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ABSTRACT

LASSO regularization is a popular regression tool to enhance the prediction accu-
racy of statistical models by performing variable selection through the `1 penalty,
initially formulated for the linear model and its variants. In this paper, the territory
of LASSO is extended to the neural network model, a fashionable and powerful
nonlinear regression model. Specifically, given a neural network whose output
y depends only on a small subset of input x, denoted by S?, we prove that the
LASSO estimator can stably reconstruct the neural network and identify S? when
the number of samples scales logarithmically with the input dimension. This chal-
lenging regime has been well understood for linear models while barely studied
for neural networks. Our theory lies in an extended Restricted Isometry Property
(RIP)-based analysis framework for two-layer ReLU neural networks, which may
be of independent interest to other LASSO or neural network settings. Based on
the result, we further propose a neural network-based variable selection method.
Experiments on simulated and real-world datasets show the promising performance
of our variable selection approach compared with classical techniques.

1 INTRODUCTION

Given n observations (yi,xi), i = 1, . . . , n, we often model them with the regression form of
yi = f(xi) + ξi, with an unknown function f , xi ∈ Rp being the input variables, and ξi representing
statistical errors. A general goal is to estimate a regression function f̂n close to f for prediction or
interpretation. This is a challenging problem when the input dimension p is comparable or even
much larger than the data size n. For linear regressions, namely f(x) = w>x, the least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996) regularization has been established
as a standard tool to estimate f . The LASSO has also been successfully used and studied in many
nonlinear models such as generalized linear models (Van de Geer et al., 2008), proportional hazards
models (Tibshirani, 1997), and neural networks (Goodfellow et al., 2016). In particular, the LASSO
regularization has been added into the standard deep learning toolbox of many open-source libraries,
e.g., Tensorflow (Abadi et al., 2016) and Pytorch (Paszke et al., 2019). Despite the practical success of
LASSO, its theoretical efficacy in neural networks is barely studied. In particular, it remains unclear
whether LASSO may be used for variable selection and subsequent interpretations of a learned model.

Meanwhile, in the theoretical study of neural networks, there has been remarkable progress towards
understanding their approximation errors (Barron, 1993; 1994) and generalization errors (Barron &
Klusowski, 2019; Schmidt-Hieber, 2017; Bauer & Kohler, 2019). Nevertheless, the identifiability
issue of neural networks has been an unsolved challenge. Specifically, supposing that data observa-
tions are generated from a neural network with only a few nonzero coefficients (or its proximity), the
identifiability concerns the possibility of identifying those coefficients. In practice, such sparsity of
neural coefficients may be interpreted as a sparse set of input variables that are genuinely relevant to
the response, which may be of scientific interest.

In this paper, we consider the following class of two-layer ReLU neural networks.

Fr =

{
f : x 7→ f(x) =

r∑
j=1

ajrelu(w>j x+ bj), where aj , bj ∈ R,wj ∈ Rp
}
.

Here, p and r denote the input dimension and the number of neurons, respectively. We will assume
that a neural network model of parsimoniousness generates the data. In other words, some of the
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input signals are irrelevant to explain y, or some of the network structure in f is redundant for
modeling (y,x). Different forms of parsimoniousness were assumed in (Schmidt-Hieber, 2017;
Bauer & Kohler, 2019; Barron & Klusowski, 2019) to derive tight neural network risk bounds. We
raise the following two questions to understand the nonlinear nature of neural networks.

First, if the underlying system f admits a parsimonious representation, meaning that only a small set
of input variables, S?, is relevant, can we identify them with high probability given possibly noisy
measurements (yi,xi), for i = 1, . . . , n? Second, is such a S? estimable, meaning that it can be
solved from an optimization problem with high probability, even in small-n and large-p regimes?

To address the above questions, we will establish a theory for neural networks with the LASSO
regularization by considering the minimization problem

min
W ,a,b

‖W ‖1 subject to
1

n

n∑
i=1

yi − r∑
j=1

ajrelu(w>j xi + bj)

2

≤ σ2, (1)

which is an alternative version of the L1-regularization. More notational details will be introduced in
Subsection 3.2.

We theoretically show that the LASSO-type estimator can stably identify ReLU neural networks with
sparse input signals, up to a permutation of hidden neurons. Our result is rather general as it applies
to noisy observations of y and dimension regimes where the sample size n is much smaller than the
number of input variables p. Our theory gives positive answers to the above questions. The theory
was derived based on new concentration bounds and function analysis that may be interesting in their
own right.

Inspired by the developed theory, we also propose a neural network-based variable selection method.
The idea is to use the neural system as a vehicle to model nonlinearity and extract significant variables.
To the best of our knowledge, the identifiability perspective of neural networks and its subsequent
variable selection method have not been seen in the literature. Through various experimental studies,
we show encouraging performance of the technique in identifying a sparse set of significant variables
from large dimensional data, even if the underlying data are not generated from a neural network.
Compared with popular approaches based on tree ensembles and linear-LASSO, the developed
method is suitable for variable selection from nonlinear, large-dimensional, and low-noise systems.

The rest of the paper is outlined as follows. Section 2 reviews the related work. Section 3 introduces
the main theoretical results and develops a practical algorithm to perform variable selection. Section 4
uses simulated and real-world datasets to demonstrate the proposed theory and algorithm. Section 5
concludes the paper.

2 RELATED WORK

Linear models. The variable selection problem is also known as support recovery or feature selection
in different literature. Selection consistency requires that the probability of supp(ŵ) = supp(w)
converges to one as n → ∞. The mainstream approach to select a parsimonious sub-model is to
either solve a penalized regression problem or iteratively pick up significant variables. The existing
methods differ in how they incorporate unique domain knowledge (e.g., sparsity, multicollinearity,
group behavior) or what desired properties (e.g., consistency in coefficient estimation, consistency in
variable selection) to achieve. For instance, consistency of the LASSO method (Tibshirani, 1996) in
estimating the significant variables has been extensively studied under various technical conditions,
including sparsity, mutual coherence (Donoho & Huo, 2001), restricted isometry (Candes & Tao,
2005), irrepresentable condition (Zhao & Yu, 2006), and restricted eigenvalue (Bickel et al., 2009).

Neural network models. Neural networks have been practically successful in modeling a wide range
of nonlinear systems. Analytically, a universal approximation theorem was established that shows
any continuous multivariate function can be represented precisely by a polynomial-sized two-layer
network (Kolmogorov, 1957). It was later shown that any continuous function could be approximated
arbitrarily well by a two-layer perceptron with sigmoid activation functions (Cybenko, 1989), and
an approximation error bound of using two-layer neural networks to fit arbitrary smooth functions
has been established (Barron, 1993; 1994). Statistically, generalization error bounds for two-layer
neural networks (Barron, 1994) and multi-layer networks (Neyshabur et al., 2015; Golowich et al.,
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2017) have been developed. From an optimization perspective, the parameter estimation of neural
networks could be cast into a tensor decomposition problem where a provably global optimum can
be obtained (Janzamin et al., 2015; Ge et al., 2017; Mondelli & Montanari, 2018). Very recently,
a dimension-free Rademacher complexity to bound the generalization error for deep ReLU neural
networks was developed to avoid the curse of dimensionality (Barron & Klusowski, 2019). It was
proved that certain deep neural networks with few non-zero network parameters could achieve
minimax rates of convergence (Schmidt-Hieber, 2017). A tight error bound free from the input
dimension was developed by assuming that the data is generated from a generalized hierarchical
interaction model (Bauer & Kohler, 2019). Overall, theoretical studies have primarily focused on the
prediction risk bounds or generalization error bounds of estimated neural networks.

3 MAIN RESULTS

3.1 NOTATION

Let uS denote the vector whose entries indexed in the set S remain the same as those in u, and the
remaining entries are zero. For any matrixW ∈ Rp×r, we define

‖W ‖1 =
∑

1≤k≤p,1≤j≤r

|wkj |, ‖W ‖F =

( ∑
1≤k≤p,1≤j≤r

w2
kj

)1/2

.

Similar notations apply to vectors. The inner product of two vectors is denoted as 〈u,v〉. Let wj
denote the j-th column ofW . The sparsity of a matrixW refers to the number of nonzero entries
in W . Let N (0, Ip) denote the standard p-dimensional Gaussian distribution, and 1(·) denote the
indicator function. The rectified linear unit (ReLU) function is defined by relu(v) = max{v, 0} for
all v ∈ R.

3.2 FORMULATION

Given n independently and identically distributed (i.i.d.) observations {xi, yi}1≤i≤n satisfying

yi =

r∑
j=1

a?j · relu(w?>
j xi + b?j ) + ξi with xi ∼ N (0, Ip), (2)

where r is the number of neurons, a?j ∈ {1,−1},w?
j ∈ Rp, b?j ∈ R, and ξi denotes the random noise

or approximation error obeying
1

n

n∑
i=1

ξ2i ≤ σ2. (3)

In the above formulation, the assumption a?j ∈ {1,−1} does not lose generality since a · relu(b) =
ac · relu(b/c) for any c > 0. The setting Equation (3) is for simplicity. If ξi’s are unbounded random
variables, our theoretical result later on still holds, and more explanations are in the supplement. The
ξi’s are not necessarily i.i.d. and σ is allowed to be zero, which reduces to the noiseless scenario.

Let W ? = [w?
1 , . . . ,w

?
r ] ∈ Rp×r denote the data-generating coefficients. The question we aim to

address is whether we can stably identify those nonzero elements, given that most entries inW ? are
zero. The study of neural networks from an identifiability perspective is exciting and essential. Unlike
the generalizability problem that studies the predictive performance of machine learning models,
the identifiability may be used to interpret modeling results and help scientists make trustworthy
decisions. To illustrate this point, we will propose to use neural networks for variable selection in
Subsection 3.4.

To answer the above question, we propose to study the following LASSO-type optimization. Let(
Ŵ , â, b̂

)
be a solution to the following optimization problem,

min
W ,a,b

‖W ‖1 subject to
1

n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w>j xi + bj)

)2

≤ σ2, (4)
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within the feasible range a ∈ {1,−1}r,W ∈ Rp×r, and b ∈ Rr.

Intuitively, the optimization operates under the constraint that the training error is not too large and
the objective function tends to sparsifyW . Under some regularity conditions, we will prove that the
solution is indeed sparse and close to the truth.
Assumption 1. Suppose that for some constant B ≥ 1,

1 ≤ ‖w?
j ‖2 ≤ B and |b?j | ≤ B ∀1 ≤ j ≤ r. (5)

In addition, we assume that for some constant ω > 0,

max
j 6=k

∣∣〈w?
j ,w

?
k〉
∣∣

‖w?
j ‖2‖w?

k‖2
≤ 1

rω
. (6)

The condition in (5) is a normalization only for technical convenience, since we can re-scale
wj , bj , yi, σ proportionally without loss of generality. Though this condition implicitly requires
w?
j 6= 0 for all j = 1, . . . , r, it is reasonable since it means the neuron j is not used/activated. The

condition in (6) requires that the angle of any two different coefficient vectors is large enough. We
will provide an alternative assumption in the supplementary document.

3.3 MAIN THEOREM

Our main result shows that if W ? is sparse, one can stably reconstruct a neural network when the
number of samples (n) scales logarithmically with the input dimension (p). We only focus on the
varying n and p and implicitly assume that the sparsity ofW ? and the number of neurons r are fixed.
A skeptical reader may ask how the constants exactly depend on the sparsity and r. We will provide a
more elaborated theorem in the supplementary document.
Theorem 1. Under the Assumption 1, there exist some universal constants c1, c2, c3 > 0 depending
only (polynomially) on the sparsity ofW ?, such that: for any δ > 0, one has with probability at least
1− δ,

â = Πa? and ‖Ŵ −W ?Π>‖F + ‖b̂−Πb?‖2 ≤ c1σ (7)
for some permutation matrix Π, provided that

n > c2 log4 p

δ
and σ < c3. (8)

Remark 1 (Interpretations of Theorem 1). The permutation matrix Π is necessary since the con-
sidered neural networks produce identical predictive distributions (of y conditional x) under any
permutation of the hidden neurons. The result says that the underlying neural coefficients can be
stably estimated even when the sample size n is much smaller than the number of variables p. Also,
the estimation error bound is at the order of σ, the specified noise level in (3).

Suppose that we define the signal-to-noise ratio (SNR) to be E‖x‖2/σ2. An alternative way to
interpret the theorem is that a large SNR ensures the global minimizer to be close to the ground truth
with high probability. One may wonder what if the σ < c3 condition is not met. We note that if σ is
too large, the error bound in (7) would be loose, and it is not of much interest anyway. In other words,
if the SNR is small, we may not be able to estimate parameters stably. This point will be demonstrated
by experimental studies in Section 4.

The estimation results in Theorem 1 can be translated into variable selection results as shown in
the following Corollary 1. The connection is based on the fact that if i-th variable is redundant, the
underlying coefficients associated with it should be zero. Let w?

i,· denote the i-th row ofW ?. Then,

S? = {1 ≤ i ≤ p : ‖w?
i,·‖2 > 0}

characterizes the “significant variables.” Corollary 1 says that the set of variables with non-vanished
coefficient estimates contains all the significant variables. The corollary also shows with a suitable
shrinkage of the coefficient estimates, one can achieve variable selection consistency.

Corollary 1 (Variable selection). Let Ŝ0 and Ŝc1σ ⊆ {1, . . . , p} denote the sets of i’s such that
‖ŵi,·‖2 > 0 and ‖ŵi,·‖2 > c1σ, respectively. Under the same assumption as in Theorem 1, and
inf‖w?

i,·‖2 > c1σ, for any δ > 0, one has

P(S? ⊆ Ŝ0) ≥ 1− δ and P(S? = Ŝc1σ) ≥ 1− δ,
provided that n > c2 log4 p

δ and σ < c3.
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Considering the noiseless scenario σ = 0, Theorem 1 also implies the following corollary.
Corollary 2 (Unique parsimonious representation). Under the Assumption 1, there exist universal
constants c1, c2 > 0 depending only on the sparsity of W ? such that: for any δ > 0, one has with
probability at least 1− δ,

â = Πa?, and Ŵ = W ?Π>, and b̂ = Πb?

for some permutation matrix Π, provided that n > c2 log4 p
δ .

Corollary 2 says that among all the possible representationsW of (2) (with ξi = 0), the one(s) with
the smallest L1-norm must be identical to W ? up to a column permutation with high probability.
In other words, the most parsimonious representation (in the sense of L1 norm) of two-layer ReLU
neural networks is unique. This observation addresses the questions raised in Section 1.
Remark 2 (Sketch proof of Theorem 1). The proof of Theorem 1 is highly nontrivial, and it is
included in the supplementary document. Next, we briefly explain the sketch of the proof. First, we
will define what we refer to as D1-distance and D2-distance between (W ,a, b) and (W ?,a?, b?).
These distances can be regarded as the counterpart of the classical L1 and L2 distances between two
vectors, but allow the invariance under any permutation of neurons (Remark 1). Then, we let

∆n :=
1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

,

hereW ,a, b is the solution of Equation (4), and develop the following upper and lower bounds of it.

∆n ≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 and ∆n ≥ c4 min

{
1

r
,D2

2

}
(9)

hold with probability at least 1− δ, provided that n ≥ c5S3r4 log4 p
δ , for some constants c4, c5, c6,

and S to be specified. Here, the upper bound will be derived from a series of elementary inequalities.
The lower bound is reminiscent of the Restricted Isometry Property (RIP) (Candes & Tao, 2005) for
linear models. We will derive it from the lower bound of the population counterpart by concentration
arguments, namely

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥ cmin

{
1

r
,D2

2

}
,

for some constant c > 0. The bounds in (9) imply that with high probability,

c4 min

{
1

r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

Using this and an inequality connecting D1 and D2, we can prove the final result.

3.4 VARIABLE SELECTION

To solve Equation (4) in practice, we consider the following alternative problem,

min
W ,a,b

1

n

n∑
i=1

(
yi −

r∑
j=1

aj · relu(w>j xi + bj)

)2

+ λ‖W ‖1. (10)

The above optimization problem can be numerically solved using algorithms such as stochastic
gradient descent (Bottou, 2010) and ADAM (Kingma & Ba, 2014), available from many open-source
libraries. We discuss some details regarding the variable selection using LASSO regularized neural
networks.

Tuning parameters. Given a labeled dataset in practice, we will need to tune several hyper-
parameters, including the penalty term λ, number of neurons r, learning rate, and number of epochs.
We suggest the usual approach that splits the training data into training and validation parts. The
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training data are used to estimate neural networks for a set of candidate hyper-parameters. The most
suitable candidate will be identified based on the predictive performance on the validation data. We
point out that there are gaps between the developed theory and the selection method in practice. For
example, the selected number of hidden neurons r based on the training data may violate the constant
bounds in Assumption 1. Fortunately, from our experimental studies, the results are not very sensitive
to the choice of r.

Variable importance. Inspired by Corollary 1, we assign the norm of ŵi,· as the importance of the
i-th variable, for i = 1, . . . , p. As Corollary 1 implies, we can accurately identify all the significant
variables in S? with high probability if we correctly set the cutoff value c1σ.

Setting the cutoff value. In practice, we have no idea of the threshold c1σ. But it is conceivable that
variables with large importance are preferred over those with near-zero importance. This inspires us
to cluster the variables into two groups based on their importance. Here, we suggest two possible
approaches. The first is to use a data-driven approach such as k-means and Gaussian mixture model
(GMM). The second is to manually set a threshold value according to domain knowledge on the
number of important variables.

4 EXPERIMENTS

We perform experimental studies to show the promising performance of the proposed variable selec-
tion method. We compare the variable selection accuracy and prediction performance of the proposed
algorithm (‘NN’) with several baseline methods, including the LASSO (‘LASSO’), orthogonal
matching pursuit (‘OMP’), random forest (‘RF’), and gradient boosting (‘GB’). The implementation
follows Subsection 3.4. In particular, we used ADAM to optimize and GMM to select significant
variables. The parameters grid of ‘NN’ is set as the penalty term λ ∈ {0.1, 0.05, 0.01, 0.005}, the
number of neurons r ∈ {20, 50, 100}, the learning rate in set {0.05, 0.01, 0.005}, and the number of
epochs in set {200, 500, 1000}. We use the absolute value of the estimated coefficient as the variable
importance for ‘LASSO’ and ‘OMP’, and use the self-produced feature importance for the tree-based
methods. All the computation is done on the 2.3GHz Quad-Core Intel Core i5 with Intel Iris Plus
Graphics 655.

4.1 SYNTHETIC DATASETS

4.1.1 NN-GENERATED DATASET

The first experiment uses the data generated from Equation (2) with p = 100 variables and r = 16
neurons. The first 10 rows of neural coefficientsW are independently generated from the standard
uniform distribution and the remaining rows are zeros, representing 10 significant variables. The
neural biases b are also generated from the standard uniform distribution. The signs of neurons, a,
follow an independent Bernoulli distribution. The training size is n = 500 and the test size is 2000.
The noise level σ is set to be 0, 0.5, 1, and 5. For each σ, we evaluate the number of correctly selected
variables (‘TP’) and wrongly selected variables (‘FP’), along with the test error. The procedure is
independently replicated 100 times. The average numbers of selected features are reported in Table 1.
The test errors are reported in Table 2.

The results show that ‘NN’ has the best performance on both the selection and prediction. The
performance of tree-based methods is surprisingly undesirable. Also, when the noise level σ increases,
or the SNR decreases, all the methods perform worse. Another observation is that selection accuracy
and prediction performance are positively associated for ‘NN’, but this is not the case for other
methods.

4.1.2 LINEAR DATASET

This experiment considers data generated from a linear model y = x>β + ξ, where β =
(3, 1.5, 0, 0, 2, 0, 0, 0)>, ξ ∼ N (0, σ2), and x follows a multivariate Gaussian distribution whose
(i, j)-th correlation is 0.5|i−j|. Among the p = 8 features, only three of them are significant. The
training size is n = 60 and the test size is 200. The other settings are the same as Subsubsection 4.1.1.
The results are presented in Tables 3 and 4.
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Table 1: Performance comparison on the NN-
generated data, in terms of the number of correctly
(‘TP’) and wrongly (‘FP’) selected features for differ-
ent σ. The standard errors are within 0.3, except for
the ‘FP’ of ‘LASSO’, which is 0.6.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN TP 10.0 9.7 9.8 6.7
FP 0.0 0.1 1.8 1.3

LASSO TP 9.5 8.8 8.6 6.5
FP 12.4 10.8 10.5 9.3

OMP TP 8.4 8.0 8.6 5.8
FP 0.1 0.4 0.0 0.4

RF TP 6.3 6.8 7.4 4.2
FP 0.1 0.2 0.7 0.8

GB TP 7.9 7.8 8.4 5.6
FP 1.2 1.5 3.1 3.5

Table 2: Performance comparison on the
NN-generated data, in terms of the aver-
age mean squared error for different σ.
The standard errors of ‘NN’ are within 0.1,
while linear methods are around 0.4 and
tree-based methods are 0.8.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN 0.55 0.72 1.18 4.75
LASSO 5.05 5.71 5.07 5.50
OMP 5.27 4.75 5.01 6.17
RF 10.01 8.86 9.22 9.70
GB 5.67 5.84 6.58 10.92

Table 3: Performance comparison on the linear data,
in terms of the number of correctly (‘TP’) and wrongly
(‘FP’) selected features for different σ. The standard
errors are within 0.1.

Method σ = 0 σ = 1 σ = 3 σ = 5

NN TP 3.0 2.7 2.2 1.6
FP 0.0 0.0 0.1 0.3

LASSO TP 2.7 3.0 2.5 2.1
FP 0.0 0.0 0.1 0.3

OMP TP 3.0 2.8 2.5 1.7
FP 0.0 0.0 0.3 0.9

RF TP 1.5 1.5 1.7 1.4
FP 0.0 0.0 0.0 0.3

GB TP 1.3 1.5 1.3 1.0
FP 0.0 0.0 0.0 0.1

Table 4: Performance comparison on the
linear data, in terms of the number of av-
erage mean squared error for different σ.
The standard errors are within 0.2 when
σ < 5, and about 0.4 when σ = 5.

Method σ = 0 σ = 1 σ = 3 σ = 5

NN 0.11 0.43 2.11 5.42
LASSO 0.00 0.13 1.32 4.97
OMP 0.00 0.09 1.47 6.61
RF 3.54 3.52 4.98 10.00
GB 2.68 3.04 5.76 14.20

The results show that the linear model-based methods ‘LASSO’ and ‘OMP’ have the best overall
performance, which is expected since the underlying data are from a linear model. The proposed
approach ‘NN’ is almost as good as the linear methods. On the other hand, the tree-based methods
‘RF’ and ‘GB’ perform significantly worse. We think that this is because the sample size n = 60 is
quite small, so the tree-based methods have a large variance. Meanwhile, the ‘NN’ uses L1 penalty to
alleviate the over-parameterization and consequently spots the relevant variables. Additionally, ‘NN’
exhibits a positive association between the selection accuracy and prediction performance, while the
tree-based methods do not.

4.1.3 FRIEDMAN DATASET

This experiment uses the Friedman dataset with the following nonlinear data-generating process,
y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ξ. We generate standard Gaussian predictors
x with a dimension of p = 50. The training size is n = 500 and the test size is 2000. Other settings
are the same as before. The results are summarized in Tables 5 and 6. For this nonlinear dataset,
‘NN’ almost always finds the significant variables and excludes redundant ones, which is better
than tree-based methods. At the same time, the linear methods fail to select the quadratic factor x3.
Moreover, we find that when different methods are compared, the method with a better selection
accuracy does not necessarily exhibit a better prediction and vice versa.

4.2 BGSBOY DATASET

The BGSBoy dataset involves 66 boys from the Berkeley guidance study (BGS) of children born in
1928-29 in Berkeley, CA (Tuddenham, 1954). The dataset includes the height (‘HT’), weight (‘WT’),
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Table 5: Performance comparison on the Friedman
data, in terms of the number of correctly (‘TP’) and
wrongly (‘FP’) selected features for different σ. The
standard errors are within 0.15, except for ‘FP’ of
‘LASSO’, which is around 0.3.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN TP 4.8 5.0 5.0 4.9
FP 0.0 0.0 0.0 0.1

LASSO TP 4.04 4.06 4.1 4.13
FP 2.03 2.24 2.22 4.72

OMP TP 4.0 4.0 4.0 4.0
FP 0.17 0.13 0.09 0.17

RF TP 4.64 4.54 4.72 3.87
FP 0.03 0.02 0.02 0.22

GB TP 4.98 4.94 4.94 4.5
FP 0.03 0.0 0.02 0.56

Table 6: Performance comparison on the
Friedman data, in terms of the average
mean squared error for different σ. The
standard errors are within 0.1.

Method σ = 0 σ = 0.5 σ = 1 σ = 5

NN 1.89 2.08 2.32 5.69
LASSO 6.28 6.08 6.2 6.94
OMP 5.8 5.98 5.45 6.31
RF 5.22 5.43 5.36 7.82
GB 1.75 1.87 2.18 7.57

Table 7: Experiment results of different methods on the BGSBoy dataset. RMSE: the mean of the
root mean squared error(standard error). Top 3 features: the feature name(number of selection, out of
100 times).

Method NN LASSO OMP RF GB
RMSE 0.04 (0.003) 0.05 (0.002) 0.05 (0.002) 3.07 (0.154) 2.4 (0.142)

Top 3 frequently
selected features

WT18(100) WT18(100) WT18(100) WT18(91) WT18(90)
HT18(81) HT18(71) HT18(64) LG18(86) LG18(59)

N/A HT9(51) HT9(16) LG9(2) HT18(8)

leg circumference (‘LG’), strength (‘ST’) at different ages (2, 9, 18 years), and body mass index
(‘BMI18’). We choose ‘BMI18’ as the response, which is defined as follows.

BMI18 = WT18/(HT18/100)2, (11)

where WT18 and HT18 denote the weight and height at the age of 18, respectively. In other words,
‘WT18’ and ‘HT18’ are sufficient for modeling the response among p = 10 variables. Other variables
are correlated but redundant. The training size is n = 44 and the test size is 22. Other settings are the
same as before. We compare the prediction performance and explore the three features which are
most frequently selected by each method. The results are summarized in Table 7.

From the results, all of the methods can identify ‘WT18’ most of the time. Nevertheless, ‘NN’ only
selects ‘WT18’ and ‘HT18’ in all the replications, while other methods sometimes select features that
are redundant but correlated with the response. For example, tree-based methods usually miss ‘HT18’
but select ‘LG18’ instead. The results indicate that only ‘NN’ can stably identify the underlying
significant variables. Interestingly, we find that the linear methods still predict well in this experiment.
The reason is that Equation (11) can be well-approximated by a first-order Taylor expansion on
‘HT18’ at the value around 180, and the range of ‘HT18’ is within a small interval around 180.

4.3 UJIINDOORLOC DATASET

The UJIINdoorLoc dataset aims to solve the indoor localization problem via WiFi fingerprinting and
other variables such as the building and floor numbers. A detailed description can be found in (Torres-
Sospedra et al., 2014). Specifically, we have 520 Wireless Access Points (WAPs) signals (which
are continuous variables) and ‘FLOOR’, ‘BUILDINGID’, ‘SPACEID’, ‘RELATIVEPOSITION’,
‘USERID’, and ‘PHONEID’ as categorical variables. The response variable is a user’s longitude
(‘Longitude’). The dataset has 19937 observations. We randomly sample 3000 observations and split
them into n = 2000 for training and 1000 for test. As part of the pre-processing, we create binary
dummy variables for the categorical variables, which results in p = 681 variables in total. We explore
the ten features that are most frequently selected by each method. We set the cutoff value as the
tenth-largest variable importance. The procedure is independently replicated 100 times. The results
are reported in Table 8.
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Table 8: Experiment results of different methods on the UJIINdoor dataset. RMSE: the mean of the
root mean squared error(standard error). Top 10 features: the feature name(number of selection, out
of 100 times).

Method NN LASSO OMP RF GB
RMSE 9.6(0.067) 14.23(0.046) 16.58(0.052) 9.49(0.053) 10.3(0.043)

Top 10
frequently
selected
features

BUILDINGID_2(100) BUILDINGID_1(100) BUILDINGID_1(100) BUILDINGID_1(100) BUILDINGID_2(100)
BUILDINGID_1(100) USERID_16(100) BUILDINGID_2(100) BUILDINGID_2(100) BUILDINGID_1(100)

USERID_16(97) BUILDINGID_2(100) WAP099(81) WAP120(82) WAP141(91)
SPACEID_202(86) USERID_9(94) USERID_10(70) WAP141(76) WAP120(87)

USERID_8(76) WAP099(90) USERID_16(60) WAP117(75) WAP099(68)
USERID_9(74) USERID_10(72) USERID_7(58) WAP173(74) WAP113(67)

PHONEID_14(65) USERID_7(67) WAP124(55) WAP118(58) WAP117(60)
FLOOR_3(61) WAP121(49) USERID_9(46) WAP167(57) PHONEID_14(58)

SPACEID_201(52) WAP118(34) WAP120(31) WAP035(52) WAP114(48)
SPACEID_203(41) WAP124(28) WAP117(29) WAP113(33) WAP167(47)

Based on the results, the ‘NN’ achieves similar prediction performance as ‘RF’ and significantly
outperforms other methods. As for variable selection, since ‘BUILDING’ greatly influences the
location from our domain knowledge, it is non-surprisingly selected by all methods in every replica-
tion. However, except for ‘BUILDING’, different methods select different variables. Some overlaps,
e.g., ‘PHONEID_14’ selected by ‘NN’ and ‘GB’, ‘USERID_16’ selected by ‘NN’ and ‘LASSO’,
indicate the potentially important variables. Nevertheless, those methods do not achieve an agreement
for variable selection. ‘NN’ implies that all the WAPs signals are weak while categorical variables
provide more information about the user location. Given the extremely high missing rate of WAPs
signals (97% on average, as reported in (Torres-Sospedra et al., 2014)), we think that the interpretation
of ‘NN’ is reasonable.

4.4 SUMMARY

The experiment results show the following points. First, ‘NN’ can stably identify the important
variables and have competitive prediction performance compared with the baselines. Second, the
increase of the noise level will hinder both the selection and prediction performance. Third, the
LASSO regularization is crucial for ‘NN’ to avoid over-fitting, especially for small data. Fourth, the
selection and prediction performances are often positively associated for ‘NN’, but may not be the
case for baseline methods.

5 CONCLUDING REMARKS

We established a theory for the use of LASSO in two-layer ReLU neural networks. In particular,
we showed that the LASSO estimator could stably reconstruct the neural network coefficients and
identify the critical underlying variables under reasonable conditions. We also proposed a practical
method to solve the optimization and perform variable selection.

We briefly remark on some interesting further work. First, the algorithm can be directly extended to
deeper neural networks. It will be exciting to generalize the main theorem to the multi-layer cases.
Second, the developed theory may be extended to study the variable selection for general nonlinear
functions due to the universal approximation theorem.

The supplementary material includes detailed proofs and Python codes used for the experiments.
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Supplementary Document

A MAIN RESULTS

We first restate the main assumptions and results in the following for ease of understanding. Given n
i.i.d. observations {xi, yi}1≤i≤n satisfying

yi =

r∑
j=1

a?j relu(w?>
j xi + b?j ) + ξi, with xi ∼ N (0, I) (12)

where ξi denotes the random noise and/or approximation error obeying

1

n

n∑
i=1

ξ2i ≤ σ2, (13)

let
(
Ŵ , â, b̂

)
be the solution to the following optimization problem

min
W ,a,b

‖W ‖1 subject to
1

n

n∑
i=1

yi − r∑
j=1

ajrelu(w>j xi + bj)

2

≤ σ2. (14)

Here, aj ∈ {1,−1}, ‖W ‖1 :=
∑
j,k |wjk|.

Let ψ be the largest value such that

E
[
〈a, relu(W>x+ b)〉 − 〈a?, relu(W ?>x+ b?)〉

]2
≥ ψD2 [(W ,a, b), (W ?,a?, b?)]

2
. (15)

With similar analysis as Dinh & Ho (2020)[Lemma 3.2], one can see that

ψ > 0. (16)

In addition, we make the following assumptions1.
Assumption 2. Suppose that for some constant B > 0,

‖w?
j ‖2 ≤ B and |b?j | ≤ B for all 1 ≤ j ≤ r. (17)

Since ψ may depend on model dimensions saliently, we demonstrate that the above assumption can
be replaced with the following condition under Gaussian input.
Assumption 3. Suppose that for some constant B > 0,

1 ≤ ‖w?
j ‖2 ≤ B and |b?j | ≤ B for all 1 ≤ j ≤ r. (18)

Here, we consider the normalized setting ‖w?
j ‖2 ≥ 1 for simplicity. In addition, we assume that2

max
j 6=k

∣∣〈w?
j ,w

?
k〉
∣∣

‖w?
j ‖2‖w?

k‖2
≤ 1

r0.1
. (19)

Then ifW ? has at most s nonzero entries, one can stably reconstruct the neural network stated in the
following result when the sample size scales logarithmically with the input dimension. The following
theorem is a more elaborated version of Theorem 1 in the main paper.
Theorem 2. There exist some universal constants c1, c2, c3 > 0, such that for any δ > 0, one has
with probability at least 1− δ,

â = Πa? and ‖Ŵ −W ?Π>‖F + ‖b̂−Πb?‖2 ≤ c1σ (20)

1From the technical proofs, it can be seen that the Gaussian input assumption can be replaced with sub-
Gaussian input. We consider the Gaussian for simplicity.

2Actually, we only need maxj 6=k
|〈w?j ,w?k〉|

‖w?j ‖2‖w
?
k
‖2
≤ 1

rω
for some constant ω > 0. Here, we choose ω = 0.1

for ease of understanding.

12



Under review as a conference paper at ICLR 2022

for some permutation Π ∈ {0, 1}r×r, provided that under the Assumption 2,

n >
c2
ψ
s3r3 log4 p

δ
, (21)

or under the Assumption 3,

n > c2s
3r13 log4 p

δ
and σ <

c3
r
. (22)

In addition, there exists some λ ∈ R, such that
(
Ŵ , â, b̂

)
is also the solution to the following

optimization problem

min
W ,a,b

1

n

n∑
i=1

yi − r∑
j=1

ajrelu(w>j xi + bj)

2

+ λ‖W ‖1. (23)

Specifically, by tuning λ, we can let the optimizer of (23) have the same loss as
(
Ŵ , â, b̂

)
, which is

exactly the solution to (14).

B ANALYSIS: PROOF OF THEOREM 2

Let S be the index set with cardinality S consisting of the support for W ? and top entries of Ŵ .
Define

W := ŴS ∈ Rp×r,
and aj = âj , bj = b̂j . Define

d1(w1, a1, b1,w2, a2, b2) =

{
‖w1 −w2‖1 + |b1 − b2| if a1 = a2;
‖w1‖1 + ‖w2‖1 + |b1|+ |b2| if a1 6= a2,

(24)

and

d2(w1, a1, b1,w2, a2, b2) =

{ √
‖w1 −w2‖22 + |b1 − b2|2 if a1 = a2;

1 if a1 6= a2.
(25)

In addition, for permutation π on [r], let

D1 := min
π

r∑
j=1

d1(wπ(j), aπ(j), bπ(j),w
?
j , a

?
j , b

?
j ), (26)a

D2 := min
π

√√√√ r∑
j=1

d2(wπ(j), aπ(j), bπ(j),w
?
j , a

?
j , b

?
j )

2 (26)b

denote the D1-distance and D2-distance between (W ,a, b) and (W ?,a?, b?), respectively. Then
one has the following bounds.
Lemma 1. For any W ∈ Rp×r with ‖W ‖0 ≤ S, there exists some universal constants c4, c5 > 0
such that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ c4ψD2
2 (27)

holds with probability at least 1− δ provided that

n ≥ c5ψ2S3 log4 p

δ
. (28)

In addition, one has

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ c4 min

{
1

r
,D2

2

}
(29)

holds with probability at least 1− δ provided that

n ≥ c5S3r4 log4 p

δ
. (30)
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Lemma 2. Then there exists some universal constants c6 > 0 such that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2

(31)

holds with probability at least 1− δ.

By comparing the bounds given in Lemma 1 and 2, one has

c4ψD
2
2 ≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

provided that
n > c5ψ

2S3 log4 p

δ
.

Let Ŝ? be the index set with cardinality 2s consisting of the support for W ? and top entries of
Ŵ . In addition, let D?

1 and D?
2 denote the D1-distance and D2-distance between

(
ŴŜ? , â, b̂

)
and

(W ?,a?, b?) in a similar way as (26). Notice the fact that

D?
2 ≤ D2 and D1 ≤ 2D?

1 . (32)

Combined with Lemma 3, the above results give

D?
2 ≤

2c6
c4ψ

σ,

provided that for some constant c7 > 0

n ≥ c5ψ2S3 log4 p

δ
with S ≥ c7sr

ψ
,

such that

c6

(
r

S
+
r log3 p

nδ

n

)
D?2

1 ≤
c4ψ

8
D?2

2 .

Similarly, one has

c4 min

{
1

r
,D2

2

}
≤ c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2,

provided that
n > c5S

3r4 log4 p

δ
.

Combined with Lemma 3, the above results give

D?
2 ≤

2c6
c4
σ,

provided that for some constant c7 > 0

n ≥ c5S3r4 log4 p

δ
and σ2 ≤ c4

2c6r
with S ≥ c7sr3,

such that

c6

(
r

S
+
r log3 p

nδ

n

)
D2

1 + c6σ
2 <

c4
r

and c6

(
r

S
+
r log3 p

nδ

n

)
D?2

1 ≤
c4
8
D?2

2 .

Then we conclude the proof since after appropriate permutation

‖Ŵ −W ?‖F ≤ 2‖ŴŜ? −W
?‖F.
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C PROOF OF LEMMA 1 (LOWER BOUND)

This can be seen from the following three properties.

• Consider the case that D1 ≤ ε = δ
4nr

√
π

log 4pn
δ

. With probability at least 1− δ,

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

 r∑
j=1

ajrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

, (33)

where w̃j = w?
j + ε

D1

(
wj −w?

j

)
and b̃j = b?j + ε

D1

(
bj − b?j

)
.

• For any ε > 0 and
D1 ≥

ε√
S
n log pr

S log BS
εδ

,

there exists some universal constant C1 > 0, such that with probability at least 1− δ,

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

− C1D
2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ
. (34)

• For some universal constant C2 > 0

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥ C2 min

{
1

r
,D2

2

}
. (35)

Putting all together. Let

ε = C3
δ

nr

√
S

n
log

BnS

δ
,

for some universal constant C3 > 0 such that

ε√
S
n log pr

S log BS
εδ

<
δ

4nr

√
π

log 4pn
δ

.

Inserting (15) into (34) gives

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ ψD2
2 − C1D

2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ
≥ ψ

2
D2

2, (36)

holds with probability at least 1− δ provided that for some constant C4 > 0

n ≥ C4ψ
2S3 log

pr

S
log

BS

εδ
log2 pn

δ
and D1 ≥

δ

4nr

√
π

log 4pn
δ

.
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Here, the last line holds due to Lemma 3 and we assume that max {‖W ‖∞, ‖b‖∞} is bounded by
some constant. On the other hand, if D1 <

δ
4nr

√
π

log 4pn
δ

, (33) and (36) tell us that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ D2
1

ε2
ψ

2
D̃2

2 =
ψ

2
D2

2, (37)

where D̃2 denotes the D2-distance between
(
W̃ , ã, b̃

)
and (W ?,a?, b?) in a similar way as (26).

Inserting (35) into (34) gives

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ C2 min

{
1

r
,D2

2

}
− C1D

2
1 log

pn

δ

√
S

n
log

pr

S
log

BS

εδ

≥ C2

2
min

{
1

r
,D2

2

}
, (38)

holds with probability at least 1− δ provided that for some constant C4 > 0

n ≥ C4S
3r4 log

pr

S
log

BS

εδ
log2 pn

δ
and D1 ≥

δ

4nr

√
π

log 4pn
δ

.

Here, the last line holds due to Lemma 3 and we assume that max {‖W ‖∞, ‖b‖∞} is bounded by
some constant. On the other hand, if D1 <

δ
4nr

√
π

log 4pn
δ

, (33) and (38) tell us that

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

≥ D2
1

ε2
C2

2
min

{
1

r
, D̃2

2

}
=
C2

2
D2

2.

(39)

Summing up, we conclude the proof by verifying the claims in the following.

C.1 PROOF OF (33)

Without loss of generality, we assume that aj = a?j for 1 ≤ j ≤ r, and

D1 =

r∑
j=1

(
‖wj −w?

j ‖1 + |bj − b?j |
)
≤ ε.

By taking union bound, with probability at least 1− δ
2 , one has for all 1 ≤ i ≤ n and 1 ≤ j ≤ r,∣∣w?>

j xi + b?j
∣∣ > δ

2nr

√
π

2
,

since ‖w?
j ‖2 ≥ 1 and xi ∼ N (0, I). In addition, for all 1 ≤ i ≤ n and 1 ≤ j ≤ r,

∣∣w>j xi + bj −w?>
j xi − b?j

∣∣ ≤ ‖wj −w?
j ‖1‖xi‖∞ + |bj − b?j | ≤ ε

√
2 log

4pn

δ

holds with probability at least 1− δ
2 . Here, the last inequality comes from the fact that with probability

at least 1− δ
2 ,

‖xi‖∞ ≤
√

2 log
4pn

δ
for all 1 ≤ i ≤ n. (40)
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Putting together, we have with probability at least 1− δ,

u(w>j xi + bj) = u(w?>
j xi + b?j ), (41)

with the proviso that ε ≤ δ
4nr

√
π

log 4pn
δ

. Note that u(x) = 1 if x > 0, and u(x) = 0 if x ≤ 0. Then

combining with the definition of w̃j and b̃j , the above property yields

1

n

n∑
i=1

 r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

=
1

n

n∑
i=1

 r∑
j=1

a?ju(w?>
j xi + b?j )(w

>
j xi + bj −w?>

j xi − b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

 r∑
j=1

a?ju(w?>
j xi + b?j )(w̃

>
j xi + b̃j −w?>

j xi − b?j )

2

=
D2

1

ε2
1

n

n∑
i=1

 r∑
j=1

ajrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j )

2

,

and the claim is proved.

C.2 PROOF OF (34)

Notice that ∣∣ajrelu(w>j x+ bj)− a?j relu(w?>
j xi + b?j )

∣∣
≤
{
‖wj −w?

j ‖1‖x‖∞ + |bj − b?j | if aj = a?j ,(
‖wj‖1 + ‖w?

j ‖1
)
‖x‖∞ + |bj |+ |b?j | if aj 6= a?j ,

which leads to∣∣∣∣∣∣
r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

∣∣∣∣∣∣ ≤ D1 max {‖x‖∞, 1} . (42)

For any fixed (W ,a, b), let

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

and define the following event set

E :=

{
‖xi‖∞ ≤

√
2 log

4pn

δ
for all 1 ≤ i ≤ n

}
.

Then with probability at least 1− δ,

1

n

n∑
i=1

(
z2i − E

[
z2i
])

=
1

n

n∑
i=1

{
z2i 1(E)− E

[
z2i 1(E)

]
− E

[
z2i 1(E)

]}
≥ −4D2

1 log
4pn

δ

√
1

n
log

2

δ
−D2

1

δ

n

≥ −5D2
1 log

4pn

δ

√
1

n
log

2

δ
. (43)
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Here, the first line holds due to (40); the last line comes from Hoeffding’s inequality, and the fact that∣∣E [z2i 1(E)
]∣∣ ≤ D2

1

∣∣∣∣∣E
[
‖xi‖2∞1(‖xi‖∞ >

√
2 log

4pn

δ
)

]∣∣∣∣∣
≤ D2

1

∫ ∞
√

2 log 4pn
δ

x2dP(‖xi‖∞ < x)

≤ D2
1

∫ ∞
√

2 log 4pn
δ

4xp exp(−x
2

2
)dx ≤ D2

1

δ

n
.

In addition, consider the following ε-net

Nε :=

{
(W ,a, b) : |Wij | ∈

ε

r + S

[⌈B(r + S)

ε

⌉]
, ‖W ‖0 ≤ S,

|bj | ∈
ε

r + S

[⌈B(r + S)

ε

⌉]
, |aj | = 1

}
,

where [n] := {1, 2, . . . , n− 1}. Then for all (W ,a, b) with ‖W ‖1 ≤ B and ‖b‖1 ≤ B, there exists
some point, denoted by

(
W̃ , ã, b̃

)
, in Nε whose D1-distance from (W ,a, b) is less than ε. For

simplicity, define

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

z̃i :=

r∑
j=1

ãjrelu(w̃>j xi + b̃j)−
r∑
j=1

a?j relu(w?>
j xi + b?j ).

Similar to (42), we can derive that∣∣∣∣∣∣
r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

ãjrelu(w̃>j x+ b̃j)

∣∣∣∣∣∣ ≤ εmax {‖x‖∞, 1} ,

which implies ∣∣z2i − z̃2i ∣∣ ≤ ε (ε+D1) max
{
‖xi‖2∞, 1

}
,

and then with probability at least 1− δ,

1

n

n∑
i=1

(
z2i − E

[
z2i
])
− 1

n

n∑
i=1

(
z̃2i − E

[
z̃2i
])
≥ −4ε (ε+D1) log

4pn

δ
. (44)

In addition, a little algebra gives

log |Nε| ≤ C5S log
pr

S
log

BS

ε
, (45)

for some universal constant C5 > 0. Combining (43), (44), and (45) leads to

1

n

n∑
i=1

(
z2i − E

[
z2i
])
≥ −5 (ε+D1)

2
log

4pn

δ

√
1

n
log

2 |Nε|
δ
− 4ε (ε+D1) log

4pn

δ
.

Then, (34) is obvious.

C.3 PROOF OF (35)

We first consider a simple case that bj = 0 and b?j = 0 for 1 ≤ j ≤ r, and show that for some small
constant C6 > 0,

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ C6 min

{
1

r
,D2

2

}
. (46)
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In the following, we will focus on the case

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≤ C6

r
.

According to Lemma 4, one has for any constant k ≥ 0, there exists some constant αk > 0 such that

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ αk

∥∥∥∥∥∥
r∑
j=1

aj‖wj‖2
( wj
‖wj‖2

)⊗2k − r∑
j=1

a?j‖w?
j ‖2
( w?

j

‖w?
j ‖2
)⊗2k∥∥∥∥∥∥

2

F

. (47)

Assumption 1 tells us that for any integer k ≥ 2
ω ,∣∣〈v?j1 ,v?j2〉∣∣ ≤ 1

r2
. (48)

where

vj := vec

(( wj
‖wj‖2

)⊗k)
with βj := aj‖wj‖2,

and

v?j := vec

(( w?
j

‖w?
j ‖2
)⊗k)

with β?j := a?j‖w?
j ‖2.

Then (47) gives

E

 r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

2

≥ α3k

∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

.

Define

S+ := span {vj}j:βj>0 S− := span {vj}j:βj<0 ,

and

S?+ := span
{
v?j
}
j:β?j>0

S?− := span
{
v?j
}
j:β?j<0

.

Let PS and P⊥S denote the projection onto and perpendicular to the subspace S, respectively. By
noticing that P⊥S−vj = 0 for j obeying βj < 0, and P⊥S?+v

?
j = 0 for j obeying β?j > 0, one has∥∥∥∥∥∥

r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

≥

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ (P⊥S?+vj)⊗4 − ∑
j:β?j<0

β?j
(
P⊥S−v

?
j

)⊗2 ⊗ (P⊥S?+v?j )⊗4
∥∥∥∥∥∥
2

F

≥
∑

j:β?j<0

∥∥∥β?j (P⊥S−v?j )⊗2 ⊗ (P⊥S?+v?j )⊗4∥∥∥2F ≥ 1

2

∑
j:β?j<0

∥∥∥P⊥S−v?j∥∥∥4
2
,

where the penultimate inequality holds since the inner product between every pair of terms is positive,
and the last inequality comes from the facts that |β?j | ≥ 1 and (48).

Moreover, by means of AM-GM inequality and (48), one can see that∑
j:β?j<0

∥∥∥P⊥S−v?j∥∥∥4
2
≥ 1

r

( ∑
j:β?j<0

∥∥∥P⊥S−v?j∥∥∥2
2

)2
=

1

r

∥∥∥P⊥S−[v?j ]j:β?j<0

∥∥∥4
F
≥ 1

2r

∥∥∥P⊥S−PS?−

∥∥∥4
F
.
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Then combining with (46), the above result and the counterpart for β?j > 0 lead to

dim(S−) ≥ dim(S?−) and dim(S+) ≥ dim(S?+),

which gives

dim(S−) = dim(S?−) and dim(S+) = dim(S?+).

Furthermore, for some small constant C6 > 0, we have

dist(S−,S?−) ≤ C6 and dist(S+,S?+) ≤ C6.

Let P⊥i denote the projection perpendicular to

span
{
v?j
}
j 6=i:β?j>0

,

and

γj :=
βj〈P⊥S−vj , P

⊥
S−v

?
i 〉2〈P⊥i vi, P⊥S−v

?
i 〉2∥∥P⊥S−v?i ∥∥22∥∥P⊥i v?i ∥∥2 .

Then for any i,∥∥∥∥∥∥
r∑
j=1

βjv
⊗6
j −

r∑
j=1

β?j v
?⊗6
j

∥∥∥∥∥∥
2

F

≥

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ v⊗4j − r∑
j=1

β?j
(
P⊥S−v

?
j

)⊗2 ⊗ v?⊗4j

∥∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ v⊗4j − ∑
j:β?j>0

β?j
(
P⊥S−v

?
j

)⊗2 ⊗ v?⊗4j

∥∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

βj
(
P⊥S−vj

)⊗2 ⊗ (P⊥i vi)⊗2 ⊗ v⊗2j − β?i (P⊥S−v?i )⊗2 ⊗ (P⊥i v?i )⊗2 ⊗ v?⊗2i

∥∥∥∥∥∥
2

F

≥ 1

2

∥∥∥∥∥∥
∑
j:βj>0

γjv
⊗2
j − β

?
i

∥∥P⊥S−v?i ∥∥22∥∥P⊥i v?i ∥∥2v?⊗2i

∥∥∥∥∥∥
2

F

,

which, together with (46), implies that there exists some j such that

‖
√
βjvj −

√
β?i v

?
i ‖22 ≤

1

r
.

Without loss of generality, assume that

‖
√
βjvj −

√
β?j v

?
j ‖22 ≤

1

r
, for all 1 ≤ j ≤ r. (49)

Then

E
[ r∑
j=1

ajrelu(w>j x)−
r∑
j=1

a?j relu(w?>
j x)

]2 ≥ αk
∥∥∥∥∥∥

r∑
j=1

βjvjv
>
j −

r∑
j=1

β?j v
?
jv

?>
j

∥∥∥∥∥∥
2

F

≥ αk
r∑
j=1

∥∥βjvjv>j − β?j v?jv?>j ∥∥2F − αk
2r

 r∑
j=1

∥∥βjvjv>j − β?j v?jv?>j ∥∥F
2

≥ αk
2

r∑
j=1

∥∥βjvjv>j − β?j v?jv?>j ∥∥2F .
Here, the first line comes from (47); the second line holds through the following claim∣∣〈βj1vj1v>j1 − β?j1v?j1v?>j1 , βj2vj2v>j2 − β?j2v?j2v?>j2 〉∣∣

≤ 1

2r
‖βj1vj1v>j1 − β

?
j1v

?
j1v

?>
j1 ‖2‖βj2vj2v

>
j2 − β

?
j2v

?
j2v

?>
j2 ‖2
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since for δj :=
√
βjvj −

√
β?j v

?
j ,

βjvjv
>
j − β?j v?jv?>j = δjδ

>
j +

√
β?j δjv

?>
j +

√
β?j v

?
j δ
?>
j .

Then the conclusion is obvious by noticing that∥∥βjvjv>j − β?j v?jv?>j ∥∥F ≥ ‖wj −w?
j ‖2.

Finally, we analyze the general case with bj , b?j 6= 0, which is similar to the above argument. For
simplicity, we only explain the different parts here. According to Lemma 4, one has for any constant
k ≥ 0, there exists some constant αk > 0 and some function fk : R→ R such that

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

≥
∞∑

k≥ 12
ω

∥∥∥∥∥∥
r∑
j=1

ajfk(
bj
‖wj‖2

)‖wj‖2
( wj
‖wj‖2

)⊗k − r∑
j=1

a?jfk(
b?j
‖w?

j ‖2
)‖w?

j ‖2
( w?

j

‖w?
j ‖2
)⊗k∥∥∥∥∥∥

2

F

&
r∑
j=1

∞∑
k≥ 12

ω

∥∥∥∥∥ajfk(
bj
‖wj‖2

)wj − a?jfk(
b?j
‖w?

j ‖2
)w?

j

∥∥∥∥∥
2

F

&
r∑
j=1

inf
Rl(x)

E
[
ajrelu(w>j x+ bj)− a?j relu(w?>

j x+ b?j )−Rl(x)
]2

&
r∑
j=1

(
‖wj −w?

j ‖22 + |bj − b?j |2
)
.

Here, l =
[
12
ω

]
, and the second inequality holds in a similar way to above analysis. Then the general

conclusion is handy.

D PROOF OF LEMMA 2 (UPPER BOUND)

For simplicity, let

zi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

a?j relu(w?>
j xi + b?j ),

ẑi :=

r∑
j=1

ajrelu(w>j xi + bj)−
r∑
j=1

âjrelu(ŵ>j xi + b̂j).

Recall the optimality of
(
Ŵ , â, b̂

)
w.r.t. (4). According to the triangle inequality, one has√√√√ 1

n

n∑
i=1

z2i ≤

√√√√ 1

n

n∑
i=1

ẑ2i + 2σ. (50)

We can bound the first term in the right hand side by

1

n

n∑
i=1

ẑ2i =
1

n

n∑
i=1

 r∑
j=1

aj

(
relu(w>j xi + bj)− relu(ŵ>j xi + b̂j)

)2

≤ 1

n

n∑
i=1

 r∑
j=1

∣∣(wj − ŵj)>xi∣∣
2

≤ r

n

n∑
i=1

r∑
j=1

∣∣(wj − ŵj)>xi∣∣2 ,
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where the second line holds due to the contraction property of ReLu function, and the last line comes
from the AM-GM inequality. Lemma 5 further gives for some constant C7 > 0,

r∑
j=1

1

n

n∑
i=1

∣∣(wj − ŵj)>xi∣∣2 ≤ C7

r∑
j=1

‖wj − ŵj‖22 + C7

log3 p
nδ

n

r∑
j=1

‖wj − ŵj‖21

holds with probability at least 1− δ. In addition,
r∑
j=1

‖wj − ŵj‖21 ≤
∥∥∥W − Ŵ

∥∥∥2
1
≤
(
‖W ?‖1 − ‖Ŵ ‖1

)2
≤ D2

1,

and
r∑
j=1

‖wj − ŵj‖22 =
∥∥∥W − Ŵ

∥∥∥2
1
≤
∥∥∥W − Ŵ

∥∥∥
1

∥∥∥W − Ŵ
∥∥∥
∞

≤

(
‖W ?‖1 − ‖Ŵ ‖1

)(
‖W ?‖1 − ‖Ŵ ?‖1

)
S/2

≤ 4

S
D2

1.

Here, Ŵ ? denote the entries of Ŵ on the support set for W ?, and we make use of the fact that
‖Ŵ ‖1 ≤ ‖W ?‖1 and∥∥∥W − Ŵ

∥∥∥
∞
≤ ‖Ŵ

? − Ŵ ‖1
S − s

≤ ‖W
?‖1 − ‖Ŵ ?‖1
S/2

.

Putting everything together gives the desired result.

E TECHNICAL LEMMAS

Lemma 3. For any (W ,a, b) with ‖W ‖0 + ‖b‖0 + ‖W ?‖0 + ‖b?‖0 ≤ S. Assume that ‖W ‖1 +
‖b‖1 ≤ ‖W ?‖1 + ‖b?‖1 and ‖w?

j ‖22 + |b?j |2 ≤ 1. Then one has

D1 ≤ 2
√
SD2, (51)

where D1, D2 are defined in (26).

Proof. For simplicity, assume that

D2
2 =

∑
j∈J

(
‖wj −w?

j ‖22 + |bj − b?j |2
)

+
∑
j /∈J

(
‖w?

j ‖22 + |b?j |2
)
.

Here, j ∈ J means that aj = a?j and

‖wj −w?
j ‖22 + |bj − b?j |2 ≤ ‖w?

j ‖22 + |b?j |2.

Then according to the AM-GM inequality, one has
√
SD2 ≥

∑
j∈J

(
‖wj −w?

j ‖1 + |bj − b?j |
)

+
∑
j /∈J

(
‖w?

j ‖1 + |b?j |
)

≥
∑
j∈J

(
‖w?

j ‖1 − ‖wj‖1 + |b?j | − |bj |
)

+ ‖W ?‖1 + ‖b?‖1 −
∑
j∈J

(
‖w?

j ‖1 + |b?j |
)

≥
∑
j /∈J

(‖wj‖1 + |bj |) ,

which implies

2
√
SD2 ≥

∑
j∈J

(
‖wj −w?

j ‖1 + |bj − b?j |
)

+
∑
j /∈J

(
‖w?

j ‖1 + |b?j |+ ‖wj‖1 + |bj |
)
.

Thus we conclude the proof.
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Lemma 4. For any constant k ≥ 0, there exists some universal function fk : R→ R such that

E

 r∑
j=1

ajrelu(w>j x+ bj)−
r∑
j=1

a?j relu(w?>
j x+ b?j )

2

=

∞∑
k=0

∥∥∥∥ r∑
j=1

ajfk(
bj
‖wj‖2

)‖wj‖2
(

wj
‖wj‖2

)⊗k

−
r∑
j=1

a?jfk(
b?j
‖w?

j ‖2
)‖w?

j ‖2
( w?

j

‖w?
j ‖2
)⊗k∥∥∥∥2

F

, (52)

with

αk := f2k(0) > 0, for all k > 0. (53)

In addition, we have

inf
Rl(x)

E

arelu(w>x+ b)−
r∑
j=1

a?relu(w?>x+ b?)−Rl(x)

2

=

∞∑
k>l

∥∥∥∥afk(
b

‖w‖2
)‖w‖2

( w

‖w‖2
)⊗k − a?fk(

b?

‖w?‖2
)‖w?‖2

( w?

‖w?‖2
)⊗k∥∥∥∥2

F

, (54)

where Rl(x) denote the polynomial with order less than l.
Lemma 5. There exists some universal constant c > 0, such that for all w ∈ Rp,

1

n

n∑
i=1

∣∣w>xi∣∣2 ≤ c ‖w‖22 + c
log3 p

nδ

n
‖w‖21 , (55)

holds with probability at least 1− δ.

Proof. Before proceeding, we introduce some useful techniques about Restricted Isometry Property
(RIP). Let X := 1√

n
[x1,x2, . . . ,xn]. For some constant c0 > 0, if n ≥ c0

(
s log p

s + log 1
δ

)
, then

with probability at least 1− δ, ∥∥X>w∥∥2
2
≤ 2‖w‖22 (56)

holds for all w satisfying ‖w‖0 ≤ s.
We divide the entries of w into several groups S1 ∪ S2 ∪ . . . ∪ SL with equal size s (except for SL),
such that the entries in Sj are no less than Sk for any j < k. Then, according (56), one has

1

n

n∑
i=1

(w>xi)
2 = w>XX>w =

∑
j,k

w>SjXX
>wSk

≤ 2
∑
j,k

‖wSj‖2‖wSk‖2 = 2
( L∑
l=1

‖wSl‖2
)2
.

In addition, the order of wSl yields for l > 1,

‖wSl‖2 ≤
√
s‖wSl‖∞ ≤

1

(l − 1)
√
s
‖w‖1,

which leads to( L∑
l=1

‖wSl‖2
)2
≤ 2‖wS1‖22 + 2

( L∑
l=2

1

(l − 1)
√
s
‖w‖1

)2
≤ 2‖w‖22 +

2 log2 L

s
‖w‖21.

Then the result is obvious by taking above relations together.
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