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ABSTRACT

We consider a class of structured learning problems on arborescence (i.e., the di-
rected spanning tree) from the input graph. The key step involved in this problem
is predicting the minimal weight arborescence (MWA) from the learned model.
In literature, there are two lines of research for predicting MWA: the Chu-Liu
Edmonds (CLE) (Chu & Liu, 1965) and the Lovász (Lovász, 1985) methods. The
CLE method is easy to implement while it takes O(n) cycle contractions. Here n is
the graph size. The Lovász method reduces to the multi-pair shortest path (MPSP)
problem and takes only O(log n) contractions. Nevertheless, in the CPU setting,
MPSP has the same time complexity as finding MWA. The Lovász method only
attains time efficiency under a sufficient GPU setting. Both the aforementioned
methods are painfully slow for large-scale learning tasks. In this research, we find
the general MPSP problem can be simplified when working with machine learning
models. This is because the learning model predicts edge weights for all pairs of
vertices and the graph we process is always complete. Therefore, we only need to
handle those paths that directly enter every weakly connected component (WCC)
while the classic Lovász method need to handle all possible paths. This allows
us to propose Lazy Lováz (Lavá) method that enjoys O(log n) contractions as
well as efficient performance in both CPU and GPU settings. In experiments, we
consider synthetic datasets and two real-world learning tasks, i.e., graph-based
dependency parsing and unsupervised parsing on ListOps. The empirical results
exhibit important gains of our Lavá method to the classic CLE and Lovász meth-
ods, that Lavá boosts the training time for arborescence learning tasks.

1 INTRODUCTION

This paper primarily focuses on a structured learning with the output structure being arborescence
(i.e., directed spanning tree). Examples of real-world arborescence learning problems include graph-
based dependency parsing (Koo et al., 2007) and ListOps parsing (Nangia & Bowman, 2018). At
every step of learning, the neural model needs to infer the minimum weight arborescence (MWA).
This inference procedure is mainly resolved by the Chu-Liu Edmonds algorithm (CLE) (Chu & Liu,
1965; Edmonds, 1967) or the Lovász method (Lovász, 1985).

The CLE method is straightforward in its implementation (Gabow et al., 1986; Mendelson et al.,
2004). However, when dealing with larger-scale input graphs, CLE spends the majority of the time
on cycle contractions. In fact, we show the CLE takes O(n) rounds of contractions theoretically
and empirically. Here n is the size of vertices in the graph. Lovász (1985) transformed the original
finding MWA problem into the multi-pair shortest path (MPSP) problem. The Lovász method only
needs O(log n) contractions. Under sufficient GPU setting where the shortest path can be com-
puted efficiently, Lovász algorithm attains faster running time over the CLE method. Later works
marginally improve the classic Lovász with less GPU resource (Amato, 1993) and generalize to
distributed network (Fischer & Oshman, 2021).

Since the learning model predicts the edge weights for all pairs of vertices, the graph we process
is always complete. After the edge pre-process step, all the edge weights are non-negative (in
Remark 1) and the graph is partitioned into several weakly connected components (WCCs). The
classic Lovász method asks for computing the shortest path for every outside vertex xi into the
cycle in the current WCC, which may travel around all the vertices and go inside and then outside
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Figure 1: Our Lavá method is more efficient than the classic Lovász when computing the shortest
path from outside to the cycle. (a) The pre-processed graph with circle denotes vertices and arrow
(→) denotes edges. “WCC” stands for weakly connected component. (b) In Lovász method, the
outside vertex may find a path that wanders around over several WCCs, that involves all the vertices
in the graph. (c) Our Lavá method computes those paths that directly enter the WCC and never go
outside. Our method limits the scope of the shortest path and thus attains time efficiency.

of the current WCC. We observe that this can be simplified by considering those paths that directly
enter the current component and never go outside. Such paths always exist because the graph we
process is densely connected. We thus save the computation workload by limiting the scope of the
shortest path. This observation allows us to attain time efficiency and thus boosts the training time
for large-scale learning problems. Fig. 1 illustrates this idea with one potential graph.

In this research, we introduce, Lazy Lováz (Lavá), an unified algorithm for finding MWA. Except
for the above observation, we also introduce a bag of tricks for finding MWA on the large-scale and
densely-connected graph. To detect the cycle and compute the shortest path, we exploit the property
of matrix power to replace DFS-based algorithms. The whole method is described in the language of
matrix computation. Therefore, our method is not only convenient and efficient for implementation
with Numpy or Pytorch but also transparent to the CPU or GPU devices.

In experiments, we show the advantage of our Lavá approach in synthesized graphs and two real-
world applications. In the synthetic experiment, we first show the empirical number of contractions
by the CLE algorithm increases linearly with the graph size while our method takes much fewer
contractions. Then we show that our Lavá method takes much less empirical running time to find
MWA than CLE approach on a large-scale setting. Furthermore, for the dependency parsing task
datasets and unsupervised parsing over Listops task, we show the proposed Lavá method attain
show better running time than the CLE method over real-world datasets. Our contributions are:

(1) We propose an efficient inference algorithm (i.e., Lavá) for finding MWA, which is more compat-
ible with and efficient for large-scale arborescence learning problems. (2) Theoretically, we show
that our Lavá method takes O(log n) and CLE takes O(log n) round of contractions. We further
show the correctness of our Lavá after adopting our observation on the shortest path. (3) We evalu-
ate our method on synthetic data and two real-world applications. We show that Lavá is faster than
CLE over all the datasets and tasks.

2 PRELIMINARIES

2.1 LEARNING ARBORESCENCE

Notations. Denote G(V,E) as a weighted and directed graph with a given root r ∈ V . Root r
has no incoming edges and the rest vertices are strongly connected. The adjacency matrix A that
represents the connectivity of the graph is: for xi, xj ∈ V ,

Ai,j = A(xi, xj) =

{
ϕ(xi, xj) If e(xi, xj) ∈ E

∞ If e(xi, xj) ̸∈ E
(1)

where ϕ(xi, xj) : V × V → R denotes the weight of edge (xi, xj) in the graph. We assume edge
weights are all finite. All the incoming edges of vertex xi correspond to i-th column vector A:,i and
all the outgoing edges can be found in i-th row vector Ai,:.

Min-plus Product. The min-plus product, is defined on the adjacency matrix for computing the
shortest path in the graph (Williams & Xu, 2020). We denote “⋆” as the min-plus product. Let
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matrix S contain all-pair two-step shortest distances, with Sij be the shortest distance of two-step
path xi → xk → xj . S and Sij are computed as:

S = A ⋆ A, Sij = min
1≤k≤|V |

Aik +Akj , (2)

The min-plus product can be easily implemented as generalized matrix-matrix multiplication using
current GPU-based software, like Pytorch and JAX. The high parallelism of GPU greatly boosts the
empirical running time for the min-plus product.

r-arborescence. The r-arborescence is a directed spanning tree with root r (Korte & Vygen, 2018).
It is a subgraph T that covers all the vertices in the graph G and there is a unique directed path in T
from r to every other vertex xi ∈ V . The weight of an arborescence T is the summation of its edge
weights (Jaini et al., 2018): ϕ(T ) =

∑
(xi,xj)∈T ϕ(xi, xj). The Minimum Weight r-Arborescence

(MWA) is an r-arborescence whose ϕ(T ) is minimum among all possible arborescences.

Learning r-Arborescence. The edge weight function ϕθ is actually a neural network parameterized
by θ. Given a set of vertices x = {xi}ni=1, the network predicts the possible edge weight ϕθ(xi, xj)
for every pair of vertices xi, xj ∈ x. The arborescence is represented as the binary matrix T ∈
{0, 1}n×n, where Tij = 1 denotes edge e(xi, xj) is included. Similarly, the score of arborescence
is given by ϕθ(T |x) =

∑
(xi,xj)∈T ϕθ(xi, xj). The probability of arborescence is defined as:

Pθ(T |x) =
1

Zθ(x)
exp(ϕθ(T |x)), where Zθ(x) =

∑
T ′∈T (x)

exp(ϕθ(T
′|x)) (3)

Zθ is the partition function and T (x) denotes all possible arborescences. In inference, given the
trained parameters θ for the network, we predict the arborescence with the maximum score:

arg max
T ′∈T (x)

ϕθ(T |x) = arg min
T ′∈T (x)

∑
(xi,xj)∈T

−ϕθ(xi, xj) (4)

We can construct the adjacency matrix Aθ (in Eq. 1) using negative weight −ϕθ(xi, xj) for all pairs
of edge e(xi, xj). It is exactly finding the MWA for Aθ. We brief the inference procedure in Sec. 2.2.

Given a training set D = {xk, T k}Nk=1, where each T k is human-labeled output for input xk. Learn-
ing can be achieved via maximal likelihood estimation. In other words, we find the optimal param-
eters θ∗ by minimizing the negative log-likelihood: ℓθ(D) = −

∑N
k=1 ϕθ(T

k|xk) + logZθ(x
k).

Recently, Paulus et al. (2020); Struminsky et al. (2021) propose the recursive Gumbel-max trick,
that we can estimate the term logZθ(x) using the Gumbel distribution:

logZθ(x) = Eg′

 max
T ′∈T (x)

∑
(xi,xj)∈T

ϕθ(xi, xj) + g′ij

 , g′ij ∼ Gumbel(0, 1) (5)

We can use Eq. 4 to predict the set of edges on MWA with the perturbed adjacency matrix Aθ + g′

and compute the corresponding arborescence score. The parameters θ can be trained using gradient
descent: θt+1 = θt − η∇ℓθ(D), where η is the learning rate and ∇ℓθ(D) is the gradient of the
negative log-likelihood function.

2.2 FINDING MIN-WEIGHT ARBORESCENCE

Chu-Liu Edmonds (CLE) (Chu & Liu, 1965; Tarjan, 1977) is the most well-known method for find-
ing MWA. Later, Lovász (1985); Amato (1993); Fischer & Oshman (2021) proposed a theoretically
efficient variant by optimizing over the worst case in CLE. We brief CLE and Lovász methods below.

Chu-Liu Edmonds. 1) For every non-root vertex xi (xi ̸= r), find the incoming edge with minimum
weight then subtract this minimum value from all the incoming edges of vertex xi. 2) Next extract
all the vertices along with all the edges with weight being zero. They form a new graph F . If there
are multiple zero-weight edges, then randomly pick one incoming edge for every vertex. If F has
no cycle, it is clearly the minimum one. So the contraction terminates. 3) Otherwise, there exists
at least one cycle. Every cycle is then contracted into a single super vertex. Those self-connected
edges are removed. The resulting graph is noted as G′.
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The above three steps are recursively applied over graph G′ until the final contracted graph is an
arborescence. On termination of the contraction, the expansion procedure is launched to recursively
expand those super vertices (i.e., contracted cycles) and determine which edge on the cycle should
be discarded. Finally, it outputs the set of edges of MWA in the original graph. Figure 2(a) sketches
the connection of our Lavá and CLE methods.

Lovász’s Meta Algorithm. Lovász (1985) considered the worst case of CLE, noted as nested cy-
cle contractions. The CLE method might spend many steps contracting nested cycles. The Lovász
approach reduces to the multi-pair shortest path (MPSP) problem and only takes O(log n) contrac-
tions in the worst case. Specifically, the Lovász approach finds the shortest entering path into a
cycle. The algorithm not only contracts those vertices on the cycle but also those vertices relevant
to the shortest entering path. The whole contraction process is detailed in Appendix A.1. For those
follow-up works, Amato (1993) reducing the dependency on processors in the GPU setting and Fis-
cher & Oshman (2021) improved the running time in distributed CONGEST network. Figure 1(b,c)
illustrates the major difference between our Lavá and Lovász methods.

3 METHODOLOGY

For the task of learning arborescence from training data, the neural network ϕθ takes in all vertices
x1, . . . , xn as input and outputs a set of edges T that form the arborescence with maximum score (as
in Eq. 4) at every step of gradient computation. Specifically, the network predicts the edge score for
every pair of vertices ϕθ(xi, xj) and constructs the adjacency matrix Aθ. As mentioned in Sec. 2.2,
CLE method takes this matrix Aθ as input and outputs the set of edges that forms MWA by recursive
contractions and expansions. The CLE method is insufficient because it spends most of the time
shrinking to smaller and smaller graphs and later expanding to larger and larger graphs. In fact, we
show in Sec. 3.2 that CLE requires O(n) contractions and expansions, under the mild assumption of
the graph. Since large-scale inputs are the norm in real-world settings, this limits the scalability of
those machine learning tasks that relies on the efficient inference of MWA.

As mentioned in Sec. 2.2, Lovász (1985) solved the nested cycle contractions problem, that re-
duces from O(n) contractions to O(log n) contractions. Nevertheless, Lovász’s meta-algorithm
itself (Lovász, 1985) and its variants (Amato, 1993; Fischer & Oshman, 2021) need to compute the
multi-pair shortest path (MPSP) problem to find the shortest entering path into the cycle. Specif-
ically, every outside vertex needs to find the shortest path to the cycle, where the path could come
inside the WCC that contains the cycle and go outside. In the worst case, the path may touch all the
outside vertices. Solving the intermediate MPSP problem makes Lovász time-consuming.

In this research, we find the general MPSP problem can be simplified when working with neural
networks. Since the graph constructed by the neural network is always complete, a path once enters
the WCC should never go outside. By ruling out those paths that wander around several WCCs,
we only consider those paths that start from one outside vertex and directly enter the WCC. Our
Lavá methods solve a much smaller scale problem and thus gain computational efficiency compared
with the Lovász method. This allows us to propose Lazy Lováz (Lavá) method that enjoy O(log n)
contractions with friendly and efficient implementation in CPU and GPU settings. For example,
Figure 1(b,c) presents our Lavá method can better handle the shortest entering path problem than
Lovász method. Figure 1(a) presents our Lavá takes fewer contractions than CLE method.

3.1 FINDING MIN-WEIGHT ARBORESCENCE WITH LAZY LOVÁSZ ALGORITHM

Given the adjacency matrix A ∈ Rn×n (in Eq. 1), the task is to output those edges that form the
MWA. Assume root r has the largest index and the MWA is unique. Also given the neural network
ϕθ, there exists an edge for every pair of vertices xi, xj (xj ̸= r) with weight ϕθ(xi, xj). We
describe the whole contraction process in the language of matrix computation. The expansion step
is omitted here since it is the same as all the classic methods.

Step 1: Edge Pre-process. This step finds the minimum incoming edge for each vertex. For vertex
xj (1 ≤ j < n), we go through the j-th column vectors of the matrix A. Denote πj as the index for
the minimum incoming edge for vertex xj :

πj = arg min
1≤i≤n

Ai,j , for 1 ≤ j < n (6)
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where e(xπj
, xj) is the corresponding edge for vertex xj . Then we need to subtract the value of the

minimum incoming edge from all the incoming edges of every vertex. This is computed as the j-th
column vector A:,j subtracting Aπj ,j :

Ai,j = Ai,j −Aπj ,j , for 1 ≤ i < n (7)

We denote the resulting graph with edges determined by {e(xπj
, xj)}n−1

j=1 as F . We also use F to
denote the corresponding adjacency matrix F ∈ {0, 1}n×n with F (xπj , xj) = 1 for 1 ≤ j < n.
Remark 1. All the incoming and outgoing edge weight become non-negative after the first “Edge
Pre-process” operation: A(xi, xj) = A(xi, xj)−minxk

A(xk, xj) ≥ 0, for all xi, xj ∈ V .

Step 2: Termination Criterion. The algorithm terminates when graph F is acyclic. We decide if
F is acyclic by counting the number of weakly connected components (WCCs) in F . Specifically,
a graph is said to be weakly connected if replacing all of its directed edges with undirected edges
produces a connected (undirected) graph. One WCC implies F is connected and acyclic so that F
is an arborescence. Otherwise, graph F contains at least one cycle.

Specifically, we compute binary matrix power series to get WCCs, since binary computation is more
efficient than arithmetic operators, like decimal multiplication. Consider k-th matrix power:

F k = F × F × · · · × F︸ ︷︷ ︸
k times multiplications

, where (F × F )ij =
∨

1≤k≤n

(Fik ∧ Fkj) for 1 ≤ i, j ≤ n (8)

Operator “×” denotes binary matrix multiplication. “∨” and “∧” means element-wise logical-OR
and logical-AND operators correspondingly. F k

ij = 1 if and only if vertex xi can reach vertex xj

with exactly k steps using edges in graph F . The reachability matrix for all pairs of vertices within
n steps is:

S =

n∨
k=1

F k = F ∨ F 2 ∨ . . . ∨ Fn = (I ∨ F )n−1 × F (9)

We need O(log n) iterations to compute the matrix (I∨F )n−1 using the idea of divide and conquer.
See detailed illustration in Appendix C.2. We find Sii = 1 implies vertex xi is on the cycle, as there
is a path in F that vertex xi can reach itself. Thus, the termination criterion is

∑n
i=1 Sii = 0.

This is not the only way to determine graph connectivity, prior works invoke matrix inverse or DFS
to detect the connectivity of graph F . We give an in-depth discussion in Appendix C.3. Matrix
inverse cannot scale to a large matrix due to numerical precision. DFS is efficient in serial (i.e.,
CPU) setting but is undesirable under parallel (i.e., GPU) settings. Therefore, we consider this
simple matrix computation-based alternative to find WCCs and determine termination.

WCCs Extraction. This is an intermediate step for the following shortest entering path. We need to
partition the vertices V using matrix S (in Eq. 9). For i-th WCC, we extract 1) Ci, the set of vertices
on the cycle. If xi is on the cycle, we can locate the rest using the i-th column and row vector, i.e.,
Sij = 1∧Sji = 1. 2) Hi, the set of vertices that can be reached from the cycle but not on the cycle,
i.e., Ci ∩Hi = ∅. 3) Ki, the set of vertices that are non-reachable from the cycle.

Ci = {xj |Sij = 1 ∧ Sji = 1, for 1 ≤ j < n},
Hi = {xj |Sij = 0 ∧ Sji = 1, for 1 ≤ j < n},
Ki = {xj |Sij = 0 ∧ Sji = 0, for 1 ≤ j ≤ n}.

(10)

We obtain a list of vertices {(Ci, Hi,Ki)}Li=1 that partition the graph. See Example 1 for illustration.

Step 3: Lazy Shortest Entering Path. Fix i-th WCC, we compute the shortest entering path from
vertices in Ki to vertices in Ci via edge relaxation. Briefly speaking, we consider xk → xc for
every xk ∈ Ki, xc ∈ Ci, that corresponds to the one-step path. Then we try to relax the distance
with xk → xh → xc for xh ∈ Hi, that are those two-step paths. The above edge relaxation step
terminates once the distance cannot be relaxed anymore.

Specifically, denote adjacency matrices AKi,Ci
to represent the connectivity between the set of

vertices in Ki and Ci. Matrices AHi,Ci
and AHi,Hi

are defined similarly. To avoid recursive edge
relaxation, we use the same matrix power trick to compute the all-pair shortest distance for xh, x

′
h ∈

Hi. Let matrix D be the resulting matrix, we have: D = AHi,Hi
⋆ AHi,Hi

⋆ · · · ⋆ AHi,Hi
with at
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(b) example of entering path in Lavá(a) contraction in our Lavá are more progressive than in CLE

Lavá progressive contraction

x2

x1 r

x1234

r

x3

x12 r

x4

x123

r x2x1 x3

r

x4
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x4 conservative 
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Figure 2: (a) The Lavá method contracts vertices more progressively than the CLE method. (b) The
shortest entering path picks the minimum one (in Eq. 11). The outside vertex K = {r} can either
directly enter cycle C = {x1, x2} or by a intermediate vertex in H = {x3, x4}. Lavá method find
the shortest entering path (r → x4 → x1) and directly contracts {x1, x2, x3, x4} as x1234.

most log |Hi| min-plus products. In comparison, the classic Lovász method would use the whole
matrix A instead of AHi , computing D = A ⋆ . . . ⋆ A with at most log n min-plus products. The
min-plus product ⋆ is defined in Eq. 2.

Let βi ∈ R be the shortest entering distance from Ki to Ci. βi could be picked from: 1) one-step
paths, xk → xc, xk ∈ Ki, xc ∈ Ci. 2) two-step paths, xk → xh → xc, xh ∈ Hi. 3) more than
two-step paths, xk → xh → x′

h → xc. Note that the intermediate vertices are only picked from Hi,
xh, x

′
h ∈ Hi. It can be summarized as:

βi = min


AKi,Ci

Case 1: one-step paths
AKi,Hi ⋆ AHi,Ci Case 2: two-step paths
AKi,Hi

⋆ D ⋆ AHi,Ci
Case 3: more than two-step paths

(11)

Example 1 and Fig. 5(b) illustrate this procedure.

Step 4: Contraction. Given βi, we contract vertices on cycle Ci and those relevant vertices in Hi.
Denote the set of vertices to be contracted as Ui,

Ui = Ci ∪ {xh| min
xc∈Ci

A(xh, xc) ≤ βi, xh ∈ Hi} (12)

Contraction is done by picking an arbitrary vertex in u ∈ Ui as the representative and using a mask
vector to filter out the rest vertices in Ui. The weight of incoming edges of vertex ui in the contracted
graph G′ would be updated as follow:

A(x′, ui) = min
xu∈Ui,xc∈Ci

A(x′, xu) +A(xu, xc)− βi (13)

All the remaining edges stay the same. Afterward, we iteratively apply the above 4 steps over graph
G′ until there are no cycles. We use Example 1 to show the detailed steps of our Lavá method.
Example 1. Take Fig. 2 as an example. In Fig. 2(a), Lavá contracts are more progressive
than the classic CLE method. The vector π (in equation 6) for the most left figure is: π =
[2 1 2 3 −1], where π3 = 2 means the minimum incoming edge of vertex x2 is e(x3, x2).
“−1” implies root r has no incoming edge. Also this most left graph has two WCCs: {r} and
{x1, x2, x3, x4}. Figure 2(b) computes the shortest entering path. According to Eq. 10, we have
C = {x1, x2}, H = {x3, x4} and K = {r}. We consider two possible cases for this example: 1)
those one-step paths (in Case 1), which are recorded in matrix AK,C . 2) those two steps paths (in
Case 2), like r → x3 → x1, which can be computed as AK,H ⋆ AH,C ,

AK,C = [ϕ(r, x1) ϕ(r, x2)] , AK,H ⋆ AH,C = [ϕ(r, x3) ϕ(r, x4)] ⋆

[
ϕ(x3, x1) ϕ(x3, x2)
ϕ(x4, x1) ϕ(x4, x2)

]
The min-plus operator ⋆ can be: (AK,H ⋆AH,C)1,1 = minx′∈H{ϕ(r, x′)+ϕ(x′, x1)}. The shortest
entering path is r → x4 → x1, then the set of vertices to be contracted is {x1, x2, x3, x4}.

Our proposed method described in matrix computations can be easily implemented using Numpy on
CPU or Pytorch on GPU. The matrix computation offers a transparent protocol to compute on GPU
in parallel, without exactly manipulating every parallel processor on GPU devices. Furthermore, the
matrix-based approach allows us to conveniently process the output from the neural network. The
method may also be extended to parallel computing but would require remodeling each step, we
leave this discussion in Appendix B.
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3.2 THEORETICAL INSIGHTS ON LAVÁ METHOD

Analysis on Rounds of Contractions. The main impacting factor for the running time of the
proposed method is the number of contractions. Let Tn be the number of contractions for the graph
with n vertices. In the CLE method, we consider that the graph can be contracted into smaller graphs
of sizes {2, . . . , n−2} with equal probability. This simplified assumption may be different from the
real-world setting but it can help us to reveal the averaged case of the CLE algorithm. We leave the
study with more rigorous assumptions on graph contraction as future work. We have the following
recursion: Tn = 1 + 1

n−3

∑n−2
t=2 Tt. We obtain Tn = O(n) by solving this recursion. This implies,

other than the rarely-happen worst case, CLE method on average takes O(n) contractions under the
equal probability assumption. Furthermore, we show in Theorem 1 that Lavá takes at most O(log n)
contractions, which is more efficient than the CLE method.

Theorem 1 (Rounds of Contractions). In Lavá method, every directed cycle in Ci contains at least
two super vertices from the previous round. Lavá takes at most O(log n) contractions.

Sketch of Proof. We show there exists at least one super vertex in the cycle and we prove by contrac-
tion that there exist at least two super vertices. Finally, we do induction on the contraction rounds that
give at most O(log n) round of contractions for the whole procedure. Details in Appendix D.

According to Lemma 1, by induction on the contraction rounds, we conclude that the Lavá method
finds the MWA for graph G.

Lemma 1 (Correctness). T ∗ = argminT∈T T represents the MWA T ∗ in the original graph G with
weight ϕ(T ∗). and T ′∗ = argminT ′∈T ′ T ′ represents the MWA T ′∗ in the contracted graph G′ with
weight ϕ(T ′∗). Then we have: ϕ(T ∗) = ϕ(T ′∗) +

∑L
i=1 βi.

4 RELATED WORK

Finding MWA. Historically, Chu-Liu Edmonds (CLE) algorithms (Chu & Liu, 1965; Edmonds,
1967; Bock, 1971; Tarjan, 1977) along with its efficient data structures (Gabow et al., 1986; Mendel-
son et al., 2004) are proposed to find the min-weight arborescence in the directed graph. But those
data structures, like a heap, are left to be developed for GPUs. Most recently, Böther et al. (2022)
benchmark all the implementations. Meanwhile, Humblet (1983) first proposed a distributed com-
puting scheme for CLE approach. Lovász (1985) proposed to solve the nested cycle contraction
problem, but it asks for O(|V |3) many processors for solving the intermediate shortest path problem
in parallel. Later, Lucas & Sackrowitz (1992); Amato (1993) reduced to the dependency on proces-
sors. Fischer & Oshman (2021) adopted recent advances in distributed shortest path (Elkin, 2020)
and extend the Lovász algorithm to distributed CONGEST network. Another line of work is based
on constrained linear programming (LP) (Fischetti & Vigo, 1997; Király et al., 2020). However, LP
needs exponential many constraints to enforce the output is an arborescence.
Learning Arborescence. Inference-based learning can be mainly divided into two categories: dis-
criminate max-margin learning and probabilistic perturb-and-MAP learning. The first category,
including structured SVM (Tsochantaridis et al., 2004) and max-margin Markov network (Taskar
et al., 2003), learns to minimize the gap between the output in the dataset and the best-predicted out-
put. The second category focuses on differentiable structured learning for arborescence. Based on
the perturbed optimizer theory (Berthet et al., 2020), they utilize perturbed inference for estimating
the partition function (Niculae et al., 2018; Paulus et al., 2020; Struminsky et al., 2021).
There also exists a diverse category of applications that involve arborescence. In graph-based de-
pendency parsing, MWA denotes the best grammar tree of input sentences (McDonald et al., 2005;
Ma & Hovy, 2017; Zhang et al., 2019). In causality learning, MWA represents the optimal causal
additive trees (Jakobsen et al., 2022). In multiple human tracking, MWA denotes the best tracking
association for the objects (Henschel et al., 2014). MWA is applied for finding the optimal vessel
tree reconstruction (Zhang et al., 2021). MWA is adopted to decompose the Markov chain in game
theory (Newton & Sandholm, 2021).
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5 EXPERIMENTAL ANALYSIS

We mainly show Lavá method serves as an efficient alternative for CLE method in the arborescence
learning applications and synthesised dataset. Furthermore, we show Lavá uses much less contrac-
tions on real-world and synthesis dataset and use less time to detecting WCCs, compute shortest
entering distance when comparing to its baselines.

5.1 SYNTHETIC DENSE GRAPH

Empirical Running Time. The experiment settings are mentioned in Appendix G.2. Fig. 3(a)
shows our Lavá takes much less number of contractions empirically. We observe that larger graphs
requires more contraction steps than smaller graph in the CLE approach, which is time-consuming
for the learning problem in large-scale data. We also notice Lavá and the classic Lovász takes same
amount of contractions for the same input graph. We then compare the empirical running time of
the proposed approach with existing baselines over synthetic datasets (in Fig. 3(b)). Then the same
input is feed into all the competing methods and we measure the time of every algorithm need to get
an optimal spanning arborescence. We repeat 100 times and use the averaged running time as the
running comparison metric. As we can see from Fig. 3(b), when the size of graph is smaller than
29, both of the methods attain comparable results. When graph size is larger than 210, the proposed
Lavá takes significant less time than the classic CLE method. Since CLE needs to build up and then
reset all the necessary data structures, like Heap and disjoint set, when reading every input. While
Lavá only needs to process the matrix and run the binary and min-plus matrix multiplication.

Figure 3: (a) The round of contractions taken by the CLE method grows linearly with graph size
while our Lavá method takes much less rounds of contractions. (b) Empirical running time com-
parison between Lavá and CLE methods on synthetic datasets. Lavá takes significant less time to
process the graph with vertices n ≥ 210. (c) Our proposed BMM (in Eq. 9) and Tarjan-DFS com-
putes the exact matrix S and attain zero numerical error. Matrix inverse (Mat. Inverse) cannot be
applied to detect WCCs as the number of mismatch in the computed matrix S accumulates linearly
with the graph size. (d) BMM executed on GPU takes much less time for detecting WCCs than
all the competing approaches. Here, “BMM” and “Mat. Inverse” is abbreviation for binary matrix
multiplication and matrix inverse correspondingly.

WCCs Implementation Analysis. Here we compare with one baseline (Kepner et al., 2016) that
propose to use matrix inverse for detecting WCCs. The detailed process of matrix inverse for com-
puting WCCs is in Appendix C.3. The error is defined as the number of mismatches between the
computed matrix S. In Fig. 3(c), we observe the error for detecting WCCs made by the matrix in-
verse approach (Mat. Inverse) becomes obvious when the graph is large while our method computes
WCCs with no errors (as in Eq. 9). That’s one major reason that we use binary matrix multiplication
(BMM) to detect WCCs. In Fig. 3(d), we observe that BMM deployed on GPU attain the fastest
approach for detecting WCCs than Tarjan’s DFS algrorithm as well as Matrix inverse methods.

5.2 GRAPH-BASED DEPENDENCY PARSING

Dependency parsing considers the syntactic structure of a sentence, which describes the grammatical
relations among words (Jurafsky & Martin, 2009). Words in sentences are formulated as vertices
a in graph, that x = [x1, . . . , xn−1, r] represents an input sentence with t being the dummy root.
Let T denotes the ground-truth dependency tree for sentence x. The annotation tree T is composed
of n − 1 edges, where every (vxi , vxj ) ∈ T is a directed dependency relation from head word xi

8
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Table 1: Lavá takes less contractions and time compare with baselines on three dependency parsing
datasets. Both of them predict the same perturbed MWA when estimating logZ (in Eq. 5). “ApxErr”
stands for the approximation error from the estimated value by perturbed inference to the exact value
of logZθ. “#contract.” denotes the averaged number of contractions; “Infer.” means the averaged
time to inference the MWA by each algorithm.

English - GWT Dutch - Alpino French - GSD
Methods ApxErr #contract. Infer. ApxErr #contract. Inf. time ApxErr #contracts Infer.

CLE 0.14 13.610.4 0.090.12 0.18 17.17.9 0.140.20 0.22 25.212.7 0.190.21
Lovász 0.14 3.41.2 0.080.08 0.18 4.00.7 0.110.21 0.22 6.50.7 0.170.13

Lavá (ours) 0.14 3.41.2 0.150.22 0.18 4.00.7 0.290.34 0.22 6.50.7 0.430.27

to modifier word xj . The learning task is to learn a neural model given annotated training data
{xi, Ti}Ni=1. In inference, we need to predict a dependency tree with optimal score for a given input
x′. We leave the detailed experiment configurations in Appendix G.1.

Comparison. Using the same deep neural network, we ask every baselines to predict the MWA over
three multilingual datasets for the dependency parsing task. The results are collected in Table 1. In
terms of the number of contractions, our Lavá and the classic Lovász uses less contractions than
the CLE method. In terms of the empirical running time for inference MWA, our Lavá attain much
less time compare with Lovász because it handle much smaller SSSP problem while Lovász need
to handle all-pair shortest path problem. Furthermore, our Lavá takes less time compare with the
classic CLE approach. The Finally, we use the same perturbed adjacency matrix to estimate the
logZθ terms. task in described in Appendix G.1. All the three methods return the same correct
MWA and attain the same approximation error.

5.3 UNSUPERVISED PARSING ON LISTOPS

Figure 4: Empirical running time on ListOps
task. Our Lavá method takes less time than
CLE method, which can be a better alterna-
tive for the arborescence learning problem.

The ListOps task contains sequences of prefix arith-
metic expressions, e.g., [MAX 29 [MIN 47 ] 0
]. The arithmetic syntax for the input sequence in-
duces a arborescence with the first token being the
root. We follow the same graph neural network as
described in Paulus et al. (2020). We benchmark
the time of inferencing the MWA with the adja-
cency matrix induced by the deep network, the for-
ward propagation of the neural network as well as
the backward gradient pass for the neural network.
The results are collected in Fig. 4, where we can see
the classic CLE becomes one major time-consuming
component while our Lavá can serves as an efficient
alternative to boost the training speed of the network.

6 CONCLUSION

In this research, we investigate the inference problem when learning arborescence. We observe
that the inference module (i.e., CLE method) that is invoked at every step of gradient computation
becomes time-consuming on the large-scale dataset. Therefore, we propose Lazy Lovász for effi-
cient inference of the optimal output of the learning model. Compared with CLE method, it needs
O(log n) rounds of contractions instead of O(n) by the CLE approach. Compared with the classic
Lovász, it reduces the computational workload for the shortest entering path problem. In experi-
ments, we show the empirical running time analysis on synthesized data. Furthermore, we conduct
experiments on two real-world tasks: graph-based depdnency parsing and latent tree learning on
ListOps. All the experiment results suggest that Lavá can efficiently find MWA for the network’s
output. This study implies for learning over large-scale arborescence learning problems, one could
potentially give our Lazy Lovász a try.
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