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ABSTRACT

A major drawback of reasoning models is their excessive token usage, inflating
computational cost, resource demand, and latency. We show this verbosity stems
not from deeper reasoning but from reinforcement learning loss minimization when
models produce incorrect answers. With unsolvable problems dominating training,
this effect compounds into a systematic tendency toward longer outputs. Through
theoretical analysis of PPO and GRPO, we prove that incorrect answers inherently
drive policies toward verbosity even when v = 1, reframing response lengthening
as an optimization artifact. We further uncover a consistent correlation between
conciseness and correctness across reasoning and non-reasoning models. Building
on these insights, we propose a two-phase RL procedure where a brief secondary
stage, trained on a small set of solvable problems, significantly reduces response
length while preserving or improving accuracy. Finally, we show that while GRPO
shares properties with PPO, it exhibits collapse modes, limiting its reliability for
concise reasoning. Our claims are supported by extensive experiments.

1 INTRODUCTION

Reasoning models have gained significant importance in both research and products, demonstrating
remarkable performance in various domains. This success is largely attributed to extensive reinforce-
ment learning (RL) (Sutton & Bartol 2018)) post-training applied to a base model, which is initially
trained through supervised learning for token completion. During RL training, the model is exposed
to a diverse set of reasoning problems, along with their corresponding final answers. (Appendix
discusses related work.) Notably, using a complete solution as the training target is not required in
RL; instead, the model explores the response space, similar to how an RL agent learns to play a video
game. This process fundamentally differs from the supervised training phase for human alignment,
commonly referred to as reinforcement learning from human feedback (RLHF), where the objective
is to select responses that align with human preferences among multiple model-generated alternatives.

A key phenomenon observed during RL post-training is the emergence of an “aha moment” (Guo
et al., [2025). This refers to an inflection point where the model begins exhibiting self-correction
behaviors, as seen in responses like “We must have made a mistake, let’s try again.” Crucially, this
behavior is not explicitly programmed but emerges naturally as the model explores the response space.
Prior research has found a distinct pattern following this moment: response lengths tend to increase
significantly, accompanied by improvements in overall accuracy (Guo et al., 2025} |Yeo et al.| |2025;
Zeng et al.|[2025). Even with a lack of clear understanding of why this happens, this phenomenon has
led many to push for longer responses, leveraging additional training and computational resources in
the hope of further enhancing accuracy.

We argue that the observed gains in accuracy are distinct from the tendency to generate longer
responses. The push for lengthier outputs is not a reasoning strategy but a side effect of minimizing
loss. This view also resolves the apparent paradox that, in both reasoning and non-reasoning models,
correct responses to reasoning-intensive tasks are often shorter than incorrect ones.

Moreover, a critical but often overlooked observation is that RL post-training on moderate-size
datasets from domains like mathematics often leads to an initial decrease in response length with
no negative impact on the accuracy (Pan et al., 2025} [Luo et al., 2025)). This suggests that many
tokens in the produced chain of thought may not be needed. Additionally, examining the chain of
thought in reasoning models, such as DeepSeek’s R1 (Guo et al., 2025), reveals a significant degree of
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redundancy, repetition, and irrelevant artifacts. This observation raises a fundamental question: Can
reasoning models be further optimized through RL training to produce systematically more concise
chains of thought without sacrificing accuracy? To this end, and in light of our theoretical analysis,
we propose a two-phase RL training paradigm designed to first enhance the reasoning capabilities
of the base model and then enforce conciseness. Both phases can be trained on a small problem set,
but the second is key to producing concise responses. Our approach offers a direct alternative to
models such as DeepSeek’s R1, yielding significantly shorter responses while maintaining accuracy
and in some cases even improving it. It is cost-effective, requires minimal training, and improves
computational efficiency, resource use, and response time.

Additionally, we present the following key findings.

1. Conciseness and Accuracy Correlation: We show that, during inference of both reasoning and
non-reasoning models, concise reasoning strongly correlates with higher accuracy.

2. Analysis of PPO Loss Function Dynamics: We present a mathematical analysis establishing the
link between response correctness and PPO’s loss function. Specifically, we show that incorrect
answers tend to drive longer responses, while correct ones encourage brevity.

3. Analysis of GRPO Loss Function Dynamics: We show that while GRPO encourages longer re-
sponses when facing negative advantage and promotes conciseness when facing positive advantage,
it suffers from collapse modes, making it ineffective in enforcing conciseness.

4. Limited Data: We show that RL post-training phases are effective even with remarkably small
datasets, a result that defies current trends in the literature and proves viable for resource-
constrained scenarios, as confirmed by our experiments.

2 RESPONSE LENGTH VS. ACCURACY

A crucial yet often overlooked phenomenon is that in both reasoning and non-reasoning models,
with or without RL training, brevity and accuracy are strongly correlated as shown in Table |1l Note
that these results cover benchmarks with varying levels of difficulty. Therefore, the length-accuracy
correlation is not an artifact of the problem difficulty. Moreover, as reported in previous works (Pan
et al.,[2025} [Luo et al.,|2025)), RL post-training often produces significantly shorter responses, even
without explicit penalties for length, while still preserving or improving correctness. This effect is
particularly evident in the early stages of training.

Benchmark MATHS500 AIME’24 MMLU-STEM
Model Correct Incorrect Correct Incorrect Correct Incorrect
Rl—DiStiH—QWCn—l.SB 351833|4 1 1519686 746272 14269168 1577975(, 3431 14388
Rl—DiStiH—QWGH—7B 32041858 10436142 695364 145765() 8186121 13775951
Qwen2.5-Math-1.5B-Inst 4775046 8152054 7795 989429 38227279 46021009
Phi-4 5296397 11071603 93280 1333400 38311417 40636871

Table 1: Average response length for correct and incorrect answers across different models and
benchmarks. The blue subscripts indicate the number of samples used to compute the averages.

These observations are in sharp contrast with the widespread belief that very long chains of thought
are inherently necessary to achieve higher accuracy (Guo et al., 2025} [Yeo et al.,|2025} [Zeng et al.,
2025). A related explanation for reduced accuracy in long responses is the notion of deadends, states
where the correct answer becomes unlikely (Fatemi et al.| 201952021} |Cao et al., 2023)).

Observing that long responses are not necessarily correlated with accuracy, a key question remains:
When and why do LLMs, trained with RL, tend to increase response length? To answer this question,
we return to RL fundamentals, formalizing each reasoning problem as an MDP in the next section.

3 EACH REASONING PROBLEM IS AN MDP

Each reasoning problem (e.g., a math problem) fundamentally constitutes a Markov Decision Process
(MDP) (Puterman), 2014) rather than a mere static sample. An MDP consists of a state space S, an
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action space A, a transition function 7', a reward function R, an initial state distribution Py, and a
discount factor . In language modeling, the state at each token position % consists of all tokens (or
their embeddings) up to and including k, as well as any contextual information such as the problem
statement. The action space corresponds to the vocabulary of possible tokens. The transition function
deterministically appends new tokens to the sequence. The reward function is zero for all steps except
the final one, where correctness is evaluated based on final answer and formatting. The initial state
depends on the prompt, which may include problem statements and directives (e.g., "Solve step by
step and enclose the final answer in a box."). The RL objective is to maximize the expected return,
referred to as the value function and denoted by V' (s), where return is defined as the sum of future
rewards discounted by ~. It is common practice in LLM post-training to set -y to 1.

We measure problem difficulty for LLMs by the proportion of correct responses, since sampling
with non-zero temperature yields difference responses. Let p, be the probability a problem is solved
in at least one attempt: p, > 0 means occasionally solvable, p, = 1 fully solvable, and p, = 0
unsolvable. For example, for R1-Distill-Qwen-1.5B, 21/30 AMIE24 and 464 /500 MATH problems
were occasionally solvable. Solving a problem when only the final answer is given requires a base
model capable of occasional correct solutions, akin to an agent playing an interactive game.

When training on multiple problems, the overall MDP consists of multiple initial states with an
updated reward function. Adding more problems modifies Py and R but retains the fundamental
MDP structure. This introduces two considerations: (1) A larger set of problems increases the MDP
complexity, which may lead to greater generalization of the learned skills. (2) In principle, a small
set of problems (even a single one) should be sufficient for RL training to take effect, though this
may raise concerns about overfitting.

Overfitting is a challenge in supervised learning, where models tend to memorize training data instead
of generalizing. Online RL, by contrast, continuously generates new responses, allowing the model to
refine its reasoning over time. Rather than imitating fixed solutions, it actively explores and reinforces
successful reasoning strategies. Two factors make online RL robust: (1) sampling techniques like
non-zero temperature encourage response diversity, and (2) continual model updates shift response
distributions, reducing stagnation. This enables RL to remain effective even with an extremely small
set of training problems; a novel aspect of this work not previously explored in the literature.

4 PPO IMPACT ON RESPONSE LENGTH

To study how response length relates to RL loss, 20KS
we trained DeepSeek-R1-Distill-Qwen-1.5B using | 0.02 =
Proximal Policy Optimization (PPO) (Schulman| & ™ Q
et al.| 2017) on only 4 OlympiadBench (He et al., — 17K$
2024) problems (see Appendix [A.4). These prob- Lj’ 0.01 9
lems were specifically chosen because the base 5 15K 3
model consistently failed to solve them despite ex- = 0
tensive sampling, yielding a constant terminal re- 0.00 12 K&J

ward of —0.5. The context size was 20K tokens. 0 100 200 300
Fig. [T] shows policy loss against response length, Steps

revealing a strong correlation: as length increased,
loss consistently decreased. This clearly indicates
longer responses do not reflect improved reasoning,
as the model still fails entirely; rather, they arise
from loss dynamics under negative reward.

Figure 1: Effect of loss on response length,
smoothed with a 10-step moving average.

Using generalized advantage estimation (GAE) (Schulman et al.,2016), the advantage function is
estimated as a A-weighted sum of step-wise TD-errors, akin to forward-view eligibility traces in value
estimation (Sutton & Barto, 2018 Bertsekas & Tsitsiklis, [1996). PPO then uses GAE to estimate
both the policy and the value losses. In practice, PPO is often used with v = 1 and A = 0.95.

Consider a response of length 7" (with token indices from 0 to 7" — 1), where a terminal reward r # 0
is applied only at the final step, 7' — 1. Let v = 1. In PPO, per-token loss is averaged over the full
response length 7. We assume |V (s:41) — V(s¢)| < e for all ¢; this is expected since the value
network’s output space is bounded and Lipschitz. We show that when A\ < 1, PPO favors shorter
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responses if 7 > 0 and longer responses if 7 < 0. Importantly, setting A = 1 may introduce an
undesirable bias toward shorter responses regardless of correctness and significantly amplifies noise,
with noise scaling linearly in response length.

By design, r; = Ofort < T — 1, and r, = r for £ = T" — 1. With the temporal-difference (TD)
error 6y = 14 + V(si41) — V(s¢) and v = 1, the GAE for token ¢ is A; = ;“F:_Ot_l A6;4g, and
the PPO per-token loss is given by L; := — min (,ot Ay, clip(pe, 1 — €clip, 1 + €clip) At), where

pr = pr(0, o) 1= ool

oy (0rlo<s) 15 the importance sampling ratio. It yields:
min (py, clip(p, 1 — €ctip, 1 + €ctip)) Ay >0,
maX(Pt> Clip(ph 1- €C11p7 1 + 60111;)))7 At < 07

We assume 0 < pmin < pr < pPmax < 00 (this is a fair assumption, due to regularization). The
complete PPO loss L and the unweighted mean advantage S are defined as

1T71 1T71 1T71
RS VNN SYY N o

The following result characterizes the asymptotic behavior of the PPO loss under GAE:

Ly = —oy At; Qi 12{

Theorem 1 [PPO Loss under GAE]: Letr; = Ofort < T—1,rp_; = r,and V(s7) = 0. Define
the TD errors 0; := 14 + V(st41) — V(s¢) and set R := 7 — V(sp—1). Assume sgn(R) = sgn(r)
and |x| < efor k < T — 1. Then,

R €
G “Ta—y TG

_R+O(%), A=1

A<1

6]

Moreover, if 0 < pmin < pt < Pmax < 00, and dgey := Max{ 1l — Pmin, Pmax — 1, €aip }, then
|IL-8 ] < Qdev 7 Zthfol |A|. Thus, L’s behaviour closely follows that of S to the level of this
bound. If, in addition, all A, share the same sign o € {£1}, then sgn L = sgn S and

0:+1: pmin|S| S |L‘ S min(pmaxv 1+€C1ip)|S|7
o=-1: (I—éap)|S| < [L] < pmax|S].

Remark 1. In practice, A, should be bounded (otherwise, loss diverges). Thus, “gs* Zszfoﬂflt\ <

Cagey for some C' > 0, and the behavioral similarity between .S and L is even more pronounced.

Interpretations. The theorem leads to the following key points:

e For A\ < 1:

— The average error term is bounded by a constant, O (e/(1 — X)), independent of 7.

— When the terminal term dominates the pre-terminal error, the sign is determined by —R: if
R < 0then L > 0 and its magnitude decreases like 1/T (longer responses are favored); if
R > 0 then L < 0 and its magnitude increases as ' decreases (shorter responses are favored).

- Extensive experiments confirm that consistently negative rewards yield positive loss (e.g., Fig.[I)),

while predominantly positive rewards yield negative loss.
* For A =1:

— The average error scales linearly with 7', making PPO highly sensitive to value estimation errors,
leading to significantly slower, inefficient, or unstable training (see Appendix Fig. [7).

— Enforcing long responses can be difficult even when answers are consistently incorrect.

— Return is calculated by A, + Vo4 = ¢ — Vgl 4 Vold 4 SN2 5, and is used as target for
training V;,. When r < 0, the positive V24 — V.2!4, pushes the target upward, causing overflow,

especially for early tokens. When r > 0, it can pull the target downward, leading to underflow
(see Appendix Figs. []and[7). Notably, when A < 1, return is discounted, preventing this effect.

Remark 2. For v < 1, including -y in the analysis has two effects: (1) similar to A, it directly affects
the loss, and (2) it modifies the TD errors, introducing a lower bound on e that may degrade training
performance. Thus, we recommend using A instead (see Appendix for more details).
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5 GRPO IMPACT ON RESPONSE LENGTH

In the case of GRPO (Shao et al., 2024), loss is calculated from the following formula (note the
negative sign):
lot]—1

G—
Larpo () Z 2 min [P AQ, clip (67,1 -1+ €) AP] @)
1=0 t=0

where the expectaion is taken over ¢ ~ pg, and {0 }& | ~ 7 (-|q), with 7g and 744 are the main

(@) -

policy and the one before the update, p,  is the IS ratio of the i—th response. Advantage is given by

10 _ r{g.0) — mean({r(g.00)......(g.0)))
! std({r(g,0M),...,r(g,0()})
(i

where o(*) and 0y ) denote the i—th response and the t—th token in the i—th response, respectively. |Liu
et al.| (2025) argued that the presence of |o(*)| in the denominator biases the model by encouraging
longer responses when the advantage is negative and vice versa. To address this perceived issue, they
proposed removing |o(i) | from the denominator. Unfortunately, this interpretation misses important
details. As response length increases, both the numerator and the denominator grow, not just the
denominator. Thus, the relationship between response length and loss is more nuanced than they
imply. We present an alternative argument showing that the GRPO loss encourages longer responses
for negative advantages and shorter responses for positive ones. We also show that GRPO has notable
shortcomings, casting doubt on its effectiveness, particularly for improving conciseness.

3)

Two key observations: (1) by definition, advantage is independent of token position ¢, so the subscript
is redundant and can be moved outside the inner sum; (2) although GRPO typically uses non-negative
rewards, A reverses their effect. With some responses labeled positive and others zero, the mean in

equationlies between 0 and 1, yielding A > 0 for correct responses and A < 0 for incorrect ones.
This also highlights another similarity between GRPO and PPO’s common practice, where incorrect
responses incur negative rewards. The following theorem summarizes GRPO’s core behaviour.

Theorem 2 [GRPO Prolixity]: Let g and 7, be the current and old policies in GRPO training.
Consider a sampled response ending in a terminal token 7, with advantage A. Then, (1) if A < 0,
decreasing mg(7) reduces the loss; and (2) if A > 0, increasing my(7) reduces the loss.

This result shows that A < 0 is a sufficient condition for encouraging longer responses, a phenomenon
widely observed by practitioners. When A>0,it implies a higher chance of termination at the current
position once updated, but it does not favor shorter responses among multiple correct completions.
To address this, we present a general result, mainly relevant to GRPO, focusing on what happens
when two correct responses differ in length. Without loss of generality, we assume the first token of
each response acts as the trigger guiding the model toward that sequence. To simplify notations, we
remove conditioning from policies. From equation 2} for any correct response i, we have

0|1

i . i 7T0(0
o] 2 mm<p§)’”€)’ o =

t=0 ﬂ-aold( ())

Theorem 3 [General Conciseness]: Let 7y be a “softmax” policy over a vocabulary of size K.

Let o(S) and oéL) denote the first tokens of two responses generated by my,,, leading to sequence

lengths Ts and T;, > T, respectively. Assume: (1) both responses share the same positive

advantage A > 0; and (2) the importance sampling rat1os satisfy p(S), péL) < 1+ e. Define:

F(8) 1= [(L = molof? = k) + 55, molof? = 7] Then,

1. For the k—th token of vocabulary, the gradient norm induced by the softmax layer w.r.t. the
logits z is f(k).

2. kusxog%u > HWL(U(ogL))H it p§% f(of) > L2 & p f(o§F)), with & > 0.

3. This result is invariant under softmax temperature rescaling.
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* Under similar conditions (i.e., when 7'('9(085)) = we(oéL)) and p(()s) = péL)), the inequality
generally holds because T's /Ty, < 1; hence, the shorter response receives stronger reinforcement
(note that I < 0 for both responses since A > 0).

¢ The update almost surely favors shorter responses when Ty, > T, or pés) flog (s )) > p(()L) f(o (L)).

o If either pés) or péL) hits 1 + ¢, the gradient is clipped to zero, preventing further preference.

* The possible range for < depends on the Jacobian’s singular values, but experimental results indicate
that k has a minor effect on the inequality, as conciseness still occurs under GRPO.

THE COLLAPSE OF GRPO

In Appendix [A-5] we show that the advantage function in GRPO admits the following closed form:
. _ (N —k)/k, ifr=1

A=lTH_ (4)
7 —VE/(N=k), ifr=0

where k denotes the number of correct responses within a group of size N. Notably, A is invariant

under reward scaling. Expression (4) induces A = 0 whenever the group is entirely correct or entirely
incorrect. This structural property has critical implications for the learning dynamics of GRPO.

First, unsolvable problems: When problems are unsolvable, GRPO behaves differently from PPO.
Since A = 0, Theoremdoes not apply and the loss is dominated by the KL term, which discourages
deviation from the base model. To explore this further, we trained GRPO on four OlympiadBench
problems using DeepSeek-R1-Distill-Qwen-1.5B (Fig. 2] left). Surprisingly, the model quickly
converged to extremely short outputs (fewer than 80 tokens), likely because shorter responses incur
lower KL penalties than longer ones.

Second, fully solvable problems: A similar failure mode arises when problems are consistently
solvable. As accuracy hits 1, the estimated advantage A converges to zero, causing the policy loss
to vanish. In this regime, the KL divergence term once again dominates the loss. We observed
this effect by training GRPO on eight problems from the MATH dataset (Fig. 2] right). Once the
model consistently solved all examples, progress stalled. In large datasets, this issue is often masked,
as training batches are likely to include at least some partially solved or unsolved examples with
non-zero advantage. However, in smaller or skewed datasets dominated by fully solvable problems,
the advantage collapses across the board, reactivating the KL penalty as the primary learning signal.
As a result, Theorem [3|becomes inapplicable, and GRPO loses its conciseness-inducing effect. While
GRPO typically outperforms PPO in early training, this advantage can erode over time unless the KL
term is carefully managed or adaptively reweighted.

Crucially, PPO does not suffer from these issues. In PPO, response length directly affects the
advantage, whereas in GRPO, the advantage is fixed. This difference alone makes PPO more effective
at promoting conciseness. Combined with the limitations noted above, these factors support using
PPO over GRPO as a more robust method, especially when conciseness is a key objective.
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6 A TwWO-PHASE REINFORCEMENT LEARNING STRATEGY

Our analysis highlights key dynamics in response length during RL training. When models are
trained on unsolvable problems, response length tends to increase, as longer outputs are more likely to
reduce the loss amid predominantly negative rewards. Conversely, for occasionally solvable problems,
response length typically decreases. In large-scale settings, this behavior becomes complex and
closely tied to problem difficulty. As more problems become at least occasionally solvable, we expect
average response length to eventually decrease.

In practice, RL training data often contains difficult problems. As long as some problems consistently
yield negative rewards, the tendency toward longer responses can persist, especially early in training
or once easier problems are mastered. This push towards verbosity, combined with LLMs’ strength in
producing coherent text, may contribute to the “aha moment,” producing elaborate but not necessarily
more accurate answers. It is also important to note that longer responses do not imply persistent
failure. The model may simply stumble on the correct answer due to its long chain of thought.
When this happens, RL reinforces success regardless of token count, which explains why accuracy
can improve even amid growing verbosity. The key point is that verbosity is a consequence of RL
minimizing its loss in the face of negative rewards, and it is this verbosity that may occasionally lead
to improved accuracy, which then would be reinforced, not the other way around.

If the dataset contains an excessive number of unsolvable problems, the transition from promoting
longer responses to encouraging conciseness can be significantly delayed and costly. To overcome
this, we propose a novel approach: enforcing conciseness through a subsequent phase of RL training
with a dataset of occasionally solvable problems. This structure introduces a two-phase RL training:

1. In the first phase, the model is trained on challenging problems. This phase aims to enhance the
model’s problem-solving capacity, with an expected increase in response length as PPO/GRPO
mostly encounters wrong answers, driving the model toward longer responses. Notably, this first
phase can also be seen as the RL training of off-the-shelf reasoning models.

2. In the second phase, training continues on problems with non-zero p, (occasionally solvable).
This phase enforces conciseness while preserving or even enhancing accuracy. Notably, as we will
see, it also substantially improves the model’s robustness to lowering the temperature, ensuring
remarkable performance even with limited sampling.

A critical insight from the MDP perspective is that effective RL training can be achieved even with a
small problem set, though at the cost of possibly reduced generalization. In particular, in the second
phase of training, where the model has already developed generalization capabilities, PPO can be
applied to a minimal dataset consisting of only a few problems.

7 EXPERIMENTAL RESULTS

In our experiments, we broadly show that our two-phase reinforcement learning strategy leads to
significant improvements across various models. We begin by examining the impact of problem
difficulty level (p,) and demonstrate how RL can influence response length depending on the difficulty
of training problems. Next, we demonstrate that a second phase of training on R1 models, using
only eight problems, achieves significantly more concise reasoning across various benchmarks,
while preserving (even improving) accuracy. Additionally, this second phase of RL post-training
substantially enhances model robustness under reduced sampling intensity. Finally, revisiting the first
phase, we establish that non-reasoning models can be vastly improved through minimal-scale RL
training. These results highlight the broad applicability and efficiency of our approach.

We used DeepSeek-R1 models distilled on Qwen models as our base and applied RL post-training
to the 1.5B and 7B variants. During each training cycle, the model generated eight independent
responses per training example, which were scored based on their format and the correctness of the
final answer. For PPO, we used the following reward scheme: +1 if the final answer was correct
and enclosed in a box; —0.5 if the answer was boxed but incorrect; and —1 if no boxed answer was
provided. For GRPO, we used a simpler reward scheme: +1 for a correct and boxed final answer, and
0 otherwise. (See Appendix [A.8|for more information about the experimental setup.)
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7.1 IMPACT OF PROBLEM DIFFICULTY ON ACCURACY-LENGTH CORRELATION
In this section, we present experimental results PPO GRPO
supporting our claim that RL training on occasion-

Po=016___

ally solvable problems leads to shorter response
lengths. This reduction correlates with problem
difficulty and an increased probability of arriving
at a correct answer (p,), which in turn promotes
more concise responses.

We considered 3 sets of training examples, each
containing 4 problems from the AIME’24 dataset.
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To estimate problem difficulty, we evaluated the
base model using 64 samples per problem and
temperature 0.6. The average p, for the three
sets, from easiest to hardest, was 0.375, 0.25, and
0.16, respectively. Fig. 3] shows the accuracy and
response length over training steps for both cases
of PPO and GRPO. Across all problem sets and
algorithms, improvements in accuracy coincided
with reductions in response length, indicating that
as the model became more accurate, its responses
became shorter.
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Figure 3: Impact of difficulty levels, smoothed
with a 50-step moving average. Accuracy im-
provements consistently aligned with shorter re-
sponse lengths across problem sets and training
algorithms.

7.2 DECREASE IN RESPONSE LENGTH

In this section, we show the effect of RL post-training on eight examples randomly picked from
the training subset of MATH dataset (Hendrycks et al., [2021) on reducing response length. We
report PPO results, as GRPO performs unreliably on easy problems due to the collapse discussed
in Section 5] (See Appendix [A.12]for GRPO results). Although training was conducted exclusively
on examples from the MATH dataset, we evaluated the models on AIME 2024 and AMC 2023 as
well. For evaluation, we generated four samples per query with temperature of 0.6 and top-p of
0.95. Fig. [] (left) shows the accuracy and response length of the post-trained models over training
steps, evaluated on fest datasets of AIME 2024, AMC 2023, and MATH-500: the response length
decreased significantly, while accuracy remained stable across benchmarks and model sizes. To
investigate whether reducing response length through RL post-training generalizes to other domains,
we evaluated the 1.5B and 7B models trained on the eight training examples from the training subset
of MATH dataset using the MMLU benchmark. The MMLU benchmark includes multiple-choice
questions across 57 diverse subjects. For this evaluation, we specifically used MMLU-STEM, which
focuses on science and engineering subjects such as physics, biology, and computer science. This
subset contains 3018 distinct problems. The results are illustrated in Fig. [] (right). As with the
math domains, PPO post-training led to shorter response lengths on MMLU. Surprisingly, even with
training on just eight examples, RL post-training also resulted in an accuracy improvement.

Figure 4: Response dynamics of two

Models Benchmarks Models ~ Benchmarks
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Table2]summarizes models’ performance on 8 problems from the MATH training subset. Checkpoints
were selected to minimize response length while maintaining reasonable accuracy.

Table 2: Comparison of R1 1.5B and R1 7B, and their post-trained versions on various benchmarks.

R11.5B R17B

Benchmarks Accuracy (%) Length (tokens) Accuracy (%) Length (tokens)

Baseline Ours Baseline Ours Baseline Ours Baseline Ours
math500 (500) 84.2 81.0 4842 1965 92.9 90.3 3718 2041
aime24 (30) 32.5 30.0 12104 6752 53.3 51.7 10510 6632
amc23 (40) 70.6 69.4 7847 2936 89.4 88.1 5674 3220
mmlu_stem (3018) 40.6 53.1 2597 821 50.7 58.1 1093 701
average 57.0 584 6848 3119 71.6 721 5249 3149

7.3 INCREASE IN PERFORMANCE AND ROBUSTNESS

This section shows that further RL post training also improves the model in terms of robustness and
performance. To evaluate robustness, we examined sensitivity to temperature settings. Setting the
temperature to zero can severely degrade the accuracy of reasoning models like R1. However, standard
metrics such as pass@ 1, which rely on multiple samples at non-zero temperatures, often obscure the
benefits of secondary RL post-training on a small dataset. We experimented with temperature 0 and
0.6 and observed that at temperature 0, the post trained model significantly outperformed the baseline
model, suggesting the robustness of the post trained model compared to the base model (see Table [3).

Base Model Ours
MATH500 AIME24 MATHS500 AIME24 Table 3: Performance degrade with
7=0., n=1 0%  133%  81%  23.3% temperature 7.
7=0.6, n=4 84.3% 32.5% 81% 30%
Rel. Degrade  16.9% 59% 0% 22.3%

We also show that limited RL training on just a few examples can substantially boost accuracy, though
the effect depends on prior RL exposure. When a model has already undergone extensive RL training,
further gains are harder to achieve. To test this, we applied online RL to Qwen-Math-v2.5 on only
four MATH examples, randomly picked from those with small but nonzero p,. Unlike R1, this model
had been trained solely with token completion. As shown in Table[] we observed a surprisingly large
improvement—up to 30% in the 1.5B model—demonstrating that even minimal RL post-training can
yield major gains, particularly for models without earlier RL-based refinement.

Table 4: Comparison of the base
Model MATH500 AIME24 AMC23 model and the RL-trained model us-

Base Ours Base Ours Base Ours ing 4 examples (ours) across different
Qwen2.5-Math-7B 475 67.1 158 233 438 575  base modelsand benchmarks shows

Qwen2.5-Math-1.5B 335 63.1 6.7 92 300 48.1 as.ul.)stantial accuracy gain with RL
Qwen2.5-7B 543 702 50 108 40.0 544 training.

8 CONCLUDING REMARKS

We presented a comprehensive view of how response length interacts with performance in reasoning
models. We proposed a two-phase RL post-training strategy to first improve reasoning in the base
model followed by enforcing conciseness. Our methodology substantially improved R1 models by
achieving over 54% and 40% reduction in response length for the R1 1.5B and R1 7B models,
respectively, while preserving accuracy and delivering significantly improved performance at low
temperatures. The main limitation of this work is twofold: 1) testing on larger base models, and 2)
evaluations beyond math and MMLU-STEM, both of which remain for future research.
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A APPENDIX

A.1 RELATED WORK

Recent large language models (LLMs) have been fine-tuned with reinforcement learning (RL) to
enhance complex reasoning abilities. OpenAI’s o/ model was among the first to use large-scale RL
to encourage chain-of-thought (CoT) reasoning, leading to significant gains on challenging math
and coding benchmarks. DeepSeek-R1 demonstrated that pure RL post-training (without supervised
warm-up) can directly induce strong reasoning capabilities in LLMs. The model exhibited emergent
behaviors like self-verification and multi-step planning, and achieved performance competitive with
ol. Similarly, the Kimi k1.5 project scaled RL-based training with extremely long context windows
and efficient PPO fine-tuning, enabling the model to backtrack and self-correct (Team et al., 2025).
These models underscore the growing importance of RL for enhancing reasoning capabilities.

Beyond large proprietary models, several open research efforts have applied RL to improve reasoning.
Han et al.| (2023) proposed DialCoT-PPO, which transforms problem solving into a dialogue-based
reasoning chain and trains the model to optimize these steps. Reinforced Fine-Tuning (ReFT) has
been introduced, combining supervised warm-up with PPO-based exploration of diverse reasoning
trajectories, significantly improving accuracy on GSM8K, MathQA, and SVAMP |[Luong et al.| (2024).
Self-Explore was introduced, where the model identifies and learns from its own mistakes in reasoning
paths [Hwang et al.| (2024). These works demonstrate the versatility of RL in refining reasoning
processes across various tasks and model sizes.

While it is commonly assumed that longer responses inherently lead to better reasoning accuracy,
empirical findings are mixed. On one hand, increased response length has been associated with
improved accuracy (Guo et al} 2025 [Yeo et al., 2025; Zeng et al.,2025). It has shown that a collapse
in response length can lead to a degradation in performance Yuan et al.| (2025)). Reward shaping
techniques have been employed to encourage longer outputs |Ye et al.| (2025)). On the other hand,
several works have found that longer responses do not necessarily correlate with better performance
(Zeng et al.| 2025} Xie et al.l [2025), and reported diminishing returns—and even performance
degradation—when responses became excessively long Wu et al.| (2025). Our work provides a deeper
understanding of the relationship between response length and accuracy, offering new insights into
how these two factors are correlated.

Moreover, while long reasoning traces may improve accuracy, they also increase token usage and
latency. Recent studies have applied prompting strategies to limit chain of thoughts and analyzed
the resulting impact on accuracy (Xu et al.l [2025; Renze & Guven, [2024; [Jin et al., 2024} Nayab
et al., [2024; Muennighoff et al.| 2025). It has been shown that each problem has an intrinsic “token
complexity”’: reducing token count below this threshold significantly harms performance. Current
prompt-based strategies for conciseness (e.g., “think step by step, but briefly”) often fall short of this
optimal limit, revealing opportunities for improvement in efficient reasoning |[Lee et al.[(2025).

To improve efficiency, researchers have explored smaller or faster models (e.g., OpenAl’s ol-
mini) and reward shaping during training. A cosine length-scaling reward has been proposed to
promote productive CoT reasoning without verbosity|Yeo et al.[(2025). Others explored long-to-short
distillation—training with verbose CoTs for accuracy, then compressing reasoning via model merging
or shortest-path sampling. The Kimi team showed that these compressed reasoning models can
outperform even GPT-4 on some tasks while using fewer tokens. Our work suggests that a second
phase of RL training can substantially shorten response lengths while maintaining accuracy.

A.2 APPLYING PENALTY AND DISCOUNTING

Although RL training on a small number of sufficiently difficult problems naturally encourages
more concise responses, this effect can be further reinforced by introducing an explicit incentive
for brevity. In RL, there are two primary methods to promote shorter responses: discounting the
return and applying a negative reward per step (or per excessive token use). While both approaches
have limitations, the drawbacks of negative rewards are particularly severe. Introducing a step-wise
penalty can create strong local optima that hinder effective learning. For instance, the model might
prematurely terminate its response to minimize the cumulative penalty rather than fully solving the
problem. Moreover, for negative rewards to meaningfully influence learning, they must be large
enough to affect decision-making, yet not so dominant that their accumulation overshadows the
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positive reward of reaching a correct answer. Given that different problems require varying response
lengths, finding an optimal penalty value that works across all cases can be impractical.

Using a discount factor mitigates these issues, as it avoids altering the model’s fundamental reasoning
process and does not introduce misleading local optima. However, as discussed in Section [ it
inherently introduces an incremental difference between the value of the subsequent steps. This can
dilute the return more than expected and effectively shortens the agent’s decision horizon, meaning
that distant rewards become less influential. If the required chain of thought extends beyond this
effective horizon, the agent may fail to recognize the value of a correct answer, leading to potential
accuracy degradation. The extent of this adverse effect depends on the chosen discount factor. We
therefore recommend to use A to avoid these complications while benefiting the impact, as explained
in Section 4l

A.3 VALUE BEHAVIOUR OF PPO

Due to random initialization, the initial value network produces values near zero. At each training
step, the KL penalty encourages alignment with the value network of the previous step. As the value
training continues, V' gradually moves from zero toward V. Consequently, the KL penalty drives V'
toward zero to maintain similarity to the old values, whereas the regression loss pushes it toward V.
This opposition creates an equilibrium point between zero and V;; where the two losses balance each
other. If the KL weight is small, this equilibrium point will be close to V,;. When V" exceeds V};, both
losses align, pulling V' toward zero and quickly restoring equilibrium. Consequently, when V;, > 0,
the value will almost surely underestimate it, whereas when V;, < 0, the value will almost surely
overestimate it (V' will be less negative). The amount of this under/overestimation depend directly on
the KL weight.

A.4 PROBLEMS FROM OLYMPIADBENCH AND AIME USED FOR TRAINING

For the experiment on OlympiadBench, we used problems from the Hugging Face dataset
Hothan/OlympiadBench with IDs 2231,2237,2240,2245. For the experiments on the
AIME24 dataset, we used 4 sets of training examples from the Hugging Face dataset
HuggingFaceH4/aime_2024. The set with p, = 0.16 included problems with IDs 65, 82,
83, 76. The set with p, = 0.25 included problems with IDs 65, 64, 61, 76. The set with p, = 0.375
included problems with IDs 61, 64, 71, 74. Finally, the fourth set included problems with IDs 71, 74,
82, 86.
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A.5 ADVANTAGE BEHAVIOUR OF A GROUP IN GRPO

Let 21, x9,...,x N be a set of N binary samples where each x; € {0, 1}. Denote by k the number of
ones in the set, so the empirical mean is

1< k
M:N;xzzﬁ

The population variance is given by

N
azfv;(mufu(lm]’;(lf,),

and thus the standard deviation is

We now analyze the range of possible values for o.

Minimum. The standard deviation is minimized when all samples are identical, i.e., when k = 0 or
k = N. In either case, ;1 € {0, 1}, and we have

o=+/pl—p) =0.

Maximum. The function f(p) = p(1 — p) achieves its maximum at p = %, yielding

1 1 1
oc=4/=(1—-—=)==.
2 2 2
This maximum is achieved when k = % which is possible only if IV is even. For odd N, the
maximum is attained at k = [ N/2] or k = [IN/2], in which case the standard deviation is slightly

less than 3:
k k N N
== (1-= here k = | — =1.
o N( N)’ where k {2Jor[2w

Hence, for any set of [V binary samples:

o

<o<

)

DN | =

with the minimum attained when all samples are identical, and the maximum attained when the
number of ones and zeros is (nearly) equal.

Standard Deviation for £ = 1 and Various V.
1 ] 1y [N-1
TN N) =V Nz
we compute the standard deviation for different values of IV:

cFor N=8 o=/&~03307

e For N=16: o= ,/21556 ~ 0.2425

« For N =64: 0= /555 ~ 0.1242
* For N = 256: o = /g22s ~ 0.0622

14



Under review as a conference paper at ICLR 2026

Exactly the same results for K = N — 1 and various NN since

_N-1f N1y [N
TN TN N )V N

Using o and p, we can directly compute A in a closed form as follows

e Ifr=1:
L—p 1- £ N—k N—k

D A k
o ¢M%m VEN — k)

e Ifr =0
0— k

k
B TN k _
o [e(N—k) A N -k
[s 5 ROV )

Thus,

A:Tf,u k

g

TableE] shows A for various values of N and k.

Conclusion. Based on the numbers above, we can conclude that in the case of Dr.GRPO Liu et al.
(2025)), omitting the division by o decreases the advantage, and thus the loss, by nearly a factor of 3
for a group size of 8, and by up to 10 times for group sizes between 64 and 128. However, removing
response length from the denominator leads to a substantial increase in loss magnitude, ranging from
about 1K to 30K, which is far larger than the diminish from removing o.
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N k Zfforr=1 =Fforr=0
8 1 2.6458 -0.3780
2 1.7321 -0.5774
3 1.2910 -0.7746
5 0.7746 -1.2910
6 0.5774 -1.7321
7 0.3780 -2.6458
16 1 3.8730 -0.2582
2 2.6458 -0.3780
3 2.0801 -0.4961
13 0.4961 -2.0801
14 0.3780 -2.6458
15 0.2582 -3.8730
64 1 7.9373 -0.1260
2 5.5902 -0.1796
3 4.5255 -0.2182
61 0.2182 -4.5255
62 0.1796 -5.5902
63 0.1260 -7.9373
256 1 15.9687 -0.0626
2 11.2900 -0.0886
3 9.2085 -0.1086
253 0.1086 -9.2085
254 0.0886 -11.2900
255 0.0626 -15.9687

Table 5: Values of A = =L for binary samples, across various values of N and k. The sign indicates
whether the sample is above or below the mean.
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A.6 PROOFS

A.6.1 THEOREM[]— PPO L0oSS UNDER GAE

Part 1. Recall that
T—t—1
At = Z )\l 5t+l, 5t = T¢ + V(5t+1) — V(St>, R =T — V(ST_l),
1=0
withr, =0fort <T — 1,rp_1 =7, V(syp) =0, and |0x| < e for k < T — 1. Reindex the double

s T-1 R T—-1T-t-1 T-1 k T-1 k ,
D A=) > Nou=) Gy A=) ay N ®)
t=0 t=0 =0 k=0 t=0 k=0 j=0

The second equality is obtained by setting & = ¢ + [ and then swapping the summations (0 < ¢ <
kE<T-1).

Separate the terminal term k =7 — 1 to get

T-1 T-1 T-2 k
Ay =RY N + B, |E|<e) Y N
t=0 j=0 k=0 j=0
Therefore
1 T-1
S=-5|R Z N+ E
7=0
. T-1 45 _ 1=)\T 1 ;
For A < 1, the first part yields > =0 N = = — 125 The second part gives
: - 1-Xx 1-X 1—X 1=\
k=0 j=0 k=0
It therefore follows
§= -y o)
O T(1-N) 1—)\/

For A =1, ZJT;Ol 1="T and Zg;g(k +1)= w giving
T
s = -k + 0(5).
This proves the S part.

In Appendix@]we have shown that when r > 0, V underestimates and when r» < 0, V overestimates.
Thus, R has the same sign as r and the assumption of this theorem is fair.

Part 2. By definition, the per-token loss is defined as

Li=—aoy Au
with
= {min(pt, clip(pt, 1 — €ctip, 1 + €ctip) ), 1‘:1t > 0,
max(pt, clip(pt, 1 — €qiip, 1 + eclip)), A <0,
where p; = M Assume 0 < pmin < pt < Pmax < 00. Then,

Tola(at|st)
At >0: oy € [pmina 1 + 6clip] = |at - ]-| S maX{ 1-— Pmin; €clip }’

At <0: ay € [1 — €clip, pmax] = Iat - 1| < max{ €clipy Pmax — 1 }
Recall that

= =
L = _T ZatAta S = _T At~
t=0 t=0
Therefore, with avgey = max{1l — pmin, Pmax — 1, €lip }»
= | Tl =
L-—S|=|-= — 1A, < = — 1|44 <€ agey — Ayl
s | L DORRPAERSD SIS YN vt
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Same-sign case. 1If all A, share the same sign o € {1}, write A, = o | 4| and set

1 T-1 1 T-1
:fZ|At|ZO, UL5:?ZOH,|A1£|ZO.
t=0 t=0
Then S = —oUg and L. = —oUp,. Therefore, sgn L = sgn S, assuming Ug and Uy, are nonzero.

We get ranges of o, multiply them by \flt |, and then take the average, resulting in the following:
o=41: pmin < oy <Min(Pmax, 1+ €ctip) = Pmin Us < Ur, < min(pmax, 1 + €aip) Us
o=—-1: 1—eaiip < < pmax = (I —€aip) Us S UL < pmax Us

Noting that |S| = Ug > 0 and |L| = U, > 0, it implies,

o=+1: pminlS| < |L] < min(pmax, 1 + €ciip) |5,
o=—1: (1—éap) S| < [L] < pmax|S].

If pmin = 0, the lower bound in the ¢ = +1 line becomes the trivial 0 < |L|.

This completes the proof of Theorem I}

The next result provides a sufficient condition for A, to have the same sign. Note that this condition
is not necessary and is somehow strong.

A.7 PER-TOKEN FIXED-SIGN CONDITION

Lemma 1 [Per-token fixed-sign condition]: Let m := T — tand ¢ € {1,...,T}. Then

m fl = pme=1
Ay = RA"' + B, B <ed M={"T1-)x "
j e(m—1), A=1.

Consequently,
m—2
sgn Ay =sgn R whenever |[R|A""! > ¢ Z M
j=0
A uniform (in ¢) sufficient condition is
1— )\T—l
—_— A< 1,
|R| > 6'61))\7'1“, (I))\7T = (1—/\)/\T_1
T-1, A=1.
Proof. Split the GAE sum at the terminal step:
m—2
= Ao+ A" or 1 =E + AR,
1=0

If |65 < eforallk < T — 1, then [Ey| <ed ", % A1 the closed forms follow from the geometric
sum when \ < 1, and from counting terms when A = 1. If |[R|]A™~1 > | E;|, then RA™ ! dominates

E, hence sgn At = sgn R. For a uniform condition over ¢, note that the right-hand side increases
with m, so the worst case is m = T, yielding the stated ® 7.

A.7.1 THEOREM[2]— GRPO PROLIXITY

Since A(Z) AW we rewrite equationas

Larro(me) =

i, o1 [ wo(of >|qo D) ,
_EquQ,{o“)}f oy [G El 0 ‘0()‘ ieo  min ) ,1+¢€e)|, ifA;>0

TOo1d (of |47 o

s i ) (%)
A; |0(7)|—1 779(0t1 |‘Z;O<t) e A
Eypg. {09} e, [G Y o] 2ut=0  TAX | T (5 L—e)l, ifA; <0

Mo (O )|q
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Without loss of generality, consider a fixed group and focus on a single response with length 7" within
the group. We examine how the loss behaves under two scenarios: in the first, the policy assigns a
high probability of terminating the response at token 7" — 1; in the second, it assigns a low probability
of terminating at 7' — 1 but instead continues with one additional token, terminating at token 7', with a
probability comparable to the first scenario’s stopping probability at 7' — 1. The goal is to understand
how the loss changes under these two behaviors, depending on whether the advantage is positive or
negative.

Since the group is fixed, we only need to consider the contribution of this sample in the loss; we
call it L. To simplify the notation, for the chosen response, define o; as the ¢-th token. The theorem
only concern token 7" — 1 and how it impacts the loss. Hence, by construction, all tokens up to and
including 7" — 2 are fixed and the expectation only affects token 7" — 1. With notation simplifications,
it therefore deduces

A]EOT 1~ To {Zt 0 mm( ﬂe(?)) 1+6)} ;A0

e

L(mg) =

A T-1 7o (0t e A
_%]EOT—INWGOM [tho max <7r5:§(03), 1- e)} , ifA<O

where A is the advantage of the selected response. Separating the first 7' — 1 fixed tokens, it yields

Zt 0 min ( To(0s) 1+ 6) - %EOT71~7!'6(,|«1 min (M7 1+ 6) , ifA>0

Ty (01)? Moy (0T—1)

L(mg) =

Zt 2 max (”( t) 176)7é]E0T_1Nﬂeoldmax<M 1*6), if A<0

T () Togq (0T -1)”

—4p - %]EOTAW%M min (M—l)y 1+e) , ifA>0

oo (0T —1
= ) ) o) ) (6)
— A, — 4By, max (7;1;’5;1), 1 e) L ifA<o0

where 81 > 0 and B2 > 0 are the first terms of the two equations, respectively. By assumption,
mg and 7y, are identical for ¢t < T — 2. Hence, §; = 2 = B = T — 1. Note that in general
0<p1 <(T—-1)(1+¢€)and B > (T — 1)(1 — €). However, even in the general case, the KL
regularization should naturally keep most sampling ratios close to one, meaning that both s should
remain close to 7" — 1.

Recall that the response is sampled from 7y . Let 7 denote the terminal token. Assume that
To.e(07—1 = T) # 0, and that this probability is neither too small nor too large. Let a trajectory
sampled from g, produce a sequence of length 7', meaning or_; = 7. We consider a new policy
mp that matches 7y, exactly for all ¢ < T' — 2, differing only at the final token. Our objective is to

analyze how modifying 7y in this way affects the loss, under the conditions A>0and A <0.

Case 1 (A > 0): If mg(or—1 = T) decreases relative to g, (o7—1 = T7), then the ratio "2~
old

becomes smaller, which is favored by the min operator in Equation equation [6] Consequently, the
loss increases (becomes less negative). Conversely, if wg(or_1 = 7) increases, the loss decreases (up

to 1 + ). Therefore, when A > 0, GRPO encourages raising mg(or—1 = 7), effectively increasing
the probability of termination and discouraging longer sequences.

Case 2 (A < 0): If mg(op_1 = 7) increases relative to g, (or_1 = 7), then the ratio ¢~ can

grow unboundedly, which is favored by the max operator in Equation equatlon@ Since —A > O, this
results in an increase in the loss. Conversely, if w9 (or—1 = 7) decreases, the loss is reduced, down to

1 — €. Therefore, when A < 0, GRPO encourages reducing 7 (op_1 = 7), effectively lowering the
probability of termination and promoting longer sequences.

A.7.2 THEOREM[3]— GENERAL CONCISENESS

Let 7y be a parameterized stochastic policy, and 7y, be the policy before the update. If the advantage
estimate for response 1 is positive, i.e., A®) > 0, both PPO and GRPO optimize a clipped surrogate
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objective:
izl (i) | ()
i i) 1L i i
L(l) (9) = _A(l) . ? § min (pi(f )a 1+ E) ) p1(f ) = 7TG(Ot(i)‘ 0<(j)) )
C— 71—901(1(075 | 0<t>

where T} is the length of response ¢, and € > 0 is a clipping threshold. This loss term then contributes
to the total average loss, which is minimized by the optimizer.
The loss is a function of 7y, but the trajectories are sampled from 7q4, Which is fixed during

optimization. Therefore, the gradient is computed with respect to the numerator of pgi), treating 7oiq
as a constant (for clarity, we drop all the conditioning in the policies):

(4)
i (0 1 i i i
Vopy =W< sler ) ) = ——-Vemo(o”) = i Vg logm(o}”) (M
T o1 (Ot ) ﬂ—eold(ot )
We break the loss into per-tokens, L = Z:Ol Lgi). Therefore, for token ¢t we write

i N | . i
V9L§ )= _A0). Tve mln(pg )7 1+e).

Importantly, this gradient characterizes how token ¢ is selected after the update. If p; < 1 + ¢, the
min operator vanishes and equation equation [7] yields

) PPN | ; Nz i 2
VoL = _ A0 fvgpy) — _A® Vg log (o)) ®

.T.p

Let us focus on a fixed position ¢ of the sequence. Assume that the last layer of 7rg is a softmax over
K tokens with logits z(0) € R¥. The probability assigned to token k is:

e’k
K,
Zj:le ’

where 7y (k) is a short-hand for my(of | o%,) for a fixed t. To compute the gradient of the log-
probability, we write

K
log 779(0,@ =k) =z, —log Z e ],
j=1

Differentiating with respect to z yields

K
V. log wg(oﬁ” =k)=V.z, — V,log Zezﬂ'

j=1

The first term is simply ey, the one-hot vector with 1 in position k. The second term is the gradient
of the log-partition function, which equals the softmax vector,

621 ezK
zlog e - — e
\v4 E —, .., — | =mo.
= 2% 2., €%

So we get
V. logmg(k) = e, — mo.

This gradient is a vector in R¥, and its squared norm is

A K ) 2 , 2 ,
IV-1ogmo(of” = )2 = 3" (650 = molol” =) = (1= mof” = k)" + > mo(of” = )°
j=1 i#k
©))

with d;;, denoting the Kronecker delta function. Defining f(k) := ||V, log mg(k)||, equation equa-
tion[9] proves part 1 of the theorem.
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the first tokens of both sequences (i.e., p(()S), p(()L) < 1+ ¢). Thus, from equation
surrogate loss for token oél)

For the next part, let us focus on the loss of the first token. By assumption, clipping is inactive for
the gradient of the
with respect to model parameters 6 is:

VoL (og)) = f?p(()z)VQ log 7T9(Oé )).

Since the policy g is computed via a softmax over logits z(8) € R, the chain rule yields:

i 0z
Vo log (o)) = (80) V. logmo(0}).
Thus, the full gradient norm becomes
A ;
HV@L() H = —py <(‘30> V. log me(0f) (10)

Now consider comparing HV(;L(S ) (0(()8)) H and HVQL(L) (oéL)) H These gradients differ in two ways:
the softmax log-prob gradients, and the Jacobians of the logits w.r.t. 6.

However, at the first token position (¢ = 0), both sequences share the same context (i.e., the empty
prefix or prompt), so the network’s hidden activations leading up to z are identical. The only variation
is the sampled token at t = 0, which does not affect the computation of zy. Therefore, we have:

Oz (S) Oz (L)
(ae) <ae> =

where we define J € RE*Y to be the common Jacobian matrix with K representing the vocabulary
size, as before, and IV the dimensionality of the parameter space, with the corresponding parameter
vector § € RV,

From expression equation[I0] this yields

sl )
A
= T—Spé HJTV log mg (o H SL) HJTvzlogﬂ'g(oéL))H

A > 0 cancels out without changing the inequality’s direction. Using the previous results, it deduces

(L)

()
B0 137 (ery — mo)|| > 22— 7 197 e, o) (11)

Ts
From the singular value bounds for J, we have
Tuin (I) V]| < [|ITv]| < omax(I) 1],
where
* omin(J) is the smallest singular value,
* Omax(J) is the largest singular value,

e k(J) = “L"(_;T)) is the condition number of J.

Omin (

Using these bounds, inequality equation|[IT|can be written as

(5) (L)

p P
TOS llexs — moll > %LH llex, —moll-
where % € [k(J)71, x(J)] is a constant. Substituting f(k) := ||e, — my|| from the previous part

yields the claimed inequality and completes the second part of the proof.
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Sufficient condition:
S L
pO( ) po( )

77 Ymin J - > —5— Omax J -
o uin() llews = moll > 2 010e(3) e, — o]

or equivalently,
(5) (L)

(5) (L)

S omax(3) llews —mol) > 52

T, Omin(J) |lex, — moll

or equivalently,

X A2
— K(J)7 e, — moll -

Remark that:

1. The necessary condition is almost trivial, since #x(J)~! can be very small, helping equa-
tion [T 1] to easily hold.

2. The sufficient condition is too strong and may not be needed.
3. In practice, equationcan hold with & significantly smaller than x(J).

Effect of Temperature. If the logits are scaled by temperature 7 > 0 before softmax:
ek /T
mo(k) = Sk 77
> =16 /T
then the gradient becomes:
1
V. logme(k) = ;(ek —1g),

and the norm scales as 1/7. However, the form of the inequality and comparisons remain valid
modulo this shared scaling, which concludes the last part of the Theorem.
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A.8 EXPERIMENTAL SETUP

For the PPO experiments, we used the following reward scheme: +1 if the final answer was correct
and enclosed in a box; —0.5 if the answer was boxed but incorrect; and —1 if no boxed answer was
provided. During training, we set v = 1 and A = 0.95. For each input, the model generated 8 samples
using a temperature of 0.6 and top_p = 1, with a maximum sequence length of 20,000 tokens. We
used the Adam optimizer with a learning rate of 5 x 10~7 for the actor and 9 x 10~ for the critic.

For GRPO experiments, we used a +1 reward for a correct and boxed final answer, and a 0 reward
otherwise. During training, we set v = 1. For each input, the model generated 8 samples using a
temperature of 0.6 and top_p = 1, with a maximum sequence length of 24,576 tokens. We used the
Adam optimizer with a learning rate of 1 x 10~ for the actor.

A.9 COMPUTE RESOURCES

The experiments were conducted using H100 GPUs for compute. The training was done using 8
GPUs, with each GPU having 80 GB of memory, and sufficient storage to accommodate the dataset
and model checkpoints. The second-stage post-training of R1 models required fewer than 60 training
steps and took approximately 19 GPU hours for the 1.5B model and 41 GPU hours for the 7B model.
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A.10 STABLE TRAINING OF PPO WITH A < 1

R1 7B R1158B
100 @ 100 - - 5K @
9 d 1)
S % % 9 - 4K %
S 80 s = s
c § 8 3K g
3 70 — - 3 4
< 0 d a g o0 4 - 2K 8
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Figure 5: Reinforcement learning is performed using PPO algorithm with 8 example and v = 1 on
two base models: DeepSeek-R1-Distill-Qwen-1.5B (right) and DeepSeek-RI-Distill-Qwen-7B (left).
The examples are randomly selected from level-5 questions of the MATH dataset. The plots illustrate
average accuracy and length of generated responses during the PPO training.
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Figure 6: PPO training was conducted with A = 1 on four problems selected from the OlympiadBench
dataset. Notably, there is an exponential return overflow starting around step 100. Importantly, the

reward consistently remains at —0.5 over all the training steps.
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Figure 7: PPO training with A = 1, conducted on four problems selected from the MATH dataset,
which are somehow solvable. Return underflow starts early, but almost quickly stops. Nonetheless,
while the response length decreases, it still requires significantly more steps to achieve this compared
to similar training with A\ < 1 (e.g., compare it to Fig. [5|where in only ~ 40 steps, the model achieves
similar length reduction).
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A.12 GRPO TRAINING ON MATH EXAMPLES

Fig. [§]illustrates the accuracy and response length of DeepSeek-R 1-Distill-Qwen-1.5B over training
steps trained with GRPO using eight training examples from the training subset of MATH dataset
and, evaluated on different rest datasets, AIME 2024, AMC 2023, and MATH-500. For evaluation,
we generated four samples per query using a temperature of 0.6 and top-p of 0.95. In the first
half of the steps, response length decreased while accuracy remained stable or improved across
benchmarks. In the second half, both response length and accuracy showed fluctuations, indicating
unstable performance.
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Figure 8: Response dynamics of DeepSeek-RI-Distill-Qwen-1.5B trained with GRPO using 8
problems from the level-5 subset of MATH dataset evaluated on three mathematics benchmarks
(different line styles).
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