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Abstract

Actor-critic algorithms address the dual goals of reinforcement learning (RL), policy evalu-
ation, and improvement via two separate function approximators. The practicality of this
approach comes at the expense of training instability, caused mainly by the destructive
effect of the approximation errors of the critic on the actor. We tackle this bottleneck
by employing an existing Probably Approximately Correct (PAC) Bayesian bound for the
first time as the critic training objective of the Soft Actor-Critic (SAC) algorithm. We fur-
ther demonstrate that online learning performance improves significantly when a stochastic
actor explores multiple futures by critic-guided random search. We observe our resulting al-
gorithm to compare favorably against the state-of-the-art SAC implementation on multiple
classical control and locomotion tasks in terms of both sample efficiency and regret.

1. Introduction

The process of searching for an optimal policy to govern a Markov Decision Process (MDP)
involves solving two sub-problems: i) policy evaluation, and ii) policy improvement (Bert-
sekas and Tsitsiklis, 1996). The policy evaluation step concerns with identifying a function
that maps a state to its value, i.e. the total expected reward the agent will collect by follow-
ing a predetermined policy. The policy improvement step updates the policy parameters
such that the states with larger values are visited more frequently. Modern actor-critic
methods (Peters et al., 2010; Schulman et al., 2015; Lillicrap et al., 2016; Schulman et al.,
2017; Haarnoja et al., 2018) address the two-step nature of policy search by allocating a
separate neural network for each step, a critic network for policy evaluation and an actor
network for policy improvement. It is often straightforward to achieve policy improvement
by taking gradient-ascent steps on actor parameters to maximize the critic output. How-
ever, as being the training objective of the actor network, the accuracy of the critic sets a
severe bottleneck on the success of the eventual policy search algorithm at the target task.
The state of the art attempts to overcome this bottleneck using copies of critic networks
as Bellman target estimators whose parameters are updated with time lag Lillicrap et al.
(2016) and using the minimum of two critics for policy evaluation to tackle overestimation
due to the Jensen gap (Fujimoto et al., 2018; Haarnoja et al., 2018).

Probably Approximately Correct (PAC) Bayesian theory (Shawe-Taylor andWilliamson,
1997; McAllester, 1999) develops analytical statements about the worst-case generalization
performances of Gibbs predictors that hold with high probability (Alquier, 2021). The
theory assumes the predictors to follow a posterior measure tunable to observations while
maintaining similarity to a desired prior measure. In addition to being in widespread use for
deriving analytical guarantees for model performance, PAC Bayesian bounds are useful also
for developing training objectives with learning-theoretic justifications in supervised learn-
ing (Dziugaite and Roy, 2017) and dynamical systems modeling (Haußmann et al., 2021).
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Although PAC Bayesian bounds offer useful tools for deriving conservative losses, which
have many applications in reinforcement learning, their potential as training objectives has
remained relatively unexplored to date.

In this paper, we demonstrate how PAC Bayesian bounds can improve the performance
of modern actor-critic algorithms when used for robust policy evaluation. We adapt an
existing PAC Bayesian bound (Fard et al., 2012) developed earlier for transfer learning for
the first time to train the critic network of a SAC algorithm (Haarnoja et al., 2018). We
discover the following remarkable outcomes:

• A PAC Bayesian bound can predict the worst-case critic performance with high prob-
ability. When used as a training objective, it overcomes the value overestimation
problem of approximate value iteration (Van Hasselt et al., 2016) even with a single
critic and brings about an improved regret profile in the online learning setting.

• The randomized critic expedites policy improvement when used as a guide for optimal
action search via multiple shooting. It does so by sampling multiple one-step-ahead
imaginary futures from the randomized critic and actor and chooses the action that
gives the highest sampled state-action value.

Based on these two outcomes, we propose a novel algorithm called PAC Bayes for Soft
Actor-Critic (PAC4SAC), which delivers consistent performance gains over not only the
vanilla SAC algorithm but also alternative approaches to robust of online reinforcement
learning. We observe our PAC4SAC to solve four continuous control tasks with varying
levels of difficulty in fewer environment interactions and smaller cumulative regret than its
counterparts. Figure 1 illustrates the main idea of the proposed algorithm.

Figure 1: Our novel Probably Approximately Correct Bayes for Soft Actor Critic
(PAC4SAC) algorithm trains a critic with random parameters θ for the first
time using a PAC Bayesian bound as its training objective. The random critic
also enables effective random optimal action search when used as a guide for a
stochastic policy. The resulting algorithm solves online reinforcement learning
tasks with fewer environment interactions and smaller cumulative regret than its
counterparts.
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2. Background

Maximum entropy reinforcement learning. We model a learning agent and its en-
vironment as a Markov Decision Process (MDP), expressed as a tuple (S,A, p, p0, r, γ)
comprising a ds−dimensional continuous state space S := {s ∈ Rds }, a da− dimen-
sional continuous action space A := {a ∈ Rda}, a reward function with bounded range
r : S × A → [0, Rmax], a reward discount factor γ ∈ [0, 1), a state transition distribution
s′ ∼ P (·|s, a), and an initial state distribution p0(s0). We denote the visitation density
function for state s′ recursively as pπ(s

′) = Es∼pπ ,π [P (s′|s, a)], where Ex∼µ[f(x)] is the
expectation of a function f measurable by µ. The terminal condition of the recursion can
be determined as pπ(s0) := p0(s0). The goal of maximum entropy online reinforcement
learning is to find a policy distribution π(a|s) such that both its entropy and the expected
cumulative reward are maximized after a minimum number of environment interactions:

π∗ = argmax
π′

∞∑
i=0

Es∼pπ ,a∼π′
[
γir(s, a)− α log π′(a|s)

]
(1)

with respect to π where the coefficient α > 0 is a parameter that regularizes the importance
of the policy entropy on the training objective. We study the model-free case where the
true state transition distribution P and the true reward function r(s, a) are unknown to the
agent and they are integrated out during training from the observed state, action, reward,
and next state tuples (s, a, r, s′).

Actor-critic learning. Define the true value of a state-action pair under policy π,
referred to as the actor, at time step t of an interaction round with an environment as

Qπ(s, a) := r(s, a) +
∞∑
t=0

Es′∼pπ ,a′∼π

[
γtr − α log π(a′|s′)

]
,

using r for the case when r(s, a) is observed. As the true value function is unknown to us, we
approximate it by a trainable function Q which is for instance a neural network, referred to
as the critic. One incurs a Bellman error when ∃(s, a) ∈ S ×A such that Q(s, a) ̸= Q(s, a),
which can be quantified as

LN (θ) =
∑

(s,a,r,s′)∈DN

(r + γQ(s′, a′)−Q(s, a))2

for a sample set DN contains N tuples (s, a, r, s′) called a replay buffer. The Soft Actor-
Critic (SAC) algorithm (Haarnoja et al., 2018) is trained by alternating between policy
evaluation argminθ LN (θ) which minimizes the Bellman error, and policy improvement

argmax
π

1

N

∑
(s,a)∈DN

Eai∼π[Q(s, a)− α log π(ai|si)] (2)

which is equivalent to minimizing the Kullback-Leibler (KL) divergence between the policy
distribution and a Gibbs distribution derived from the value predictor

argmin
π

Es∈P

[
DKL

(
π(·|s)

∣∣∣∣∣
∣∣∣∣∣ exp(Q(·|s)/α)∫

exp(Q(ā|s)/α)dā

)]
, (3)
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where ā relative to the probabilities of taking all other possible actions in the state s and
DKL(µ||µ′) = Ex∼µ [logµ(x)− logµ′(x)] for measures µ and µ′.

PAC Bayesian analysis. Assume a prediction task from an input x ∈ X to output y ∈ Y
with an unknown joint distribution x, y ∼ D, the performance of which is quantified by a
bounded loss functional L(h(x), y) : Y ×Y → [0, Lmax], where h is a prediction hypothesis.
A main concern of statistical learning theory is to find the tightest possible bound for the
risk functional R(h) = E(x,y)∼D[L(h(x), y)] that holds with highest possible probability

based on its empirical estimate RN (h) = 1
N

∑
(x,y)∈DN

L(h(x), y) for a data set DN of N
independent and identically distributed (i.i.d.) samples (x, y) taken from a data distribution
D. Bounds that satisfy these desiderata, referred to as Probably Approximately Correct
(PAC) (Kearns and Vazirani, 1994), follow the structure Pr[R(h) ≤ C(RN (h), δ)] ≥ 1 − δ
where C(δ) is an analytical expression dependent on the empirical estimate RN and a
tolerance level δ ∈ (0, 1). PAC Bayesian bounds (Shawe-Taylor and Williamson, 1997;
McAllester, 1999) extend the PAC framework to the case where the hypothesis is assumed
to follow a posterior distribution h ∼ µ. The measure µ0 denotes the prior distribution
that represents domain knowledge or design choices to be imposed to the learning process.
Differently from Bayesian inference, the relationship between the prior and the posterior
distributions does not necessarily follow the Bayes theorem in the PAC Bayesian framework.
It is sufficient that µ0 is chosen a priori, while µ may be fit to data. A PAC Bayesian bound
has the structure

Pr

[
Eh∼µ[R(h)] ≤ C

(
Eh∼µ[RN (h)], δ,DKL(µ||µ0)

)]
≥ 1− δ. (4)

The key difference of this bound from a PAC bound is that it makes a statement about
a distribution q on the whole hypothesis space rather than a single hypothesis. Hence, it
involves a complexity penalty at the scale of distributions DKL(µ||µ0).

3. PAC Bayesian Soft Actor-Critic Learning

Main problem. The performance of online reinforcement learning algorithms is highly
sensitive to the precision of the action-value function approximator, i.e. the critic. This sen-
sitively causes poor performance and sample inefficiency in practice. There are two key fac-
tors behind this problem: i) Bias in value estimation: When the same function approx-
imator is used for both prediction and target state estimation, the value of the target state
is likely to be overestimated in Q-learning as a result of the approximation error. Even for
additive noise term ϵ with zero mean, it holds that Eϵ[maxa′(Q(s′, a′)+ ϵ)] ≥ maxa′ Q(s′, a′)
(Thrun and Schwartz, 1993). The same bias has been shown to exist also in actor-critic
algorithms (Fujimoto et al., 2018) and to accumulate throughout the training period, re-
sulting in a risk of significant drop in online learning performance. Solutions such as using
double critics results in an underestimation bias (Hasselt, 2010). ii) Catastrophic inter-
ference: Updating Q to reduce the Bellman error of a small group of states with poor value
estimations affects also the other states, many of which may already have accurate value
estimations (Pritzel et al., 2017). The commonplace solutions to mitigate these problems
is Polyak averaging Q← (1− τ)Q+ τQ′ for some τ ∈ (0, 1).
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We claim that training a single randomized critic with a PAC-Bayesian generaliza-
tion performance bound reduces the underestimation reduces the underestimation
bias, while not suffering from catastrophic interference. We further claim that using
all sources of randomization in the model for optimal action search brings additional
performance boost.

3.1. Building a trainable PAC Bayes bound for SAC

We define our risk functional as

R(µ) = EQ∼µ[Es,s′∼pπ ,a∼π[(y −Q(s, a))2]] (5)

where y = r+ γEa′∼π[Q(s′, a′)− log π(a′|s′)] is the soft Bellman target. The corresponding
empirical estimate is

RN (µ) =
1

N

∑
(s,a,r,s′)∈DN

EQ∼µ[(y −Q(s, a))2] (6)

computed on a replay buffer of N tuples of (s, a, r, s′) collected from the target environment.
The only PAC Bayes bound available for this setting is by Fard et al. (2012). The bound is
developed for the evaluation of a fixed policy executed only once on the target environment.
Since this design choice brings about a strongly correlated random variable chain, the
bound needs to account for this correlation. Define by Pi(·|s, a) the density function of the
random variable Pri(st+i ∈ A|st, at),∀A ∈ S that quantifies the probability of an event
A taking place i time steps after a reference time step t. The upper-triangular matrix
Γπ
N = (ξij) ∈ RN×N with entries

ξij = max
s,a
||Ea∼π[P

i(·|s, a)− P i(·|s, a)||1]. (7)

for 0 ≤ i ≤ j ≤ N and zeros in others quantifies a measure of correlation of a random
sequence st, st+1, . . . , st+N where || · ||1 denotes the L1 norm of the function inside the
argument. Let us also denote ||f(x)||p =

√
Ex∼p[f(x)2] for some function f with bounded

range and a probability measure p. After being adapted to the maximum entropy setting
and replacing all its constants by their actual values, Fard et al. (2012)’s bound becomes:

Theorem 1 For any posterior measure µ and any prior measure µ defined on the space of
action-value functions Q and any data set N containing (s, a, r, s′) collected from a single
execution of a fixed policy π, the following inequality holds with probability greater than 1−δ:

EQ∼µ[||Qπ −Q||2pπ ] ≤
1

(1− γ)2

(
EQ∼µ[RN (µ)] +

√√√√√ log
(

N
2||ΓN

π ||2R2
maxδ

)
+DKL(µ||µ0)

N
2R2

max||ΓN
π ||2 − 1

− EQ∼µ[Vs′∼P [Ea′∼π[γQ(s′, a′)− log π(a′|s′)]]])

)
.

where ||ΓN
π || is the operator norm of the matrix in its argument.
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This bound has major obstacles to make it a useful guide for algorithm development:
i) Its assumption on a single roll-out introduces a significant gap due to the ||ΓN ||2
factor on the denominator the square-root term, ii) The value this term is not known.
iii) For the bound to be valid, N must be greater than 2R2

max||ΓN ||2, which is nearly
impossible to satisfy in real-world applications. To remind N is the length of a single
episode.

We propose to construct an alternative bound that has similar qualitative properties
of the bound above, but a significantly higher practical relevance. Our key insight is that
the single-episode assumption is neither realistic nor necessary, as modern approaches to
deep reinforcement learning maintain a large replay buffer that both increases N dramati-
cally and significantly decouples the correlation of the samples used in a single minibatch.
We find it realistic enough to assume that the critic is trained with approximately i.i.d.
(s, a, r, s′) tuples and build the PAC Bayes bound accordingly. The standard McAllester
bound (McAllester, 1999) is our starting point.

EQ∼µ[R(µ)] ≤ EQ∼µ[RN (µ)] +

√
log(1/δ) +DKL(µ||µ0)

2N
. (8)

Next we use the following property suggested by Antos et al. (2008) and adopted by Fard
et al. (2012) to relate the bound defined on the Bellman error to the value approximation
error:

|Qπ −Q||2pπ ≤
1

1− γ
||TQ−Q||2pπ + Es∼pπ [Vs′∼P [Ea′∼π[Q(s′, a′)]]] = R(µ) (9)

The final bound is then stated as

EQ∼µ[R(µ)] ≤ 1

(1− γ)2

(
EQ∼µ[RN (µ)] +

√
log(1/δ) +DKL(µ||µ0)

2N
(10)

− EQ∼µ[Es∼pπ [Vs′∼P [Ea′∼π[Q(s′, a′)]]]]

)
for any posterior measure µ, prior measure µ0, a replay bufferDN withN tuples of (s, a, r, s′)
collected from arbitrarily many episodes. The right-hand side of this bound will get tighter
as µ is fit to a given data sample DN . Known as PAC Bayesian Learning, training machine
learning models by minimizing PAC Bayesian bounds have shown remarkable outcomes
in deep learning (Dziugaite and Roy, 2017; Reeb et al., 2018) and attracted significant
attention. We apply this idea for the first time to reinforcement learning and propose to
train the critic network by solving the following optimization problem

µ∗ ← argmin
µ

(
EQ∼µ[RN (µ)]︸ ︷︷ ︸

Bellman consistency

+

√
DKL(µ||µ0)

N︸ ︷︷ ︸
conservative value update

(11)

− ξ EQ∼µ[Es∼pπ [Vs′∼P [Ea′∼π[Q(s′, a′)]]]]︸ ︷︷ ︸
exploration

)
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after few simplifications on the bound that do not make a practical influence on the outcome.
This objective comprises three terms with complementary and interpretable contributions.
The first Bellman consistency term encourages accurate policy evaluation. The second
conservative value update term mitigates the overfitting risk due to estimation errors.
While excluded in this work, another plausible feature of this training objective is that it
allows to build conservative policy iteration algorithms by updating the prior of an episode
with the posterior of the previous episode as in Peters et al. (2010); Schulman et al. (2015,
2017). The third expected variance term maximizes the expected variance of the next state,
hence promotes exploration. The emergence of this term from first principles, unlike the
manually added maximum entropy term in Eq. (1) is remarkable. We tune the contribution
of this term to the loss by a new hyperparameter ξ ∈ [0, 1]. As this term is always positive,
any choice of ξ preserves the validity of the corresponding PAC Bayes bound.

3.2. Implementation

Initially, we model the posterior distribution on our critic as a neural network with normal
distributed penultimate layer parameters: wi ∼ N (wi|mi, vi), Q|s, a =

∑K
i=1wiϕi(s, a)+b,

for weights w1, . . . , wk and deterministic bias b. This random process is is equivalent to
Q|s, a ∼ N (Q|mp, vp) with mp(s, a) :=

∑K
i=1miϕi(s, a) + b, vp(s, a) :=

∑K
i=1 viϕ

2
i (s, a).

Hence, µ|(s, a) := N (mp(s, a), vp(s, a)), ∀(s, a) ∈ S ×A. We define the corresponding priors
on the penultimate layer weights as a standard normal distribution. Hence we have

RN (µ) =
1

N

∑
(s,a,r,s′)

(r + γQ̄(s′)−mp)
2 + vp. (12)

Here, Q̄ denotes the stop-gradient operator. Unlike the common practice that trains two
critics and uses their minimum as the target estimator (Fujimoto et al., 2018), we train a
single critic that mitigates the overestimation bias thanks to the conservatism provided by
the PAC Bayes bound. The KL divergence term is also analytically tractable. The only
remaining term is the expected variance of the value of the next state. The exact calculation
of this term requires access to the state transition model and its bias-free estimation requires
multiple Monte Carlo samples taken from each specific current state. As neither of the two
are feasible options, we approximate this quantity by the variance of critic averaged across
the samples:

EQ∼µ[Es∼pπ [Vs′∼P [Ea′∼π[Q(s′, a′)]]]] ≈ 1

N

∑
(s,a,r,s′)∈DN

Ea′∼πQ(s′, a′). (13)

The final critic training objective is then as below

L(m,v) :=
1

N

∑
(s,a,r,s′)

[
(r + γQ̄(s′)−mp(s, a))

2 + vp(s, a)− Ea′∼π[vp(s
′, a′)]

]
(14)

+

√∑K
i=1DKL(N (Q||mi, vi)||N (Q||0, 1))

N
.
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where m = {m1, . . . ,mK} and v = {v1, . . . ,mv}. We follow the actor training scheme of
SAC introduced in Eq. (3) with the only difference that the Q function is sampled each
time it is evaluated, that is:

argmax
π

1

N

∑
(s,a)∈DN

Eai∼π,ϵ∼N (0,1)

[
mp(s, a) + ϵ

√
vp(s, a)− α log π(ai|si)

]
. (15)

Critic-guided optimal action search by multiple shooting. Supplementing the ran-
dom actor of SAC with a random critic has interesting benefits while choosing actions at
the time of real environment interaction. When at state s, the agent can simply take an
arbitrary number of samples from the actor a1, . . . , aS |s ∼ π for some state s, evaluate each
with samples taken from the critic distribution {Qi|ai, s ∼ µ : i = 1, . . . , S} act with the
action a∗ that maximizes the set of sampled Q’s. Let us denote this policy as πS . This
multiple-shooting approach both accelerates the search of the optimal action and fosters
exploration by introducing an additional perturbation factor. While model-guided random
search has widespread use in the model-based reinforcement learning literature (Chua et al.,
2018; Hafner et al., 2019b,a; Levine and Koltun, 2013), it is a greatly overlooked opportunity
in the realm of model-free reinforcement learning. This is possibly due to the commonplace
adoption of deterministic critic networks, which are viewed as being under the overestima-
tion bias of the Jensen gap (Van Hasselt et al., 2016). Their guidance at the time of action
might have been thought to further increase the risk of over-exploitation.

Convergence properties. The single shooting version of PAC4SAC, i.e. S = 1, satisfies
the same convergence conditions as given in Haarnoja et al. (2018, Lemma 1, Lemma 2,
and Theorem 1), since the proofs apply to any value approximator. For S > 1, we have an
algorithm with a critic that evaluates πS but an actor that improves π, i.e. updates the actor
assuming S = 1. We can show that convergence still holds under such mismatch between
policies assumed during policy evaluation and improvement simply by redefining the soft
Bellman backup operator as TπSQS(s, a) := r(s, a) + Es′∼P,a′∼π[γQ(s′, a′) − α log π(a′|s′)]
highlighting the nuance that QS evaluates πS , although the current action is taken with π.
Applying the Bellman backup operator as in Eq. (9) and redefining the reward function as
rπ(s, a) := r(s, a)−Es′∼P,a′∼[log π(a

′|s′)], we match the conditions of the the classical policy
evaluation proof of Sutton and Barto (2018), which also adopted in Lemma 1 of Haarnoja
et al. (2018). Our random search algorithm also satisfies the policy improvement theorem
as stated below.

Theorem 2 The update rule

π′ := argmin
π

Es∼P

[
DKL

(
π(·|s)

∣∣∣∣∣
∣∣∣∣∣ exp(QS(s, ·)/α)∫

exp(QS(s, ā)/α)π(ā|s)dā

)]
(16)

satisfies Q′
S ≥ QS for any (s, a) ∈ S×A and any sample count S > 0 where Q′

S corresponds
to the value of the new policy π′.

The proof given in Appendix A.2 is an adaptation of Haarnoja et al. (2018, Lemma 2) to
the case that πk+1 improves not only Q but also Q′

S . Putting this theorem together with the
policy evaluation proof sketched above in the same way as Haarnoja et al. (2018, Theorem
1), the algorithm is guaranteed to converge to the optimal policy.
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Table 1: Our PAC4SAC brings a consistent improvement in online reinforcement learning
performance in terms of both sample efficiency and cumulative regret in four con-
tinuous control tasks with varying state and action dimensionalities.

Cartpole Swingup Half Cheetah Ant Humanoid
(ds = 5, da = 1)
(rlimit = 850)

(ds = 17, da = 6)
(rlimit = 2000)

(ds = 111, da = 11)
(rlimit = 2500)

(ds = 376, da = 17)
(rlimit = 3500)

Max training episodes (Emax) 40 250 500 500
Cumulative Regret (↓)

DDPG 7192.2±1046.7 317797.7±24000.5 210881.4±21229.0 906284.4±7823.3

SAC 6494.0±353.6 166799.2±10394.8 165532.5±17010.4 539052.3±20043.4

OAC 22706.6±1487.9 213044.1±15518.6 443765.7±128355.5 1223745.1±44495.1

PAC4SAC (Ours) 5722.1±348.4 132804.7±10801.1 113299.6±10919.3 528782.2±36529.3

Number of Episodes Until Task Solved (↓)
DDPG 34.2±3.8 250.0±0.0 298.6±56.4 500.0±0.0

SAC 24.4±5.7 250.0±0.0 302.0±44.8 482.2±15.9

OAC 40.0±0.0 250.0±0.0 315.0±82.6 500.0±0.0

PAC4SAC (Ours) 22.0±5.1 223.6±14.6 146.4±12.3 473.8±18.5

4. Experiments

We compare the performance of PAC4SAC to the state of the art with respect to:

1. Number of episodes until task solved min(Esolved, Emax) is defined as the min-
imum of the first episode number where a model exceeds rlimit in five consecutive
episodes and the maximum number of training episodes Emax. This metric measures
how quickly the agent solves the task.

2. Cumulative Regret is defined as ∆ :=
∑Esolved

i=1 (rlimit − ri), where rlimit is a cumu-
lative reward limit for an episode to accomplish the task in the environment and ri is
the cumulative reward for episode i. This metric measures how efficiently the agent
solves the task.

We report experiments in four continuous state and action space environments with varying
levels of difficulty: cartpole swingup, half cheetah, ant, and humanoid. We use the PyBullet
physics engine (Coumans and Bai, 2016–2019) under the OpenAI Gym environment (Brock-
man et al., 2016) with PyBullet Gymperium library (Ellenberger, 2018–2019). While our
method is applicable to any actor-critic algorithm, we choose SAC as our base model due to
its wide reception as the state of the art. We compare also against DDPG (Lillicrap et al.,
2016) as a representative alternative actor-critic design for deep reinforcement learning.

We train all algorithms with step counts proportional to the state and action space
dimensionalities of environments: 40000 for cartpole swingup, 250000 for half cheetah, and
500000 for ant and humanoid. Having observed no significant improvement afterwards in
preliminary trials, we terminate training at these step counts to keep the cumulative regret
scores more comparable. We select rlimit as 850 for cartpole swingup, 2000 for half cheetah,
2500 for ant, and 3500 for ant according to the final and best cumulative rewards of the
models. We report all results for five experiment repetitions. We take 500 action samples
for PAC4SAC in all experiments. We give further details of the experiments in Appendix
A.3. Our results can be replicated using the source code we will share upon the acceptance
of the paper. We present our main results in Table 1. The table demonstrates a consistent
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performance improvement in favor of our PAC4SAC in all four environments in terms of
both sample efficiency and cumulative regret.

Computational Cost. We measure the average wall clock time of 1000 steps in cartpole
swingup environment with 20 repetitions to be 5.64±0.08 seconds for DDPG, 8.80±0.09 sec-
onds for SAC, 9.92±0.13 seconds for SAC-NR, 6.09±0.06 seconds for SAC-FPI, and 8.20±0.01

seconds for PAC4SAC with an Apple M2 Max chip. Our PAC4SAC has comparable com-
pute time to its counterparts.

Ablation Study. We quantify the effect of individual loss terms on the performance by an
ablation study in the cartpole swingup and half cheetah environments reported in Table 2.
When used alone, the Bellman consistency term learns faster but limits the learning speed
which yields higher cumulative regret. All three terms are required to minimize cumulative
regret. We also observe in Figure 2 that PAC4SAC learns faster and incurs less cumulative
regret when it takes more actor samples.
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Figure 2: The effect of critic-guided random optimal action search (multiple shooting)
on the performance of our PAC4SAC algorithm demonstrated on the cartpole
swingup environment. Taking more samples reduces cumulative regret (left panel)
and improves sample efficiency (right panel).

4.1. Prior Art

Actor-critic algorithms. The Deep Deterministic Policy Gradient (DDPG) algorithm
(Lillicrap et al., 2016) is among the pioneer work to adapt actor-critic algorithms to deep
learning. The algorithm trains a critic to minimize the Bellman error and a deterministic
actor to maximize the critic, following a simplified case of the policy gradient theorem. The
Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al., 2018)
improves the robustness of DDPG by adopting twin critic networks backed up by Polyak
averaging updated target copies. Trust region algorithms such as Relative Entropy Policy
Search (REPS) (Peters et al., 2010), Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015), and PPO (Schulman et al., 2017) aim to explore while guaranteeing monotonic
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Table 2: The contribution of the critic training loss terms to performance. When used alone,
the Bellman consistency term yields high cumulative regret. Both the conserva-
tive update and exploration terms bring performance improvement. The complete
critic loss reaches the lowest cumulative regret and brings improved sample effi-
ciency.

Cartpole Swingup Half Cheetah

Bellman
consistency

conservative
value update

exploration
Cumulative

Regret

Num Episodes
Until Task
Solved

Cumulative
Regret

Num Episodes
Until Task
Solved

P
A
C
4
S
A
C ✓ × × 6509.6±1454.1 24.6±5.9 182229.5±14365.9 250.0±0.0

✓ ✓ × 5885.8±348.5 25.4±3.4 141634.7±21518.0 205.2±21.1

✓ × ✓ 7065.0±990.5 17.0±2.0 153038.9±17313.9 211.6±21.1

✓ ✓ ✓ 5722.1±348.4 22.0±5.1 132804.7±10801.1 223.6±14.6

expected return improvement and maintaining training stability by restricting the policy up-
dates via a KL divergence penalty between the policy densities before and after a parameter
update. Diversity Actor-Critic (DAC) (Han and Sung, 2021) provide sample efficient explo-
ration by exploiting samples in reply buffer and introduce entropy regularization framework
for off policy setup that maximise the entropy of weighted sum of policy action distribution.
Optimistic actor critic (OAC) (Ciosek et al., 2019) introduce a sample efficient algorithm
which approximates a lower and upper confidence bound on the value function and address
the pessimistic underexploration and directionally uninformed problem in actor-critic meth-
ods. Softmax Deep Double Deterministic Policy Gradients named as SD3 (Pan et al., 2020)
assess overestimation and underestimation problem for actor-critic approaches in continu-
ous control setup and improve both of them by using Boltzmann softmax operator for value
function estimation. Tactical Optimistic and Pessimistic (TOP) (Moskovitz et al., 2021)
study using the pessimistic value updates to overcome function approximation errors, and
provide an estimation framework which switch online between optimistic and pessimistic
value learning. Fitted Policy Iteration (FPI) (Antos et al., 2008) is a variance reduced critic
estimation method which finds near-optimal policy using a Vapnik-Chervonenkis crossing
dimension technique in order to control the influence of variance term as a penalty fac-
tor. The Network Randomization method (Lee et al., 2019) enhances the generalization
ability of RL agents by incorporating a randomized network that applies random pertur-
bations to input observations which induces robustness to the policy-gradient algorithm by
encouraging exploration.

Maximum entropy reinforcement learning. Incorporation of the entropy of the pol-
icy distribution into the learning objective finds its roots in inverse reinforcement learning
(Ziebart et al., 2008), which maintained its use also in modern deep inverse reinforcement
learning applications (Wulfmeier et al., 2015). The soft Q-learning algorithm (Haarnoja
et al., 2017) uses the same idea to improve exploration in forward reinforcement learning.
SAC (Haarnoja et al., 2018) extends the applicability of the framework to the off-policy
setup by also significantly improving its stability and efficiency thanks to an actor train-
ing scheme provably consistent with a maximum entropy trained critic network. Among
optimistic exploration algorithms, Seo et al. (2021) provides a sample efficient exploration
method named RE3 for high-dimensional observation spaces, which estimates the state
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entropy using k-nearest neighbors in a low-dimensional embedding space. Another explo-
ration method for high-dimensional environments with sparse rewards presented in Zhang
et al. (2021) provides a sample efficient exploration strategy by maximizing deviation from
explored areas.

PAC Bayesian learning. Introduced conceptually by Shawe-Taylor and Williamson
(1997), PAC Bayesian analysis has been used by McAllester (1999, 2003) for stochastic
model selection and its tightness has been improved by Seeger (2002) with application to
Gaussian Processes (GPs). The use of PAC Bayesian bounds to training models while main-
taining performance guarantees has raised attention since the pioneer work of Dziugaite and
Roy (2017). Reeb et al. (2018) show how PAC Bayesian learning can be extended also to
hyperparameter tuning. The first work to develop a PAC Bayesian bound for reinforcement
learning is Fard and Pineau (2010). This bound has later on been extended by the same
authors to continuous state spaces (Fard et al., 2012). PAC Bayesian bounds start to be
used in classical control problems for policy search (Veer and Majumdar, 2021), as well as
for knowledge transfer (Majumdar and Goldstein, 2018; Farid and Majumdar, 2021). There
is no work prior to ours that employs PAC Bayesian bounds for policy evaluation as part
of an actor-critic algorithm.

5. Discussion, Broader Impact, and Limitations

Our results demonstrate strong evidence in favor of the benefits of using the PAC Bayesian
theory as a guideline for improving the performance of the actor-critic algorithms. Despite
the demonstrated empirical benefits of our approach, the tightness of the PAC Bayesian
bound we used deserves dedicated investigation. We adopt the classical McAllester bound
due to its convenience. There may however be alternative approaches such as second-order
bound (Masegosa et al., 2020) that may leverage from the learned variance estimate of the
critic distribution. The sample efficiency improvement attained thanks to a PAC Bayes
trained critic may be amplified even further by extending our findings to model-based and
multi-step bootstrapping setups.

The strong empirical results of this work encourages exploration of venues beyond rein-
forcement learning, where the PAC Bayesian theory may be useful for training loss design.
For instance, diffusion models (Ho et al., 2020) may derive PAC Bayesian loss functions
to improve the notoriously unstable training schemes of deep generative models by semi-
informative priors.

While our PAC4SAC shows consistent improvement over existing methods, it intro-
duces additional hyperparameters such as the variance regularization coefficient, the prior
distribution, and the number of shootings. Moreover, the need for multiple shooting at the
action selection time increases computational complexity linear to the number of shootings.
Reusing the same minibatch sample twice in expected variance calculation accelerates com-
putation but is likely to induce bias to the estimator. The probabilistic layers of the critic
network have the additional variance parameters to be learned.
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for reinforcement learning. AISTATS, 2012.

Alec Farid and Anirudha Majumdar. Generalization bounds for meta-learning via pac-bayes
and uniform stability. NeurIPS, 34:2173–2186, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, pages 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In ICML, pages 1352–1361. PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In ICML,
pages 1861–1870. PMLR, 2018.

13

http://pybullet.org
https://github.com/benelot/pybullet-gym


Authors

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. ICLR, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In ICML, pages
2555–2565. PMLR, 2019b.

Seungyul Han and Youngchul Sung. Diversity actor-critic: Sample-aware entropy regular-
ization for sample-efficient exploration. In ICML, pages 4018–4029. PMLR, 2021.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23,
2010.

Manuel Haußmann, Sebastian Gerwinn, Andreas Look, Barbara Rakitsch, and Melih Kan-
demir. Learning partially known stochastic dynamics with empirical pac bayes. In AIS-
TATS, pages 478–486. PMLR, 2021.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, 2020.

Michael J Kearns and Umesh Vazirani. An introduction to computational learning theory.
MIT press, 1994.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR,
2014.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple
technique for generalization in deep reinforcement learning. ICLR, 2019.

Sergey Levine and Vladlen Koltun. Guided policy search. In ICML, pages 1–9. PMLR,
2013.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. ICLR, 2016.

Anirudha Majumdar and Maxwell Goldstein. PAC-Bayes Control: Synthesizing controllers
that provably generalize to novel environments. In CoRL, pages 293–305. PMLR, 2018.

A. Masegosa, S.S. Lorenzen, C. Igel, and Y. Seldin. Second order pac-bayesian bounds for
the weighted majority vote. In NeurIPS, 2020.

David A McAllester. Pac-bayesian model averaging. In COLT, pages 164–170, 1999.

David A McAllester. Pac-bayesian stochastic model selection. Machine Learning, 51:5–21,
2003.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan.
Tactical optimism and pessimism for deep reinforcement learning. NeurIPS, 34:12849–
12863, 2021.

14



Short Title

Ling Pan, Qingpeng Cai, and Longbo Huang. Softmax deep double deterministic policy
gradients. NeurIPS, 33:11767–11777, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imper-
ative style, high-performance deep learning library. NeurIPS, 32, 2019.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In
AAAI, volume 24, pages 1607–1612, 2010.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol
Vinyals, Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic con-
trol. In International conference on machine learning, pages 2827–2836. PMLR, 2017.

David Reeb, Andreas Doerr, Sebastian Gerwinn, and Barbara Rakitsch. Learning gaussian
processes by minimizing pac-bayesian generalization bounds. NeurIPS, 31, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In ICML, pages 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Matthias Seeger. PAC-Bayesian generalisation error bounds for gaussian process classifica-
tion. Journal of machine learning research, 3(Oct):233–269, 2002.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State
entropy maximization with random encoders for efficient exploration. In ICML, pages
9443–9454. PMLR, 2021.

John Shawe-Taylor and Robert C Williamson. A pac analysis of a bayesian estimator. In
COLT, pages 2–9, 1997.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforce-
ment learning. In Proceedings of the Fourth Connectionist Models Summer School, pages
255–263. Psychology Press, 1993.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In AAAI, volume 30, 2016.

Sushant Veer and Anirudha Majumdar. Probably approximately correct vision-based plan-
ning using motion primitives. In CoRL, pages 1001–1014. PMLR, 2021.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse
reinforcement learning. ICML, 2015.

15



Authors

Tianjun Zhang, Paria Rashidinejad, Jiantao Jiao, Yuandong Tian, Joseph E Gonzalez,
and Stuart Russell. Made: Exploration via maximizing deviation from explored regions.
NeurIPS, 34:9663–9680, 2021.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA,
2008.

16



Short Title

Appendix
Proof of Theorem 3.2

Denote VS(s) = Ea∼π[QπS (s, a)− α log π(a|s)] and the optimization objective

J(π) := Es∼P

[
DKL

(
π(·|s)

∣∣∣∣∣
∣∣∣∣∣ exp(QS(s, ·)/α)∫

exp(QS(s, ā)/α)π(ā|s)dā

)]
= Es∼S,a∼π[log π(a|s)−QS(s, a)] + const.

Since J(π′) ≤ J(πS), we have

Es∼P,a∼π′ [QS(s, a)− log π′(a|s)] ≥ Es∼P,a∼π[Q(s, a)− log π(a|s)] = VS(s).

Taking S action samples {a(1), . . . , a(S)} ∼ π and S value function samples evaluated at

these actions {Q(1)
s (s, a1), . . . , Q

(S)
S (s, aS)} ∼ µ and choosing the sample a∗ corresponding

to the maximum of these function evaluations Q∗
S(s, a

∗) we will have

Es∼P,a∼π′,QS∼µ[QS(s, a)− log π′(a|s)] ≤ Es∼P [Q
∗
S(s, a

∗)− Eπ′(a|s)[log π
′(a|s)]].

Plugging this inequality into the Bellman equation and expanding it recursively, we get the
desired result:

QS(s, a) = r(s, a) + γEs′∼P [VS(s)]

≤ r(s, a) + γEs′∼P,a′∼π′ [QS(s
′, a′)− log π′(s|a)]

≤ Es′∼P [r(s, a) + γEs′∼P [QS(s
′, a′∗)− Ea′∼π′ [log π′(a|s)]]]

...

≤ Q′
S(s, a) ■

5.1. Experimental details

We implement all experiments with the PyTorch (Paszke et al., 2019) version 1.13.1.

Environments. For experiments, we use PyBullet Gymperium library. We choose the
environment handlesInvertedPendulumSwingupPyBulletEnv-v0 for Cartpole Swingup,
HalfCheetahMuJoCoEnv-v0 for Half Cheetah, AntMuJoCoEnv-v0 for Ant, and
HumanoidMuJoCoEnv-v0 for Humanoid.

Hyper-parameters. We use Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.001 for all architectures. We set the length of experience replay as 25000 and batch
size as 32. For PAC4SAC we set the regularization parameter to ξ = 0.01 and α = 0.2.

Architectures. We use the same architecture for all the environments and models in
comparison. There are two main architectures: actor and critic, details of the architectures
are provided in Table 3.
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Actor Critic
SAC

PAC4SAC
OAC

DDPG

SAC

DDPG

PAC4SAC
OAC

n/a n/a
Linear(ds, 256)

LayerNorm(256)

Silu()

Linear(ds + da, 256)

LayerNorm(256)

Silu()

Linear(256, 256)

LayerNorm(256)

Silu()

Linear(256, 256)

LayerNorm(256)

Silu()

Linear(256, 256)

LayerNorm(256)

Silu()

Linear(256, 256)

LayerNorm(256)

Silu()

Linear(256, 2×da, θ) Linear(256, da) Linear(256, 1) GaussLinear(256, 1)

SquashedGaussian(2×da, da) Tanh()

Table 3: Architecture details based on environments. The SquashedGaussian module im-
plements a Gaussian head that uses the first da of its inputs as the mean and
the second da as the variance of a heteroscedastic normal distribution. The
GaussLinear module implements a fully connected layer with weights that fol-
low independent normal distributions.
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