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On the Ricci Curvature of Attention Maps
and Transformers Training and Robustness

Abstract
Transformer models have revolutionized machine learning, yet the underpinnings behind

their success are only beginning to be understood. In this work, we analyze transformers
through the geometry of attention maps, treating them as weighted graphs and focusing on
Ricci curvature, a metric linked to spectral properties and system robustness. We prove
that lower Ricci curvature, indicating lower system robustness, leads to faster convergence
of gradient descent during training. We also show that a higher frequency of positive
curvature values enhances robustness, revealing a trade-off between performance and
robustness. Building on this, we propose a regularization method to adjust the curvature
distribution and provide experimental results supporting our theoretical predictions while
offering insights into ways to improve transformer training and robustness. The geometric
perspective provided in our paper offers a versatile framework for both understanding and
improving the behavior of transformers.

1. Introduction
Transformers (Vaswani et al., 2017) have become the cornerstone of modern machine learning,
excelling in tasks across natural language processing (Devlin et al., 2018) and computer
vision (Dosovitskiy et al., 2020). Recent studies have begun to explain the inner workings of
transformers, analyzing their generalization properties (Li et al., 2023; Zhou et al., 2024),
learning dynamics (Abbe et al., 2024; Dovonon et al., 2024), and robustness (Bhojanapalli
et al., 2021). A rigorous understanding of how transformers process their input remains
elusive, especially through mathematical tools offering practical solutions. To address this
gap, we analyze transformers by treating attention mechanisms as graph operators and
exploring for the first time the geometry of attention maps as weighted graphs. Focusing
on graph Ricci curvature (Bauer et al., 2017; Ollivier, 2009) –closely tied to graph spectral
properties and system robustness (Bauer et al., 2011; Pouryahya et al., 2017)– our findings
reveal its role in shaping the training dynamics and robustness of transformers.

Figure 1: A visual summary of the main concepts and contributions, exemplified using a
simple vision transformer with 4 tokens, though our findings are more general.

We analyze the relationship between attention graph geometry and transformer training
and robustness, and prove lower Ricci curvature, indicative of reduced robustness, is linked
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to faster gradient descent convergence. Furthermore, by modeling attention as a system
of interacting particles, we explore how the curvature distribution influences robustness.
Visually summarized in Figure 1, this dual perspective provides a clear understanding of how
the attention map geometry affects performance and robustness. We propose a regularization
method informed by our findings to adjust the curvature distribution. Supporting our theory,
our experiments show that increasing variance accelerates optimization, while reducing it
improves robustness at the cost of generalizability, highlighting a trade-off.

Main contributions. This work establishes a theoretical connection between Ricci cur-
vature of attention graphs and gradient descent convergence, showing that lower curvature
accelerates training. We also reveal how the curvature distribution impacts robustness,
particularly in response to input perturbations. Additionally, we introduce a method for
curvature adjustment to balance performance and generalizability, supported by empirical
results. By linking the geometry of attention to transformer behavior, this work offers new
insights into improving training, performance, and robustness using geometric tools.

2. Background
Transformers and attention. The attention mechanism enables transformers to capture
dependencies between tokens (Vaswani et al., 2017). Attention scores are computed from the
query (Q) and key (K) representations, multiplied by the value matrix (V ):

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V. (1)

The attention matrix A = softmax
(
QK⊤
√
dk

)
, can be viewed as the adjacency matrix of a graph

with tokens as nodes and edge weights as attention scores.

Ricci curvature and system robustness. Ricci curvature captures the extent to which
the local geometry induced by a Riemannian metric deviates from Euclidean space (Bauer
et al., 2017), and has been linked to system robustness (Pouryahya et al., 2017), due
to its connection with entropy. There exists a correlation between entropy and system
robustness, which refers to the ability of a system to quickly return to its stationary state
after a perturbation (Demetrius and Manke, 2005). The Fluctuation Theorem (Evans et al.,
1993) establishes a positive correlation between robustness and entropy, implying a positive
correlation with curvature (Pouryahya et al., 2017). Extended to graphs, we use Ollivier-Ricci
curvature (ORC) (Ollivier, 2009), defined and explained in Appendix A.

3. Related work
Related work is discussed throughout the paper, with a full literature review in Appendix B.
To our knowledge, the link we establish between attention map geometry, training dynamics,
performance, and robustness in transformers is novel.

4. Graph geometry of learning representations in transformers
Attention mechanisms can be viewed as graph operators, with tokens as nodes and attention
scores as edge weights. The geometric properties of this graph, particularly its spectrum,
shape the representations learned by transformers. We show that lower attention Ricci
curvature, reflecting lower system robustness, leads to faster convergence during training, while
higher curvature enhances robustness to input perturbations. We adopt two complementary
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perspectives: a mathematical view linking ORC to gradient descent convergence, and a
physics-based view treating transformers as interacting particle systems. The former explains
how lower ORC accelerates convergence, while the latter offers insights into robustness. These
perspectives together provide a comprehensive view of how attention geometry influences
transformer behavior. For detailed proofs and discussions, see appendices C and D.

Geometry of attention and training transformers. Transformer models are typically
over-parameterized (Fan et al., 2019; Liu et al., 2021; Wang and Tu, 2020), resulting in
a non-convex optimization landscape (Bassily et al., 2018; Choromanska et al., 2015; Liu
et al., 2022). Fast convergence in such settings relies on satisfying the Polyak-Łojasiewicz
(PL) condition (Bassily et al., 2018; Polyak, 1963). We demonstrate that the probability
of satisfying this condition is linked to the eigenvalues of the attention graph, which are
linked to the ORC. Previous studies on neural tangent kernels show that the loss function in
training over-parameterized models satisfies the PL condition if the minimum eigenvalue of
the tangent kernel exceeds a threshold (Liu et al., 2022). In Lemma 1, we show that the
probability p of exponential gradient descent convergence is positively correlated with the
minimum eigenvalue of the attention matrix λA

1.

Lemma 1 ∂p
∂λA

1
≥ 0, i.e., the minimum attention eigenvalue is positively correlated with p.

Using this lemma, we prove Theorem 2, linking the learning behavior of transformers to
the ORC, given its connection to the spectrum of the attention graph (Bauer et al., 2011).
Proofs, assumptions, and more details are provided in Appendix C.1.

Theorem 2 The probability p of exponential convergence of gradient descent on transformers
is negatively correlated with the minimum ORC k.
Graph geometry, statistical mechanics, and robustness of transformers. Extend-
ing our geometric analysis, we interpret the attention graph as a system of interacting
particles, applying principles from statistical mechanics to study transformer robustness.
This robustness, linked to system entropy and Ricci curvature (Demetrius and Manke, 2005;
Pouryahya et al., 2017), helps maintain performance under noisy inputs. We observe a shift
in the ORC distribution toward more positive values during a forward pass (Appendix Figure
5), which suggests a connection between attention dynamics and its geometric properties that
influence transformer robustness. Ricci curvature thus serves as a geometric indicator of both
training dynamics and robustness, offering insights for model improvement. Our empirical
results in Section 6 further elucidate these diverse roles and their practical implications.

5. Training curvature-adjusted transformers
Section 4 discusses how curvature influences transformer behavior, suggesting that manipulat-
ing the curvature distribution of attention graphs can adjust their properties. While the Ricci
flow (Hamilton, 1988) can flatten graphs, it is computationally expensive to apply during
training (Jin et al., 2008; Ni et al., 2019). Instead, we propose an efficient method to control
the ORC distribution through regularization allowing us to empirically validate our theory
and improve transformers training and robustness. Experiments are conducted using L-ViT
and BERT-Tiny models, described in Appendix E. We propose a regularization method,
detailed in Appendix F, which adds a variance-dependent term to the loss function to adjust
the ORC distribution of attention graphs. As we explain in Appendix A, increasing variance
promotes smaller ORC values and decreasing variance eliminates them (appendix Figure 6).
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Figure 2: Training loss minimization on
L-ViT for CIFAR10, with regularization
methods increasing (↑) and decreasing (↓)
variance. Increasing variance promotes
faster loss reduction and low-ORC edges.

Shown in figures 2 and 6, our experiments confirm
that increasing variance leads to a lower ORC
and accelerates loss minimization, validating The-
orem 2. In addition to supporting our theory, this
method allows us to enhance transformer train-
ing or robustness. Further results are included in
Appendix F. Other results in Appendix G also
show a trade-off between performance and robust-
ness, where decreasing variance leads to better
performance but decreases generalizability, while
increasing variance has the opposite effect.

6. Robustness and curvature distribution in transformers
Building on our particle system interpretation of attention and the established link between
ORC and system robustness (Bauer et al., 2017; Ollivier, 2009), we empirically explore
the relationship between curvature and transformer robustness. Sections 2 and 4 suggest
that positive ORC values enhance robustness, which we empirically confirm by investigating
pre-trained models’ robustness to input perturbation (Appendix H) and the impact of
ORC on model forgetfulness (Appendix I.1). Our results show that more robust models
consistently exhibit higher frequencies of larger ORC values. For example, ViT shows ∼ 20%
less accuracy drop on perturbed MNIST inputs compared to DeiT, with similar improvements
of ∼ 14% and ∼ 62% on Fashion-MNIST and CIFAR10. Similarly, for language models,
ELECTRA-Small is ∼ 17% to ∼ 49% more robust than BERT-Tiny across datasets. The
more robust models in each pair consistently display more positive-leaning ORC distributions
(Figure 3), confirming the anticipated correlation. Details of these experiments are provided
in Appendix H, with additional experiments in Appendix I supporting these findings.

Figure 3: ORC distributions in the last attention layers of ViT, DeiT, BERT-Tiny, and
ELECTRA-Small for batches of image and text datasets. ViT (blue) and ELECTRA-Small
(orange) show more positive curvature than DeiT (green) and BERT-Tiny (purple), quantified
by the Wasserstein distances from a Dirac mass at 1 (smaller is more positive leaning).

7. Conclusion
We analyzed transformers through graph geometry, showing that the Ricci curvature of
attention maps directly influences both training dynamics and robustness. Lower curvature
accelerates convergence, while more positive curvature enhances robustness, highlighting a
trade-off. We proposed a curvature-adjusted regularization method to validate our theory and
improve training or generalizability. By linking attention geometry to transformer behavior,
this work offers new tools for improving their training, performance, and robustness.
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Appendix A. Graph Ricci curvature and weight distributions

Figure 4: Three complete weighted
graphs with highlighted larger
weight edges (in blue). Different
edge weight distributions result in
negative (left), near zero (middle),
and positive (right) Ricci curvature.
Curvature in a weighted graph
is negative/zero/positive when re-
moving low-weight edges (in gray)
yields a tree/grid/complete graph,
respectively.

Extending Ricci curvature to graphs, the Ollivier-Ricci
curvature (ORC) for any given edge in the graph de-
pends on the geodesic distances of nodes in the neighbor-
hood of the edge. Figure 4 visualizes positive, negative,
and near-zero curvature edges in a weighted complete
graph, relevant to full-attention, which is studied in this
work. Specifically, ORC is defined as

κOR(v, u) := 1− W1(µv, µu)

dG(v, u)
, (2)

for an edge (v, u) ∈ E on a graph G = (V,E), where µv

and µu are probability measure on the nodes anchoring
(v, u), dG(.) represents a distance metric on V , and W1

denotes the 1-Wasserstein distance (Lin et al., 2011;
Jost and Liu, 2014). To better explain this point let us
expand the Wasserstein distance in Equation 2 to write
the ORC in the form

κOR(v, u) := 1− 1

dG(v, u)
inf

γ∈Γ(µv ,µu)

∫
Nv×Nu

dG(v
′, u′) dγ(v′, u′), (3)

where dG(·, ·) is the geodesic distance over G, Nv denotes the neighborhood of node v, µv

and µu are probability measures over Nv and Nu and Γ(µv, µu) is the set of all couplings
over them.

Curvature and clustering. Note that for any pair of nodes w and w′, dG(w,w′) is the
weighted shortest path between w and w′. Hence, given two edges (v, u) and (v′, u′), similarity
of weight distributions over the neighborhoods of (v, u) and (v′, u′) leads to the similarity of
geodesics in their neighborhoods, and considering the definition in Equation 3, this results in
the proximity of the values of κOR(v, u) and κOR(v

′, u′). Geshkovski et al. (2023) find that
in a forward pass, attention maps exhibit clustering signaled by the cosine similarity of pairs
of nodes, which corresponds to the similarity of weight distributions in their neighborhood.
Given the discussion above, this in turn leads to a change in the ORC pattern, as a group
of edges with similar ORC values form. This indeed matches the observation in Figure 5,
showing the emergence of more concentrated modes in the distribution of ORC following
attention dynamics through a forward pass.

Curvature and weight variance. Recall that the ORC definition provided in Equation
3 expands the Wasserstein distance from Equation 2, which is the cost of optimal transport
of a mass distribution from Nv to Nu. Recognizing this, we can observe that, fixing any
(unweighted) connectivity structure, the higher the imbalance in the neighborhoods, the
larger their distributional distances, which leads to smaller curvature values considering the
definition of ORC. Note that the connectivity in full attention is trivially fixed, since the
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graph is always fully connected. It follows that the curvature in this case depends on the
(im)balance in weight distributions. Therefore, it is the variance of weight distribution that
determines the curvature values in attention maps. This intuition informs the regularization
proposed in Section 5 and Appendix F for training curvature-adjusted transformer models.

Appendix B. Related work

In this work, we investigate the connections between the geometry of attention maps in
transformers, their training, performance, and robustness properties. While related work in
transformers, geometric deep learning, and robustness is referenced throughout the paper
where relevant, we now provide additional discussion of the most related works in each area
here.

Transformers and attention mechanism. Transformers (Vaswani et al., 2017) have
revolutionized deep learning, achieving state-of-the-art performance across various do-
mains (Brown et al., 2020; Devlin et al., 2018; Dosovitskiy et al., 2020). Recent works
have begun to shed light on their inner workings, providing insights into their expressive
power (Zaheer et al., 2020), generalization properties (Li et al., 2023), in-context learn-
ing (Von Oswald et al., 2023), learning dynamics (Abbe et al., 2024; Dovonon et al., 2024),
and robustness characteristics (Bhojanapalli et al., 2021; Shao et al., 2021). However, many
questions regarding the fundamental principles governing the behavior of transformers remain
unanswered. Our work contributes to this growing body of research by investigating the
connection between the geometry of attention maps and the properties of transformers.

Graph Ricci curvature. Ricci curvature captures the deviation of the local geometry from
Euclidean space (Bauer et al., 2017). When extended to discrete structures like graphs, it has
proven to be a powerful tool for various deep learning tasks (Di Giovanni et al., 2023; Liu et al.,
2023; Southern et al., 2023; Topping et al., 2021). We employ the Ollivier-Ricci curvature
(ORC) (Ollivier, 2009), an optimal transport formulation of Ricci curvature on graphs, to
study the geometry of attention maps in transformers. To the best of our knowledge, this is
the first work to explore this connection.

Curvature and robustness. Ricci curvature has been linked to the robustness of sys-
tems (Pouryahya et al., 2017), owing to its relationship with entropy. This connection is
highlighted by a fundamental result from optimal transport theory (Lott and Villani, 2009),
which provides bounds on entropy based on a lower bound of the Ricci curvature. The
Fluctuation Theorem (Evans et al., 1993) further establishes a positive correlation between
the robustness and entropy of a system, implying that robustness and curvature are positively
correlated (Pouryahya et al., 2017). Leveraging this connection, we explore the implications
of the ORC distribution for the robustness of vision and language transformers. In summary,
our key contribution is uncovering insightful patterns in the curvature distribution of atten-
tion maps that evolve during training and through the layers of transformers, establishing a
connection between the geometry of attention and the properties of these models. To the
best of our knowledge, this is the first work to explore this connection, opening up new
avenues for developing more robust and interpretable transformers.
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Appendix C. Ricci curvature and training of transformers

In this appendix, we provide the full technical details and formal proofs regarding the
connection between curvature and convergence of gradient descent in transformers, discussed
in Section 4. The derivations and theoretical steps leading to the key results are elaborated
here, complementing the informal discussion in Section 4. For completeness, we restate some
of the results, which the technical discussion in this appendix builds up to. These results
explain the relationship between ORC and gradient descent convergence in transformers.

C.1. Ricci curvature and convergence of gradient descent

In Section 4 we informally explained our main theoretical findings on the connection between
the Ricci curvature of attention and gradient descent-based training of transformer models.
Here we elaborate on the steps leading to this result, which rely on a connection we establish
between the eigenvalue spectrum of transformers and optimization of over-parameterized
models. Following standard practices in the theoretical analysis of transformers (see, e.g.,
Dovonon et al. (2024); Von Oswald et al. (2023); Abbe et al. (2024)), we derive our theoretical
results in an idealized setting with a set of simplifying assumptions, stated here and in
Appendix C.2. Our empirical investigation further demonstrates that the key implications
of our theoretical findings extend beyond these idealized conditions, proving relevant and
applicable to common transformer models in practice.

Eigenvalues of transformers. Consider a single-head transformer of depth L, with each
block containing an attention layer, a skip-connection, and a projection. For this analysis,
we assume the feed-forward layer in the attention block is a projection by Wp,l. Hence, the
output of each layer is

Xl+1 = Xl +AlXlWV,lWp,l. (4)

Following Dovonon et al. (2024), we further assume that all attention blocks are identical
and remove the layer indexing. Stacking the column to obtain a vectorized input, x, we can
write

F (x) = xL = (I +H ⊗A)L x, (5)

λF
ij =

(
1 + λA

iλ
H

j

)L
, (6)

where F (·) and λF
ij denote the transformer and its eigenvalues, H := Wp

TWV
T , and λA

i and
λH

j are the eigenvalues of A and H. Note that relaxing the above-mentioned assumptions is
rather straightforward, though distracting and not amenable to the here provided analysis.

Tangent kernel and convergence of gradient descent. Transformers are often over-
parameterized (Fan et al., 2019; Liu et al., 2021; Wang and Tu, 2020) and hence essentially
non-convex (Bassily et al., 2018; Choromanska et al., 2015). The Polyak-Łojasiewicz (PL)
condition (Bassily et al., 2018; Polyak, 1963) implies exponential convergence of gradient
descent in non-convex regimes (Liu et al., 2022). Given a model fθ(·) parameterized by θ,
we say the loss function L(θ) is µ-PL if ∥∇L(θ)∥2 ≥ µL(θ). Let Kθ := (∇fθ)(∇fθ)

T and
λ1(Kθ) be the tangent kernel of f and its minimum eigenvalue. For any region on the loss
manifold S, the following holds.
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Theorem 3 (Liu et al. (2022)) L(θ) is µ-PL if λ1(Kθ) ≥ µ for all θ ∈ S.

It follows that the learning behavior of transformers depends on the minimum eigenvalue
of their tangent kernel. This suggests a connection between ORC and the training of
transformers, given the link between ORC and the eigenvalue spectrum. We specify this
connection next.

Ricci curvature and convergence of gradient descent. Given the tangent kernel of
the transformer, φ := (∇F )(∇F )T , from equations 5 and 6, we can compute the eigenvalues
of φ. Thus, using the findings from (Dovonon et al., 2024) on λA

i and λH
j and in light of

the implications of Theorem 3, under a set of standard assumptions (Appendix C.2), we
prove the following lemma.

Lemma 4 Let p denote the probability of exponential convergence of gradient descent on the
transformer. Then, ∂p

∂λA
1
≥ 0, i.e., the minimum attention eigenvalue is positively correlated

with p.

Meanwhile, ORC bounds the spectrum of the normalized Laplacian (Bauer et al., 2011)
(see Appendix C.2). Since the attention scores are outputs of the softmax activation, as we
describe in Appendix C.2, there is a simple connection between the eigenvalues of A and
its Laplacian, which in turn implies that k controls the spectrum of A. Theorem 2 then
follows from Lemma 4, showing a negative correlation between the minimum ORC value of
the attention matrix and p. This theorem suggests the ORC distribution bears implications
for training transformers via gradient descent-based algorithms. Next, we propose a novel
training heuristic to manipulate the ORC distribution in transformers, and we empirically
validate the theoretical implications of Theorem 2.

C.2. Assumptions and proofs of results

We establish a theoretical link between the ORC of the attention map and the convergence of
gradient descent on transformers. As we discuss in Section C.1, under a set of assumptions, this
connection follows from the learning theory of non-convex optimization of over-parameterized
neural networks, the eigenvalue spectrum of transformers, and the ORC bound on the graph
spectrum. Our Theorem 2, which follows from Lemma 4, states that the minimum ORC of
A is positively correlated with the probability of exponential convergence of gradient descent
on F . In this appendix, we specify the assumptions leading to these lemma and theorem
and provide a proof.

Assumptions The majority of our assumptions follow the setup and assumptions in
Dovonon et al. (2024). We however introduce two other assumptions that we discuss further
in this section. All assumptions are listed below.

A0. The transformer uses a self-attention mechanism, and the keys and queries share
a projection matrix, i.e. K = Q.

A1. A is positive and invertible, and all its eigenvalues are real.

A2. Eigenvalues of H are positive and bounded, i.e., 0 < λH
1 < . . . < λH

d < ∞
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A3. λH

d < |λA
1|−1 where λA

1 is the smallest eigenvalue of A.

A4. Let M := I + H ⊗ A, and let θ be the vector of the weights in F , consisting
of the entries of the weight matrices WQ, WK , WV , and Wp. Then ∇θM and M
are simultanously diagonalizable by an orthogonal matrix P , i.e., there exists an
orthogonal matrix P and diagonal matrices D and D̃, such that M = P−1DP and
∇θM = P−1D̃P . Furthermore, we assume D̃ is approximately constant with respect
to D.

A5. The minimum eigenvalue of A is negative.

Note that assumptions A1 and A2 follow the setup by Dovonon et al. (2024), and imply

−1 < λA
1 ≤ . . . ≤ λA

n = 1. (7)

Proofs. Considering that F (x) = (I +H ⊗A)L x, we can write F (x) as a linear operator
F (x) = Fx where F = (I +H ⊗A)L. Hence, the eigenvalues of F are

(
1 + λA

iλ
H

j

)L. Let
φ := (∇θF )(∇θF )T be the tangent kernel of F . We can write φ(x) = ∇θM

TBBT∇θM where
M := I +H ⊗A and B := ML−1. By assumption A4, we can write φ(x) = P−1D̃D2L−2D̃P .
Since diagonal matrices are commutative, it follows that the eigenvalues of φ are of the form

λφ
m = η2m

(
1 + λA

i λ
H
j

)2L−2
, (8)

where ηm is a diagonal entry of D̃. On the other hand, it follows from A2, A4, and A5 that
the minimum eigenvalue of φ is λφ

1 = ηm(1 + λA
1λ

H
d)

2L−2 for some m, since by A2 and A4
we know 0 < 1 + λA

1λ
H

j < 1 and achieves its minimum values for j = d. Given µ, let p be
the probability that F is µ−PL, i.e., the PL theorem holds as described in Appendix C.1.
From Theorem 3, we have

p = P [λφ
1 ≥ µ] . (9)

Note that we can equivalently write p = E
[
1λφ

∞>µ

]
, where 1· denotes the indicator function.

Thus, we can write,
∂p

∂λA
1
=

∂p

∂λφ
1

∂λφ
1

∂λA
1

= 1λφ
∞>µ (2L− 3) η21

(
1 + λA

1λ
H

d

)2L−3

≥ 0,

where the last line follows since all terms on the right-hand side of the previous line are
non-negative for L > 1. This completes the proof of Lemma 4. It follows that,

∆p×∆λA
1 ≥ 0, (10)

which establishes a positive correlation between p and λA
1. Meanwhile Bauer et al. (2011)

show that λL
1 is bounded below by the minimum ORC, where λL

1 denotes the minimum
eigenvalue of the normalized Laplacian of A. Notice that A is row stochastic (Dovonon
et al., 2024), which implies that its normalized Laplacian is in fact I − A. Therefore,
λL

1 = 1− λA
1, which means that the minimum ORC also bounds 1− λA

1 from below. This
in turn, establishes a negative correlation between minimum ORC and λA

1. Considering
Equation 10, it follows immediately that minimum ORC is negatively correlated with p,
completing the proof of our Theorem 2. □
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Discussion on the assumptions. The self-attention mechanism is in fact a common setup
for transformers, hence the only constraint assumption A0 imposes beyond common practice
is sharing the projection matrix between keys and queries. This yields a symmetric attention,
while restricting the keys and queries projections to the column space of a shared weight
matrix. Assumptions A3 and A5 are purely technical assumptions for our proof. Assumption
A4 on the other hand, though plausible, has more consequences. First, note that the order in
which the weight matrices are combined to parameterize F with θ can be completely flexible.
Therefore, it suffices if assumption A4 holds for any arrangement of the weights in θ. Despite
this flexibility, being simultaneous diagonalizable restricts the degrees of freedom in M and
∇θM . This assumption implies that the two matrices share an eigenstructure, though they
could have different eigenvalues. From a geometric perspective, this assumption limits the
degrees of freedom that the changes in M have at each gradient step to the directions of its
eigenvectors. While this is a restrictive assumption, we should keep in mind that transformers
are often over-parameterized with a high degree of freedom, and hence the assumption is still
plausible. Furthermore, we assume A4 for technical reasons in order to simplify the proof of
the theorem, and otherwise, the assumption is not a conceptual necessity. In other words,
while assuming A4 allows us to state our proof, it is only a tool to simplify a step of the
proof, not the only tool to show the main conclusion, and the implications may still hold
without it.

Appendix D. Graph geometry and statistical mechanics of transformers

In Section 4 we briefly discussed the value of looking at transformers from the angle of
networks/graphs and its consequences for training and robustness of transformers. The
mathematical implications of this perspective for training transformers are provided in
Appendix C.1. Continuing in this direction from the perspective of network dynamics, in this
Appendix we elaborate on the physics that follow as an input signal is processed by a series
of attention blocks (graph operators), which enables us to analyze the robustness properties
of transformers from a networked system point of view. As we mentioned in Section 4, we
interpret attention as a network of interacting particles and study the statistical mechanics
of transformers in light of established results on the interplay between graph geometry and
the dynamics and robustness of networked systems.

Attention as a particle system and transformer dynamics. A forward pass through
attention blocks in transformers can be interpreted as dynamics of a system of interacting
particles where each attention score represents the strength of the interaction between a pair
of particles (tokens). Leveraging the mathematical framework of Geshkovski et al. (2023),
in the continuous approximation of a forward pass through deep residual network layers as
evolution through time (Chen et al., 2018), the dynamics of the representations for token i,
zi can be modeled as

żi(t) = Pzi(t)

 1

Zβ,i(t)

n∑
j=1

exp
{
β [WQ(t)zi(t)]

T WK(t)zj(t)
}
WV (t)zj(t)

 , (11)

where, Zβ,i(t) is the partition function, β the system’s temperature, and for d-dimensional z
and u, Pzu = u− zTuz is the projection of u onto the tangent space of a (d− 1)-dimensional

15



Extended Abstract Track
sphere in Rd at z (Geshkovski et al., 2023). The similarity between particle systems and
attention mechanisms is evident from comparing equations 1 and 11. Thus, the output of
the simplified transformer studied here can be approximated as the solution of Equation 11
as t → +∞. This framework sets the stage for the subsequent empirical investigation into
how ORC distribution informs the behavior of transformers and their robustness properties
in light of the discussion in Section 2.

Forward pass and attention clustering. Geshkovski et al. (2023) demonstrate that
when the query, key, and value projection matrices are the identity, the dynamics modeled
by this equation are similar to the Krause model (Krause et al., 2000), which shows particles
clustering when t → +∞ (Jabin and Motsch, 2014). Clustering behavior is also observed
in other similar models (Geshkovski et al., 2023; Motsch and Tadmor, 2014). Despite the
differences between transformer models used in practice and the idealized model commonly
assumed for analysis, the interpretation above leads to questions on attention clustering
in transformers. Geshkovski et al. (2023) show empirical evidence that in commonly used
pre-trained transformers the attention map becomes more clustered through a forward pass.
Given this connection between ORC and clustering in networks (Jost and Liu, 2014; Sia
et al., 2019), which we expand upon in Appendix A, the forward pass dynamics of attention
also corresponds to an evolving pattern of ORC distribution.

Attention dynamics and Ricci curvature. Computing the ORC distribution in pre-
trained and fine-tuned vision and language transformers, our experiments confirm our
theoretically anticipated connection between attention ORC distributions and forward pass
dynamics in transformers. We empirical observations reveal that a forward pass in trans-
formers leads to a shift in the ORC distribution towards more positive values, or significantly
reduces the frequency of smaller ORC values. This is visualized for two vision and two
language transformers with six standard datasets in Figure 5, and quantified by the Wasser-
stein distance of the distribution from a Dirac mass at 1 – maximum ORC value. A smaller
distance indicates a more positive-leaning distribution in the final attention layer compared
to the first layer, as observed in most cases. In the only exceptions where this Wasserstein
distance value is greater – DeiT model on CIFAR10 and BERT-Tiny on IMDb – we still
observe that the forward pass eliminates the smaller peak in the ORC distribution, shifting
the smaller values upwards. As we explain in Section 2, ORC is a known indicator of system
robustness. Meanwhile, the forward pass in transformers is known to play an important role
in their remarkable performance, for instance, in their in-context learning (Von Oswald et al.,
2023). Hence, these evolving patterns of ORC which follow transformers’ dynamics reveal
evidence on the geometric signature of both the robustness and performance of transformers.

Appendix E. Implementation details

E.1. L-ViT configuration

The L-ViT model utilizes a transformer architecture for image classification borrowed from
ViT-PyTorch library (Wang, 2020). The input image is divided into 7x7 patches for the
MNIST and Fashion-MNIST datasets, and 8x8 patches for the CIFAR10 dataset. These are
projected into a 64-dimensional space within a single channel for the MNIST and Fashion-
MNIST datasets, and 3 channels for the CIFAR10 dataset. An 8-layer deep transformer
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Figure 5: The ORC distributions of the first and last attention layers of ViT (blue) and DeiT
(green) for a batch of MNIST, Fashion-MNIST, and CIFAR10 images, and of BERT-Tiny
(purple) and ELECTRA-Small (orange) for a batch of SST-2, IMDb, and Headlines data. The
curvature distribution shifts towards more positive values through a forward pass; quantified
by the Wasserstein distances of the ORC distributions from a Dirac mass at the ORC value
of 1, annotated next to each distribution (smaller means more positive leaning).

encoder with a single attention head per layer processes these patch embeddings. The MLP
block within each layer has a hidden dimension of 128. Dropout with a rate of 0.1 is applied
both to activation functions and embeddings during training to enhance model robustness
and prevent overfitting.

E.2. Training and evaluation details

We use a learning rate of 5 · 10−4 for training L-ViT with a batch-size of 64 images, and
a learning rate of 5 · 10−6 for training BERT-Tiny with a batch-size of 16 sentences. The
pre-trained model weights were downloaded from Huggingface Transformers (Wolf et al.,
2020). For fine-tuning pre-trained vision models, we use a learning rate of 2.5 · 10−4 with a
batch-size of 64 images, and for pre-trained language models, these values are 2 · 10−5 and 16.

The perturbations for experiments in Section 6 include flipping, blurring, and rotation
of images with probabilities 0.2 and 0.4, and word swap in texts with probability 0.4. For
the experiments in Section 5 and Appendix F, we trained L-ViT for 20 epochs on MNIST
and Fashion-MNIST images and 40 epochs on CIFAR10 images, and same experiments
on BERT-Tiny (in Appendix F) were performed with 20 epochs for all three datasets.
For the L-ViT experiments in Appendix I.3, models were trained with an early stopping
condition at accuracies of 97%, 87%, and 50%, over MNIST, Fashion-MNIST, and CIFAR10
validation sets, respectively. BERT-Tiny models mentioned in Appendices I.2 and I.3 were
trained with an early stopping condition at accuracies of 88%, 84%, and 79%, on the IMDb,
Headlines, and SST-2 validation sets, respectively. In Appendix I.3 experiments, we perturb
the test set images by applying elastic transformation with α = 75 and random perspective
transformation with a distortion scale of 0.5, with a probability of p = 0.5. Text test set
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sentences are perturbed via characters or complete word substitution. These substitutions
were chosen randomly, potentially resulting in nonsensical combinations. This process aimed
to introduce noise and potentially disrupt the inherent coherence and structure of the
sentences. Both character-level and word-level perturbations were applied independently
with a fixed perturbation rate of r = 0.2 for each.

Consistent subset sizes were employed for all experiments involving ORC computation
over subsets. Specifically, a subset of 1,024 images was utilized for image datasets tested
with the L-ViT model. A subset of 16 sentences was employed for text datasets tested with
the BERT-Tiny model.

E.3. Other implementation details and system specification

All ORC computations in this study were conducted using the GraphRicciCurvature (Ni
et al., 2019) Python library.

All loss optimizations were performed via Adam (Kingma and Ba, 2014), and the training
and testing implementations use the PyTorch library (Paszke et al., 2019), with the default
data split from the Torchvision package (Marcel and Rodriguez, 2010). While visualizing
distributions, outliers and zeros were removed as needed for clarity of the distributions in
the figures. The system specification for the computations is provided in Table 1.

Table 1: System specifications for the computations.

CPU Intel(R) Xeon(R) CPU @ 2.40GHz
GPU Nvidia A100 SXM4 40GB
OS AlmaLinux 9.3
Architecture x86_64

Due to computational costs associated with the resource demands of graph ORC compu-
tations, evaluations of several experiments were conducted on randomly selected subsets of
the MNIST, Fashion-MNIST, and CIFAR10 image datasets and the IMDb, Headlines, and
SST-2 text datasets. Additionally, the pre-trained models were fine-tuned through 1 epoch
on each dataset, which already yields over 90% accuracy.

Appendix F. Training curvature-adjusted transformers

In this appendix, we provide the detailed formulation and empirical results of the regulariza-
tion method we propose, mentioned in Section 5, which allows us to adjust the curvature
distribution of attention maps in transformers. The technical details, loss functions, and all
experimental results used to validate our theory are described here. For completeness, key
results and discussions in the main text are restated.

Section 4 discusses the novel connections we establish between the curvature of attention
maps and various aspects of transformer behavior, such as learning dynamics and robustness.
This raises an intriguing possibility: manipulating the curvature distribution of the attention
graph could allow us to adjust their behavior and improve their capabilities. A well-established
tool to diffuse the curvature over a manifold is the Ricci flow (Hamilton, 1988), and its
discrete variation could be iteratively applied to flatten the graph and reduce the frequency
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of edges with highly negative curvature (representing unstable networks) (Jin et al., 2008;
Ni et al., 2019). However, each iteration of the discrete Ricci flow requires computing the
curvature distribution, and hence it is computationally taxing to incorporate in the training.
To overcome this challenge via a computationally efficient proxy, we introduce a simple,
efficient, and effective method to manipulate the ORC distribution of attention maps through
regularization by a function of the variance of attention scores. Aiming to either promote or
reduce the frequency of low-curvature edges, this regularization strategy not only provides a
means to empirically validate our theory, but also offers a practical mechanism to enhance the
training and robustness of transformers by adjusting curvature. The experiments included in
this section use the L-ViT and BERT-Tiny models, described in Appendix E.

Encouraging or discouraging low-curvature edges via regularization Recognizing
the correspondence between the weight distributions and ORC in a complete graph (of full
attention), we propose a regularization method to control the attention variance to adjust
the ORC distribution. Negative ORC corresponds to weight imbalance, while a weight
distribution with a small variance corresponds to a positively-curved graph. Hence, we expect
variance increase to promote smaller ORC values, while variance decrease will lead to their
elimination. In Appendix A, we elaborate on how the formulation of the ORC implies its
connection with weight variance. To put this in practice, we regularize the loss function with
a variance-dependent term h(σ2), such that ∂h

∂σ2 < 0 for promoting low-curvature edges and
∂h
∂σ2 > 0 for reducing their frequency. The total loss is

Ltotal = Ltask + γh(σ2
A), (12)

where Ltask denotes the usual loss associated with the task (e.g., classification loss
in our experiments), γ the regularization coefficient, and σ2

A the variance of attention
scores, averaged over all layers. In our implementation, we use h(x) = exp(−ax + b) and
h(x) = log(ax+ b) to increase and decrease variance (respectively), with a > 0 and b serving
as tunable scale and shift parameters, helping to place the regularization value in an impactful
range. Furthermore, the choice of exponential and logarithmic functions ensures decreasing
marginals, limiting adjustments to the loss and avoiding extreme outcomes where attention
either becomes uniformly distributed (losing discriminative power) or overly imbalanced
(leading to instability or absurd attention).

Figure 6: Final layer ORC distributions in L-ViT and BERT-Tiny trained via regularization
methods increasing (↑) and decreasing (↓) variance, exhibiting a connection with the direction
of variance regularization.
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Empirical results on curvature-adjusted training. Our experiments on standard image
and text datasets using L-ViT and BERT-Tiny confirm that our proposed regularization
influences the ORC distribution as anticipated, illustrated in Figure 6. Equipped with this
method, we now empirically validate Theorem 2 by comparing transformers with smaller
and larger minimum values of attention ORC, corresponding to increasing and decreasing
variance. Our experimental results in Figure 7 indicate that increasing variance not only
accelerates loss minimization but also leads to earlier convergence. Note that we observe
a larger loss variance across trials in language models compared to vision models, and due
to computational constraints, reducing this variance is beyond the scope of this project,
especially considering strong empirical validations already observed using L-ViT. Having said
that, the average over 30 trials on BERT-Tiny is consistent with what we observe for L-ViT,
though the confidence intervals overlap. Considering clearly significant trends observed with
L-ViT and similar trends for the trial averages for the BERT-Tiny model, these results
overall support the implications of our Theorem 2, which states that a smaller minimum ORC
value corresponds to a higher probability of exponential convergence of gradient descent,
suggesting faster convergence. This finding also suggests that our proposed regularization
can enhance the training of transformer models. In Appendix G we further empirically
demonstrate the impact of this curvature adjustment on transformers, effectively influencing
the learning dynamics, performance, and robustness characteristics of the model.

Figure 7: Training loss minimization on L-ViT (top) and BERT-Tiny (bottom) with
regularization methods increasing (↑) and decreasing (↓) variance for MNIST (left), Fashion-
MNIST (middle), and CIFAR10 (right). Higher variance can promote faster loss reduction
and achieve convergence in fewer iterations.

Appendix G. Robustness and performance trade-off

In this appendix, we provide empirical results highlighting a trade-off between performance
and robustness observed in transformers trained with our proposed variance-based regu-
larization. We examine how increasing or decreasing the frequency of low-curvature edges
affects training, accuracy, and generalizability, presenting further empirical results using
our proposed regularization method discussed in Section 5 and Appendix F. Our findings
highlight a potential contrast between the advantages of negative ORC for optimization
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and positive ORC for the robustness of transformers. The trade-off between robustness and
performance is an established phenomenon studied in various contexts (Raghunathan et al.,
2020; Xu and Mannor, 2006; Zhang et al., 2019). In light of the geometric underpinning of
the attention mechanism unveiled in this work, here we further explore this trade-off in the
context of transformers.

Table 2: Training and test accuracies and their gap using the regularization methods
increasing and decreasing variance for six image and text datasets. The average and 95%
confidence intervals over 30 trials are shown.

Training accuracy (↑) Test accuracy (↑) Training accuracy - Test accuracy (↓)

Decrease Increase Decrease Increase Decrease Increase
variance variance variance variance variance variance

CIFAR10 0.704 ± 0.001 0.613 ± 0.009 0.609 ± 0.002 0.557 ± 0.005 0.095 ± 0.002 0.056 ± 0.005
Fashion-MNIST 0.903 ± 0.000 0.893 ± 0.001 0.890 ± 0.001 0.883 ± 0.001 0.013 ± 0.001 0.010 ± 0.001

MNIST 0.981 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.982 ± 0.000 -0.003 ± 0.001 -0.002 ± 0.000

SST-2 0.986 ± 0.001 0.985 ± 0.001 0.826 ± 0.003 0.831 ± 0.001 0.160 ± 0.003 0.154 ± 0.002
IMDb 0.994 ± 0.000 0.993 ± 0.000 0.836 ± 0.003 0.838 ± 0.002 0.158 ± 0.003 0.155 ± 0.002

Headlines 0.965 ± 0.001 0.967 ± 0.001 0.915 ± 0.002 0.910 ± 0.002 0.050 ± 0.002 0.057 ± 0.001

Using the training techniques described in Section 5 and Appendix F, we observe divergent
impacts on performance and robustness from the opposing directions of variance regularization.
Increasing the frequency of low-curvature edges by increasing variance speeds up optimization.
Meanwhile, when this regularization introduces a second mode of highly positive curvature
values, which is observed on all image datasets and two of the three text datasets in our
experiments (Figure 6), it also improves generalizability, as evidenced by smaller train-test
performance gaps. Conversely, decreasing variance enhances accuracy in most cases, but
reduces generalizability. These effects are evident from Table 2, which reports the train
and test accuracy values, and the difference between the two. Note that our proposed
regularization method globally impacts the attention scores and has limitations in targeted
curvature adjustment, as, for instance, the simultaneous emergence of high and low curvature
modes in some of our datasets suggests. While Table 2 reports the results of the regularization
methods, together with the impact of each regularization on ORC distribution (figures 6),
they allow us to understand the impact of ORC distribution on accuracy and generalization.
In particular, the results highlight the trade-off between high performance and robustness
across different distributions, corresponding directly to the curvature distribution of the
attention graph.

Appendix H. Ricci curvature distribution and robustness to input
perturbation

In this appendix, we provide detailed discussion and empirical results for the connection
between the ORC of attention graphs and the robustness of transformers to input perturbation,
discussed in Section 6. For completeness, we repeat key results from Section 6 to provide
full context and ensure clarity in the interpretation of our findings. We conduct a series
of experiments exploring the relationship between ORC and robustness in transformers.
The discussions in sections 2 and 4 suggest that more positive ORC values, thereby more
system robustness, should enhance the robustness of transformers. We empirically investigate

21



Extended Abstract Track
this link through two focused studies: first, by examining the curvature and robustness of
pre-trained transformers to input perturbation; and second, by assessing the impact of the
ORC distribution on model forgetfulness. In line with the theoretical insight, our experiments
confirm that more robust transformers feature a higher frequency of larger ORC values in
their attention graphs. Additional experiments in Appendix I further support these findings.

Models and data. The experiments in this section and Appendix I are conducted on
MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al.,
2009) images for the vision models, and on the IMDb Movie Reviews (Maas et al., 2011)
(IMDb), Stanford Sentiment Treebank v2 (Socher et al., 2013) (SST-2) and the News Headlines
Sarcasm Detection (Misra and Arora, 2023) (Headlines) datasets for the language models.
We fine-tune pre-trained vision and language transformers on these datasets, comparing
ViT (Dosovitskiy et al., 2020) against DeiT (Touvron et al., 2021) for vision, and BERT-
Tiny (Turc et al., 2019) against ELECTRA-Small (Clark et al., 2020) for language models.
All implementation details are reported in Appendix E.

Curvature and robustness of pre-trained transformers to input perturbation. We
now compare the performance of fine-tuned models on perturbed and unperturbed test sets
(further details in Appendix E). We quantify robustness by metric ρ.

ρ := accuracyunperturbed − accuracyperturbed. (13)

We find that more positive-leaning ORC distributions correspond to smaller ρ values, indi-
cating more robust models. For instance, ViT yields a ρ value of 0.067 on MNIST images,
which is ∼20% than the ρ value of 0.084 obtained from DeiT. Similarly, the ρ values for
Fashion-MNIST and CIFAR10 datasets are ∼14% and ∼62% smaller in ViT than DeiT.
Meanwhile, the ORC distribution in ViT is more positive-learning, Figure 3, as quantified by
the Wasserstein distance of the distribution from a δ distribution at the ORC upper bound
of 1. This pattern holds in language transformers as well, where ELECTRA-Small exhibits a
more positive-leaning ORC distribution than BERT-Tiny, and is ∼ 17%, ∼ 49%, and ∼ 23%
more robust to input perturbation on SST-2, IMDb, and Headlines datasets. Experiments
on L-ViT and BERT-Tiny from random initialization (Appendix I.3) show a similar trend,
where training a more robust model corresponds to eliminating negative ORC values leading
to a distribution concentrated around a positive mode.

Appendix I. Additional experiments

I.1. Forgetfulness and curvature distribution

As a part of our empirical analysis of the robustness properties of transformers, in Section 6
we investigated the connection between ORC distribution and the robustness of transformers
to input perturbation. Exploring robustness from a different perspective, here we look into
forgetfulness of pre-trained transformers and their connection with the ORC distribution.
Forgetfulness, where models lose previously learned information when exposed to new tasks
or data, offers a complementary perspective on robustness, alongside robustness to input
perturbation. These experiments further link ORC in attention graphs to transformer
robustness, showing that models with more positive-leaning ORC distributions are less prone
to forgetfulness.
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We sequentially fine-tune each pre-trained model on a primary dataset and then a
secondary one, tracking the performance decay on the primary dataset to measure how
quickly each model “forgets” due to subsequent training. A fast decay in performance on
the primary dataset implies a more forgetful model. The results reveal a significant drop in
classification accuracy –from above 80% to below 50%– highlighting a pronounced forgetting
effect. Specifically, our results indicate that DeiT and BERT-Tiny tend to forget learned
patterns faster than ViT and ELECTRA-Small, signaling higher robustness of ViT and
ELECTRA-Small to training on new distributions. Meanwhile, as shown in Figure 3, the
ORC distributions of attention maps in ViT and ELECTRA-Small lean further towards more
positive ORC values. Together, these observations support our arguments regarding the
positive correlation between the ORC of attention maps and the robustness of transformers, as
the more positive-leaning distribution belongs to the less forgetful model. These findings also
align with our observations on perturbation robustness: ViT and ELECTRA-Small, with more
positive-leaning ORC distributions and higher system robustness, show greater resistance
to forgetting. In this appendix, we include the results of the forgetfulness experiment on
all pairs of primary and secondary datasets. Figure 8 demonstrates these results for vision
transformers, and Figure 9 for language transformers, both exhibiting the same general
trend. It is worth noting that the forgetting phenomenon is not observed in some of our
experiments on language models, which is likely due to semantic similarities between the
tasks and datasets in hand.

I.2. Attention pruning and performance

Attention pruning and performance over image datasets. To better understand
the role of ORC in transformer performance versus robustness, we investigate the impact
of selective attention pruning based on ORC values. We independently prune attention
edges with low and high ORC values across all layers of the trained L-ViT during testing
(details in Appendix E.2). This allows us to evaluate the dependence of model performance
on attention edges characterized by different ORC values (see Figure 10). Pruning low-ORC
edges results in a faster performance decay compared to pruning high-ORC edges, indicating
that negative-ORC edges are more critical for model performance (Figure 10). Similar
experiments with BERT-Tiny are presented in the following section. Additionally, our
experiments in Appendix I.3 show that training a more robust transformer corresponds to
concentrating ORC distribution around a positive value, eliminating negative edges. These
observations further strengthen the evidence supporting the previously identified trade-off
between model robustness and performance.

Attention pruning and performance over text datasets. Similar to the experiments
using L-ViT, we conduct attention pruning experiments using BERT-Tiny over subsets of
the IMDb Maas et al. (2011), SST-2 Socher et al. (2013), and Headlines datasets. In these
experiments, we independently prune attention edges with low (negative) and high (positive)
ORC values over all layers of BERT-Tiny models during testing. Our findings deviate from
the observations on image datasets. As illustrated in Figure 11, pruning edges with high
ORC values leads to a more rapid degradation in performance compared to pruning edges
with low ORC values. Furthermore, the accuracy exhibits abrupt transitions in response to
minor variations in the pruning rate. The results should be interpreted with caution due to
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Figure 8: Test set accuracy of ViT (blue) and DeiT (green) models while fine-tuning on a
secondary dataset after fine-tuning on a primary dataset. The primary and secondary datasets
are: (a) CIFAR10 and MNIST; (b) CIFAR10 and Fashion-MNIST; (c) Fashion-MNIST and
CIFAR10; (d) Fashion-MNIST and MNIST; (e) MNIST and CIFAR10; (f) MNIST and
Fashion-MNIST. DeiT demonstrates a faster degradation in performance compared to ViT
following subsequent fine-tuning.

the limited sample size. This is reflected in the observed variability and jitter in the results
and the absence of a clear, monotonic decreasing trend.
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Figure 9: Test set accuracy of BERT-Tiny (purple) and ELECTRA-Small (orange) models
while fine-tuning on a secondary dataset after fine-tuning on a primary dataset. The primary
and secondary datasets are: (a) Headlines and SST-2; (b) Headlines and IMDb; (c) SST-2
and Headlines; (d) SST-2 and IMDb; (e) IMDb and Headlines; (f) IMDb and SST2. In cases
where forgetting happens, BERT-Tiny demonstrates a faster degradation in performance
compared to ELECTRA-Small following subsequent fine-tuning.

I.3. Training robust transformers

Given the established success of connection-dropping methods in training robust neural
networks (Goodfellow et al., 2014; Jain et al., 2015; Srivastava et al., 2014; Yang et al.,
2020), we also investigate the impact of random dropout of attention connections on the
ORC distribution in L-ViT and BERT-Tiny. During models training, a Bernoulli mask was
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Figure 10: Effects of pruning rates and regimes on performance for an L-ViT model, evaluated
over random subsets of the: MNIST (left), Fashion-MNIST (middle), and CIFAR10 (right)
datasets. Pruning edges with lower curvature leads to greater performance impairment.

Figure 11: Effects of pruning rates and regimes on performance for a BERT-Tiny model,
evaluated over random subsets of the: IMDb (left), SST-2 (middle), and Headlines (right)
datasets. Pruning edges with lower curvature leads to smaller performance impairment.

implemented to stochastically remove edges across all attention maps at varying rates. In the
testing phase, we assess the robustness of the trained models with unmanipulated attention,
quantified by ρ as defined in Equation 13, over dataset subsets (see Appendix E.2). Informed
by prior research on connection masking techniques (Luo et al., 2021; Zehui et al., 2019),
we posit that its application will lead to enhanced model robustness. While the number
of active attention connections may decrease, we anticipate this effect will not significantly
impair overall performance.

Observing the ρ values at different Bernoulli masking rates on Figure 12, our experiments
confirm that this robustness is indeed achieved. Noticeably, a trend toward increasing
robustness is often observed when masking rates fall within the range of 0.2 to 0.5, indicating
that masking at these rates promotes increased robustness. Furthermore, low performance
degradation is observed even at very high masking rates. This phenomenon can be attributed
to two counteracting effects. Firstly, the masking process reduces the number of active
edges, potentially leading to a decrease in overall model capacity. Secondly, the remaining
connections become less redundant due to the sparsity introduced by masking. This may
allow individual connections to exert a more significant influence on the model’s robustness.
Meanwhile, as we increase the masking rate, we see in Figure 13 that the negative values of
ORC diminish. Furthermore, the ORC distributions of the final attention layer exhibit a
convergence towards modal values across all examined datasets, which suggests a diminishing
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extremity within these distributions. This provides another piece of evidence for our claims
on the connection between ORC in the attention map and the robustness of the transformer.

Figure 12: Perturbed test set accuracy rate degradation (ρ as defined in Equation 13) of
L-ViT (top row) and BERT-Tiny (bottom row) models trained with Bernoulli masking.
Results are evaluated over random subsets of the: (a) MNIST; (b) Fashion-MNIST; (c)
CIFAR10; (d) IMDb; (e) SST-2; and (f) Headlines datasets. Masking rates affect model
robustness in both vision and language models.

Figure 13: ORC distributions of the final layers of L-ViT (top row) and BERT-Tiny (bottom
row) models trained with varying edge masking rates. Distributions are combined over
random subsets of the: (a) MNIST; (b) Fashion-MNIST; (c) CIFAR10; (d) IMDb; (e) SST-2;
and (f) Headlines datasets. Higher edge masking rates lead to curvature values convergence
to a common modal value. Consequently, negative curvature values tend to diminish in both
vision and language models.
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