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Abstract
A text encoder within Vision-Language Mod-001
els (VLMs) plays a crucial role in translating002
textual input into an embedding space shared003
with images, thereby facilitating the interpre-004
tative analysis of vision tasks through natural005
language. Despite varying significance of dif-006
ferent textual elements within a sentence de-007
pending on the context, efforts to account for008
variation of importance when constructing text009
embeddings have been lacking. This paper pro-010
poses Semantic Token Reweighting to build011
Interpretable text embeddings (SToRI), which012
incorporates controllability as well. SToRI re-013
fines the text encoding process in VLMs by dif-014
ferentially weighting semantic elements based015
on contextual importance, enabling finer con-016
trol over emphasis responsive to user prefer-017
ences and data-driven insights. The efficacy of018
SToRI is demonstrated through comprehensive019
experiments, showcasing its strength in image020
retrieval tailored to user preferences and its ca-021
pability in few-shot image classification tasks.022

1 Introduction023

As artificial intelligence (AI) systems based on024

deep learning models grow in application in our025

daily lives, their black box nature raises issues of026

transparency, resulting in a demand for enhanced027

interpretability to promote trust in AI systems (Mur-028

doch et al., 2019; Li et al., 2022). Consequently,029

research efforts have been focused on making the030

systems’ decision-making processes more human-031

understandable through various explanatory meth-032

ods (Simonyan et al., 2014; Kim et al., 2018; Goyal033

et al., 2019; Wu and Mooney, 2019). Among the034

various forms of explanation, natural language has035

emerged as an excellent medium due to its human-036

friendly nature and adeptness in managing high-037

level abstractions (Kayser et al., 2021; Sammani038

et al., 2022). These advantages have led to a grow-039

ing interest in research that utilizes natural lan-040

guage for interpretative analysis, extending even041

to domain of vision tasks (Hendricks et al., 2021; 042

Yang et al., 2023). To facilitate the use of natural 043

language in vision tasks, Vision-Language Mod- 044

els (VLMs) like CLIP (Radford et al., 2021) are 045

commonly deployed to bridge visual information 046

and its linguistic interpretation (Yuksekgonul et al., 047

2023; Yang et al., 2023; Oikarinen et al., 2023). 048

Two encoders of VLMs translate an input image 049

and text into image and text embeddings, respec- 050

tively, which take vectorized forms and coexist in 051

a shared embedding space. 052

Natural language sentences often carry multiple 053

implications, with varying levels of significance 054

that can change based on the desired outcome, even 055

if the text remains unchanged. For instance, when 056

searching for images using the query ‘a castle sur- 057

rounded by trees,’ a standard text query might bring 058

up relevant images, but the preference on ‘trees’ 059

relative to ‘a castle’ could differ based on user in- 060

tent (see examples of retrieved images in Figure 1). 061

Texts rich in detail may benefit from selectively em- 062

phasizing certain information relevant to the task. 063

While there have been attempts to modulate fo- 064

cus in image and text generation (Ge et al., 2023; 065

Zhang et al., 2024), there remains a lack of efforts 066

to fine-tune the importance given to specific pieces 067

of information within text embeddings from VLMs. 068

This paper endeavors to create text embeddings that 069

can incorporate a varying controlled importance of 070

each semantic element within a sentence. 071

To meet our objective, we introduce SToRI 072

(Semantic Token Reweighting for Interpretable 073

text embeddings), which refines the focus on in- 074

dividual semantic components during text embed- 075

ding extraction in VLMs. Each semantic element 076

is assigned a numerical weight, denoting its sig- 077

nificance, and these weights modulate the self- 078

attention mechanism in text encoding. The pro- 079

posed method makes it possible for the final text 080

embedding vector to naturally include the desired 081

emphasis on specific semantic elements, allowing 082
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A tiger shark has dark stripes on its body and a grey back.
An electrical ray has dark brown back.
A great grey owl is a large owl with big yellow eyes.
A red king crab has bard shell and long legs

Figure 1: System diagram of SToRI. SToRI enables user-driven control over the multiple images by allowing
fine-grained manipulation of the text prompts. It also facilitates data-driven control through interpretable weight
optimization in the semantic space, enhancing the classification performance of the image data. Weight affects text
embeddings via semantic token reweighting (STR).

for controllability. Moreover, the emphasis on par-083

ticular semantic meanings remains within the realm084

of interpretability. SToRI efficiently produces text085

embeddings that reflect the desired focus without086

necessitating the training of new modules.087

Our framework enables text embeddings to be088

tailored in two ways: user-driven and data-driven.089

In the user-driven approach, individuals can set the090

weight for each semantic token, allowing them to091

emphasize the elements they consider most relevant092

and customize the model to fit their preferences,093

as shown by the green path in Figure 1. On the094

other hand, the data-driven method derives token095

weights from training on dataset, facilitating the096

creation of text embeddings that are optimized for097

specific tasks like image classification and offer098

interpretable insights into the classifiers derived099

from texts, as shown by the orange path in Fig-100

ure 1. These enhancements have been substantiated101

through evaluation across various image recogni-102

tion tasks, including image retrieval and few-shot103

classification.104

Our main contributions are outlined as follows:105

• We propose a novel framework of semantic106

token reweighting, which differentiates the107

importance of textual information during the108

construction of text embeddings in VLMs.109

• Our approach facilitates the customization110

of emphasis on specific semantics, and we111

demonstrate its usefulness in image retrieval112

tasks with a new metric for controllability.113

• We demonstrate that our methodology not114

only builds improved text classifier in few-115

shot learning tasks but also unlocks a new 116

dimension of interpretability. 117

2 Preliminary: Text embeddings in CLIP 118

The text encoder of CLIP (Radford et al., 2021), 119

which utilizes a transformer-based architecture, 120

transforms a given text prompt into a single vector 121

through the following process. Initially, a given 122

text prompt is converted into a sequence of text 123

tokens {xi}Ni=1, where N represents the number 124

of the text tokens. Tokens indicating the start and 125

end, [SOS] and [EOS] tokens, are appended at the 126

beginning and the end of the sequence of tokens, 127

resulting in the extended series {xi}N+1
i=0 , with x0 128

and xN+1 representing the [SOS] and [EOS], re- 129

spectively. Each text token is then converted into 130

an embedded input token, and positional embed- 131

ding is added, resulting in the input embedding for 132

the first transformer block {z0i }
N+1
i=0 . For the l-th 133

block of the encoder, the input tokens can be rep- 134

resented as Z l−1 = [zl−1
0 , ..., zl−1

N+1]. The output 135

tokens from the l-th block is given by: 136

Z l = Blockl(Z l−1), (1) 137

where l ∈ [1, L] with the encoder consisting of 138

L blocks. Each block contains a multi-head self- 139

attention mechanism. First, Z l−1 is projected into 140

the query Q, key K, and value V . Then, the atten- 141

tion process is performed as follows: 142

Attention(Q,K, V ) = AV,

s.t. A = softmax(QKT ).
(2) 143

Scaling and masking operations are omitted for 144

simplicity. Through the attention mechanism, to- 145
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kens influence each other, and the values of A rep-146

resent the extent to which they influence one an-147

other (Vaswani et al., 2017). In general, the final148

output text embedding of the [EOS] token encapsu-149

lates the full semantic meaning of the text prompt.150

This embedding is compared with image embed-151

dings to assess the degree of correspondence with152

images once it has been projected into a multi-153

modal embedding space.154

A pre-trained CLIP model is commonly em-155

ployed for image classification, where given an156

image, it computes similarity scores with class157

names, which become logits. To adapt the model158

to a specific dataset, fine-tuning is performed by159

minimizing the cross-entropy loss as follows:160

L = LCE(y, sim(ϕT , ϕI)/τ), (3)161

where ϕT and ϕI represent output text and image162

embeddings from two encoders, respectively, and163

τ is a temperature factor.164

3 Method165

We propose SToRI, a novel framework that adjusts166

the importance of various textual elements while167

encoding a given text prompt into a single text168

embedding vector within VLMs. The weights are169

determined through user-driven and data-driven170

controls. In Section 3.1, we elaborate semantic171

token reweighting, which involves modifying the172

attention given to individual tokens within the text173

encoding process based on their respective weights.174

In Section 3.2, we present two methods for de-175

termining these weights. Figure 2 presents an176

overview of our comprehensive framework.177

3.1 Semantic Token Reweighting178

In natural language processing, a given text is179

tokenized prior to encoding, resulting in one or180

more tokens. Consequently, to emphasize or de-181

emphasize a particular semantic element, one must182

focus on the corresponding tokens. Henceforth, our183

discussion will center on the process of reweighting184

in terms of these tokens.185

Given a sequence of text tokens {xi}Ni=1, we186

first define a sequence of weights {wi}Ni=1, where187

wi is the level of significance of token xi. Note188

that wi = 1 indicates a typical weight in common189

situations, where xi is neither emphasized nor de-190

emphasized. Our goal is to modulate the impact191

each token has on the final output embedding of192

the text prompt. As elaborated in Section 2, tokens193
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∗

Figure 2: Overview of semantic token reweighting. The
weights can be determined through either user-driven or
data-driven control. The weight vector is represented as
W = [w1, ..., wN ].

interact with each other through attention mech- 194

anisms. Each token generates its embedding by 195

referencing other tokens, including itself, in pro- 196

portion to the attention scores. Consequently, as 197

the attention score of a specific token increases, 198

its influence on the text embedding becomes more 199

substantial. Therefore, we directly multiply the 200

weights {wi}Ni=1 to amplify original attention val- 201

ues proportionally. From Eq. (2), the weighted 202

attention scores can be reformulated as follows: 203

âm,n =
wn exp (qmkTn )∑
j wj exp (qmkTj )

, (4) 204

where âm,n represents attention value for n-th 205

value token to be attended by m-th query token. 206

qm and kn represent vector elements of Q and K, 207

respectively. Through this process, we can selec- 208

tively enhance the influence of particular tokens 209

during the attention process by simply changing 210

the corresponding weights. 211

The reweighting process is applied to all blocks 212

following a certain block. Experimentally, we con- 213

firm that the effects are similar regardless of start- 214

ing from any intermediate block. Please refer to 215

Appendix B.6 for further details. 216

3.2 Strategies to Control 217

There are two approaches to determine weights for 218

tokens: user-driven and data-driven controls. 219

User-driven control applies to scenarios where 220

the user assigns weights to each token. This method 221

allows user to determine a particular textual in- 222

formation to be emphasized or de-emphasized ac- 223

cording to their intentions, thereby influencing the 224

resulting text embeddings. The green path in Fig- 225
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ure 1 presents examples of preference-based im-226

age retrieval, an application in the user-driven con-227

trol. Users may initially set a text prompt and then228

progressively amplify the weight of keywords per-229

ceived as more crucial, assess the resulting arrange-230

ment, and refine their selection accordingly.231

Data-driven control determines weights by232

learning from data. This approach is suitable when233

data is available and we want to obtain text embed-234

dings that align closely with the data. An illustra-235

tive task where this can be effectively applied is im-236

age classification (see the orange path in Figure 1).237

In image classification, weights are trained using238

Eq. (3), where ϕT is obtained with âi,j , allowing239

only {wi}Ni=1 to be updated. Since the weights are240

trained to build text embeddings that correspond241

well to image belonging to their corresponding242

classes, we can interpret which textual informa-243

tion prominently stands out in the image data with244

the weights.245

4 Experiments246

We evaluate SToRI under two scenarios: user-247

driven and data-driven controls. In the user-248

driven scenario, we demonstrate its application249

in preference-based image retrieval. In the data-250

driven scenario, we show its effectiveness in train-251

ing an enhanced classifier for few-shot image clas-252

sification and interpreting the classifier through its253

weights.254

4.1 User-driven Control255

To assess the effectiveness of SToRI in emphasiz-256

ing or de-emphasizing specific information based257

on applied weights, we compare the ordering of258

retrieved images using text embeddings.259

4.1.1 Experimental Setup260

Dataset. We use CelebA (Liu et al., 2015) and261

CUB (Wah et al., 2011) datasets. The CelebA262

dataset contains over 200K face images, each an-263

notated with 40 attributes. The CUB dataset con-264

tains over 11K bird images, which are annotated265

with 312 attributes. Three attributes are chosen to266

create eight categories based on their presence or267

absence. For the CelebA dataset, each category268

comprises 100 randomly selected images, resulting269

in a total of 800 images. For the CUB dataset, all270

images are used. For more details, please refer to271

Appendix A.1.272

Image Retrieval with Preference. We construct273

a text prompt containing the selected attributes.274

with blonde hair: 1.0
wearing eyeglasses: 1.0

with blonde hair: 2.0
wearing eyeglasses: 0.2

Figure 3: Results of preference retrieval using the text
prompt ‘a photo of a woman with blonde hair,
wearing eyeglasses’. The first row shows density
plots with the retrieval order, and the second row visual-
izes the ratio of retrieved samples within each category.
The left column shows results from a plain text prompt,
whereas the right column depicts the results when the
weights are adjusted. Best viewed in color.

For instance, the text prompt becomes ‘a photo 275

of a woman with blonde hair, wearing 276

eyeglasses’ for the attributes female, blonde hair, 277

and eyeglasses. Using the text prompt and attribute 278

weights, we obtain a corresponding text embedding 279

through SToRI, followed by sorting the images in 280

descending order of similarity between their image 281

embeddings and the text embedding. 282

Model. Most experiments are conducted using 283

CLIP ViT-L/14 (Radford et al., 2021), unless oth- 284

erwise specified. Experiments are also conducted 285

using various VLMs, including OpenCLIP (Cherti 286

et al., 2023) and MetaCLIP (Xu et al., 2023). 287

Reweighting is applied from the 7th block. 288

4.1.2 Metric for Preference Retrieval 289

Our primary focus is on observing how adjusting 290

weights for specific semantic elements affects the 291

image retrieval order. To facilitate this comparison, 292

we report the average precision score (AP) and pre- 293

cision at rank k (Pk) for images with the attributes 294

influenced by the adjusted weights. For instance, 295

when we modify the weight on ‘eyeglasses’, we 296

consider images with eyeglasses as positive sam- 297

ples and calculate AP and Pk. 298

Additionally, we introduce a novel metric to 299

quantify priority in preference retrieval. We gener- 300
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a photo of a woman with blonde hair, wearing eyeglasses
1-

CLIP ViT-L/14CLIP ViT-B/16 OpenCLIP ViT-L/14 MetaCLIP ViT-L/14

Figure 4: AUC scores from preference retrieval with varying weights. The text prompt is ‘a photo of a woman
with blonde hair, wearing eyeglasses’. The weights on ‘with blonde hair’ and ‘wearing eyeglasses’
are w and (1− w), respectively, which are adjusted simultaneously in opposite direction. Best viewed in color.

CelebA CUB
AP P400 AP

Plain (w = 1.0) 0.752±0.089 0.679±0.084 0.154±0.070

Emphasized 0.773±0.084 0.697±0.068 0.183±0.079
(w = 1.5) ∆0.021±0.011 ∆0.017±0.009 ∆0.029±0.018

De-emphasized 0.709±0.096 0.648±0.072 0.116±0.057
(w = 0.5) ∆-0.043±0.021 ∆-0.031±0.031 ∆-0.038±0.021

Table 1: Retrieval performance on attributes of the
CelebA and CUB datasets with CLIP ViT-L/14. The
results show mean values with standard deviation across
multiple controlled attributes.

ate a line plot illustrating the proportion of images301

retrieved for each attribute combination up to the302

n-th retrieved image (see Figure 4), and calculate303

the Area Under the Curve (AUC) for each plotted304

curve. A higher AUC value suggests a faster re-305

trieval of associated visual attribute set, indicating306

a higher priority in the retrieval process.307

4.1.3 Results308

Initially, we select three attributes, female, blonde309

hair, and eyeglasses, and observe the ordering of310

image retrieval as shown Figure 3. With the plain311

text embedding, the initial bin predominantly con-312

tains images featuring all selected attributes, fol-313

lowed by a prevalence of images from the ‘female,314

no blonde hair, eyeglasses’ category. When the315

weight on ‘with blonde hair’ increases and316

on ‘wearing eyeglasses’ decreases, images be-317

longing to ‘female, blonde hair, no eyeglasses’ are318

retrieved more prominently. This suggests that the319

‘blonde hair’ gains more representation in the text320

embedding through reweighting. The groups with321

two or more mismatched attributes still rank lower,322

indicating that our method preserves the meanings323

of the original text while appropriately reflecting324

the intention of emphasis and de-emphasis. 325

We conduct quantitative validation across vari- 326

ous text prompts. Table 1 presents AP and P400 327

scores while controlling weights on attributes. We 328

generate image pools and text prompts from three 329

selected attributes. The reported scores are based 330

on adjusting the weight for one specific attribute, 331

considering the images containing that attribute 332

as positive samples. Various combinations of at- 333

tributes, totaling 20 text prompts for the CelebA 334

dataset and 58 text prompts for the CUB dataset, 335

are used to obtain scores, and their averages and 336

standard deviations are reported. Further details are 337

in Appendix A.1. The results show that modifying 338

the weight of tokens corresponding to a specific 339

attribute in the text prompt results in faster retrieval 340

of images with that attribute (both scores become 341

higher) when the weight increases and slower re- 342

trieval when decreases (both scores become lower). 343

This shows that adjusting the weight influences the 344

creation of text embeddings, effectively highlight- 345

ing or downplaying the corresponding attribute. 346

Additional results on more complex scenarios, in- 347

cluding those with MetaCLIP, are in Appendix B.2. 348

Figure 4 demonstrates the effects of weight 349

control on the AUC scores for the retrieval of 350

each category. As the weight assigned to the 351

‘with blonde hair’ increases and the weight 352

for ‘wearing eyeglasses’ decreases, there is a 353

noticeable rise in the AUC scores for the two cate- 354

gories that have blonde hair but no eyeglasses. In 355

contrast, categories characterized by the absence 356

of blonde hair and the presence of eyeglasses see 357

a reduction in their AUC scores. When the weight 358

assigned to ‘with blonde hair’ is set to zero, 359

the differentiation between the ‘female, blonde hair, 360

eyeglasses’ and ’female, no blonde hair, eyeglasses’ 361

categories is effectively eliminated, resulting in re- 362
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Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 75.95±0.03 55.40±0.27 81.16±0.44 68.10±0.16 94.28±0.11 90.30±0.10 77.53
TaskRes Base+CuPL 74.69±0.04 65.66±0.82 90.07±0.79 73.52±0.49 95.89±0.57 90.35±0.36 81.70
SToRI (Ours) Base+CuPL 76.68±0.15 65.82±0.98 89.05±0.58 72.88±0.20 96.27±0.67 91.34±0.12 82.01

2shot
TaskRes Base 76.03±0.00 55.52±0.48 81.50±0.62 69.53±0.14 94.54±0.05 90.49±0.05 77.93
TaskRes Base+CuPL 75.55±0.04 66.45±1.57 92.38±0.69 75.69±0.29 96.96±0.27 90.64±0.38 82.95
SToRI (Ours) Base+CuPL 77.36±0.23 66.37±1.01 91.56±0.60 75.75±0.04 97.15±0.13 91.49±0.24 83.28

4shot
TaskRes Base 76.16±0.02 55.85±0.12 81.65±0.28 71.15±0.09 94.58±0.09 90.44±0.05 78.31
TaskRes Base+CuPL 76.42±0.03 70.76±1.12 93.22±0.37 77.20±0.08 97.40±0.21 91.45±0.15 84.41
SToRI (Ours) Base+CuPL 77.90±0.05 69.03±1.48 92.46±0.09 76.89±0.02 97.39±0.08 91.68±0.07 84.22

8shot
TaskRes Base 76.87±0.05 58.14±0.07 86.82±0.19 74.52±0.07 96.17±0.08 91.12±0.07 80.60
TaskRes Base+CuPL 77.97±0.02 73.42±0.86 98.17±0.25 77.54±0.16 97.00±0.28 91.27±0.11 85.89
SToRI (Ours) Base+CuPL 78.38±0.13 72.03±0.60 97.51±0.43 78.34±0.13 96.98±0.29 90.50±0.05 85.62

16shot
TaskRes Base 77.34±0.03 61.47±0.16 90.85±0.21 76.01±0.24 96.75±0.07 91.30±0.10 82.29
TaskRes Base+CuPL 79.18±0.10 77.05±0.65 99.07±0.11 78.98±0.10 97.65±0.23 91.49±0.08 87.24
SToRI (Ours) Base+CuPL 79.03±0.13 74.94±0.10 98.55±0.23 79.61±0.11 97.43±0.20 91.18±0.10 86.79

Table 2: Accuracy (%) on few-shot classification with CLIP ViT-L/14. The results include mean values with
standard deviation across three runs. The results of TaskRes are reproduced. The best performance is indicated in
bold, while the second-best performance is underlined.

markably similar AUC scores. The effect of weight363

control is consistent across different CLIP mod-364

els, such as CLIP ViT-B/16, CLIP ViT-L/14, Open-365

CLIP (Cherti et al., 2023), and MetaCLIP (Xu et al.,366

2023). This shows that SToRI enables the emphasis367

or de-emphasis of specific semantics within a text368

when constructing text embeddings across various369

models, showcasing its versatility.370

4.2 Data-driven Control371

We train weights that best represent each dataset372

for the image classification task.373

4.2.1 Experimental Setup374

Datasets. We use various benchmarks for few-375

shot learning i.e., ImageNet (Deng et al., 2009),376

DTD (Cimpoi et al., 2014), SUN397 (Xiao377

et al., 2010), Flowers102 (Nilsback and Zisser-378

man, 2008), Caltech101 (Fei-Fei et al., 2004), and379

Food101 (Bossard et al., 2014). We use CUB (Wah380

et al., 2011) dataset for analysis on interpretation.381

Text Prompts. We use text descriptions for each382

class which are provided by CuPL (Pratt et al.,383

2023). For the ImageNet and SUN397 datasets,384

due to the large number of total prompts, we use 10385

text prompts for each class, selected based on their386

similarity with training set. We average the text387

embeddings from multiple text prompts to build388

one text embedding for each class. We refer the text389

embedding for image classifier as a text classifier.390

Model. The experiments are conducted using391

CLIP and MetaCLIP ViT-L/14, with reweighting392

applied from the 7th block onward.393

Implementation Details. We set the logarithm of 394

the weight as the parameter to be trained in order to 395

constrain the weights to non-negative values. Each 396

text prompt has its own individual set of weights. 397

4.2.2 Few-shot Classification 398

Experimental Details. Following TaskRes (Yu 399

et al., 2023), we evaluate our method by training 400

with 1/2/4/8/16 examples (shots) per class from 401

the training sets, respectively, and testing on the 402

comprehensive test sets. For further details, please 403

refer to Appendix A.2. 404

Comparison. To evaluate the capability of the text 405

classifier obtained through SToRI to perform few- 406

shot image classification, we conduct a compara- 407

tive analysis of the prediction performance between 408

SToRI and TaskRes (Yu et al., 2023). TaskRes is 409

a recent method for few-shot image classification, 410

which trains class-specific residual embedding xc 411

added to initial text embedding tc to create new 412

classifier tc + αxc for each class c. Here, tc de- 413

notes the text embedding derived from a given text 414

prompt for class c, and α is a hyperparameter for 415

scaling. xc is trained with cross-entropy loss (re- 416

fer to Eq. (3)). Such residual embeddings exist in 417

uninterpretable space, rendering the final classifier 418

also uninterpretable. In contrast, SToRI trains only 419

weights, indicating the degree to which each se- 420

mantic element within a given sentence should be 421

emphasized, thus maintaining interpretability. 422

Ensuring interpretability, SToRI achieves per- 423

formance comparable to TaskRes, as presented in 424

Table 2. “Base” refers to custom text prompts in- 425
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Gauzy Honeycombed

Banded Cobwebbed Lined

Zigzagged1

0

Figure 5: Text prompts and corresponding weights are provided as examples after training. The intensity of the red
shading reflects the weight assigned, with darker shades indicating higher weights. For visualization, the weights
are normalized to sum up 1. The figures on the right display an example image for each class.

Blue headed Vireo   vs  Warbling Vireo

White eyed Vireo

Warbling Vireo

Blue headed Vireo    vs  White eyed Vireo 1

0

Blue headed Vireo

Figure 6: Text prompts and their corresponding weights are presented after training with the CUB dataset. The
more intense the shade of red, the greater the weight assigned. In each scenario, the text classifier is trained to
discriminate two classes. The weights for the same text prompts vary depending on the class to be distinguished.

cluding class names, which are generally used in426

few-shot image classification tasks with CLIP (Yu427

et al., 2023). We use both base and CuPL text428

prompts, with weights trained exclusively on CuPL.429

In the 1/2-shot setting, SToRI generally outper-430

forms TaskRes across most datasets. In the 4/8/16-431

shot setting, it exhibits only a marginal difference,432

achieving nearly similar performance. This indi-433

cates that SToRI provides substantial flexibility to434

text embeddings, enabling it to be an enhanced435

text classifier that effectively represents image data.436

Please refer to Appendix B.3 for the MetaCLIP437

results, which align closely with those from CLIP.438

4.2.3 Interpretability439

Interpretation with Trained Weights. After train-440

ing for an image classification task, we analyze441

the trained weights. Figure 5 presents examples of442

text prompts and the corresponding trained weights443

for each token within the DTD dataset. We have444

crafted the text prompts. We can discern that445

banded is associated with an emphasis on words446

like multiple and stripes. For gauzy, terms such447

as translucent and light are emphasized, and448

cobwebbed are notably associated with the word449

spider web. As illustrated by the images corre-450

sponding to each category, high weight values are451

assigned to important semantic tokens. This shows 452

that SToRI can learn text embeddings that effec- 453

tively represent the data in a data-driven control 454

context, and the trained weights can offer novel 455

insights for interpretation. 456

Does Optimization Occur in Interpretable 457

Space? To ensure interpretability of text embed- 458

dings through data-driven control optimization, we 459

conduct two experiments: an analysis on trained 460

classifiers with different class compositions and an 461

assessment of the effect of nonsensical text tokens. 462

The role of classifier is to distinguish one class 463

from others. Thus, even for classifiers within the 464

same class, the critical distinguishing features can 465

vary depending on the alternative categories be- 466

ing compared. Figure 6 shows two text classifiers 467

trained on the CUB dataset for two distinct pairs: 468

Blue headed Vireo versus Warbling Vireo, and Blue 469

headed Vireo versus White eyed Vireo. The text 470

prompts for each class are generated with the at- 471

tribute labels from the dataset. When contrast- 472

ing Blue headed Vireo with the Warbling Vireo, 473

striped is attributed a high weight. However, 474

when distinguished from the White eyed Vireo, the 475

weight on striped becomes low and grey is at- 476

tributed a high weight. Note that White eyed Vireo 477

also has striped wings. These terms highlight the 478
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Text Caltech101 SUN397

CuPL 97.42±0.23 79.54±0.12
CuPL+Nonsensical tokens 97.30±0.15 79.11±0.10

Table 3: Accuracy (%) on 16-shot image classification.

key distinctions between each pair of classes.479

Table 3 reports the 16-shot classification per-480

formance when nonsensical text tokens are added.481

We randomly sample five tokens from the set of482

three rare tokens (Ruiz et al., 2023), namely ‘sks’,483

‘pll’, and ‘ucd’, and add them to the end of all484

the original texts from CuPL. The inclusion of rare485

tokens does not contribute meaningful information486

to build a text classifier; it simply extends the num-487

ber of tokens and trainable parameters. As a result,488

the performance when rare tokens are added did489

not surpass that without their addition. This demon-490

strates that adoption of the tokens without semantic491

meaning does not contribute to performance im-492

provement. These findings support that data-driven493

control, achieved through attention modulation for494

tokens with semantic meaning, facilitates the cre-495

ation of text embeddings that effectively represent496

the data, thereby ensuring the interpretability of497

text embeddings.498

5 Related Works499

VLMs and Interpretability. In recent vision500

tasks, interpretative analysis in natural language501

becomes popular rather than relying solely on vi-502

sual form. For this purpose, VLMs have com-503

monly been employed to connect the image feature504

space with the text feature space used for expla-505

nation. Kim et al. (2023) utilized VLMs to get506

concept activation vector (Kim et al., 2018) in vi-507

sion model. Yuksekgonul et al. (2023) and Oikari-508

nen et al. (2023) leveraged VLMs to determine509

whether concepts defined in text are present in im-510

ages. Menon and Vondrick (2023) formulated text511

prompts for image classes using Large Language512

Models and employed them for zero-shot classifica-513

tion with VLMs. These approaches simply utilize514

the shared embedding space of existing VLMs. In515

contrast, our method introduces a new dimension516

of interpretability by providing controllability over517

the focus of textual information, thereby enhancing518

its interpretative utility.519

Few-shot Image Classification. VLMs exhibit520

promising performance in image recognition tasks,521

leading to the development of various few-shot522

learning approaches. CoOp (Zhou et al., 2022b) 523

and CoCoOp (Zhou et al., 2022a) are represen- 524

tative methods based on prompt tuning. Tip- 525

Adapter (Zhang et al., 2022) integrates an extra 526

adapter unit following the encoders. TaskRes (Yu 527

et al., 2023) involves training task-specific resid- 528

ual text embeddings for each category. These ap- 529

proaches incorporate extra trainable parameters 530

outside an interpretable framework, thereby not 531

ensuring interpretability. 532

Enrich Textual Representation. In text-to-image 533

generation, several approaches have been devel- 534

oped to enrich textual representation. Prompt 535

weighting1 is a common technique in Stable Dif- 536

fusion (Rombach et al., 2022), which multiplies 537

weights to individual output token embeddings 538

prior to supplying them to the image generation 539

model. Prompt-to-Prompt controls cross-attention 540

between noise images and text embeddings (Hertz 541

et al., 2022). Additionally, Ge et al. (2023) pro- 542

posed a richer text editor that allows users to de- 543

fine various input conditions for image generation, 544

such as coloring and footnotes. A similar approach 545

has been explored in text generation. Zhang et al. 546

(2024) introduced a method that enables large lan- 547

guage models to process text with user-defined em- 548

phasis by reducing attention to unspecified parts 549

of the text. While prior works have focused on 550

image and text generation, typically using only 551

user-defined attention, our work innovates by de- 552

veloping enriched textual representations for image 553

recognition and proposing an approach for deriving 554

these representations from data. This distinctive ap- 555

proach establishes a new avenue for incorporating 556

linguistic context in visual understanding. 557

6 Conclusion 558

We propose SToRI, a framework that builds inter- 559

pretable text embeddings by reweighting semantic 560

tokens in VLMs. This approach is a novel means of 561

adapting the explanatory power of natural language 562

in vision tasks. Our user-driven and data-driven 563

controls empower users to dictate the emphasis 564

on specific terms and facilitate the tuning of text 565

embeddings for classification while ensuring inter- 566

pretability. Our approach can be easily applied to 567

any model based on attention, and has potential 568

scalability in various vision tasks and multi-modal 569

tasks, given the widespread use of VLMs. 570

1https://huggingface.co/docs/diffusers/using-
diffusers/weighted_prompts

8



7 Limitations571

Our method is focusing on controlling the attention572

of each semantic element within a given natural573

language sentence, rather than generating new tex-574

tual information. Therefore, one of the limitations575

of our method is its dependence on the richness and576

quality of the given texts. For example, when using577

data to train a classifier, if the given text lacks suffi-578

cient rich information, adjusting the attention may579

not sufficiently enlarge the text embedding space.580

This difficulty in expanding the embedding space581

makes it challenging to establish a basis for im-582

proving classification performance and explaining583

data.584

Additionally, we do not consider the inherent585

black box characteristics of VLMs. However, if586

this model has undergone sufficient testing and is587

deemed reliable, the advantage of our method lies588

in additional optimization and control being in a589

reliable and controllable space.590

8 Ethics Statement591

Our goal is to employ contollability when building592

text embeddings. This enables for users to em-593

phasize or deemphasize a certain part of textual594

information and improving text embeddings for vi-595

sion tasks, ensuring interpretability. We believe596

this work can be used to build trustful AI systems597

by providing natural language interpretation.598

If the VLMs in use are biased towards the at-599

tributes targeted for reweighting, it may also affect600

other related attributes. The best approach to ad-601

dress this issue is to use VLMs that have been602

trained to reduce bias. However, if a biased VLM603

must be used, designing text prompts that can help604

mitigate the bias could be a potential strategy to605

consider.606
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A Experimental Details 807

A.1 User-driven Control 808

CelebA. We initially select 11 attributes with a 809

zero-shot classification performance of AUROC 810

0.75 or higher with CLIP on test set. For zero-shot 811

classification, we create text prompt for each at- 812

tribute and calculate AUROC using the similarity 813

between the test set images and the text prompt. 814

For example, when evaluating the attribute smiling, 815

we use the text prompt ‘a photo of a smiling 816

person’. Among the identified 11 attributes, we 817

create combinations of three and five attributes, 818

each including either female or male. For the com- 819

binations of three attributes, we filter out the com- 820

binations where all eight categories contain fewer 821

than 100 images. We conduct image retrieval with 822

total 20 numbers of text prompts based on the com- 823

binations of attributes, as shown in Table 8. Details 824

on combinations of five attributes can be found in 825

Appendix B.2. 826

CUB. Following the filtering process described by 827

Koh et al. (2020), we initially retain 112 attributes. 828

We then select 15 attributes that achieve a zero- 829

shot classification performance with AUROC 0.75 830

or higher using CLIP. Notably, the attribute labels 831

in the CUB dataset are finely detailed and related 832

to various parts of birds, which poses a challenge 833

for CLIP in differentiation. With the chosen at- 834

tributes, we form combinations of three attributes 835

that do not share the same color, yielding 58 com- 836

binations. The text prompt we use is ‘a photo of 837

a bird, which has [text for attribute1], 838

has [text for attribute2], and has [text 839

for attribute3]’. Table 9 presents 15 attributes 840

and their corresponding texts. 841

A.2 Data-driven Control 842

We follow the data split outlined in CoOp (Zhou 843

et al., 2022b), conducting tests on the official test 844

set of each dataset and the validation set of the 845

ImageNet dataset. We use Adam optimizer with 846

the cosine learning rate scheduler (Loshchilov and 847

Hutter, 2017) following the training scheme of 848

TaskRes (Yu et al., 2023). For CLIP, the learning 849

rate is set to 1×10−2 for the ImageNet and SUN397 850

datasets, 0.1 for the Food101 dataset and for 8/16- 851

shot scenarios on the DTD and Flower102 datasets, 852

and 5× 10−2 for the other datasets. For MetaCLIP, 853

the learning rate is set to 1×10−2 for the ImageNet 854

and SUN397 datasets, 0.1 for Flower102 dataset, 855

and 5 × 10−2 for the other datasets. The weight 856
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Modified Prompt WeightingSToRI

(a) a photo of a woman with blonde hair, wearing eyeglasses
1-

(b) a photo of a woman with blonde hair, wearing eyeglasses

weight on ‘with blonde hair’ weight on ‘with blonde hair’

Figure 7: AUC scores from preference retrieval with
varying weights. The text prompt is ‘a photo of a
woman with blonde hair, wearing eyeglasses’.
(a) The weights on ‘with blonde hair’ and ‘wearing
eyeglasses’ are w and (1 − w), respectively, which
are adjusted simultaneously in opposite direction. (b)
Only the weight on ‘with blonde hair’ is adjusted.
Best viewed in color.

decay is set to 0 for both models. When reproduc-857

ing TaskRes, the learning rate is set to 2× 10−5 for858

the ImageNet dataset and 2 × 10−4 for the other859

datasets. The weight decay is set to 0.005 and α860

is set to 0.5. 1/2/4-shot training is done with 100861

epoch and the other is done with 200 epoch for all862

datasets. The training is conducted with a batch863

size of 256. All experiments are implemented using864

PyTorch (Paszke et al., 2017), and we use official865

code base released by Yu et al. (2023) to reproduce866

TaskRes.867

We use all the datasets and models solely for868

academic research purposes and do not employ869

them for improper intentions.870

B Additional Experimental Results871

B.1 Comparison to Prompt Weighting872

We compare SToRI with prompt weighting, a tech-873

nique often used in text-to-image generation via874

Stable Diffusion (Rombach et al., 2022). Prompt875

weighting multiplies weights by the difference in876

output token embeddings when provided with a877

text prompt versus an empty one. Unlike Stable878

Diffusion, which utilizes all output token embed-879

dings, we aim to build a vector form of text em-880

bedding from [EOS] token. Therefore, we modify881

AP P400

Plain (w = 1.0) 0.752±0.089 0.679±0.070

Emphasized

Attribute 0.754±0.085 0.681±0.064
with w = 1.5 ∆0.003±0.017 ∆0.002±0.016

Attribute 0.776±0.082 0.698±0.064
with w = 2.0 ∆0.024±0.019 ∆0.019±0.016

Table 4: Retrieval performance on attributes of the
CelebA dataset when two attributes are assigned dif-
ferent weights. The results show mean values with
standard deviation across multiple controlled attributes.

prompt weighting for use at an intermediate layer, 882

which we refer to as modified prompt weighting, 883

and compare it with SToRI on preference-based 884

image retrieval. 885

As depicted in Figure 7(a), the modified prompt 886

weighting influences the significance of tokens sim- 887

ilarity to SToRI. However, the change in AUC is not 888

gradual; it remains nearly static when weights fall 889

below 0.5 or above 1.5. As shown in Figure 7(b), 890

even when the weight for ‘with blonde hair’ 891

increases significantly, SToRI consistently raises 892

the AUC for the category ‘female, blonde hair, 893

no eyeglasses’. In contrast, the AUC with mod- 894

ified prompt weighting initially increases but sub- 895

sequently decreases, indicating augmented weight 896

fails to heighten emphasis. This could stem from 897

the scaling of intermediate embeddings which, 898

when overextended, surpasses the scale that the 899

text encoder is pre-trained to deal with, lessen- 900

ing the intended effect of emphasis. SToRI, on 901

the other hand, adjusts normalized attention scores 902

within the self-attention mechanism, ensuring that 903

as weight escalates, the relevant tokens consistently 904

obtain attention scores approaching 1, thus preserv- 905

ing the desired impact. 906

B.2 Additional Results for Preference-based 907

Retrieval 908

We assess SToRI in the context of preference-based 909

retrieval by assigning different weights to multiple 910

attributes to explore how varying weight magni- 911

tudes affect emphasis. We create combinations of 912

three attributes and assign them different weights: 913

one attribute is assigned a weight of 2.0, another 914

a weight of 1.5, and the remaining one a weight 915

of 1.0. We then compare the retrieval performance 916

for attributes with weights of 1.5 and 2.0. Table 4 917

demonstrates that the retrieval performance of the 918

attribute with a weight of 1.5 increases, while the 919
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CelebA CUB
AP P400 AP

Plain (w = 1.0) 0.753±0.088 0.681±0.062 0.148±0.055

Emphasized 0.774±0.086 0.699±0.063 0.195±0.074
(w = 1.5) ∆0.021±0.011 ∆0.018±0.009 ∆0.047±0.026

De-emphasized 0.709±0.087 0.647±0.057 0.098±0.035
(w = 0.5) ∆-0.044±0.022 ∆-0.035±0.016 ∆-0.051±0.026

Table 5: Retrieval performance on attributes of the
CelebA and CUB datasets with MetaCLIP ViT-L/14.
The results show mean values with standard deviation
across multiple controlled attributes.

AP P80

CLIP

Plain (w = 1.0) 0.684±0.097 0.627±0.062

Emphasized 0.705±0.099 0.643±0.069
(w = 1.5) ∆0.021±0.009 ∆0.015±0.012

De-emphasized 0.643±0.086 0.601±0.054
(w = 0.5) ∆-0.041±0.019 ∆-0.026±0.012

MetaCLIP

Plain (w = 1.0) 0.689±0.074 0.631±0.062

Emphasized 0.713±0.078 0.646±0.062
(w = 1.5) ∆0.023±0.008 ∆0.015±0.011

De-emphasized 0.644±0.064 0.602±0.057
(w = 0.5) ∆-0.045±0.020 ∆-0.029±0.014

Table 6: Retrieval performance on the CelebA dataset
with CLIP and MetaCLIP ViT-L/14 when five attributes
are combined. The results show mean values with stan-
dard deviation across multiple controlled attributes.

attribute with a weight of 2.0 shows an even greater920

increase in retrieval performance. This indicates921

that when semantic tokens are assigned different922

weights, the emphasis effect increases proportion-923

ally with the assigned weights compared to plain924

text. This highlights the significance of the magni-925

tude of weights.926

Table 5 presents the results on MetaCLIP ViT-927

L/14 when adjusting the weight of one attribute928

among three within combinations of three attributes929

(as outlined in Section 4.1). The results demon-930

strate that emphasizing or de-emphasizing an at-931

tribute in MetaCLIP leads to increased or decreased932

retrieval performance for images with the speci-933

fied attribute, showcasing the scalability of SToRI934

across models.935

To evaluate SToRI in more complex attribute936

combinations, we perform retrieval using com-937

binations of five attributes. Only the following938

five attributes result in images for all 32 possible939

categories formed by combinations of the five at-940

tributes: male or female, smiling, bangs, gray hair,941

Method Plain Text Embeddings SToRI

Relative Run Time 1.00 1.02

Table 7: Relative compuational cost

and eyeglasses. We use two text prompts for male 942

and female. We randomly select five images for 943

each category, resulting in a total of 160 images. 944

Table 6 presents the results on CLIP and Meta- 945

CLIP ViT-L/14 when adjusting the weight of one 946

attribute among five. These findings underscore a 947

consistent trend of increasing retrieval scores when 948

attributes are emphasized and decreasing scores 949

when attributes are de-emphasized, across different 950

attribute combinations. 951

B.3 Additional Results for Few-shot 952

Classification 953

Table 10 compares few-shot classification perfor- 954

mances of SToRI and TaskRes (Yu et al., 2023) on 955

MetaCLIP ViT-L/14. Similar to the results on CLIP, 956

the results show that SToRI achieves performance 957

comparable to TaskRes, which uses uninterpretable 958

classifiers. These experiments further support our 959

findings, demonstrating our approach’s effective- 960

ness across models and highlighting its adaptability 961

and scalability. 962

B.4 Additional Examples for Interpretation 963

Figures 8 and 9 present examples of text prompts 964

and the corresponding trained weights for each 965

token within the ImageNet and DTD datasets, re- 966

spectively. Higher weights are assigned to word 967

tokens that effectively represent images. 968

B.5 Computational Cost 969

We calculate runtime for applying SToRI compared 970

to plain text embeddings, as reported in Table 7. 971

The experiment is done on RTX A5000 and the 972

reported values are mean values from 28K runs. 973

Since SToRI only multiplies predefined weights 974

when calculating attention scores, the runtime is 975

not significantly different from that of plain text 976

embeddings. 977

B.6 Position for Reweighting 978

Figure 10(a) compares the changes in AUC scores 979

when we start reweighting at various positions. The 980

reweighting process is applied to all blocks follow- 981

ing a specific block. There is not a significant differ- 982

ence when we initiate token reweighting at interme- 983

diate positions. However, when token reweighting 984
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is applied to all blocks (from 1st block), a sharp985

bend is observed at 0.1 when the weight decreases.986

This is unlike other cases, which show a smooth987

decrease or increase in all scenarios. It is presumed988

that this abrupt occurrence is due to tokens in the989

specified position being completely disregarded990

when the weight becomes 0, leading to sudden991

gaps in those areas.992

Figure 10(b) illustrates that when reweighting is993

applied only within a single specific intermediate994

block, the effects of emphasis or de-emphasis are995

scarcely observed. This suggests that if reweight-996

ing is confined within a single intermediate block,997

its effects in the subsequent blocks are counter-998

acted, indicating that it should be applied in the999

subsequent blocks to emphasize or de-emphasize1000

semantic tokens.1001

C Demonstration of Preference-based1002

Image Retrieval1003

Figure 11 shows a practical demo application of1004

SToRI. It enables users to actively adjust image1005

rettrieval results by tweaking weights in real time.1006
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Selected Attributes Text prompts

Female/Male, Smiling, Bangs a photo of a smiling [woman/man] with bangs
Female/Male, Smiling, Blond Hair a photo of a smiling [woman/man] with blond hair
Female/Male, Smiling, Gray Hair a photo of a smiling [woman/man] with gray hair
Female/Male, Smiling, Wearing Hat a photo of a smiling [woman/man] wearing hat
Female/Male, Smiling, Eyeglasses a photo of a smiling [woman/man] wearing eyeglasses
Female/Male, Bangs, Wearing Hat a photo of a [woman/man] with bangs, wearing hat
Female/Male, Bangs, Eyeglasses a photo of a [woman/man] with bangs, wearing eyeglasses
Female/Male, Blond Hair, Eyeglasses a photo of a [woman/man] with blond hair, wearing eyeglasses
Female/Male, Gray Hair, Eyeglasses a photo of a [woman/man] with gray hair, wearing eyeglasses
Female/Male, Wearing Hat, Eyeglasses a photo of a [woman/man] wearing hat and eyeglasses

Table 8: All combinations of attributes and corresponding text prompts on the CelebA dataset.

Attributes Texts

has_bill_shape::hooked_seabird hooked seabird bill
has_shape::duck-like duck-like shape
has_crown_color::blue blue crown
has_forehead_color::blue blue forehead
has_wing_color::yellow yellow wing
upperparts_color::yellow yellow upperparts
has_underparts_color::yellow yellow underparts
has_back_color::yellow yellow back
has_breast_color::yellow yellow breast
has_throat_color::yellow yellow throat
has_forehead_color::yellow yellow forehead
has_nape_color::yellow yellow nape
has_belly_color::yellow yellow belly
has_primary_color::yellow yellow color
has_crown_color::yellow yellow crown

Table 9: Candidates of attributes and corresponding texts on the CUB dataset.

Method Text ImageNet DTD Flowers102 SUN397 Caltech101 Food101 AVG

1shot
TaskRes Base 79.38±0.02 67.91±0.26 83.75±0.16 74.89±0.08 97.21±0.15 90.63±0.04 82.29
TaskRes Base+CuPL 79.59±0.22 72.79±0.54 92.26±0.10 76.16±0.2 97.59±0.19 90.28±0.15 84.78
SToRI (Ours) Base+CuPL 79.44±0.17 72.66±0.73 92.38±0.75 76.05±0.38 97.46±0.23 90.12±0.22 84.68

2shot
TaskRes Standard 79.46±0.01 67.93±0.18 84.03±0.13 75.71±0.13 97.48±0.07 90.83±0.03 82.57
TaskRes Base+CuPL 80.23±0.14 74.27±1.08 94.42±0.08 77.64±0.28 98.20±0.08 90.68±0.22 85.91
SToRI (Ours) Base+CuPL 79.98±0.16 73.76±1.38 95.09±0.45 78.21±0.27 98.04±0.02 90.57±0.18 85.94

4shot
TaskRes Standard 79.58±0.00 68.34±0.22 84.07±0.12 76.66±0.06 97.44±0.06 90.82±0.02 82.82
TaskRes Base+CuPL 80.68±0.04 76.91±1.24 94.94±0.18 78.88±0.11 98.16±0.11 90.85±0.07 86.74
SToRI (Ours) Base+CuPL 80.53±0.09 75.91±0.39 96.28±0.31 79.38±0.14 98.01±0.33 90.73±0.13 86.81

8shot
TaskRes Standard 80.03±0.08 69.7±0.45 90.12±0.07 78.87±0.04 97.84±0.10 91.30±0.03 84.64
TaskRes Base+CuPL 81.30±0.12 78.88±0.10 98.55±0.17 78.87±0.17 98.22±0.07 90.81±0.18 87.77
SToRI (Ours) Base+CuPL 81.01±0.18 78.39±0.27 98.04±0.05 80.24±0.09 98.23±0.10 90.71±0.16 87.77

16shot
TaskRes Standard 80.46±0.01 72.03±0.46 93.72±0.13 79.92±0.13 98.00±0.08 91.47±0.05 85.93
TaskRes Base+CuPL 81.78±0.02 81.28±0.82 99.22±0.12 79.92±0.17 98.47±0.08 91.19±0.11 88.65
SToRI (Ours) Base+CuPL 81.40±0.02 79.89±0.70 98.58±0.06 81.43±0.16 98.47±0.12 91.25±0.04 88.50

Table 10: Accuracy (%) on few-shot classification with MetaCLIP ViT-L/14. The results include mean values with
Standard deviation across three runs. The results of TaskRes are reproduced. The best performance is indicated in
bold, while the second-best performance is underlined.
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Red king crabGreat grey owl

Tiger shark Electrical ray

Figure 8: Text prompts and corresponding weights on the ImageNet dataset are provided as examples after training
with data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example
image for each class.

1

0

PerforatedSwirlyPolka-dotted

Bubbly Dotted Cracked

Figure 9: Text prompts and corresponding weights on the DTD dataset are provided as examples after training with
data. For visualization, the weights are normalized to sum up 1. The figures on the right display an example image
for each class.

From 2nd blockFrom 1st block From 7th block
(a)

At 7th block
(b)

Figure 10: The change of AUC scores for preference retrieval with weight control when diversifying blocks that
semantic token reweighting is applied. (a) The results when reweighting is applied within the subsequent blocks as
well. (b) The result when reweighting is applied within a single block.
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(a) Image retrieval result when using 
"Eiffel Tower surrounded by trees" as 
text prompts with OpenClip.

(b) Adjustment in retrieval with 
reduced weight on "trees", eliminating 
images where the Eiffel Tower is small 
despite many trees.

(c) A modified retrieval where the 
weight on "Eiffel Tower" is increased, 
enhancing the prominence of the Eiffel 
Tower even amidst many trees

Figure 11: Demonstration of a real-world, functioning demo application using OpenCLIP alongside SToRI, where
users can dynamically manipulate image retrieval outcomes through targeted weight adjustments. The application
effectively showcases how identical textual prompts can yield substantially different visual results based on user-
specified weight modifications.
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