which are structurally interconnected with their respec-
tive counterparts in each language-specific expert mod-
ule.

the contributions of all LoRA experts:210

y = W0x+

n∑
i=1

sMoL
i EiBEiAx (3)211

3.2 Union-Merged Language Experts with212

UniCore Module213

Our UniLoRA approach establishes union-214

connections between experts in the MoE structure215

along with a shared UniCore module as seen in216

Figure 2(c). In this design, each expert in the217

MoE structure is assigned to a specific language,218

while interconnected expert pairs jointly model219

translation relationships between distinct language220

pairs.221

For an N -language multilingual translation task,222

a dedicated LoRA expert Ei is assigned to each223

language (e.g., E1, E2, . . . , En), where Ei corre-224

sponds to the i-th language. Each language-specific225

expert is further decomposed into two low-rank ma-226

trices:227

• EiA ∈ Rdi×r: Activated when the corre-228

sponding language is the source (e.g., ZhA229

for Chinese as the source language).230

• EiB ∈ Rr×do : Activated when the corre-231

sponding language is the target (e.g., EnB232

for English as the target language).233

During translation, only the expert modules rele- 234

vant to the source-target pair and the shared Uni- 235

Core layer are activated. For example, in the trans- 236

lation direction Chinese → English, the Zh and 237

En experts are engaged while all other LoRA ex- 238

perts (e.g., Cs) remain inactivated. 239

To ensure precise activation of the source and 240

target language-specific low-rank matrices during 241

translation, we implement a static language router 242

that routes inputs based on pre-defined language 243

labels, as is shown in Figure 2(c). For a given input 244

sequence x with the source language (src) and the 245

target language tgt, the output (y) is computed as: 246

y = W0x+
n∑

i=1

n∑
j=1

f(x; i, j)EjB∆WuniEiAx,

(4) 247

where ∆Wuni is the weight matrix of UniCore 248

layer, which can be further decomposed into two 249

trainable low-rank matrices: UniA ∈ R runi×r and 250

UniB ∈ R r×runi , as shown in Figure 3. Besides, 251

f(x; i, j) is the gating function of the static router: 252

f(x; i, j) =

{
1 if i = src and j = tgt

0 otherwise
(5) 253

3.3 Staged Fine-Tuning on UniLoRA 254

Our framework implements a two-stage fine-tune to 255

enable comprehensive any-to-any translation with 256

limited parallel data, as formalized below: 257

Stage 1: English-Centric Specialization. The 258

first stage focuses on training the UniLoRA mod- 259

ule using English-involved corpora across all lan- 260

guages. The objective is to enhance the model’s 261

translation capabilities in both En⇒Any and 262

Any⇒En directions, and facilitate cross-lingual 263

transfer via the UniCore layer by designating En- 264

glish as the pivot language. 265

Consider a simplified case, where only three 266

language experts are involved: Chinese (Zh), En- 267

glish (En), and Czech (Cs). Let L = {Zh,En,Cs} 268

denote the set of all supported languages, and a 269

translation direction can be defined as (src, tgt) ∈ 270

L×L . In Stage 1, the UniLoRA module is trained 271

on the subset of English-pivoted pairs: LEN = 272

{(En, Zh), (En, Cs), (Zh, En), (Cs, En)}. For the 273

subset of non-English pairs {(Cs, Zh), (Zh, Cs)}, 274

the corresponding routing paths in the UniLoRA 275

module remain inactive. However, all expert 276

weight matrices (in both UniLoRA and UniCore 277

layers) are updated during this stage, enabling the 278
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model to learn robust representations for English-279

involved translation directions.280

Stage 2: Ant-to-Any Activation. In the second281

stage, the pre-trained UniLoRA model is further282

fine-tuned on a limited-size parallel corpus cov-283

ering all translation directions (e.g., six language284

pairs in the simplified case). This stage activates285

all routing paths, allowing each language expert286

to adapt to both source and target roles across ar-287

bitrary language pairs via the UniCore layer. By288

leveraging the knowledge acquired in Stage 1, the289

model achieves comprehensive translation capabili-290

ties in all directions, ensuring optimal performance291

regardless of the specific source-target pair.292

4 Experiments293

4.1 Dataset and Metrics294

Following the ALMA model’s configuration (Xu295

et al., 2024), six languages(i.e., English (En), Ger-296

man (De), Chinese (Zh), Russian (Ru), Czech (Cs),297

and Icelandic (Is))are selected for evaluation. To298

comprehensively assess translation performance,299

we test the model across all 30 possible language300

directions.301

For Stage 1 fine-tuning, the English-centric train-302

ing set is selected from the OPUS-100 dataset303

(Tiedemann, 2012). 20k parallel sentence pairs per304

direction are randomly sampled from 10 English-305

involved translation directions for Stage 1 train-306

ing. For Stage 2 activation, all available pairs307

(with fewer than 1k parallel sentence pairs per308

direction) are employed from the Flores-200 de-309

velopment set(NLLB Team et al., 2022). Due to310

the limited availability of non-English-centric test311

data in OPUS-100, our final evaluation combines312

the OPUS-100 test sets involving English with the313

Flores-200 test sets for non-English directions.314

We adopt the widely used sentence-level trans-315

lation prompt template (Hendy et al., 2023), struc-316

tured as “Translate the following {src} sentences317

into {tgt}: ”. The training loss is not computed for318

the prompt template or the source sentence itself.319

For evaluation metrics, the SacreBLEU (Post,320

2018) and COMET-22 (Rei et al., 2022) are se-321

lected to evaluate translation quality.322

4.2 Implementation Details323

The UniLoRA framework is implemented on state-324

of-the-art backbone LLMs, including LLaMA-3-325

8B-Instruct (Grattafiori et al., 2024) and Qwen2.5-326

7B-Instruct (Qwen et al., 2025).327

For Stage 1 fine-tuning, the training setup in- 328

cludes a batch size of 32, 2 training epochs, and 1 329

epoch for Stage 2 activation. The initial learning 330

rate is set to 5e-4. Given the six languages involved 331

in the translation task, the number of experts in the 332

MoE structure is fixed at 6. For LoRA configura- 333

tions, the hyperparameters are set as follows: lora 334

rank r = 16, lora alpha α = 32, and lora dropout p 335

= 0.1. The UniCore module uses a rank of runi = 336

1024. 337

4.3 Baselines 338

To ensure a fair comparison, we evaluate UniLoRA 339

against the following LoRA-based methods under 340

identical staged fine-tuning configurations: 341

• LoRA. We scale up the lora rank and lora al- 342

pha parameters within a single LoRA adapter 343

to match the total number of trainable param- 344

eters used in the UniLoRA setup. 345

• MoLoRA (Top-k). We employ MoLoRA 346

adapter with the same number of experts as 347

UniLoRA alongwith a top-1 router, activating 348

only one expert per translation process. 349

• MoLoRA (Static). A variant of MoLoRA 350

equipped with a static router, where each trans- 351

lation direction is assigned a dedicated expert, 352

increases the total number of experts to 30. 353

While this ensures deterministic activation and 354

eliminates routing instability, it incurs 3.8× 355

higher training overhead due to redundant ex- 356

pert allocation. 357

In addition, we benchmark the UniLoRA frame- 358

work against state-of-the-art multilingual transla- 359

tion models based on LLMs, including M2M100- 360

12B (Fan et al., 2021), BigTranslate-13B (Yang 361

et al., 2023), and NLLB-3.3B (NLLB Team et al., 362

2022). These models represent leading end-to-end 363

paradigms for multilingual translation. To further 364

contextualize our findings, we include ALMA-7B 365

(Xu et al., 2024), an English-centric model that em- 366

ploys a staged fine-tuning strategy similar to our 367

framework. Notably, ALMA-7B’s performance in 368

non-English-centric directions is evaluated via an 369

English pivot translation pipeline. 370

4.4 Main Experiments 371

The comprehensive performance across all trans- 372

lation directions is presented in Table 1. Overall, 373
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Models Training Tokens
En-Centric non-En-centric Average

BLEU COMET BLEU COMET BLEU COMET
ALMA-7B (En-pivot) > 20B 24.45 78.12 17.66 80.79 19.92 79.90
M2M100-12B > 7.5B 24.06 74.59 18.98 82.52 20.68 79.88
BigTranslate-13B 89.8B 22.02 72.95 18.94 81.88 19.98 78.90
NLLB-3.3B > 21.5B 27.85 77.01 20.53 82.88 22.97 80.92

LLaMA-3-8B-Instruct Trainable
Parameters

Training
Tokens

En-Centric non-En-centric Average
BLEU COMET BLEU COMET BLEU COMET

Base — — 18.41 68.61 13.94 77.41 15.43 74.48
+LoRA 2.09%

12.4M
25.45 75.34 15.77 79.60 19.00 78.18

+MoLoRA (Top-k) 2.14% 26.03 75.25 15.97 80.02 19.32 78.43
+MoLoRA (Static) 10.18% 27.46 77.10 16.39 81.27 20.08 79.88
+UniLoRA

2.12% 12.4M— Stage 1 29.97 77.54 5.13 58.72 13.41 64.99
— Stage 2 27.61 77.21 17.98 81.91 21.19 80.35

Qwen2.5-7B-Instruct Trainable
Parameters

Training
Tokens

En-Centric non-En-centric Average
BLEU COMET BLEU COMET BLEU COMET

Base — — 19.09 70.37 12.85 76.55 14.93 74.49
+LoRA 2.08%

12.4M
24.76 74.83 16.20 79.89 19.05 78.20

+MoLoRA (Top-k) 2.14% 25.37 74.96 16.35 80.04 19.36 78.35
+MoLoRA (Static) 10.17% 26.15 76.61 17.09 80.62 20.11 79.28
+UniLoRA

2.12% 12.4M— Stage 1 27.97 78.51 7.44 59.40 14.28 65.77
— Stage 2 26.92 77.63 18.35 81.70 21.21 80.34

Table 1: The overall results in all directions. We mark the amount of tokens in training data and the proportion of
trainable parameters in the table as well. Except for UniLoRA, all LoRA-based fine-tuning approaches report only
Stage 2 results. UniLoRA outperforms all other fine-tuning configurations and is comparable to the state-of-the-art
translation models on multilingual translation tasks. Bold results indicate the highest scores among fine-tuning
methods on the same backbone model.

the proposed UniLoRA method demonstrates supe-374

rior effectiveness after Stage 2 fine-tuning, outper-375

forming other LoRA-based fine-tuning approaches.376

The optimized model achieves competitive perfor-377

mance relative to state-of-the-art multilingual trans-378

lation systems, with results closely aligning with379

the NLLB model.380

Compared with backbone LLMs. After Stage381

1 English-centric fine-tuning, UniLoRA signifi-382

cantly enhances translation quality for all English-383

involved directions. Following Stage 2 any-to-any384

activation, UniLoRA exhibits statistically signifi-385

cant improvements across all language pairs, with386

particularly pronounced gains in non-English trans-387

lation directions, achieving an average BLEU score388

increase of +6.28. However, notable performance389

degradation can be observed in English-centric di-390

rections compared to Stage 1 results, attributed to391

the knowledge forgetting of English-specific pat-392

terns during the activation phase.393

Comparison with LoRA-based fine-tuning394

methods. The experiments reveal that UniLoRA395

achieves the most significant performance gains 396

among all LoRA-based approaches under identical 397

or less parameter budgets, with consistent improve- 398

ments observed across key evaluation metrics. No- 399

tably, while MoLoRA’s top-k routing strategy out- 400

performs standard LoRA by dynamically selecting 401

experts, its static routing variant, though achieving 402

enhanced accuracy, demands multiplied computa- 403

tional resources due to its fixed expert assignment. 404

After Stage 2 fine-tuning, MoLoRA with top-k rout- 405

ing experiences expert fluctuations when the num- 406

ber of experts is insufficient, leading to a general 407

performance decline. In contrast, UniLoRA consis- 408

tently outperforms both MoLoRA configurations, 409

demonstrating superior efficiency. 410

Compared with prior multilingual translation 411

models. The UniLoRA-fine-tuned model outper- 412

forms most existing multilingual translation sys- 413

tems and achieves performance comparable to the 414

NLLB model in average metrics. Notably, while 415

the ALMA model exhibits strong performance in 416

English-centric translation directions compared to 417
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Methods
English-Centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
UniLoRA

— Stage 1 29.97 77.54 5.13 58.72 13.41 64.99
— Stage 2 27.61 77.21 17.98 81.91 21.19 80.35

w/o Stage 1 23.48 73.17 17.36 81.11 19.40 78.47
w/o UniCore

— Stage 1 29.50 78.26 13.95 77.35 19.13 77.65
— Stage 2 26.59 75.22 17.22 81.30 20.34 79.27

Table 2: The results of the ablation study on UniLoRA with different framework and fine-tuning configurations,
based on the LLaMA-3-8B-Instruct model. The best scores are marked in bold.

Methods
English-Centric non-English-centric Average Trainable

ParametersBLEU COMET BLEU COMET BLEU COMET
1 Shared Source Expert 26.49 76.37 17.70 80.52 20.63 79.14

1.28%
1 Shared Target Expert 26.18 76.10 17.81 80.55 20.60 79.07
3 Experts 27.32 76.94 18.04 81.27 21.13 79.83 1.10%
6 Experts 27.61 77.21 17.98 81.91 21.19 80.35 2.12%

Table 3: The results of the ablation study on UniLoRA with different configurations of merged language experts,
based on the LLaMA-3-8B-Instruct model. The best scores are marked in bold.

other baselines, its effectiveness in non-English-418

centric directions is significantly limited when re-419

lying on an English pivot pipeline for any-to-any420

translation. This performance gap highlights the in-421

herent limitations of English-centric architectures422

in direct cross-lingual scenarios. UniLoRA’s advan-423

tages are further underscored by its ability to reduce424

dependency on large-scale non-English parallel cor-425

pora, which have traditionally been considered es-426

sential for robust multilingual translation. Despite427

this reduction in data requirements, the framework428

maintains competitive performance across diverse429

language pairs, showcasing its efficiency in param-430

eter utilization without compromising translation431

quality.432

5 Ablation Studies433

We conduct further research on the UniLoRA434

framework with diverse configurations to gain a435

more comprehensive understanding. All experi-436

ments for analysis are conducted on the LLaMA-3-437

8B-Instruct model.438

5.1 Component and Staged Training Analysis439

To validate the necessity of the UniCore module440

in the UniLoRA framework and the effectiveness441

of staged fine-tuning, we perform ablation exper-442

iments by modifying the UniLoRA framework or443

training process. As shown in Table 2, we systemat-444

ically evaluate the impact of individual components445

and training strategies, with corresponding results 446

presented for comparative analysis. The results 447

reveal two critical findings: 448

The UniCore module is essential for any-to- 449

any translation. After Stage 1 fine-tuning, the 450

model without the UniCore module achieves com- 451

parable performance to the full UniLoRA model 452

in English-centric directions (notably with higher 453

COMET scores) and retains the backbone model’s 454

translation capability in non-English-centric direc- 455

tions. However, following Stage 2 fine-tuning, the 456

UniCore-free variant underperforms the baseline 457

UniLoRA model in both English-centric and non- 458

English-centric directions, demonstrating its criti- 459

cal role in enabling robust any-to-any translation 460

capabilities. 461

Staged fine-tuning is indispensable. When 462

Stage 1 fine-tuning is omitted and the model is 463

trained directly on a limited any-to-any corpus, per- 464

formance drops significantly compared to the opti- 465

mal configuration. This decline is observed across 466

all translation directions, including non-English- 467

centric ones, highlighting the importance of Stage 468

1 in transferring and preserving cross-lingual capa- 469

bilities before any-to-any activation. 470

5.2 Merged Language Experts 471

Exploring the application of expert compression 472

techniques within the UniLoRA framework is criti- 473

cal for advancing parameter efficiency. To further 474
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Figure 4: Data Requirements for Stage 2 activation.

optimize resource allocation, we conduct experi-475

ments employing two distinct expert compression476

strategies.477

Shared source-target language experts. In-478

spired by the asymmetric architecture in Hy-479

draLoRA (Tian et al., 2024), we implement con-480

figurations where a unified expert module handles481

either all source language inputs or all target lan-482

guage outputs. This design enables shared exper-483

tise between source and target modalities, thereby484

reducing redundancy and optimizing parameter us-485

age. By consolidating language-specific adapta-486

tions into fewer specialized experts, the framework487

achieves greater efficiency without compromising488

directional translation performance.489

Linguistically-informed group experts. Draw-490

ing from the integration of language typology in491

MoE-based translation systems (Li et al., 2023), we492

propose linguistically-informed group experts. As493

detailed in Table 4, selected languages are clustered494

into typological groups. For instance, English, Ger-495

man and Icelandic are consolidated into a single496

expert. This approach reduces the total number of497

language experts, decreasing trainable parameters498

from 2.12% to 1.10% of the total model parameters499

while maintaining the core UniLoRA architecture.500

Experimental results in Table 3 demonstrate501

that these strategies achieve significant param-502

eter compression with performance trade-offs.503

The linguistically-informed grouping configuration504

even shows improved performance on non-English-505

centric directions, while maintaining robustness506

across major language pairs. These findings estab-507

lish a scalable pathway for expanding the UniLoRA508

framework to additional languages, demonstrating509

its capacity for efficient multilingual adaptation510

without compromising translation quality.511

5.3 Data Requirements for Any-to-any 512

Activation 513

We further investigate the data requirements for 514

Stage 2 any-to-any adaptation in the UniLoRA 515

framework. To analyze scalability, we subsample 516

the original training data into subsets with varying 517

sizes, where the number of parallel sentences per 518

translation direction ranges from 32 to 997 (i.e., the 519

Flores-200 development set size). Notably, larger 520

subsets hierarchically include smaller ones to en- 521

sure consistent comparisons. Using these subsets 522

for Stage 2 training, we evaluate how translation 523

performance scales with data quantity, with results 524

visualized in Figure 4. 525

Experimental results reveal two critical phenom- 526

ena: First, Stage 2 fine-tuning temporarily degrades 527

performance in English-centric directions, but this 528

knowledge degradation diminishes as training data 529

increases; Second, non-English-centric directions 530

require approximately 128 parallel sentence pairs 531

to activate translation capabilities comparable to 532

the backbone model, with further performance 533

gains achieved through additional data scaling. 534

6 Conclusion 535

We present UniLoRA, a framework that integrates 536

LoRA with an MoE architecture to enable efficient 537

multilingual translation in large language models. 538

By combining language-specific expert modules 539

with a shared unified layer, UniLoRA achieves ro- 540

bust any-to-any translation capabilities through a 541

two-stage training approach that eliminates reliance 542

on extensive non-English parallel corpora. Exten- 543

sive experiments demonstrate that UniLoRA is a 544

scalable solution for multilingual translation, offer- 545

ing both technical innovation and practical value 546

for resource-constrained deployment scenarios. 547
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Limitations548

This work provides an efficient framework for mul-549

tilingual neural machine translation via LLM fine-550

tuning, yet several key limitations remain and war-551

rant further investigation.552

Language Coverage Constraints. While the553

UniLoRA framework demonstrates potential to re-554

duce reliance on non-English training corpora, our555

experiments are limited to six languages (including556

one low-resource language: Icelandic). Although557

ablation studies on linguistically-informed expert558

groups in Section 5.2 suggest language scalabil-559

ity of UniLoRA, empirical validation is required560

to evaluate performance across diverse language561

pairs, particularly in low-resource settings.562

Knowledge Forgetting in Staged Training.563

The staged fine-tuning process leads to degraded564

performance in English-centric directions due to565

knowledge forgetting of Stage 1 capabilities. This566

highlights the need for architectural innovations to567

preserve cross-stage knowledge retention.568

Model-Specific Generalization. Our experi-569

ments are conducted on LLaMA-3-8B-Instruct and570

Qwen2.5-7B-Instruct, which represent strong base-571

lines but limit insights into model diversity and size572

scalability. Future work should systematically eval-573

uate UniLoRA’s effectiveness across models with574

varying capabilities to ensure broader applicability.575

Diversified Training Process. Our research pri-576

marily explores supervised fine-tuning of LLMs577

using parallel corpora. However, recent studies in-578

dicate that translation capabilities can be further579

enhanced through techniques such as continual pre-580

training with monolingual data (Xu et al., 2024)581

and preference learning (Xu et al., 2025). Fur-582

ther exploration of integrating these methods with583

UniLoRA is essential for enhancing its versatility.584

References585

Michael Adjeisah, Guohua Liu, Douglas Omwenga586
Nyabuga, Richard Nuetey Nortey, and Jinling Song.587
2021. Pseudotext injection and advance filtering of588
low-resource corpus for neural machine translation.589
Computational Intelligence and Neuroscience.590

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,591
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,592
Mia Xu Chen, Yuan Cao, George Foster, Colin593
Cherry, Wolfgang Macherey, Zhifeng Chen, and594
Yonghui Wu. 2019. Massively multilingual neural595
machine translation in the wild: Findings and chal-596
lenges. Preprint, arXiv:1907.05019.597

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, 598
Jan Niehues, Sebastian Stüker, Katsuitho Sudoh, 599
Koichiro Yoshino, and Christian Federmann. 2017. 600
Overview of the iwslt 2017 evaluation campaign. In 601
Proceedings of the 14th International Workshop on 602
Spoken Language Translation, IWSLT 2017. 603

Kaidi Chen, Ben Chen, Dehong Gao, Huangyu Dai, 604
Wen Jiang, Wei Ning, Shanqing Yu, Libin Yang, and 605
Xiaoyan Cai. 2024. General2specialized llms transla- 606
tion for e-commerce. In Companion Proceedings of 607
the ACM on Web Conference 2024, WWW 2024. 608

Yun Chen, Yang Liu, Yong Cheng, and Victor OK Li. 609
2017. A teacher-student framework for zero-resource 610
neural machine translation. In Proceedings of the 611
55th Annual Meeting of the Association for Compu- 612
tational Linguistics (Volume 1: Long Papers), ACL 613
2017. 614

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi 615
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep 616
Baines, Onur Celebi, Guillaume Wenzek, Vishrav 617
Chaudhary, and 1 others. 2021. Beyond english- 618
centric multilingual machine translation. Journal of 619
Machine Learning Research. 620

Dehong Gao, Kaidi Chen, Ben Chen, Huangyu Dai, 621
Linbo Jin, Wen Jiang, Wei Ning, Shanqing Yu, 622
Qi Xuan, Xiaoyan Cai, and 1 others. 2024. Llms- 623
based machine translation for e-commerce. Expert 624
Systems with Applications. 625

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 626
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 627
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 628
Alex Vaughan, Amy Yang, Angela Fan, and 1 oth- 629
ers. 2024. The llama 3 herd of models. Preprint, 630
arXiv:2407.21783. 631

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, 632
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita, 633
Young Jin Kim, Mohamed Afify, and Hany Has- 634
san Awadalla. 2023. How good are gpt models at 635
machine translation? a comprehensive evaluation. 636
Preprint, arXiv:2302.09210. 637

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 638
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 639
and Weizhu Chen. 2022. Lora: Low-rank adapta- 640
tion of large language models. In The Tenth Inter- 641
national Conference on Learning Representations, 642
ICLR 2022. 643

Tom Kocmi, Rachel Bawden, Ondřej Bojar, Anton 644
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A Appendix831

A.1 Training Details832

We hereby supplement the model training config-833

uration not mentioned in the main text. For both834

backbone LLMs, we fine-tune the models using a835

warm-up ratio of 5e-4, a maximum sequence length836

of 512 tokens, and a weight decay of 0.02. LoRA837

adapters are applied to the gate_proj, up_proj, and838

down_proj modules of the backbone LLMs. Stage839

1 fine-tuning requires 3 epochs, while Stage 2 ac-840

tivation requires 1 epoch. Model training process841

is conducted on 4 NVIDIA A100 GPUs, with each842

GPU handling batches with batch_size of 2 and843

employing a gradient_accumulation_step of 4.844

A.2 Data Settings845

For the staged fine-tuning data details:846

Stage 1 English-Centric Specialization: The847

pre-divided development subset from OPUS-100848

serves as our development set. The training data849

consists of the randomly sampled subset from the850

OPUS-100 training dataset.851

Stage 2 Ant-to-Any Activation: In this stage,852

non-English-centric directions use the full Flores-853

200 development subsets for training, with 20% of854

the randomly sampled training data serving as the855

development set. For English-centric directions,856

the training data consists of 5% of the randomly857

sampled subset from Stage 1’s training data. De-858

tailed configurations are summarized in Table 5.859

A.3 Self-Contrastive Semantic Enhancement860

To further improve regularization capability, we861

take R-Drop (Liang et al., 2021) to reduce the in-862

consistency existing in training and inference. In863

each training step, the R-Drop method seeks to864

regularize the model’s predictions by minimizing865

the bidirectional Kullback-Leibler (KL) divergence866

between the two output distributions for the same867

sample.868

Language Language Family
(En) English

Germanic, Indo-European(De) German
(Is) Icelandic
(Cs) Czech

Balto-Slavic, Indo-European
(Ru) Russian
(Zh) Chinese Sino-Tibetan

Table 4: The languages selected in the main experiment
and their corresponding language families.

Training Stage Directions
Parallel data pairs

train dev test
Stage 1 En⇔Any 20000 2000 2000

Stage 2
En⇔Any 1000 200 2000
Others 997 200 1012

Table 5: The statistics for the data we utilize for the
main experiment.

We evaluate its impact via ablation studies on the 869

UniLoRA model based on LLaMA-3-8B-Instruct, 870

comparing fine-tuning with and without R-Drop. 871

Results in Table 6 demonstrate that self-contrastive 872

semantic enhancement significantly boosts the gen- 873

eralization capability of UniLoRA, achieving con- 874

sistent performance improvements across all trans- 875

lation directions relative to the baseline, while in- 876

curring no additional inference cost. This high- 877

lights the effectiveness of R-Drop in stabilizing 878

training dynamics without compromising computa- 879

tional efficiency. 880

A.4 Full Results of the Main Experiment 881

We present in Table 7 and Table 8 the specific 882

performance of the UniLoRA model based on 883

the LLaMA-3-8B-Instruct backbone model across 884

all translation directions in the main experiment. 885

The performance metrics include BLEU scores, 886

ROUGE-L, and COMET scores. For comparison, 887

the table also includes the performance of prior 888

studies and the backbone LLM baseline. 889
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Configurations
English-Centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
w/o R-Drop 27.33 76.79 17.47 81.46 20.76 79.90
with R-Drop 27.61 77.21 17.98 81.91 21.19 80.35

Table 6: Results of the ablation study on the effect of R-Drop regularization, based on the LLaMA-3-8B-Instruct
backbone model. Higher scores are marked in bold. Employing the R-Drop method results in a comprehensive
performance improvement.

Models
Zh⇒En En⇒Zh De⇒En

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 29.75 50.11 79.51 28.07 44.35 80.58 28.08 45.06 75.24
M2M100-12B 27.66 51.72 78.97 27.76 45.06 79.81 30.90 50.48 78.27
LLaMA-3-8B-Instruct 20.84 39.64 74.93 18.76 33.86 73.47 23.07 37.75 71.10
UniLoRA Stage 1 35.28 58.52 81.26 36.19 53.84 82.49 33.45 54.47 78.46
UniLoRA Stage 2 33.08 56.40 81.75 34.56 52.85 82.73 31.70 52.51 79.03

Models
En⇒De Ru⇒En En⇒Ru

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 27.54 43.22 78.24 29.03 47.86 76.80 28.41 43.21 82.51
M2M100-12B 27.29 45.93 76.48 26.65 46.34 76.97 23.39 36.81 79.54
LLaMA-3-8B-Instruct 21.26 34.14 70.36 22.54 38.50 71.10 18.74 30.84 73.84
UniLoRA Stage 1 28.34 48.77 76.45 32.69 55.36 78.25 26.44 46.54 80.92
UniLoRA Stage 2 27.61 47.87 78.31 31.25 54.02 79.07 22.81 41.53 78.63

Models
Cs⇒En En⇒Cs Is⇒En

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 31.10 47.71 76.15 28.11 41.25 81.39 25.47 43.63 72.63
M2M100-12B 26.12 41.56 76.31 21.19 32.69 77.70 16.41 38.40 64.67
LLaMA-3-8B-Instruct 22.58 38.45 70.06 15.38 25.64 71.02 11.89 21.46 55.51
UniLoRA Stage 1 33.86 57.03 78.82 24.89 46.60 80.19 26.55 51.01 71.08
UniLoRA Stage 2 30.97 53.90 77.96 22.82 43.61 79.67 22.90 45.78 69.62

Models
En⇒Is De⇒Zh Zh⇒De

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 22.98 38.37 67.03 25.11 43.38 79.31 18.17 41.43 80.52
M2M100-12B 13.21 32.84 57.15 27.24 48.11 84.06 16.47 39.34 80.09
LLaMA-3-8B-Instruct 9.05 17.29 54.71 16.81 32.70 76.69 13.26 33.07 77.25
UniLoRA Stage 1 21.98 45.42 67.45 5.39 10.34 51.08 9.74 26.48 70.88
UniLoRA Stage 2 18.36 40.46 65.35 27.61 48.59 83.56 15.28 40.58 79.95

Models
De⇒Ru Ru⇒De De⇒Cs

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 25.29 46.45 87.12 24.17 49.12 81.89 24.13 47.40 89.48
M2M100-12B 22.07 43.26 86.55 21.30 45.92 80.52 23.35 46.50 89.61
LLaMA-3-8B-Instruct 17.79 36.24 82.52 17.84 39.78 77.34 17.11 37.73 85.10
UniLoRA Stage 1 1.79 2.20 52.71 1.99 2.82 49.45 1.86 2.92 58.89
UniLoRA Stage 2 21.58 45.51 86.48 20.81 47.84 81.24 19.87 45.66 89.09

Table 7: Part 1 of the full results for all translation directions of the main experiment.
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Models
Cs⇒De De⇒Is Is⇒De

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 26.02 51.21 84.59 18.19 43.15 82.37 20.63 44.89 78.80
M2M100-12B 24.00 49.15 83.55 13.72 37.02 79.35 18.99 42.91 78.30
LLaMA-3-8B-Instruct 20.26 42.71 80.47 8.06 26.90 72.05 9.92 24.22 66.90
UniLoRA Stage 1 4.33 8.63 61.52 2.02 4.50 52.84 7.12 17.78 59.31
UniLoRA Stage 2 22.35 49.43 83.80 11.56 35.19 74.37 18.02 43.79 77.75

Models
Zh⇒Ru Ru⇒Zh Zh⇒Cs

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 17.50 36.90 85.57 24.96 42.84 80.22 15.64 36.42 86.20
M2M100-12B 15.76 34.68 85.39 26.10 46.57 83.60 14.87 35.39 86.59
LLaMA-3-8B-Instruct 12.25 27.87 81.79 23.02 71.13 79.93 11.29 28.05 82.84
UniLoRA Stage 1 9.03 22.22 66.63 5.12 9.02 49.33 9.77 25.83 81.13
UniLoRA Stage 2 15.55 37.14 86.15 27.87 49.56 84.03 13.71 37.34 86.08

Models
Cs⇒Zh Zh⇒Is Is⇒Zh

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 24.38 42.81 79.50 12.81 34.72 79.63 20.83 38.99 77.27
M2M100-12B 26.96 47.80 84.38 9.89 30.84 77.44 21.14 42.30 80.73
LLaMA-3-8B-Instruct 18.49 34.99 77.71 6.34 21.53 71.12 16.20 33.11 73.70
UniLoRA Stage 1 3.99 7.15 45.90 2.52 8.54 51.92 0.93 2.64 46.18
UniLoRA Stage 2 30.86 51.94 85.04 7.26 29.21 72.07 22.12 44.14 80.06

Models
Cs⇒Ru Ru⇒Cs Cs⇒Is

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 24.26 45.55 87.82 21.10 43.93 88.36 16.43 40.52 81.39
M2M100-12B 21.65 43.34 87.76 20.18 42.64 88.99 12.49 35.55 76.42
LLaMA-3-8B-Instruct 17.69 36.25 83.09 15.04 35.02 83.93 7.97 26.07 71.36
UniLoRA Stage 1 16.77 34.99 81.83 1.62 2.32 53.20 7.74 24.53 71.23
UniLoRA Stage 2 20.43 44.02 87.53 17.80 43.20 87.73 10.04 34.97 76.22

Models
Is⇒Cs Ru⇒Is Is⇒Ru

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 17.32 38.99 84.35 15.23 39.21 80.58 18.43 38.32 82.64
M2M100-12B 16.05 36.89 82.39 11.49 33.54 74.37 15.96 35.35 80.20
LLaMA-3-8B-Instruct 10.77 27.58 77.63 7.31 25.06 70.51 11.60 27.48 76.28
UniLoRA Stage 1 4.01 9.53 58.41 3.88 13.65 60.07 2.98 6.42 51.88
UniLoRA Stage 2 13.74 36.94 83.63 8.65 32.76 71.77 14.53 35.98 81.68

Table 8: Part 2 of the full results for all translation directions of the main experiment.
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