
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT DOES YOUR BENCHMARK REALLY MEASURE?
A FRAMEWORK FOR ROBUST INFERENCE OF AI
CAPABILITIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluations of generative models on benchmark data are now ubiquitous, and their
outcomes critically shape public and scientific expectations of AI’s capabilities.
Yet skepticism about their reliability continues to grow. How can we know that a
reported accuracy genuinely reflects a model’s underlying performance? Although
benchmark results are often presented as direct measurements, in practice they are
inferences: treating a score as evidence of capability already presupposes a theory
of what capability is and how it manifests in a testing environment.
We formalize this observation by proposing a principled framework that treats
evaluation as inference: first, articulate a theory of capability, and then derive
estimators that target this quantity. This perspective is well established in fields
such as psychometrics but remains underdeveloped in AI evaluation, where implicit
assumptions often go unexamined. As a proof of concept, we apply our framework
to a concrete challenge that undermines reliability: model sensitivity to perturba-
tions. We introduce several capability models and show how various sources of
uncertainty (e.g., from finite samples and perturbations) arise within these models
as nuisance terms of the latent capability itself. We then use standard tools to derive
methods that infer capability while accounting for these sources of uncertainty.
Our results illustrate how a capability-centered clarifies what evaluations measure
and how to adjust for known sources of unreliability. More broadly, our framework
yields evaluations that are transparent, grounded on cognitive theory, and better
aligned with the scientific claims they aim to support.

Part 1: Specify a
theory of AI capability

Part 2: Develop inference
strategies from that theory

1 INTRODUCTION

Evaluations (from hereon, “evals”) of generative models have become ubiquitous as a way to
probe each models’ capabilities or harms. Companies developing large language models (LLMs)
routinely assess their systems’ intelligence using standardized knowledge tasks, while research
papers proposing new methods often conduct comparative evaluations against state-of-the-art models.
Leaderboards hosted on Vellum and Huggingface have also emerged as open-source platforms for
directly comparing the capabilities of various LLMs. The rapidly growing interest in evals reflects
our collective desire to understand how generative models behave, especially as they are now widely
utilized, touted as highly capable, but inherently black box in nature.

In this work, we focus on evals that use standardized benchmark datasets. Despite the many criticisms
of benchmarking (Alzahrani et al., 2024; Raji et al., 2021), benchmark data still comprise the vast
majority of evals today. Benchmark results can carry significant influence in calibrating public
and scientific expectations of AI capabilities1, which motivates the need for robust and trustworthy
methods for inferring and reporting these capabilities. Yet, there is growing consensus that generative
AI evals using benchmarks are brittle and unreliable (Mitchell, 2023; Eriksson et al., 2025).

1Notably, companies that develop LLMs publish heavily cited reports on their models’ performance on
various benchmarks (Achiam et al., 2023; Team et al., 2023; Guo et al., 2025).

1

https://www.vellum.ai/llm-leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
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We believe two key reasons contribute to this lack of reliability. First, most evals are not grounded
in an explicit theory of capability. Standard metrics such as accuracy are often treated as if they
directly represent “what the model can do.” But interpreting a benchmark score as evidence of
capability already presupposes a theory of what the capability is and how it is expressed in a test.
When this theory remains implicit, the connection between observable performance and underlying
ability becomes unclear. This ambiguity is especially problematic given, for example, substantial
evidence that small perturbations to phrasing or structure can significantly alter model outputs
(Mizrahi et al., 2024; Sclar et al., 2023; Zhuo et al., 2024; Zheng et al., 2023; Errica et al., 2024).
Without a theory specifying which behavioral features constitute capability, it is unclear how such
sensitivity should be interpreted or corrected.

Second, evals rarely quantify uncertainty in a way that corresponds to what capability is
intended to capture. Existing treatments, when they occur, focus primarily on finite-sample
uncertainty (Chiang et al., 2024; Miller, 2024). But generative model evals face deeper uncertainties,
such as perturbation sensitivity and contextual instability. The relevance of each source depends on
one’s theory of capability. When that theory is left implicit, uncertainty is modeled incompletely, and
important contributors to unreliability are overlooked.

We argue that evals for generative models must return to their conceptual roots in statistical inference
and begin by defining what capability means. We take inspiration from psychometrics and educational
assessments, where statistical models have long been used to infer latent human abilities from
observed performance. Following this tradition, we aim to articulate a theory of AI capability that
identifies the multiple sources of uncertainty that threaten inference, and to derive estimators of
capability whose form follows directly from this theory.

Contributions. (1) We present a conceptual argument. We begin by showing that every evaluation
implicitly embeds a theory of capability – even when unstated – and that different theories imply
fundamentally different interpretations of what “capability” means (Section 3). Then, we argue that
these theories, being derived from human behavior, must be amended to model non-human patterns
of AI behavior, such as brittle semantic generalization (Section 4).

(2) In response to the problem we identified, we develop a principled framework for evaluating
generative models by treating benchmark evaluation as an inferential problem in Section 5. The
core idea is to begin with a formal theory of capability and derive the corresponding inference
procedure. This shift clarifies what evaluations should measure and which statistical assumptions
are required for the resulting estimates to be meaningful. As a proof of concept, in Section 6.1,
we apply our framework to a crucial problem confounding evaluations: sensitivity to perturbations.
These examples illustrate how a theory-first perspective naturally exposes the assumptions behind
evaluation and highlights where principled adjustments are needed.

(3) Building on this theoretical foundation, in Section 6.2, we present four inference methods
corresponding to different capability constructs. These inference methods are derived from standard
statistical machinery, and demonstrates the ease of deriving inference methods once a theory of
capability has been established. In general, there is no free lunch in that all capability notions and
inference methods face trade-offs on sample complexity, structural assumptions, etc.

1.1 RELATED WORK

Perspectives on AI benchmarking. A broad literature highlights conceptual and methodological
gaps in how AI evaluations are designed and interpreted. Psychometrics provides a mature foundation
for formalizing constructs such as validity – that evaluations properly measure a construct of capability
– and reliability – that evaluations yield measures that are replicable and consistent (Lord, 1980;
Raykov & Marcoulides, 2011). Several recent works argue that AI benchmarking would benefit
from similar principles (Wang et al., 2023; Raji et al., 2021), while others critique how benchmarks
are built, saturated, and deployed (Kiela et al., 2021; Bowman, 2023; Dehghani et al., 2021). Our
contribution extends this line of work by making capability assumptions explicit, modeling the
sources of uncertainty that undermine validity, and treating benchmark evaluation as a principled
inferential task.

Skills and artificial general intelligence. There is increasing interest in quantifying artificial general
intelligence, which could mean either high performance across diverse tasks (Hernández-Orallo
et al., 2021) or the ability to accumulate and recombine skills (Chollet, 2019). Many probes on this

2
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question often focus on large composite benchmarks such as MMLU (Hendrycks et al., 2021) and
AGIEval Zhong et al. (2023), without consideration on how specific questions or tasks map into
some latent notion of intelligence. Our framework clarifies how different capability models encode a
particular skill structure, offering a principled link between benchmark questions/tasks and latent
skill hierarchies relevant to discussions of artificial general intelligence.

Robustness. Across modalities, modern AI systems exhibit marked sensitivity to even non-
adversarial perturbations. In vision, small semantic-preserving changes can shift predictions due
to reliance on non-robust features (Ilyas et al., 2019); in language, LLMs vary unexpectedly under
prompt rephrasings, formatting changes, or answer-order variations (Zheng et al., 2023; Sclar et al.,
2023; Mizrahi et al., 2024; Zhuo et al., 2024). While related, we make broader argument that there is
mismatch between how AI models behave in testing environments and the behavioral assumptions
inherited from human-centered evaluation theory – many of which involves robustness issues.

2 THE MANY THEORIES OF CAPABILITY

In this section, we present several distinct theories of “capability” used across psychometrics, educa-
tional assessments, and adjacent fields. Each offers different structural assumptions and trade-offs.

(a) Classical Test Theory (CTT). Originating in the early 20th century, CTT models an observed
test score ω as the sum of a true score ε and random error ϑ (Raykov & Marcoulides, 2011):

ω “ ε ` ϑ. (1)

Assumption 1 requires that ϑ has mean zero and is independent of ε, reflecting the idea that humans
make random, ability-independent mistakes2. Under parallel forms of a test, repeated scores converge
to ε (Lord & Novick, 2008).
Assumption 1. Under the CTT model in (1), Erϑs “ 0 and Covpε, ϑq “ 0.

(b) Item Response Theory (IRT). Modern assessment adopts latent-trait models in which a K-
dimensional ability vector ε P RK governs success probabilities. A Rasch model specifies

fipεq “ Prpωi “ 1 | εq “ ϖpaJ
i ε ´ biq, (2)

where ai P RK are item loadings and bi is item difficulty. Observed responses are Bernoulli draws,

ωi “ fipεq ` ϑi, (3)

where ϑi represents logistic or probit noise. By modeling how items discriminate along dimensions
in ε, IRT provides sample-efficient estimates, and underlies much of today’s adaptive standardized
tests (College Board, 2025). IRT also satisfies Assumption 1; see Proposition 2.

(c) Cognitive Diagnostic Models (CDM). CDMs represent capability as a vector of (typically)
discrete skill masteries (Leighton & Gierl, 2007). Let ϱ P t0, 1uK encode whether a test-taker has
mastered each of K underlying skills, and let Q P t0, 1umˆK map items to the skills they require.
Models such as DINA or DINO specify

fCDMpϱ, Qiq “ Prpωi “ 1 | ϱq “ gi ` p1 ´ giq1tϱ satisfies Qiu,
with slip and guess parameters psi, giq. CDMs thus interpret capability as which skills are possessed.

(d) Bayesian Network Skill Models (BNSM). In intelligent tutoring systems, capability is often
modeled as a structured latent state evolving over a graph of prerequisite relations. Skills form nodes
of a Bayesian network, and each skill variable Sk has a posterior PrpSk “ 1 | dataq updated by item
responses (Culbertson, 2016). Items provide noisy evidence via conditional probability distributions
(CPDs), and inference propagates beliefs across the graph. This yields a capability representation
that is structured, accommodating both conceptual dependencies and temporal updates.

Figure 1 illustrates the implicit generative structure assumed by the various theories of capability.
Note that this list is non-exhaustive. For example, there are nonparametric item response models
such as Mokken scaling that drop parametric assumptions (Mokken, 1971; Sijtsma & Molenaar,

2CTT additionally assumes independence of errors across questions. While strong for humans, modern
generative models often approximate this property, making it less restrictive in AI evaluation.

3
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(i) IRT
ε

a1, b1 a2, b2 a3, b3

X1 X2 X3

(ii) CDM

S1 S2 S3

X1 X2 X3

(iii) BNSM

S1

S2

S3

X1 X2 X3

Figure 1: Structural hierarchy across models. (i) IRT: a single latent ability ω generates all item responses. (ii)
CDM: multiple skill nodes tSku connect to items according to a fixed Q-matrix. (iii) BNSM: skills form a
directed concept hierarchy with interdependencies among tSku.

2012) and dynamic learning models such as Bayesian Knowledge Tracing and performance factor
analysis that treat capability as evolving over time (Corbett & Anderson, 1994; Pavlik et al., 2009). In
psychophysics and decision science, ability is operationalized via signal detection sensitivity or drift-
diffusion parameters (Green & Swets, 1966; Ratcliff & McKoon, 2008). No single theory is strictly
better; each embodies trade-offs between interpretability, statistical and behavioral assumptions, and
the kinds of constructs they can represent, see e.g., Table 3.

3 EVALS IMPLICITLY ASSUME A THEORY OF CAPABILITY

3.1 MOST ACCURACY-BASED EVALS INSTANTIATE CTT

In practice, CTT reduces to averaging correctness across items, implicitly assuming that all questions
are equally informative about capability. This mirrors nearly all contemporary AI evaluation: bench-
marks report aggregate accuracy, pass rates, or score averages, with no item-level parameterization.
Formally, letting

ωi “ εi ` ϑi, (4)

CTT treats each observed response as an unbiased but noisy measurement of a per-item score εi,
yielding overall capability ε “ Eirεis. This assumption family underlies virtually all widely used
static benchmarks across NLP, vision, and reasoning tasks: a model’s “capability” is its expected
accuracy under an item distribution.3

3.2 RECENT IRT-BASED METHODS IMPLICITLY ADOPT A DIFFERENT THEORY OF
CAPABILITY

A growing line of work proposes IRT-inspired methodologies for AI evaluation, often to reduce
sample complexity. These approaches replace the CTT viewpoint with a latent trait model in which a
single (or low-dimensional) ability parameter ε generates response probabilities as in (3). Examples
include an adaptive testing design (Zhuang et al., 2023), constructing smaller, more informative
benchmarks (Maia Polo et al., 2024), and others (Burdick et al., 2019; Hernandez et al., 2021; Dong
et al., 2020; 2021; Wang et al., 2025; Chen et al., 2025).

While powerful, these works instantiate a different theory of capability: ability ε is a latent parameter
defined by a generative model of item responses, not the empirical accuracy of CTT. Under IRT, two
models with the same accuracy can receive different ability estimates if their errors fall on items with
different discrimination parameters. Without making the underlying theory explicit, such differences
in what “capability” means can easily lead to misinterpretation and inconsistent comparisons.

4 WHY EXISTING CAPABILITY THEORIES DO NOT APPLY TO AI

All existing theories in Section 2 were developed to describe human test-taking behavior. Despite
modeling differences, these traditions share a common foundation: latent ability (or skill mastery)
generates systematic performance, while deviations from that structure are treated as random, ability-
independent, and typically independent across items. In CTT this is explicit through Assumption 1;
in IRT, CDM, and BNSM, it appears through the assumption that conditional on the latent trait,
item responses are independent and error terms are unbiased. These assumptions reflect empirical
regularities of human cognition, but they are systematically violated by current AI systems.

3This also includes evaluate-once leaderboards, security benchmarks, and multi-skill exams where per-task
scores are averaged; all such summaries collapse to CTT under Assumption 1.

4
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A large body of evidence shows that AI models often fail in ways that humans do not: they exhibit
“Potemkin” or superficial understanding (Mancoridis et al., 2025), brittle semantic generalization
(Mizrahi et al., 2024; Sclar et al., 2023; Zheng et al., 2023), and sensitivity to superficial rephrasings,
distractors, and formatting (Zhuo et al., 2024; Errica et al., 2024; Du et al., 2022). Moreover,
model behavior depends strongly on hyperparameters (e.g., temperature, top-p), system prompts,
and surrounding conversational context. These behaviors contradict the foundational assumption
shared across human-centric capability theories: that errors represent noise rather than systematic,
context-driven shifts in performance.

To illustrate, consider a more realistic model of AI capability within the CTT paradigm:

ωi “ εi ` spxiq ` rphq ` gpcq ` ¨ ¨ ¨ ` ϑi, (5)

where xi captures input features of item i (e.g., phrasing or structure), h denotes hyperparameters
(e.g., sampling temperature), and c encodes contextual or environmental variables (e.g., system
prompts). The functions s, r, and g represent systematic, non-random performance shifts. When xi,
h, or c vary across evaluation settings, these structured biases confound estimation of the underlying
item-level capability εi. The ellipsis indicates additional confounding factors.

5 FRAMEWORK FOR ROBUST INFERENCE OF CAPABILITIES

The previous sections showed that AI evaluations implicitly rely on incompatible theories of capability:
accuracy-based benchmarks instantiate CTT (Section 3.1) while recent adaptive methods adopt IRT
(Section 3.2). This conceptual inconsistency contributes to the “wild west” nature of evals and makes
reliability and comparability difficult. We propose a simple framework that unifies the theoretical
grounding of evaluations:

Part 1: Specify and defend
a theory of AI capability

Part 2: Develop inference
strategies from that theory

(1) Evals must explicitly state their theory of capability. A benchmark’s underlying theory
determines what its scores mean, which comparisons are valid, and how results should generalize
across tasks or settings. Without stating the underlying theory, comparisons across benchmarks—or
even across modeling choices within the same benchmark—become conceptually undefined. In
Section 6.1, we define various theories of capability as a proof-of-concept.

(2) Inference methods come from the theory. Given a theory of capability, inference methods
often come naturally using standard statistical tools. We demonstrate this in Section 6.2.

6 PROOF-OF-CONCEPT: TACKLING SENSITIVITY TO PERTURBATIONS

6.1 PART 1: THEORIES OF AI CAPABILITY

Model family Functional form
CTT εi “ ωi ` spxiq ` ϑi
IRT (1PL) εi “ ϖpω ´ biq ` spxiq ` ϑi
Cognitive-Diagnostic Models εi “ fCDMpϱ, Qiq ` spxiq ` ϑi
Bayesian Network Skill Models εi “ Prpεi “ 1 | S, graphq ` spxiq ` ϑi

Table 1: Functional forms of four capability theories, augmented with a perturbation term spxiq capturing
systematic shifts due to variations in input phrasing or structure.

Assumption 2 (Mean-zero perturbations). Let Pi denote the distribution of natural perturbations of
question i. Then

Exi„Pirspxiqs “ 0.

Table 1 presents several examples of theories of capability. Each theory requires Assumption 2, which
states that capability is recovered only in expectation over the distribution of “natural perturbations”.

5
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Without this assumption, latent traits become unidentifiable: the perturbation function sp¨q can absorb
item properties, trait parameters, or both. Explicitly stating the theory of capability makes these
crucial assumptions transparent.

6.1.1 BENCHMARK CURATION VIOLATES AN INDEPENDENCE ASSUMPTION

We focus on the CTT model for clarity, though a similar argument holds trivially for the other models
in Table 1. Let D “ txiuni“1 denote a benchmark. Conceptually, generating an item xi involves two
stages: Stage 1 (Question sampling): Draw a question or concept i from a latent distribution over the
task space P. Stage 2 (Phrasing sampling): Draw a natural phrasing xi for that question from the
high-dimensional, unknown phrasing distribution Pi.

Benchmark curators effectively control Stage 1 through their choice of questions, which can be
viewed as independently sampled from an implicitly defined P. However, curators do not observe or
sample from the true Pi. In practice, each question receives only a single, hand-designed phrasing
xi, and these phrasings are produced by the same individuals or pipeline, introducing stylistic and
structural dependencies across items. Thus, benchmarks almost always produce dependently sampled
draws from Pi, violating Assumption 2. This makes it impossible to identify εi under Table 1
(top row), even though identification is trivial under the classical CTT model (4). Empirically, this
manifests as different or conflicting inferences on accuracy, see Appendix C.

6.1.2 PERTURBATIONS FOR PSEUDO-INDEPENDENCE

A natural response to the dependence problem is to approximate Pi by generating multiple phrasings
for each question. Prior work already follows this intuition: perturbing instructions (Mizrahi et al.,
2024), question wording (Sclar et al., 2023), or answer ordering (Zheng et al., 2023) all implicitly
aim to sample from a richer portion of Pi. Our framework clarifies that these methods are attempts to
recover identifiability by increasing coverage of the phrasing space.

Let D̃ “ ttxijumi
j“1uni“1 be a perturbed benchmark, where each xij is produced by a pertur-

bation mechanism intended to approximate draws from Pi. The CTT model then becomes
ωij “ εi ` spxijq ` ϑij . Although perturbation generators can never match the true (and fun-
damentally unknowable) Pi, perturbations may improve identifiability, as in the following result.

Proposition 1. Let a benchmark contain phrasings drawn from an unknown distribution Pp0q
i . Let

ςp0q
i :“ EPp0q

i
rspxqs denote the induced bias in the recovered latent trait. Suppose a perturbation

mechanism generates mi variants txijumi
j“1 with distribution P̃i and bias ςi :“ EP̃i

rspxqs.

Define the plug-in estimator ε̂i :“ 1
mi

!mi

j“1 ωij . Then:

(i) As mi Ñ 8, ε̂i
a.s.!!Ñ εi ` ςi.

(ii) |ςi| " |ςp0q
i | and E

”
pε̂i ´ εiq2

ı
" E

”
pωp0q

i ´ εiq2
ı

if distpP̃i,Piq " distpPp0q
i ,Piq.

The perturbation mechanism remains a modeling decision. Proposition 1 states that perturbations
cannot remove bias unless P̃i “ Pi almost surely, but they strictly reduce both bias and variance
whenever they expand coverage of the phrasing space. Proofs can be found in Appendix B.

6.2 PART 2: INFERENCE STRATEGIES

Once a theory of capability is fixed, inference strategies often follow from standard statistical
results. In this section, we demonstrate how different theories of capability naturally induce different
estimands and inference pipelines, following the four theories in Section 6.1.

6.2.1 CTT: ESTIMATING ACCURACY VIA CLUSTERED BOOTSTRAPPING

Under the perturbed CTT model, the estimand is ε “ 1
n

!n
i“1 εi. We estimate item-level accuracy

by averaging over perturbations, ε̂i “ 1
mi

!
j ωij , and estimate ε by the sample mean ε̂ “ 1

n

!
i ε̂i.

Standard CLT justifies asymptotic normality, but estimating population variance is difficult; we

6
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(a) CTT: Accuracy Estimation (CBA)
Require: Item clusters txiju, mi perturbations
1: For each item i: ω̂i !

1
mi

!
j εij

2: Estimate accuracy: ω̂ !
1
n

!
i ω̂i

3: Cluster bootstrap items t1, . . . , nu to obtain
CI

4: return pω̂,CIq

(b) IRT: Adaptive Ability Estimation (LAAT)
Require: Item params pai, biq, prior ω0
1: Initialize ω!ω0, info I!1{ϖ2

0

2: while not converged do
3: Select i˚

“ argmaxi Iipωq (Fisher info)
4: Query m perturbations; εi˚ !

1
m

!
j εi˚j

5: Update via Newton step: ω ! ω ` S{I
6: end while
7: return pω, 1{

?
Iq

(c) CDM: MAP Skill Estimation
Require: Q-matrix, link fCDM, perturbations

txiju

1: Aggregate items: ε̄i “
1

mi

!
j εij

2: Form log-posterior log ppωq `
!

i log ppε̄i |

ω, Qiq

3: ω̂ ! argmaxω of the log-posterior (e.g. via
Newton/L-BFGS)

4: Bootstrap items to obtain skill-level uncer-
tainty

5: return ω̂ and posterior skill summaries

(d) Bayesian Network Skills: Posterior Infer-
ence
Require: BN structure, Gaussian skill prior, logis-

tic item CPDs, tεiju

1: Aggregate evidence: ε̄i “
1

mi

!
j εij

2: Run BN inference (continuous–discrete belief
propagation)

3: Compute posterior ppS | tε̄iuq

4: Optionally bootstrap items for uncertainty
5: return Posterior mastery tϖpSkqu

Table 2: Abridged inference algorithms for the four theories of capability introduced in Section 2. These methods
follow directly from standard statistical machinery. Detailed algorithms can be found in Appendix D.1.

therefore use a clustered bootstrap (items as clusters, perturbations within clusters) (Ren et al., 2010;
Field & Welsh, 2007). The procedure is shown in Table 2(a) and in detail in Algorithm 1.

6.2.2 IRT: ESTIMATING LATENT ABILITY VIA ADAPTIVE TESTING

Under the perturbed IRT model, the estimand is a latent ability εk for each model k. Once item
parameters pai, biq are calibrated, estimating reduces to classical IRT inference using Fisher scoring
and Newton–Raphson updates (Raykov & Marcoulides, 2011):

ε # ε ` Spεq
Ipεq ,

where S and I are the score function and the observed Fisher information for the IRT likelihood.
To reduce sample complexity, we apply adaptive item selection: at each step, choose the item with
maximal Fisher information at the current estimate. The adaptive test is summarized in Table 2(b)
and in detail in Algorithm 2.

6.2.3 CDM: ESTIMATING SKILL VECTORS VIA MAP

In CDMs, capability is typically a binary skill vector ϱ P t0, 1uK . Here, we relax the binary
assumption to ϱ P RK to get better-calibrated results. Each question loads on a subset of skills via
the Q-matrix and follows a logistic response model fCDMpε, Qiq. Perturbations are aggregated as
ω̄i “ 1

mi

!
j ωij . Inference reduces to penalized maximum a posteriori (MAP) estimation:

ε̂ “ argmax
ω

!ÿ

i

log ppω̄i | ε, Qiq ` log ppεq
)
,

typically using a Gaussian prior over ε. Item-level bootstrapping yields uncertainty over each skill
dimension. The procedure is summarized in Table 2(c), and in Algorithm 3.

6.2.4 BNSM: ESTIMATING SKILL VECTORS VIA POSTERIOR INFERENCE

In BNSMs, the vector S P t0, 1uK captures mastery of K skills. We generalize to continuous
values by modeling skills as correlated Gaussian latent nodes, with items as Bernoulli children
governed by logistic CPDs. Aggregated perturbations ω̄i provide conditionally independent evidence
for each item. Given the BN structure and parameters, posterior inference proceeds via standard
continuous-discrete belief propagation ppS | tω̄iuq, from which we extract posterior skill mastery
(e.g. ϖpSkq). Bootstrapping items again provides uncertainty. See Table 2(d) for pseudo-code, and

7
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Classical Test
Theory

1-Dimensional Item
Response Theory

Cognitive Diagnostic
Models

Bayesian Network
Skills

Interpretation
of ability

Accuracy over
dataset

Latent ability (relative
to prior)

Mastery of K skills Posterior prob. of mas-
tery of K skills

Structural
asn.

None See Figure 1(i) See Figure 1(ii) See Figure 1(iii)

Additional
data needed

None Item parameters
pai, biq

Q-matrix Q; CDM
specification

BN structure + CPTs

Inference
method

Clustered boot-
strap over items

Adaptive test
(Fisher info + New-
ton–Raphson)

MAP over 2K skill
profiles (binomial
CDM likelihood)

Belief propagation /
BN posterior computa-
tion

Budget be-
havior

Fixed bench-
mark

Adaptive selection due
to pre-calibration

Can be adaptive in theory (requires ex-
pensive calibration)

Table 3: Comparison across four theories of capability/inference methods. Each comes with trade-offs on
interpretability, additional data required, structural or functional assumptions, etc.

Spelling Phonology Categorization Reasoning

FA ML RW AWFC MR CJ FF S

Figure 2: Skill structure for CDM and BNSM. Black arrows show the skill–task mapping. Red arrows show
additional conceptual structure used in BNSM.

in Algorithm 4. Like IRT, CDM & BNSM can in theory support adaptive testing, but only after a
calibration phase that jointly estimates item parameters and the latent skill dependencies.

6.3 EMPIRICAL STUDY

Setup. We evaluate seven open-source instruction-tuned LLMs (Llama-3.2, Qwen-2.5, and
Gemma families) on two benchmarks, Big-Bench Hard (BBH) (Suzgun et al., 2023) and LMEn-
try (Efrat et al., 2023), both of which have perturbed versions from (Mizrahi et al., 2024). Each
dataset contains sub-tasks testing different concepts, and we use four from each category. For
LMEntry, we use any word from category (AWFC), first alphabetically (FA),
more letters (ML), and rhyming word (RW). For BBH, we use causal judgment
(CJ), movie recommendation (MR), formal fallacies (FF), and snarks (S). See Ap-
pendix C.1 for details on the tasks, perturbations, and evaluation procedure.

Skill structure. For CDM and BNSM, we specify a skill mapping as in Figure 2. This is a simple
choice of many, but serves as a demonstration of the structural flexibility of CDM and BDSM.

Figure 3 show estimates of capability from the four methods introduced in Table 2 over seven
LLMs. We show the full suite of results in Appendix E.2. Generally, the ordering in model
rankings is consistent between the methods. However, LAAT yields more separation between models
when bootstrapping cannot. For example, Qwen-3.5B on S benchmark has the highest inferred
performance using both methods, but LAAT infers much higher ability for that model compared to
the rest because it happens to perform well on harder questions. Meanwhile, CDM and BNSM are
able to aggregate higher-order skills based on the structural assumptions we made about models’
relevant skills. BNSM and CDM results do not vary significantly because of the similarity in the skill
mapping (Figure 2).

7 DISCUSSION

7.1 TAKEAWAYS AND CONCRETE RECOMMENDATIONS

Explicitly state the theory of capability used in any evaluation. Different benchmarks implicitly
assume different theories (CTT, IRT, CDM, Bayesian skill models). Making these assumptions

8
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Figure 3: (a) Estimates of accuracy under CTT (Alg. 1, (b) Estimates of ability under IRT (Alg. 2), (c) and
(d) Estimates of mastery of skills under CDM (Alg. 3) and BNSM (Alg. 4), respectively, as specified by the
structure in Fig. 2. These theories and methods explicitly account for model sensitivity to perturbations, see
Table 1. We test seven open-source LLMs on eight benchmark tasks across LMEntry and BBH (full results
shown in Appendix Figures 8 and 9). Numbers in bold indicate number of questions asked in the adaptive
test. For the other methods, the number of questions asked is roughly 500. Each question is associated with 20
random perturbations.

explicit clarifies what the reported quantity means, what assumptions are required (e.g., mean-zero
phrasing effects), and what sources of variation are treated as noise versus structure. Stating the
theory calibrates expectations and prevents misinterpretation of the resulting scores.

Do not compare quantities across different theories of capability. Accuracy under CTT, latent
ability under IRT, discrete skill profiles under CDMs, and posterior mastery under Bayesian models
represent different constructs. They are not interchangeable. Claims of superiority or comparisons
across systems are only meaningful when they rely on the same underlying capability theory.

All theories and inference strategies face trade-offs. Table 3 summarizes how each theory differs
from each other in terms of data needed and the assumptions needed. In general, there is no free
lunch. For example, CTT offers a simple, widely-understood interpretation (accuracy) but requires
evaluating models on every item to control variance. IRT provides a more conceptual quantity
(ability) and can reduce sample complexity via adaptive designs, but depends on correctly calibrated
item parameters (difficulty, discrimination). CDM and Bayesian skill models offer richer structural
interpretations at the cost of stronger modeling assumptions.

7.2 LIMITATIONS AND FUTURE WORK

Other issues confounding evaluations. While our proof-of-concept centers on sensitivity to phrasing
perturbations, many additional confounders remain (Section 5), such as hyperparameter choices,
system prompts, and evaluation context.

Construct validity remains a crucial issue. Our work mainly focuses on benchmark reliability
rather than ensuring that benchmarks truly assess the construct of interest to begin with. Perhaps
benchmarks may be fundamentally limited in this regard (Raji et al., 2021), but psychometrics may
provide more insights to improve the construct validity of benchmarks (Wang et al., 2023).

Assumptions about AI behavior remain speculative. Choosing any theory of capability—CTT,
IRT, CDM, or BNSM—imposes assumptions about how AI systems behave (e.g., stability across per-
turbations, monotonicity, item invariance). These assumptions were historically motivated by human
cognition, not generative models, and may be misspecified or incomplete. As our understanding of
model behavior improves, so too must the underlying theories and inference procedures.

For instance, defining constructs such as item difficulty or latent ability raises deep conceptual
questions. What does it mean for a problem to be intrinsically difficult for an AI system? Should
difficulty and ability be benchmark-relative or universal? Recent work suggests the possibility of a
uni-dimensional intelligence factor for LLMs (Ilić & Gignac, 2024), prompting new questions about
how such a quantity should be tested and robustly measured. We view our framework as contributing
to a broader effort to build the science of benchmarks (Hardt, 2025) and the measurement theory of
artificial general intelligence (Mitchell, 2024).

9
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REPRODUCIBILITY STATEMENT

Proofs and additional theorems can be found in the Appendix. The code and datasets used to
produce the results presented in the paper can be found in the supplementary material, or at https:
//anonymous.4open.science/r/ai_stat_test-2100/.

USE OF LLMS

LLMs were used to edit and polish some parts of the writing.
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