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ABSTRACT
Graph neural networks (GNNs) exhibit powerful performance in
handling graph data, with Euclidean and hyperbolic variants ex-
celling in processing grid-based and hierarchical structures, re-
spectively. However, existing methods focus on learning specific
structures that are linked to the inherent properties of the underly-
ing space, and fail to fully exploit their complementary properties in
distinct geometric spaces, thereby limiting their ability to efficiently
model and represent complex graph structures. In this paper, we
propose a Hyperbolic-Euclidean Deep Mutual Learning (H-EDML)
framework, which leverages the unique properties of hyperbolic
space to effectively capture the hierarchical relationships present in
graph data, while also utilizes the familiar Euclidean space to handle
local interactions. Specifically, We design a topology mutual learn-
ing module to bolster the capacity of each single model to perceive
the holistic topological structure of the graph. Then, we integrate
a decision mutual learning module to further advance the models’
comprehensive judgment capabilities towards graph data, thereby
strengthening the robustness and generalization. Furthermore, we
employ an attention-based probabilistic integration strategy for
the final prediction to alleviate potential disparities in decision-
making among different models. Extensive experiments on node
classification are conducted on five real-world graph datasets and
the results show that our proposed H-EDML achieves competitive
performances compared to the state-of-the-art methods.

KEYWORDS
Mutual learning, Graph neural network, Hyperbolic geometry, Eu-
clidean geometry

1 INTRODUCTION
Graph data, a prevalent form of structured data, presents a rich
and versatile framework for representing a wide range of complex
real-world systems such as social networks, biological networks,
citation networks, and recommendation systems [4, 33, 36, 48].
The inherent structure of graph data encapsulates rich relational
information, offering a powerful representation that captures the
complex interplay between entities and their interactions. Graph
neural networks on Euclidean geometry (GNNs) and hyperbolic
geometry (HGNNs) have proven to be instrumental in studying
graph data and addressing a myriad of graph-related tasks [22].

At the core of GNNs lies the ability to learn and propagate in-
formation across nodes in a graph, enabling the model to capture
the structural dependencies and contextual information crucial for
understanding the underlying data [35]. By iteratively aggregating
and updating node features based on their neighborhood connec-
tions, GNNs excel in capturing local and global patterns, making
them well-suited for a wide range of graph-related tasks. With the
rise of Graph Convolutional Network (GCN) [24], the capabilities
and promise of GNNs have been prominently showcased, sparking
a notable increase in related research [38, 40, 44].

Figure 1: Diagram of our proposed H-EDML and existing
graph learning approaches. (a) Vanilla GNNs and HGNNs; (b)
Contrastive learning methods; (c) H-EDML. H-EDML com-
bines the strengths of GNNs and HGNNs and is more com-
prehensive and efficient than contrastive learning methods.

In comparison to the polynomial growth of distances observed
in Euclidean space, the exponential growth inherent to hyperbolic
space provides a more appropriate framework for representing the
hierarchical and tree-like data structures prevalent in graph data
[13]. HGNNs capitalize on the intrinsic properties of hyperbolic
geometry, allowing them to more effectively capture the relation-
ships within hierarchical structures. As an advanced approach in
the field of graph representation learning, HGNNs leverage hyper-
bolic geometry to not only enhance scalability but also improve the
model’s ability to differentiate between nodes with subtle topologi-
cal differences [6, 12]. The diagram of vanilla GNNs and HGNNs
are illustrated in Figure 1(a).

Due to the inherent limitations of the geometric spaces they op-
erate in, both GNNs and HGNNs often fall short when it comes to
handling the real-world complex networks. GNNs are constrained
by the limitations of Euclidean geometry and show weaknesses
in their ability to model large-scale graphs and capture the hier-
archical structures prevalent in complex networks [6, 47]. On the
other hand, while HGNNs leverage the hyperbolic space’s negative
curvature to effectively model hierarchical and tree-like structures,
they struggle to handle uniform or flat graph structures due to the
intrinsic properties of hyperbolic geometry [21].

Recognizing the complementarity between GNNs and HGNNs,
researchers have advocated for contrastive learning methodologies
to synergistically harness the respective advantages of both meth-
ods [20, 26, 46]. However, these contrastive learning approaches
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introduce challenges due to the dependence on carefully curated
positive and negative samples, as well as the complexities asso-
ciated with subgraph sampling. Properly balancing and selecting
these samples is crucial for ensuring effective contrastive learning,
yet it requires significant computational resources and fine-tuning,
which can limit the efficiency and scalability of these methods. The
diagram of contrastive learning method is shown in Figure 1(b).

In this paper, we propose a novel approach termed Hyperbolic-
Euclidean Deep Mutual Learning (H-EDML). Without necessitating
meticulous selection of positive and negative samples as in con-
trastive learning methods, our approach amalgamates the strengths
of both GNNs and HGNNs succinctly and efficiently. Through deep
mutual learning, our model facilitates information exchange and
structural interaction between hyperbolic and Euclidean spaces,
enabling a synergistic learning process. Specifically, recognizing the
distinct strengths of hyperbolic and Euclidean models in capturing
diverse structural characteristics, we propose a topology mutual
learning module to enhance the perceptual ability of each single
model for the overall graph topology. Then, we introduce a decision
mutual learning module aimed at enhancing the decision-making
accuracy of the learning model by leveraging soft label information
from the peer model. Furthermore, to address the potential residual
discrepancies in decision-making between different models post
mutual learning, we employ a probabilistic integration strategy
based on an attention mechanism to obtain the ultimate prediction.
The diagram of our H-EDML is illustrated in Figure 1(c). The main
contributions of this paper are summarized as follows:

• We propose a novel framework, H-EDML, which addresses
the issue of insufficient learning caused by the constraints
of models relying solely on a single geometric space. Mean-
while, H-EDML achieves complementary information ex-
change through deep mutual learning between hyperbolic
GNNs and Euclidean GNNs.

• We design two key modules in the H-EDML framework:
topology mutual learning augments each single model’s
perception of different structures within a complex graph,
and decisionmutual learning enhances the decision-making
capabilities of each model by leveraging comprehensive
information interaction.

• We employ a two-stage training strategy to mitigate poten-
tial information redundancy and conflicts arising from the
concurrent training of base models and attention network.
Experimental results on five real-world graph datasets demon-
strate that our H-EDML not only exhibits the highest stabil-
ity but also achieves excellent classification performance,
outperforming the state-of-the-art methods by up to 1.05%.

2 RELATEDWORK
2.1 Graph Convolutional Networks
The field of graph convolutional networks (GCNs) [14] has wit-
nessed significant growth and innovation in recent years, with a
range of approaches being explored for effectively modeling and
analyzing graph-structured data. The GCNs methods are commonly
categorized into spectral and spatial methods, delineated by their re-
spective mechanisms of information propagation and foundational
principles of governing feature representation. Spectral methods

[2, 3, 5, 11, 24] use spectrum theory to extend the definition of con-
volution to graphs. Defferrard et al. [11] proposed to use Chebyshev
polynomial as a filtering mechanism to reduce the time complexity
of the convolutional kernel through polynomial approximation. In
the realm of semi-supervised learning on graphs, Kipf et al. [24]
simplified the Chebyshev network and proposed a first-order graph
convolutional neural network. Bo et al. [3] proposed a Transformer-
based set-to-set spectral filter along with learnable bases, effectively
capturing both magnitudes and relative differences of all eigen-
values of the graph Laplacian. Spatial methods [7, 17, 28, 34, 50]
principally revise node representations by incorporating features
from both the nodes themselves and their adjacent nodes, thereby
enabling the propagation and aggregation of information. Hamil-
ton et al. [17] employed sampling to acquire a fixed number of
neighbors for each node for information aggregation. Velivckovic
et al. [38] integrated the attention mechanism into the graph con-
volutional network to weigh the importance of neighbor features
during message passing. Zhang et al. [50] provided universal and
efficient structure encoder and position encoder to enhance the
structural learning capability of GNN architectures.

However, these methods concentrate on modeling within Eu-
clidean Spaces, where traditional Euclidean frameworks frequently
prove inadequate in encapsulating non-Euclidean characteristics
present in real-world datasets, such as hierarchical structures.

2.2 Hyperbolic Graph Neural Networks
Hyperbolic graph neural networks (HGNNs) [47] have garnered
significant utilization in graph data processing, primarily due to the
exponential expansion characteristics of hyperbolic spaces align-
ing with the hierarchical structure frequently observed in graphs.
HGCN [6] and HGNN [27] have both introduced extensions of
graph neural networks into hyperbolic geometry. HGCN focused
predominantly on tasks related to node classification and link pre-
diction, while HGNN emphasized graph classification. Zhang et
al. [51] introduced a graph attention network in the Poincaré ball
model to embed hierarchical and scale-free graphs with minimal
distortion. Bachmann et al. [1] proposed a theoretically grounded
extension of GCN to constant curvature spaces. Despite the notable
performance of hyperbolic GCNs, current hyperbolic graph oper-
ations do not strictly adhere to hyperbolic geometry, potentially
limiting the efficacy of hyperbolic geometry and consequently im-
pacting hyperbolic GCN performance. Zhang et al. [52] introduced
a novel hyperbolic graph neural network ensuring strict adherence
of learned node features to hyperbolic geometry. Dai et al. [10] pro-
posed a convolutional network for hyperbolic-hyperbolic graphs
directly operating on hyperbolic manifolds, thereby circumventing
distortions stemming from tangent space approximations while
preserving the global hyperbolic structure.

while both graph neural networks and hyperbolic graph neural
networks focus on grasping a singular structure consistent with
the underling space, they fall short in comprehensively capturing
the intricate graph structure and extracting its features.

2.3 Deep Mutual Learning
Deep mutual learning (DML) [53] has emerged as a promising par-
adigm in the field of machine learning, enabling multiple neural
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networks to collaborate and enhance model performance and gen-
eralization. Zhang et al. [53] proposed a sophisticated deep mutual
learning strategy, facilitating collaborative learning among diverse
networks throughout the training regimen. Zhao et al. [54] pro-
posed a novel training approach for visual object tracking, based
on mutual learning principles, to swiftly and effectively improve
tracking performance. Wu et al. [43] designed a novel module for
mutual learning as a foundational element in addressing significant
object detection tasks, resulting in substantial improvements in de-
tection efficacy. Zhao et al. [55] treated machine translation model
and speech translation model as collaborative peers, effectively im-
proving the performance of end-to-end speech translation. Xue et
al. [45] pioneered a sophisticated methodology for deep adversarial
mutual learning, utilizing domain-specific emotional cues to refine
domain adaptive emotion classification. Li et al. [25] proposed a
embedded fusion mutual learning model for the pathological image
classification of the top three cancers.

Although DML has achieved commendable successes in various
computer vision and natural language processing tasks, there is a
scarcity of research that has explored its application in the realms
of graphs and cross-geometry mutual learning.

3 PRELIMINARIES
A Riemannian manifold [31] (M, 𝑔) of dimension 𝑛 is a real and
smooth manifold equipped with an inner product on tangent space
𝑔𝑥 : T𝑥M × T𝑥M → R at each point 𝑥 ∈ M, where the tan-
gent space T𝑥M is a vector space and can be seen as a first order
local approximation ofM around point 𝑥 . Hyperbolic space is a
constant negative curvature Riemannian manifold equipped with
a Riemannian metric. There are five isometric models of hyper-
bolic space, of which we work on the Poincaré ball model. An
𝑛-dimentional Poincaré ball model with curvature −𝑐 (𝑐 > 0) is
defined as D𝑛

𝑐 = {𝑥 ∈ R𝑛 : 𝑐 ∥𝑥 ∥ < 1} equipped with the Riemann-
ian metric: 𝑔𝑐𝑥 = 𝜆2𝑥𝑔

𝐸 , where 𝜆𝑥 := 2
1−𝑐 ∥𝑥 ∥2 and 𝑔𝐸 = I𝑛 is the

Euclidean metric tensor.
Here we only give the definition of the operations necessary

for a simple hyperbolic graph neural network [13]. The M¥𝑜bius
addition is defined as:

𝑥 ⊕𝑐 𝑦 :=
(1 + 2𝑐 ⟨𝑥,𝑦⟩ + 𝑐 ∥𝑦∥2)𝑥 + (1 − 𝑐 ∥𝑥 ∥2)𝑦

1 + 2𝑐 ⟨𝑥,𝑦⟩ + 𝑐2∥𝑥 ∥2∥𝑦∥2
, (1)

where 𝑥,𝑦 ∈ D𝑛
𝑐 . The M¥𝑜bius scalar multiplication is defined as:

𝑟 ⊗𝑐 𝑥 := ( 1√
𝑐
)tanh(𝑟 tanh−1 (

√
𝑐 ∥𝑥 ∥)) 𝑥∥𝑥 ∥ , (2)

where 𝑥 ∈ D𝑛
𝑐 \{0} and 𝑟 ∈ R. Similarly, the M¥𝑜bius matrix-vector

multiplication is defined as:

𝑀 ⊗𝑐 𝑥 := ( 1√
𝑐
)tanh( ∥𝑀𝑥 ∥∥𝑥 ∥ tanh−1 (

√
𝑐 ∥𝑥 ∥)) 𝑀𝑥∥𝑀𝑥 ∥ , (3)

where 𝑥 ∈ D𝑛
𝑐 \{0} and 𝑀 ∈ R𝑚×𝑛 . During the construction of

the hyperbolic graph neural network, a crucial step involves the
conversion between the hyperbolic space and the tangent space,
facilitated by the exponential map exp𝑐𝑥 : T𝑥D𝑛

𝑐 → D𝑛
𝑐 and the

logarithmic map log𝑐𝑥 : D𝑛
𝑐 → T𝑥D𝑛

𝑐 :

exp𝑐𝑥 (𝑣) = 𝑥 ⊕𝑐 (tanh(
√
𝑐
𝜆𝑐𝑥 ∥𝑣 ∥

2
) 𝑣
√
𝑐 ∥𝑣 ∥
), (4)

log𝑐𝑥 (𝑦) =
2
√
𝑐𝜆𝑐𝑥

tanh−1 (
√
𝑐 ∥ − 𝑥 ⊕𝑐 𝑦∥)

−𝑥 ⊕𝑐 𝑦
∥ − 𝑥 ⊕𝑐 𝑦∥

, (5)

where 𝑥,𝑦 ∈ D𝑛
𝑐 , 𝑥 ≠ 𝑦 and 𝑣 ∈ T𝑥D𝑛

𝑐 \{0}. Ultimately, the definition
of the hyperbolic non-linear activation incorporates the utilization
of both exponential and logarithmic maps:

𝜎𝑐 (𝑥) = exp𝑐𝑥 (𝜎 (log𝑐𝑥 (𝑥))), (6)

where 𝑥 ∈ D𝑛
𝑐 and 𝜎 is the non-linear activation in Euclidean space.

4 METHODOLOGY
4.1 Overview
Considering the complementarity of hyperbolic and Euclidean ge-
ometries in graph representation learning, and to overcome the con-
straints of contrastive learning dependent on positive and negative
sample pairs, we propose a method termed Hyperbolic-Euclidean
Deep Mutual Learning (H-EDML), which succinctly yet effectively
facilitates collaborative learning between GNNs and HGNNs.

Specifically, our training procedure is bifurcated into two stages.
In the first stage, we jointly train a GNN network and a HGNN
network. Throughout this process, we introduce a topology mutual
learning module to enhance the perceptual capabilities of each indi-
vidual model regarding the overall graph topology. Additionally, we
integrate a decision mutual learning module to leverage soft label
information from the peer model to make more accurate predic-
tion. Subsequently, in the second stage, we utilize the trained GNN
and HGNN to train an attention network with an attention-based
probabilistic integration strategy being implemented for the final
prediction to mitigate potential discrepancies in decision-making
across various models. The architecture is shown in Figure 2, and
the training process of H-EDML is shown in Algorithm 1 in appen-
dix. In the following subsections, we will give more details.

4.2 H-E Topology Mutual Learning
The significance of structural perception in graph learning is well
recognized, with HGNN and GNN excelling in learning hierarchical
and flat structures, respectively. In light of this, we introduce topol-
ogy mutual learning (TML) mechanism to enhance the structural
awareness of each network through topology structure interac-
tions. As an illustration, HGNNs, proficient in learning hierarchical
structures yet less effective in modeling graphs with low curvature
or those closely resembling Euclidean spaces, can enhance their
capacity for perceiving and modeling flat structures through the
incorporation of the TML mechanism.

Let G = (V, E) represent a graph, whereV denotes the set of
nodes and E denotes the set of edges. The feature matrix of nodes is
denoted by𝑋 ∈ 𝑅𝑁×𝑑 , where𝑁 signifies the number of nodes and𝑑
indicates the dimension of node features. Let 𝑥𝑖 denotes the feature
representation of node 𝑖 and 𝑦𝑖 ∈ 𝑅𝑀 denotes its one-hot class
label, where𝑀 is the number of classes. For node 𝑖 , the embedding
and output probability distribution of HGNN and GNN model are
represented as ℎ𝐻

𝑖
, 𝑝𝐻

𝑖
and ℎ𝐸

𝑖
, 𝑝𝐸

𝑖
, respectively.

We employ a topology perception module to acquire the struc-
tural attributes of diverse networks represented by a set of vectors
{𝑠1, 𝑠2, · · · , 𝑠𝑁 }, 𝑠𝑖 ∈ 𝑅𝑁𝑠𝑎𝑚𝑝𝑙𝑒 . For small graphs, we encompass all
nodes in our sampling strategy to comprehensively capture the

3
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Figure 2: The framework of H-EDML. In the first stage, the structural attributes of diverse network branches are characterized
using a topological perception module. Subsequently, individual encoders and decoders are trained for each branch via topology
mutual learning, decisionmutual learning, and label supervision information. Moving to the second stage, the attentionmodule
is trained using the encoder and decoder trained in the first stage.

structural interrelations within the graph with 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 signify-
ing the total number of nodes in the graph. Conversely, for large
graphs, we selectively sample the first and second-order neighbors
surrounding the central node. This enables us to glean extensive
insights into the structural relationships among nodes while main-
taining computational feasibility within the constraints of larger
graph sizes. In this case, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 denotes the number of first and
second-order neighbors around the central node. The elements of
𝑠𝑖 are computed as follows:

𝑠𝑖 𝑗 =
𝑒𝑠𝑖𝑚 (ℎ𝑖 ,ℎ 𝑗 )∑𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑗=1 𝑒𝑠𝑖𝑚 (ℎ𝑖 ,ℎ 𝑗 )
, (7)

where ℎ𝑖 represents the embedding of the network and 𝑠𝑖𝑚(ℎ𝑖 , ℎ 𝑗 )
measures the similarity between node embeddings. A conventional
approach involves the direct utilization of Euclidean distance be-
tween node embeddings. However, the correspondence of node
pairs in terms of similarity does not always align with their Eu-
clidean distances [49]. To address this, we employ kernel function
methodologies to articulate node similarities. Notable kernel func-
tions encompass the linear kernel function, polynomial kernel func-
tion, radial basis kernel function, among others [19]. In this study,
our preference lies with the polynomial kernel function:

𝑠𝑖𝑚(ℎ𝐸𝑖 , ℎ
𝐸
𝑗 ) = 𝐾 (ℎ

𝐸
𝑖 , ℎ

𝐸
𝑗 ) = ((ℎ

𝐸
𝑖 )

𝑇
ℎ𝐸𝑗 + 𝑏)

𝑑 , (8)

𝑠𝑖𝑚(ℎ𝐻𝑖 , ℎ
𝐻
𝑗 ) = 𝐾 (ℎ

𝐻
𝑖 , ℎ

𝐻
𝑗 ) = ((log

𝑐
0ℎ

𝐻
𝑖 )

𝑇 log𝑐0ℎ
𝐻
𝑗 + 𝑏)

𝑑 , (9)

where 𝑏, 𝑐 and 𝑑 are set to 0, 1 and 2.
Then, we can derive both the Euclidean structural attribute 𝑠𝐸

𝑖

and hyperbolic structural attribute 𝑠𝐻
𝑖

representing the structural
distribution of each node 𝑖 . Considering the inherent learning direc-
tion during the mutual learning process, we calculate the similarity
of structural distributions across all nodes within the giving graph
using the KL divergence. Consequently, we obtain the topology
mutual learning loss:

L𝐻
𝑇 =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝐾𝐿(𝑠𝐻𝑖 ∥𝑠
𝐸
𝑖 ) =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑠𝐻𝑖 𝑗

𝑠𝐻
𝑖 𝑗

𝑠𝐸
𝑖 𝑗

, (10)

L𝐸
𝑇 =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝐾𝐿(𝑠𝐸𝑖 ∥𝑠
𝐻
𝑖 ) =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑠𝐸𝑖 𝑗

𝑠𝐸
𝑖 𝑗

𝑠𝐻
𝑖 𝑗

, (11)

where 𝑁𝑡𝑟𝑎𝑖𝑛 is the number of training nodes.

4.3 H-E Decision Mutual Learning
The limitations in achieving robust generalization stem from the
disparate geometric spaces in which HGNNs and GNNs operate,
impeding their ability to comprehensively capture and learn infor-
mation about the entire graph.While TMLmitigates the deficiencies
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in model structure learning, but challenges remain in feature rep-
resentation and decision making. To address this, we propose a
decision mutual learning (DML) mechanism, which enables the
acquisition of soft label information from a peer network. These
soft labels provide additional insights that the network might have
previously failed to capture. Specifically, we utilize the KL diver-
gence to align the probability distributions of a network with its
peer network and propose a decision mutual learning loss for each
network to minimize the difference:

L𝐻
𝐷 =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝐾𝐿(𝑝𝐻𝑖 ∥𝑝
𝐸
𝑖 ) =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑝𝐻𝑖 𝑗

𝑝𝐻
𝑖 𝑗

𝑝𝐸
𝑖 𝑗

, (12)

L𝐸
𝐷 =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝐾𝐿(𝑝𝐸𝑖 ∥𝑝
𝐻
𝑖 ) =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑝𝐸𝑖 𝑗

𝑝𝐸
𝑖 𝑗

𝑝𝐻
𝑖 𝑗

. (13)

Each of the two networks not only benefits frommutual guidance
at decision and structure levels but also receives supervision from
the node label information:

L𝐻
𝐶𝐸 =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝐻 (𝑦𝑖 , 𝑝𝐻𝑖 ) = −
𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖 𝑗 log(𝑝𝐻𝑖 𝑗 ), (14)

L𝐸
𝐶𝐸 =

𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝐻 (𝑦𝑖 , 𝑝𝐸𝑖 ) = −
𝑁𝑡𝑟𝑎𝑖𝑛∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖 𝑗 log(𝑝𝐸𝑖 𝑗 ) . (15)

Therefore, the total loss functions L𝐻 and L𝐸 for the hyperbolic
graph neural network and the Euclidean graph neural network are
formulated as follows:

L𝐻 = L𝐻
𝐶𝐸 + 𝛼1L

𝐻
𝐷 + 𝛽1L

𝐻
𝑇 , (16)

L𝐸 = L𝐸
𝐶𝐸 + 𝛼2L

𝐸
𝐷 + 𝛽2L

𝐸
𝑇 , (17)

where 𝛼1, 𝛽1 and 𝛼2, 𝛽2 are two pairs of hyperparameters used to
balance the loss terms.

4.4 H-E Attention-based Probabilistic
Integration

Utilizing decision mutual learning and topology mutual learning to
facilitate the training of the two networks, we are able to derive two
distinct probability distributions, denoted as 𝑝𝐻

𝑖
and 𝑝𝐸

𝑖
, for any

given node 𝑖 . Due to variations in the capacities of distinct networks,
our deep mutual learning approach, while mitigating this diversity,
does not entirely eradicate it, leading to potential disparities in their
decision-making. Therefore, to ascertain the ultimate probability
distribution for node 𝑖 , an attention-based probabilistic integration
strategy is utilized to assign increased weights to the geometric
probability distributions of greater significance.

We first concatenate the embeddings from the two networks and
send them into fully connected layers to obtain an attention matrix
𝐴. Each of its rows is structured as follows:

𝐴𝑖 = 𝑆 (𝜎 ((𝛿 ( [log𝑐0 (ℎ
𝐻
𝑖 ), ℎ

𝐸
𝑖 ]𝑊1))𝑊2)), (18)

where [·, ·] denotes concatenation,𝑊1 and𝑊2 are two weight ma-
trices, which can be implemented by two fully connected layers.
𝛿 and 𝜎 correspond to activation functions that are implemented
by ReLU and Sigmoid functions, respectively. The function 𝑆 de-
notes the softmax function applied along each row of the matrix.
The attention matrix 𝐴 assigns two distinct weights to each node 𝑖:

𝐴𝑖1 for the hyperbolic probability distribution and 𝐴𝑖2 for the Eu-
clidean probability distribution. Subsequently, the final probability
distribution for node 𝑖 can be derived from A:

𝑝𝑖 = 𝐴𝑖1𝑝
𝐻
𝑖 +𝐴𝑖2𝑝

𝐸
𝑖 . (19)

4.5 Two-stage Training Analysis
It is noteworthy that our H-EDML model introduces modifications
to the conventional training process. Firstly, we employ an alternat-
ing training scheme to jointly optimize the two networks, ensuring
gradual performance improvements for each network throughout
this process. This significantly reduces training costs compared
to separately training each network and then engaging in mu-
tual supervision, with minimal performance loss. Secondly, our
method adopts a two-stage training approach. Initially, the two
networks undergo alternating training with assistance from deci-
sion mutual learning and topology mutual learning. Subsequently,
the trained networks are utilized to train the attention mechanism.
This strategy is implemented to mitigate the potential redundancy
and conflicts in information that may arise if both graph neural
networks and the attention mechanism are simultaneously trained
in a single stage. Specifically, such conflicts could emerge from the
influence of the output probability distributions of the peer network
at the decision-making level during decision mutual learning and
the computation of label-supervised loss using joint probability
distributions. These factors could detrimentally impact the overall
model performance. For a detailed description of the model training
and optimization process, refer to Algorithm 1 in appendix. It is
worth mentioning that in the second stage, we not only finalize the
training of attention but also conclude the inference process.

5 EXPERIMENTS
In this section, we conduct extensive node classification exper-
iments on five graph datasets and prove the superiority of our
proposed H-EDML. In addition, we also conduct ablation studies
to verify the effectiveness of our TML, DML and attention-based
probabilistic integration. Finally, we analyze the impact of embed-
ding dimensions, different underlying models on our H-EDML and
a visualization result.

5.1 Experimental Settings
5.1.1 Datasets. We utilize five datasets in our experiments: Cora
[33], Citeseer [15], Pubmed [29], Airport and Disease [6]. Cora,
Citeseer and Pubmed are citation networks where nodes repre-
sent scientific papers, and edges are citations between them. Air-
port dataset describes the location of airports and airline networks,
where nodes represent airports and edges represent airline routes.
Disease dataset simulates the disease propagation tree, where node
represents a state of being infected or not by SIR disease. We fur-
ther compute 𝛿−hyperbolicity [16] to quantify the tree-likeliness
of these datasets. A lower 𝛿−hyperbolicity denotes a more tree-like
structure and 𝛿 = 0 denotes a pure tree. The details of data statistics
are shown in Table 1.

5.1.2 Baselines. We compare our method with the following state-
of-the-art methods: (1) Neural network (NN) methods: deep neural
networks that disregard graph topology, including MLP [30] and
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Table 1: Statistics of the experimental datasets.

Dataset Nodes Edges Classes Features 𝛿

Cora 2,708 5,429 7 1,433 11
Citeseer 3,327 4,732 6 3,703 5
Pubmed 19,717 44,338 3 500 3.5
Airport 3,188 18,631 4 4 1
Disease 1,044 1,043 2 1,000 0

HNN [13]. (2) Euclidean graph neural network (Euclidean GNN)
methods: deep neural networks that leverage both node embeddings
and graph topologies in Euclidean spaces, including GCN [24],
GraphSAGE [17], GAT [38], SGC [40], GraphCON [32], NodeFormer
[41], SGFormer [42] and ACMP [39]. (3) Hyperbolic graph neural
network (hyperbolic GNN) methods: approaches for modeling deep
graph neural networks in hyperbolic spaces, including HGNN [27],
HGCN [6], GIL [56], HGAT [51], LGCN [52], HGCL [26], F-HNN
[8], H-GRAM [9] and LRN [18].

5.1.3 Implementation Details. In our experiments, we closely fol-
low the parameter settings in [6] and obey the same dataset split
for all baselines. We use standard splits in GCN [24] on citation
network datasets, 70/15/15 percent splits for training, validation
and test on Airport, and 30/10/60 percent splits on Disease. All
methods use the following training strategy, including the same
random seeds for initialization and the same early stopping on vali-
dation set with 200 patience epochs. The grid search is performed
over the following search space: Learning rate: [0.001, 0.005, 0.01,
0.02]; Dropout rate: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]; weight decay:
[0, 1e-4, 5e-4, 1e-3]; Number of hidden layers: [1, 2, 3]. The results
are reported over 10 random parameter initializations. We set the
dimension of latent representation of all methods as 16 and the
curvature for hyperbolic GNNs as 1. We designate HGAT and GCN
as the fixed hyperbolic and Euclidean base models in our H-EDML
framework. We optimize H-EDML with Adam [23]. All the experi-
ments are conducted on NVIDIA GeForce RTX 3090 GPU and are
implemented in Python using the PyTorch framework.

5.2 Experimental Results
H-EDML combines the advantages of EuclideanGNNs and hy-
perbolic GNNs to achieve satisfactory performance. In Table
2, we report the mean accuracy for three citation network datasets
and the mean F1 score for the Airport and Disease datasets of our
proposed methods and all baselines. Our H-EDML achieves the
best performance across the other four datasets except for the Dis-
ease dataset with up to 1.05% improvement over the sub-optimal
method, showcasing the strength of our approach. Notably, our
method also secures the third-best performance on the Disease
dataset, following only HGCL, a contrastive learning method and
LRN which is specifically designed for highly hyperbolic data. How-
ever, our H-EDML model achieves a performance metric of 0.9253,
which is marginally lower compared to the leading HGCL model
with a score of 0.9342. Furthermore, it is evident that our proposed
method has demonstrated significant advancements over our base
models, HGAT and GCN, indicating the appropriateness of our

method in integrating heterogeneous space networks. Overall, our
approach integrates the benefits of Euclidean GNN and hyperbolic
GNN methods via decision mutual learning and topology mutual
learning, yielding satisfactory results across all datasets.

Euclidean GNNs are good at learning flat structures and
hyperbolic GNNs are good at learning hierarchical struc-
tures. In Table 2, the traditional NN methods perform poorly on all
datasets, demonstrating the significance of graph topology in graph
representation learning. Moreover, on the three citation network
datasets with high 𝛿−hyperbolicity, Euclidean GNN methods out-
perform hyperbolic GNN methods overall, with the top-performing
methods, aside from our own, belonging to the Euclidean GNN cat-
egory. This suggests that Euclidean GNN methods are better able to
capture and learn flat non-hierarchical structures. Similarly, on the
Airport and Disease datasets with low 𝛿−hyperbolicity, hyperbolic
GNN methods outperform Euclidean GNN methods overall, with
the best and second-best methods falling within the hyperbolic
GNN category. This further validates the advantages of hyperbolic
networks in learning hierarchical structures.

5.3 Analysis
5.3.1 Ablation Study. To assess the impact of our proposed primary
module and the two-stage training strategy, we conduct a series
of ablation experiments, where ‘w/o’ denotes the removal of the
corresponding component from our H-EDML framework: TML for
topology mutual learning, DML for decision mutual learning, and
ATT for the attention module. We achieve the removal of ATT from
our method by assigning equal weights of 0.5 to both networks. The
‘Single’ denotes the use of single-stage training in our H-EDML
framework. Analysis of the experimental results highlights the
following observations in Table 3.

Each component demonstrates its positive impact on the
overall framework. Firstly, the classification performance of ou
H-EDML exhibit enhancement subsequent to mutual learning on
our base models, HGAT and GCN, underscoring the merit of in-
tegrating network interactions across disparate spatial domains.
Subsequent removal of TML from our model leads to performance
degradation, where the F1-score drops by 2.59% on the Airport
dataset, emphasizing the pivotal role of our proposed topology
mutual learning in facilitating enhanced comprehension of graph
topology. In addition, the exclusion of DML results in an average
performance decrease of 1.5% indicating the model’s ability to ac-
quire a more comprehensive understanding of node attributes and
class distinctions through decision mutual learning. Furthermore,
the performance decline in the absence of ATT highlights the vary-
ing significance of hyperbolic GNN and Euclidean GNN for distinct
nodes within diverse graph structures. The performance of two-
stage training is generally better than that of single-stage training,
which further corroborates the previous analysis that single-stage
training brings information redundancy and conflict. Ultimately,
merging TML, DML, and ATT and employing two-stage training
in our H-EDML model produces the best results, thus reaffirming
the effectiveness of each component of our proposed framework as
well as the two-stage training strategy.

5.3.2 The Impact of Embedding Dimensions. In order to verify
whether our method can maintain the advantage of hyperbolic
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Table 2: Accuracy (%± standard deviation) for Cora, Citeseer and Pubmed datasets and F1 score (%± standard deviation) for
Airport and Disease datasets for node classification. Performance scores averaged over ten runs. The best results are boldfaced
while the runner-ups are underlined. 𝛿 refers to gromovs 𝛿−hyperbolicity.

Method Cora (𝛿 = 11) Citeseer (𝛿 = 5) Pubmed (𝛿 = 3.5) Airport (𝛿 = 1) Disease (𝛿 = 0)

N
N MLP (2009) 50.66±1.35 58.58±0.83 73.54±0.30 70.12±0.55 31.69±2.65

HNN (2018) 55.64±0.58 58.66±1.44 69.49±0.55 81.34±0.47 43.48±1.76

Eu
cl
id
ea
n
G
N
N

GCN (2017) 82.02±0.45 70.24±0.85 78.45±0.36 83.19±1.76 79.73±1.88
GraphSAGE (2017) 77.84±0.66 67.11±1.56 76.88±0.56 88.55±0.84 75.29±2.76

GAT (2018) 82.72±0.69 71.45±1.15 77.23±0.51 86.10±1.39 80.25±0.54
SGC (2019) 81.91±0.63 71.95±0.55 78.60±0.24 84.07±1.91 79.98±2.10

GraphCON (2022) 82.54±1.25 71.29±0.96 78.66±1.23 79.25±2.51 86.74±2.53
NodeFormer (2022) 82.34±0.85 72.47±1.27 79.13±1.10 82.66±0.69 79.84±1.33
SGFormer (2023) 83.11±0.75 72.35±0.54 79.25±0.65 91.67±1.21 88.55±2.16
ACMP (2023) 82.65±0.78 73.01±1.14 78.52±0.54 88.96±1.74 89.15±2.19

H
yp

er
bo

lic
G
N
N

HGNN (2019) 78.99±0.61 70.20±0.61 76.94±1.12 84.87±2.09 82.16±1.41
HGCN (2019) 78.41±0.77 68.29±0.95 77.03±0.49 88.82±1.66 89.36±1.02
GIL (2020) 82.49±0.77 71.21±0.93 77.35±0.56 91.21±0.72 89.69±0.93

HGAT (2021) 79.71±0.95 69.41±0.78 75.56±0.67 89.25±0.96 90.43±1.12
LGCN (2021) 78.93±0.79 68.59±0.64 78.08±0.65 88.53±1.26 91.15±1.02
HGCL (2021) 82.37±0.47 72.11±0.64 79.17±0.68 92.35±1.01 93.42±0.82
F-HNN (2022) 81.04±1.78 71.12±0.66 77.66±1.04 91.85±0.86 92.03±1.21
H-GRAM (2023) 81.56±1.58 72.16±1.66 78.05±1.84 89.89±2.16 91.22±2.54

LRN (2024) 78.34±1.16 67.10±1.19 77.24±0.67 92.39±0.72 93.29±1.45
H-EDML (ours) 84.07±0.61 73.96±0.22 79.68±0.38 93.44±0.63 92.53±0.72

Table 3: The ablation experiment results where ‘w/o’ rep-
resents removal of the corresponding module and ‘Single’
denotes the use of single-stage training in H-EDML frame-
work. The best results are boldfaced.

Method Cora Citeseer Pubmed Airport Disease

GCN 82.02 70.24 78.45 83.19 79.73
HGAT 79.71 69.41 75.56 89.25 90.43

w/o TML 83.01 73.13 78.88 90.85 91.18
w/o DML 82.57 72.46 78.87 91.83 90.56
w/o ATT 83.25 73.28 79.08 91.63 90.89
Single 82.74 72.81 79.06 91.47 91.15

H-EDML 84.07 73.96 79.68 93.44 92.53

graph neural networks with lower embedding dimensions to obtain
efficient embedding representation after the integration of graph
neural networks in Euclidian space, we conduct experiments by
setting different embedding dimensions on the highly hierarchical
Disease dataset and the weakly hierarchical Citeseer dataset. The
experimental results are shown in Figure 3.

H-EDML is robust to dimensions and consistently main-
tains good performance. Initially, observations on the Disease
dataset reveal a progressive enhancement in GCN performancewith
escalating embedding dimensions, albeit at a diminishing growth
rate. HGAT stabilizes from dimension 8 onwards, while our H-
EDML method mirrors this behavior, demonstrating consistent and

Figure 3: The influence of representation dimension on Cite-
seer and Disease datasets of our H-EDML and the two under-
lying models: GCN and HGAT.

superior performance from dimension 16. This underscores the
challenge of distortion inherent in graph neural networks operat-
ing on Euclidean geometry when dealing with highly hierarchical
data. The inherent distortion that occurs in Euclidean space arises
because the geometric properties of this space are not naturally
suited to capturing the exponentially expanding structure of hier-
archical or tree-like data. Although increasing the dimensionality
of the Euclidean space can reduce some of this distortion, the fun-
damental misalignment between the flat geometry of Euclidean
space and the complex, hierarchical structure of the data persists.
Nevertheless, hyperbolic geometry-based graph neural networks ef-
fectively mitigate such distortions, yielding satisfactory embedding
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(a) Citeseer (b) Disease

Figure 4: The impact of different base model pairs on our
proposed H-EDML framework. We select GCN and GAT as
the Euclidean base models and HGNN, HGCN and HGAT as
the hyperbolic base models.

representations at lower dimensions owing to their intrinsic align-
ment with hierarchical structures. Moreover, compared to other
methods, our H-EDML consistently maintains high stability and
superior performance on the less hierarchical Citeseer dataset.

5.3.3 The Impact of Different Underlying Models. H-EDML shows
good adaptability. To investigate whether our H-EDML frame-
work depends on specific bace model pairings when handling dif-
ferent datasets, we conduct experiments employing various com-
binations of base models. As illustrated in Figure 4, it is apparent
that, apart from HGNN, the other base model combinations con-
sistently demonstrate strong performance across distinct dataset
types, underscoring the practical effectiveness of our methodology.
Consequently, when faced with diverse datasets, there is no impera-
tive need to exhaust resources in exploring numerous combinations;
instead, an initial random selection suffices. This further illustrates
the adaptability of our H-EDML across diverse base models and
flexibility for various datasets.

H-EDML demonstrates strong robustness. It can also be
noticed from Figure 4 that our approach does not require high-
performance standards from individual base models. For instance,
on the Citeseer dataset, The classification accuracies of HGAT and
GAT are only 69.41% and 71.45% respectively, but following our
decision mutual learning and topology mutual learning processes,
the classification accuracy improves to 74.08%. Similarly, on the
Disease dataset, where the F1-score of HGCN and GAT are only
89.36% and 80.25% respectively, our method achieves a remarkable
92.25% post deep mutual learning. This shows that H-EDML can
robustly achieve better results regardless of the performance of the
base models, indicating that it is insensitive to the performance
differences of the base model and demonstrates strong robustness.

5.3.4 Visualization. We present experimental evidence illustrating
the efficacy of our approach in enhancing node representation learn-
ing within base models, GCN and HGAT, using the Airport dataset.
We visualize the performance of these models before and after ap-
plying our mutual learning technique. To facilitate this comparison,
we leverage the T-distributed RandomNeighbor Embedding (t-SNE)
tehcnique [37] to project the high-dimensional embeddings from

Figure 5: Visualization of the Airport dataset. (a) Embedding
of GCN before our deep mutual learning; (b) Embedding of
GCN after our deepmutual learning; (c) Embedding of HGAT
before our deep mutual learning; (d) Embedding of HGAT
after our deep mutual learning.

the final layer of each model onto a two-dimensional plane for
visual analysis. We assign colors to each data point, with distinct
colors denoting different classes.

H-EDML enhances the separability of node embeddings.
The visualization results, as illustrated in Figure 5, demonstrate
that following the implementation of H-EDML, the node embed-
dings learned by GCN and HGAT exhibit more distinct boundaries
between various classes. For instance, the separability between
classes 2 and 3 is notably improved, and the initial overlap between
classes 0 and 1 is reduced. This suggests that the enhanced node
embeddings, resulting from our mutual learning approach, more
effectively capture the fundamental structure of the graph, better
preserving class distinctions and thereby improving the overall
separability of the node embeddings.

6 CONCLUSION
In this paper, we propose Hyperbolic-Euclidean DeepMutual Learn-
ing, a two-stage training framework, which can fully excavate
structural information and make more comprehensive decisions
through the topology interaction and decision interaction of two
networks. Specifically, we first design a topology mutual learning
module to enhance each individual model’s perception of the over-
all graph structure. Then, a decision mutual learning module is
introduced in the decision level to obtain soft label information
from the peer model, so as to make a more comprehensive deci-
sion. In addition, we introduce an attention-based probabilistic
integration strategy to make final predictions to mitigate potential
differences in decision-making between different models. Extensive
experiments demonstrate the superiority of H-EDML, compared
with the state-of-the-art methods.
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A ALGORITHM

Algorithm 1 algorithm of H-EDML

Input: Graph G = (V, E) with node labels Y; Trainable hyper-
bolic GNN 𝑔𝐻 (·); Trainable Euclidean GNN 𝑔𝐸 (·); Trainable
attention module 𝑔𝐴 (·); Number of training epochs for hyper-
bolic and Euclidean GNNmodel 𝑁1; Number of training epochs
for attention 𝑁2; Loss hyperparameters 𝛼1, 𝛽1, 𝛼2, 𝛽2

1: Parameter 𝜃𝐻 , 𝜃𝐸 and 𝜃𝐴 initialization;
Output: Trained hyperbolic and Euclidene GNN model and atten-

tion module.
2: for 𝑖 = 1, · · · , 𝑁1 do
3: Learn node embedding ℎ𝐻 and ℎ𝐸 ;
4: Calculate label distribution 𝑝𝐻 and 𝑝𝐸 using ℎ𝐻 and ℎ𝐸 ;
5: Calculate topologymutual learning lossL𝐻

𝑇
andL𝐸

𝑇
← Equa-

tion (10)(11);
6: Calculate decision mutual learning lossL𝐻

𝐷
andL𝐸

𝐷
← Equa-

tion (12)(13);
7: Calculate label supervision loss L𝐻

𝐶𝐸
and L𝐸

𝐶𝐸
← Equation

(14)(15);
8: Calculate overall classification loss L𝐻 and L𝐸 ← Equation

(16)(17);
9: Update hyperbolic GNN parameters 𝜃𝐻 ← 𝜃𝐻 − 𝜂1∇𝜃𝐻 ;
10: Update Euclidean GNN parameters 𝜃𝐸 ← 𝜃𝐸 − 𝜂2∇𝜃𝐸 .
11: end for
12: for 𝑗 = 1, · · · , 𝑁2 do
13: Calculate node label distribution 𝑝 ← Equation (19);
14: Calculate classification loss using cross-entropy;
15: Update Attention parameters 𝜃𝐴 ← 𝜃𝐴 − 𝜂3∇𝜃𝐴 .
16: end for

B GRAPH NEURAL NETWORKS
Let G = (V, E) represent a graph, where V denotes the set of
nodes and E denotes the set of edges. The feature matrix of nodes is
denoted by𝑋 ∈ 𝑅𝑁×𝑑 , where𝑁 signifies the number of nodes and𝑑
indicates the dimension of node features. Let 𝑥𝑖 denotes the feature
representation of node 𝑖 and 𝑦𝑖 ∈ 𝑅𝑀 denotes its one-hot class
label, where𝑀 is the number of classes. For node 𝑖 , the embedding
and output probability distribution of HGNN and GNN model are
represented as ℎ𝐻

𝑖
, 𝑝𝐻

𝑖
and ℎ𝐸

𝑖
, 𝑝𝐸

𝑖
, respectively.

Let N(𝑖) = { 𝑗 : (𝑖, 𝑗) ∈ E} denote the set of neighbors of node
𝑖 ∈ V ,𝑊 𝑙 and𝑏𝑙 beweights and bias parameters for layer 𝑙 , and𝜎 (·)
be a non-linear activation function. The message passing procedure
in GNNs at layer 𝑙 for node 𝑖 can be summarized in the following
three steps: feature transformation, neighborhood aggregation and

non-linear activation:

𝑥
𝑙,𝐸
𝑖

=𝑊 𝑙ℎ
𝑙−1,𝐸
𝑖

+ 𝑏𝑙 , (20)

𝑧
𝑙,𝐸
𝑖

= 𝑥
𝑙,𝐸
𝑖
+

∑︁
𝑗∈N(𝑖 )

𝜔𝑖 𝑗𝑥
𝑙,𝐸
𝑗
, (21)

ℎ
𝑙,𝐸
𝑖

= 𝜎 (𝑧𝑙,𝐸
𝑖
). (22)

Analogous to the GNNs framework, the message propagation
process in HGNNs at layer 𝑙 for node 𝑖 can be succinctly encap-
sulated by the following three steps: hyperbolic feature transfor-
mation, hyperbolic neighborhood aggregation and hyperbolic non-
linear activation:

𝑥
𝑙,𝐻
𝑖

=𝑊 𝑙 ⊗𝑐 ℎ𝑙−1,𝐻𝑖
⊕ 𝑏𝑙 , (23)

𝑧
𝑙,𝐻
𝑖

= 𝑥
𝑙,𝐻
𝑖
⊕𝑐 exp𝑐𝑥𝑖 (

∑︁
𝑗∈N(𝑖 )

𝜔𝑖 𝑗 log𝑐𝑥𝑖𝑥
𝑙,𝐻
𝑗
), (24)

ℎ
𝑙,𝐻
𝑖

= 𝜎𝑐 (𝑧𝑙,𝐻
𝑖
). (25)

C EXTENSIVE EXPERIMENTAL RESULTS
We proceed to visually compare the performance of our H-EDML
with conventional EuclideanGNNs (GCN as a representativemethod)
and HGNNs (HGAT as a representative method), alongside a con-
trastive learning approach (HGCL as a representative method), as
illustrated in Figure 6. The following observations emerge: firstly,
HGAT demonstrates superior performance over GCN on datasets
characterized by low 𝛿-hyperbolicity such as Disease and Airport
datasets, while GCN excels over HGAT on citation datasets with
high 𝛿-hyperbolicity. This distinction underscores the proficiency
of HGNNs in capturing hierarchical structures compared to GNNs’
adeptness at flat structures. Secondly, the amalgamation of Eu-
clidean and hyperbolic spaces in H-EDML and HGCL results in
superior performance compared to GCN and HGAT, emphasizing
the efficacy of leveraging the strengths of both spaces. Lastly, our
proposed H-EDML outperforms HGCL generally through deep
mutual learning and probabilistic integration in decision-making
processes.

Figure 6: Intuitive comparison of the performance of four
classes of methods: the Euclidean GNNs method GCN, the
hyperbolic GNNs method HGAT, the contrastive learning
method HGCL, and our proposed method H-EDML.
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