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Abstract
Binary Spiking Neural Networks (BSNNs) of-
fer promising efficiency advantages for resource-
constrained computing. However, their training
algorithms often require substantial memory over-
head due to latent weights storage and temporal
processing requirements. To address this issue,
we propose Binary Spiking Online (BSO) opti-
mization algorithm, a novel online training algo-
rithm that significantly reduces training memory.
BSO directly updates weights through flip sig-
nals under the online training framework. These
signals are triggered when the product of gra-
dient momentum and weights exceeds a thresh-
old, eliminating the need for latent weights dur-
ing training. To enhance performance, we pro-
pose T-BSO, a temporal-aware variant that lever-
ages the inherent temporal dynamics of BSNNs
by capturing gradient information across time
steps for adaptive threshold adjustment. The-
oretical analysis establishes convergence guar-
antees for both BSO and T-BSO, with formal
regret bounds characterizing their convergence
rates. Extensive experiments demonstrate that
both BSO and T-BSO achieve superior optimiza-
tion performance compared to existing training
methods for BSNNs. The codes are available at
https://github.com/hamingsi/BSO.

1. Introduction
Spiking Neural Networks (SNNs), as the third generation of
neural network paradigms (Maass, 1997; Roy et al., 2019b),
have garnered significant attention in machine learning at-
tributed to their bio-inspired mechanisms and energy effi-
ciency advantages. Building upon this foundation, Binary
SNNs (BSNNs) further enhance computational efficiency
by incorporating binary weights representations, offering
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a promising solution for resource-constrained edge com-
puting scenarios (Srinivasan & Roy, 2019; Lu & Sengupta,
2020; Kheradpisheh et al., 2022). Despite these notable ad-
vantages, BSNNs predominantly utilize training algorithms
inherited from full-precision SNNs.

Current BSNN training methods fall into two main cate-
gories: ANN-SNN conversion and direct training. ANN-
SNN conversion obtains BSNN weights from pre-trained
Artificial Neural Networks (ANNs) (Rueckauer et al., 2017;
Roy et al., 2019a; Wang et al., 2020; Yoo & Jeong, 2023).
However, these approaches typically require long simulation
time steps to match ANN performance, inevitably increasing
energy consumption. Moreover, it cannot handle sequen-
tial data. To address these limitations, researchers have
developed direct training algorithms for BSNNs, with surro-
gate gradient-based backpropagation through time (BPTT)
emerging as a predominant training paradigm (Deng et al.,
2021; Pei et al., 2023; Wei et al., 2025). Unfortunately,
this methodology requires maintaining both computational
graphs and latent weights for BSNNs, resulting in signifi-
cant memory and computation overhead. Consequently, this
resource-intensive training process inherently contradicts
the efficiency advantages of BSNNs. This motivates us to
raise an intriguing question: Can we leverage the substantial
efficiency advantages of BSNNs not only during the forward
pass but also throughout the learning process?

Recently, online training algorithms for SNNs have gained
prominence for their temporal independence, which sub-
stantially reduces training costs in memory (Xiao et al.,
2022; Meng et al., 2023; Jiang et al.). However, existing
SNN online training algorithms are predominantly designed
for general situations. Given the efficiency advantages of
BSNNs in resource-constrained environments, the integra-
tion of online training presents a promising direction in
efficient neuromorphic computing. However, this integra-
tion faces a fundamental challenge: the storage overhead
of latent weights in existing BSNN training methods con-
flicts with online training’s memory efficiency objectives.
This contradiction underscores the urgent need to develop
specialized online training techniques tailored for BSNNs.

To address these challenges, we propose a Binary Spik-
ing Online (BSO) optimization algorithm that leverages
BSNN’s efficiency advantages in both forward and back-
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ward propagation. BSO offers two key advantages: first,
its memory requirements are orthogonal to time steps, sig-
nificantly reducing memory and computational overhead;
second, it updates weights through sign flips, eliminating
the need for latent weights. Furthermore, to enhance per-
formance by leveraging the inherent temporal dynamics
of SNNs, we introduce a temporal-aware variant called
T-BSO, which effectively integrates gradient information
across each time step.

Contributions. In summary, our key contributions are sum-
marized as follows:

• We introduce BSO, the first online training optimiza-
tion algorithm tailored for BSNNs. BSO significantly
reduces memory overhead through two advantages:
(a) ensuring memory requirements orthogonal to time
steps and (b) eliminating latent weights storage via
gradient-dominated flipping.

• We propose T-BSO, an enhanced version of BSO
that significantly improves performance by effectively
exploiting SNNs’ temporal dynamics, capturing the
second-order gradient moment across time steps for
adaptive threshold optimization.

• We rigorously prove the convergence of both BSO and
T-BSO algorithms by deriving their theoretical regret
bounds. Our comprehensive analysis demonstrates that
the parameter updates in BSO and T-BSO maintain
substantial directional consistency with convergence.

• Our BSO and T-BSO demonstrate superior perfor-
mance on both large-scale static and neuromorphic
datasets across CIFAR-10, CIFAR-100, ImageNet,
and CIFAR10-DVS. Experimental results verify time-
independent training memory requirements, substan-
tially reducing training overhead.

2. Related Work
2.1. Learning algorithm for BSNNs

Training algorithms for BSNNs fall into two main cate-
gories: ANN-SNN conversion methods and direct training
methods. The ANN-SNN conversion method trains an ANN
first, then directly transfers the weights to a BSNN. (Roy
et al., 2019a) first analyze the combination of different bi-
nary neurons and binarized weight methods to train an ANN,
and then obtain a deep SNN with binary stochastic activa-
tions through a conversion approach. Similarly, (Lu & Sen-
gupta, 2020) utilize standard training techniques to train a
binary convolutional model, then generate a binary SNN via
a conversion process. Furthermore, (Wang et al., 2020) ex-
amine the relationship between weights and spiking neuron

thresholds, proposing a weight-threshold balancing conver-
sion method to reduce errors during conversion. However,
these converted SNNs suffer from performance degradation
and long latency. To address these limitations, researchers
have developed direct training methods for BSNNs. (Qiao
et al., 2021) employ a surrogate gradient method to train a
hardware-friendly BSNN for processing temporal neuromor-
phic data. (Kheradpisheh et al., 2022) introduce BS4NN, a
temporal-encoded BSNN where each neuron fires at most
one spike, providing an energy-efficient event-driven learn-
ing approach. To further reduce the quantization error and
improve performance, some studies have introduced differ-
ent strategies to enhance performance, such as alternating
direction methods (Deng et al., 2021), accuracy loss estima-
tor (Pei et al., 2023), improved activation function (Hu et al.,
2024), weight-spike regulation (Wei et al., 2024; Wang et al.,
2025), and adaptive gradient modulation (Liang et al., 2025).
Recently, researchers have also designed quantization strate-
gies for spiking transformers, achieving competitive results
on vision tasks (Qiu et al., 2025; Cao et al., 2025).

As described above, existing learning algorithms for BSNNs
are adapted from full-precision SNNs. While these methods
leverage BSNN’s energy efficiency in forward propagation,
they fail to exploit its binary weight characteristics during
the training process. This motivates us to design a dedicated
training algorithm for BSNN that leverages the weight sign
flipping property for parameter updates and eliminates latent
weight reliance, enabling energy efficiency in both forward
and backward propagation.

2.2. Online Training Method in SNNs

In recent years, significant progress has been made in online
training algorithms for SNNs to achieve memory-efficient
and online training (Zenke & Ganguli, 2018; Bellec et al.,
2018; Bohnstingl et al., 2022). Kaiser et al. (2020) proposes
local training methods that disregard temporal dependen-
cies while Yin et al. (2023) adapts the approach from (Kag
& Saligrama, 2021) using gated neuron models. Notably,
OTTT (Xiao et al., 2022) extends the applicability of on-
line training methods to address large-scale computational
tasks. SLTT (Meng et al., 2023) establishes that tempo-
ral domain gradients contribute minimally to SNN train-
ing and proposes their elimination for improved efficiency.
NDOT (Jiang et al.) introduces novel gradient estimation
techniques based on neuronal dynamic algorithm. These
approaches collectively offer diverse solutions for reducing
memory overhead during SNN training. However, exist-
ing online training methods predominantly focus on full-
precision SNNs, leaving a notable research gap in effectively
integrating online training with BSNNs. This limitation sig-
nificantly constrains the training and deployment of BSNNs
in resource-constrained scenarios, particularly in practical
applications demanding a low memory footprint.
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3. Preliminaries
3.1. Binary Spiking Neural Networks

Spiking neurons form the basis of neural information trans-
mission through spike trains. In BSNNs, these neurons
replicate the behavior of a biologicial neuron which inte-
grates input spikes into its membrane potential u and fires
a spike only when u exceeds a threshold. We consider the
Leaky Integrate-and-Fire (LIF) model, which describes the
dynamics of the membrane potentials as follows:

τ
du(t)

dt
= −(u(t)− urest) +R · I(t), u(t) < Vth, (1)

where I(t) is the input current, Vth is the threshold and τ
and R are resistance and time constant respectively. A spike
is generated when u(t) reaches Vth at time tf , and u(t)
is reset to the resting potential urest, which is often zero.
The spike train is defined using the Dirac delta function:
s(t) =

∑
t δ(t− tf ).

Spiking neural networks comprise multiple layers of in-
terconnected neurons with associated weights. The input
current at layer l and time t follows I l[t] =

∑
W lsl−1[t],

where W l represents connection weight and sl−1[t] denotes
spike outputs from the previous layer. Typically, the discrete
method is employed to discretize the dynamic equations of
LIF models, resulting in the following iterative form:

ul[t] = λ(ul[t− 1]− Vths
l[t− 1]) + W lsl−1[t], (2)

sl[t] = H(ul[t]− Vth), (3)

where H(·) is the Heaviside step function, sl[t] and ul[t]
are the spike train and membrane potential at discrete time-
step t for layer l, and λ is a leaky term (typically taken as
1− 1

τ ). The reset operation is implemented by subtracting
the threshold Vth.

To achieve significant model compression, previous BSNNs
methods adopt the sign function during the forward pro-
cess to convert W l in Eq.(2) into binary representations.
Therefore, the binarization on w ∈W l can be formulated:

wb = sign(w) =

{
−1, if ω < 0,
+1, otherwise, (4)

where wb is a binary weight. Note that the real-valued
weights w are maintained as latent weights to accumu-
late pseudo-gradients. In the backward pass, the straight-
through estimator (STE) is employed to approximate the
gradient of the sign function (Bengio et al., 2013), i.e.,
∂sign(·)
∂W l = 1|W l|≤1. However, maintaining latent weights

incurs additional memory overhead and complicates the
optimization process of BSNNs, which will be discussed
in Section 4.1.
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Figure 1. Forward and backward propagation of BSNNs under
BPTT method.

3.2. Online Training Framework

BPTT method unfolds the iterative update equation in Eq.(2)
and backpropagates along the computational graph. The
gradients with T time steps are calculated by:

∂L
∂W l

=

T∑
t=1

ζl[t]

(
∂ul[t]

∂Wl
+
∑
k<t

t−1∏
i=k(

∂ul[i+ 1]

∂sl[i]

∂sl[i]

∂ul[i]
+

∂ul[i+ 1]

∂ul[i]

)
∂ul[k]

∂W l

)
,

(5)
where L is the loss, W l is the connection weight from
layer l − 1 to l and ζl[t] ≜ ∂L

∂sl[t]
∂sl[t]
∂ul[t]

is the gradient for

ul[t]. The non-differentiable terms ∂sl[t]
∂ul[t]

will be replaced
by surrogate functions, i.e. derivatives of rectangular or
sigmoid functions (Wu et al., 2018).

For online training framework, we decouple the full gra-
dients into temporal components and spatial components
to enable the online gradient calculation. All temporal de-
pendencies are primarily manifested in the spiking neuron
dynamics, i.e. ∂ul[i+1]

∂sl[i]
∂sl[i]
∂ul[i]

and ∂ul[i+1]
∂ul[i]

in Eq.(5). We
define the instantaneous gradient at time t as:

∇W lL[t] = ζl[t]âl[t]T , (6)

where âl[t] denotes the presynaptic activities that can be
tracked recursively during forward propagation:

âl[t] = µl[t]â[t− 1] + sl[t]. (7)

When µl[t] is the constant λ, the OTTT (Xiao et al., 2022)
is obtained, while µl[t] = ul[t]−Vths

l[t]
ul[t−1]−Vthsl[t−1]

leads to the
derivation of the NDOT (Jiang et al.). The total loss L is
defined as the sum of instantaneous losses over time steps:

L =

T∑
t=1

L[t] =

T∑
t=1

L(sN [t], y), (8)
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Figure 2. Weight update strategies of BSO and T-BSO during backpropagation. (a) BSO employs the same flipping threshold γ at each
time step, updating synapse weights through the dot product of momentum M l and Binary W l in BSNNs. (b) T-BSO incorporates
second-order momentum vl[t] into γ, thereby achieving temporal dynamic allocation with Temporal-aware flipping threshold γt.

L(·) can be the cross-entropy loss, and y is the label. Under
this framework, parameters can be updated either immedi-
ately at each time step (real-time update) or after accumu-
lating gradients over all time steps (accumulated update):

W l ←W l − η∇W lL[t] (real-time), (9)

W l ←W l − η

T∑
t=1

∇W lL[t] (accumulated), (10)

where η is the learning rate. This framework enables
forward-in-time learning with only constant memory costs,
avoiding the significant memory consumption.

4. Method
In this section, we first analyze the behavior of latent weights
in BSNNs and introduce the BSO optimization algorithm.
Secondly, drawing inspiration from the temporal dynamics
of neurons, we propose the Temporal-aware BSO to cap-
ture temporal gradient information. Finally, we provide an
analysis of convergence and computational complexity.

4.1. Observation from Latent Weights

To ensure compatibility with existing backpropagation
frameworks (e.g., BPTT, OTTT), BSNNs employ latent
weights and momentum (Sutskever et al., 2013) to guide
binary weight sign updates during training. However, due
to the binary paradigm of BSNNs weights, the actual up-
date process only determines which weight signs require
flipping, independent of the specific magnitudes of latent
weights. As shown in Figure 1, the latent weights serve only

as indicators of sign flipping, and their precise values are
not that important for the update mechanism.

This observation reveals a fundamental critical insight: net-
work behavior modifications in BSNNs are fundamentally
governed by the frequency and timing of weight sign flips
rather than by the continuous optimization of latent weight
magnitudes. Consequently, we can explore innovative
weight update strategies that directly generate flip signals.
This approach bypasses latent weight representations en-
tirely and thereby significantly reduces BSNN training mem-
ory overhead. One intuitive approach involves comparing
gradient magnitudes against fixed thresholds to generate flip
signals. Therefore, this motivates us to explore more stable
and efficient optimization strategies that better align with
the inherent spatiotemporal characteristics of BSNNs.

4.2. Binary Spiking Online Optimization

As discussed in Section 4.1, we aim to completely eliminate
latent weights to further significantly reduce the training
memory overhead of BSNNs. To this end, we propose
a novel momentum-based gradient accumulation strategy
combined with threshold-controlled weight updates: BSO
algorithm. It leverages momentum to accumulate instanta-
neous gradients and generate stable weight sign flip signals.
At each time step t, BSO updates the momentum M l for
layer l based on the computed instantaneous gradient:

M l ← β ·M l + (1− β) ·Gl[t], (11)

where Gl[t] = ∇W lL[t] and the hyper-parameter β control
the exponential decay rates of the momentum. When the
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value of β is relatively large, a greater weight is assigned to
historical gradients, making the momentum less sensitive
to the gradients in the current time step. The weight update
mechanism is guided by the following equation:

W l ← −sign(W l ⊙M l − γ)⊙W l, (12)

As shown in Fig.2, a flip signal is triggered only when the
element-wise product of W l and M l exceeds the thresh-
old γ, ensuring alignment between the weight and gradient
momentum directions. This selective flipping mechanism
enhances optimization stability by flipping weights only
when their direction aligns with the gradient momentum.
Conversely, when their signs differ, the weight sign is pre-
served to prevent updates along gradient ascent directions,
thereby avoiding potential optimization divergence.

Compared to BPTT, BSO eliminates the need for storing
extensive computational histories and completely removes
dependency on latent variables. This dual optimization
approach enables BSO to achieve both computational effi-
ciency and significantly reduced resource consumption dur-
ing training. However, BSO’s uniform gradient treatment
across time steps overlooks valuable temporal information,
leading to the loss of BSNN’s inherent temporal dynamics.
Therefore, this motivates us to further explore advanced
extensions of BSO for temporal dynamics.

4.3. Temporal-aware BSO

As described above, BSNNs exhibit temporal dynamics
where neuronal states create dependencies between past and
current inputs. Each time step generates unique components
from presynaptic activity âl[t], causing temporal variation
in gradient distributions. Our analysis in Figure 3 confirms
this variability is driven by spiking activity and historical
states, highlighting the importance of considering individual
time step contributions for flip signal generation. While M l

captures gradient information during training, extending it to
a temporal-aware representation M l[t] would better account
for SNN dynamics. However, this approach incurs memory
costs that scale linearly with time steps. Inspired by adaptive
algorithms, we propose a temporal variant to address this
challenge: Temporal-aware BSO. The algorithm update the
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Figure 3. The cosine similarity between the gradients across time
step. Both horizontal and vertical axes represent time steps.

first and second order moment of the gradient as follows:

M l ← β1 ·M l + (1− β1) ·G[t],

vl[t]← β2 · vl[t] + (1− β2) ·mean(G2[t]),
(13)

where the mean function is operated at each layer l and
hyper-parameters β1, β2 are the decay rates for momentum.
We define the temporal-aware threshold as γ

√
vl[t] + ϵ,

where ϵ is a small constant to prevent zero threshold, thereby
enhancing training stability. It accounts for the inherent
temporal characteristics of BSNNs by considering gradients
across different time steps. This variant avoids the linear
growth of training memory cost with time steps by averaging
gradients across different time steps. The weight update rule
will be transferd as:

W l ← −sign(W l ⊙M l − γ
√
vl[t] + ϵ)⊙W l. (14)

Second-order moments vl[t] are crucial for capturing gra-
dient magnitude variations across temporal dynamics in
BSNNs. While first-order moments provide directional guid-
ance, second-order moments adapt to the scale and variance
of gradients at each time step. This temporal adaptation en-
ables more precise threshold estimation through

√
vl[t] + ϵ,

which automatically decreases in regions with consistently
small gradients to facilitate weight flipping, while increas-
ing in high-gradient areas to prevent oscillatory updates.
This mechanism effectively responds to the heterogeneous
gradient distributions that naturally occur across different
time steps in spiking neural networks.

Compared to BSO, T-BSO algorithm significantly enhances
performance by incorporating temporal gradient dynamics
to intelligently control weight sign flips. A key advantage
of T-BSO is its highly efficient memory utilization—despite
tracking temporal information, it effectively maintains com-
putational efficiency by averaging second-order moments
across time steps. The comprehensive details of our ap-
proach are provided in Algorithm 1.

4.4. Convergence and Complexity Analysis

Convergence analysis We analyze the convergence of
BSO and T-BSO using the online learning framework pro-
posed in (Zinkevich, 2003). Consider an online optimization
scenario where at each round k ∈ 1, 2, ..., T , an algorithm
predicts the parameter wk and incurs a loss based on a con-
vex cost function fk(w). The sequence{fk}Tk=1 is arbitrary
and unknown in advance.
Theorem 4.1. Assume that the function fk has bounded
gradients, ∥∇fk(w)∥2 ≤ G, ∥∇fk(w)∥∞ ≤ G∞ for all
w ∈ Rd. Let γ and β decay by

√
k. BSO achieves the

following guarantee for all k ≥ 1.

RT ≤ 2

T∑
k=1

γk + 2

T∑
k=1

|Mk|∞ = O(
√
T ). (15)
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Table 1. Memory complexity of BSNNs training methods.

METHODS WEIGHT STORAGE COMPUTATION STATE

BPTT O(n2L) O(n2L+ nLT )
OTTT O(n2L) O(n2L+ nL)
BSO

O(n2L/32)
O(n2L+ nL)

T-BSO O(n2L+ LT + nL)

Let β1, β2 and γ decay by
√
k, the T-BSO achieves the

following guarantee for all k ≥ 1.

RT ≤ 2

T∑
k=1

γk + 2

T∑
k=1

|Mk/
√
vk + ϵ|∞ = O(T 3/4).

(16)

Our Theorem 4.1 demonstrates that when the gradients of
BSNNs are bounded, the summation terms in BSO and
T-BSO are respectively bounded by

√
T and T 3/4. The

gradual decay of β1, β2, and γ is essential for our theo-
retical analysis and is consistent with previous empirical
findings. For example, Sutskever et al. (2013) suggests that
decreasing the momentum coefficient towards the end of
training can improve convergence.

Corollary 4.2. Assume that the function fk has bounded
gradients, ∥∇fk(w)∥2 ≤ G, ∥∇fk(w)∥∞ ≤ G∞ for all
w ∈ Rd. BSO achieves the following gurantee, for all
T ≥ 1.

R(T )
T

= O(
1√
T
), (17)

while T-BSO achieves the following gurantee, for all T ≥ 1.

R(T )
T

= O(T −1/4). (18)

This result can be obtained by using Theorem 4.1. Thus,
limT →∞

R(T )
T = 0. More details are proided in Ap-

pendix A. The findings demonstrate that BSO and T-BSO
algorithms will achieve convergence throughout the train-
ing phase, provided that gradients remain bounded. The
convergence analysis is crucial as it guarantees the stability
and effectiveness of the optimization algorithms, ensuring
that they will eventually reach an optimal or near-optimal
solution as the training progresses.

Complexity Analysis We analyze the memory require-
ments for weight storage and computation state during train-
ing, as summarized in Table 1. Let n represent the average
number of neurons per layer. BPTT with SG maintains the
entire computational graph to enable backpropagation of
gradients through time. Consequently, BPTT requires time-
dependent memory for gradient computation and incurs an

O(n2L) storage cost for latent weights; although OTTT is
time-independent, it still needs latent weights to the same
extent as BPTT. In contrast, BSO and T-BSO significantly
reduce weight storage requirements by eliminating the need
for full-precision latent weights. Building on this approach,
BSO achieves time-independent memory costs by leverag-
ing an online training framework. Additionally, T-BSO
incorporates neglect variables into the optimizer to capture
temporal dynamics (T ≪ n2).

Algorithm 1 BSO and T-BSO for optimization.
1: Input: T : Number of time steps; ϵ : Small constant

to prevent zero threshold; β1, β2 : Decay rates for mo-
mentum; γ : Threshold; L : Loss function; W l : Binary
network weights at layer l; x : Input data; y : Ground
truth labels

2: Output: Optimized binary weights W l

3: M l ← 0 Initialize 1st moment vector
4: vl ← 0 Initialize temporal 2nd moment vector
5: while not converged do
6: for t← 1 to T do
7: for l← 1 to N do
8: ul[t]← λ(ul[t−1]−Vths

l[t−1])+ W lsl−1[t]
9: sl[t]← H(ul[t]− Vth)

10: âl[t]← λâl[t− 1] + sl[t]
11: end for
12: for l← N downto 1 do
13: G[t]← ∇W lL[t]
14: M l ← β1 ·M l + (1− β1) ·G[t]
15: if T-BSO then
16: vl[t]← β2 · vl[t] + (1− β2) ·mean(G2[t])
17: end if
18: if T-BSO then
19: W l ← −sign(W l⊙M l−γ

√
vl[t] + ϵ)⊙W l

20: else
21: W l ← −sign(W l ⊙M l − γ)⊙W l

22: end if
23: end for
24: end for
25: end while

5. Experiments
In this section, we first present experimental details, includ-
ing the utilized datasets, architectures, and settings. Second,
we compare our methods with existing online training and
BSNN approaches to evaluate their effectiveness. Thirdly,
we conduct ablation studies to assess the efficiency improve-
ments of BSO and T-BSO during the training process, as
well as the performance advantages of T-BSO over BSO.
Finally, we analyze the hyperparameter and scalability study
of our more advanced T-BSO.
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Table 2. Comparisons of BSO and T-BSO with related work, focusing on the online training and BSNN methods in the SNN domain.

DATASET METHOD ARCHITECTURE
OLINE

TRAINING
BINARY
WEIGHT

TIME
STEP

MODEL
SIZE (MB)

ACC.
(%)

C
IF

A
R

-1
0

FP-SNN VGG-11 % % 6 36.91 BASE 93.23 BASE

OTTT (XIAO ET AL., 2022) VGG-11 " % 6 36.91 (1.0×) 93.73 (+0.5)

NDOT (JIANG ET AL.) VGG-11 " % 6 36.91 (1.0×) 94.90 (+1.7)

CBP (YOO & JEONG, 2023) VGG-16 % " 32 15.10 (2.4×) 91.51 (-1.7)

Q-SNN (WEI ET AL., 2024) VGG-11 % " 6 1.20 (30.8×) 93.20 (+0.03)

BSO VGG-11 " "
6

1.20 (30.8×)

92.98 (-0.3)

4 93.45 (+0.2)

2 93.30 (+0.1)

T-BSO VGG-11 " "
6

1.20 (30.8×)

94.70 (+1.5)

4 94.86 (+1.6)

2 94.32 (+1.1)

C
IF

A
R

-1
00

FP-SNN VGG-11 % % 6 37.10 BASE 71.15 BASE

OTTT (XIAO ET AL., 2022) VGG-11 " % 6 37.10 (1.0×) 71.11 (-0.04)

NDOT (JIANG ET AL.) VGG-11 " % 6 37.10 (1.0×) 76.61 (+5.5)

CBP (YOO & JEONG, 2023) VGG-16 % " 32 16.60 (2.2×) 66.53 (-4.6)

Q-SNN (WEI ET AL., 2024) VGG-11 % " 6 1.39 (26.7×) 73.48 (+2.3)

BSO VGG-11 " "
6

1.39 (26.7×)

72.57 (+1.4)

4 72.34 (+1.2)

2 72.15 (+1.0)

T-BSO VGG-11 " "
6

1.39 (26.7×)

74.27 (+3.1)

4 73.82 (+2.7)

2 73.40 (+2.3)

IM
A

G
E

N
E

T

FP-SNN RESNET-18 % % 4 87.19 BASE 63.18 BASE

SLTT (MENG ET AL., 2023) RESNET-34 " % 6 85.15 (1.0×) 66.19 (+3.0)

OTTT (XIAO ET AL., 2022) RESNET-34 " % 6 87.19 (1.0×) 64.16 (+1.0)

CBP (YOO & JEONG, 2023) RESNET-18 % " 4 4.22 (20.7×) 54.34 (-8.8)

T-BSO RESNET-18 " "
6 4.22 (20.7×)

58.86 (-4.3)

4 57.76 (-5.4)

D
V

S
-C

IF
A

R
10

FP-SNN VGG-11 % % 10 36.91 BASE 73.90 BASE

SLTT (MENG ET AL., 2023) VGG-11 " % 10 34.32 (1.1×) 82.20 (+8.3)

NDOT (JIANG ET AL.) VGG-11 " % 10 36.91 (1.0×) 77.50 (+3.6)

CBP (YOO & JEONG, 2023) 16CONV1FC % " 16 1.33 (27.8×) 74.70 (+0.8)

Q-SNN (WEI ET AL., 2024) VGG-11 % " 10 1.20 (30.8×) 79.10 (+5.2)

BSO VGG-11 " " 10 1.20 (30.8×) 80.60 (+6.7)

T-BSO VGG-11 " " 10 1.20 (30.8×) 81.00 (+7.1)

5.1. Implementation Details

We validate our BSO and T-BSO on image classification
tasks, including both static image datasets like CIFAR-
10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al.,
2009), ImageNet (Deng et al., 2009), as well as the neuro-
morphic dataset DVS-CIFAR10 (Li et al., 2017). Regarding
the architecture, we use VGG (64C3-128C3-AP2-256C3-
256C3-AP2-512C3-512C3-AP2-512C3-512C3-GAP-FC)
and ResNet-18 (Liu et al., 2018), which are commonly
used in the SNN domain (Xiao et al., 2022; Jiang et al.).
Consistent with prior work (Rastegari et al., 2016; Qin
et al., 2020), we maintain full-precision weights in the first
and final layers. As for the training configuration, we apply
SGD with a cosine annealing learning rate schedule. The

initial learning rate is set to 0.1 and decays to 0 throughout
the training process. Moreover, we set the threshold Vth

and the decay factor λ in the LIF to 1 and 0.5. For the
hyperparameters of our BSO and T-BSO, we set γ to
5× 10−7, while β1 and β2 to 1− 10−3 and 1− 10−5. We
provide the hyperparameter analysis for them in Sec. 5.4.
When experimenting on the ImageNet, we first pre-train the
model using single time steps for 100 epochs, then fine-tune
with T-BSO using 4-6 time steps for 30 epochs to accelerate
training. Additional details are available in Appendix B.

5.2. Comparison of Performance

We evaluate our BSO and T-BSO methods on static and neu-
romorphic datasets and compare with related work, mainly

7
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focusing on online training methods (Xiao et al., 2022;
Meng et al., 2023; Jiang et al.) and BSNN methods (Wei
et al., 2024; Yoo & Jeong, 2023).

As shown in Table 2, on the CIFAR-10 dataset, T-BSO
achieves 94.70%, 94.86%, and 94.32% accuracy with 6, 4,
and 2 time steps, respectively. With a reduction in model
size by 30.76×, our approach achieves performance compa-
rable to existing online training methods and even surpasses
OTTT by 0.97%. For CIFAR-100, T-BSO also demonstrates
superior performance, achieving the accuracy of 74.27%,
73.82% and 73.40% with 6, 4 and 2 time steps. Compared to
BPTT-based BSNN methods like Q-SNN, T-BSO achieves
performance improvements of 0.79%, while requiring less
training overhead. On the ImageNet, with the same time
steps, T-BSO achieves an accuracy of 57.76%, which is
3.42% higher than the BPTT-based CBP method. Although
there is still a gap between T-BSO and methods like SLTT
and OTTT on this dataset, it’s worth noting that T-BSO
achieves these competitive results with a model size of only
4.22MB (reduced by 20.18×, 20.66×). On the neuromor-
phic DVS-CIFAR10, T-BSO achieves 81.00% accuracy with
10 time steps, outperforming both existing online training
and BSNN methods. These results demonstrate that our
proposed BSO and T-BSO methods maintain the efficiency
advantages of BSNNs in both forward and backward propa-
gation, while achieving superior performance.

5.3. Ablation Study

This part presents ablation studies on BSO and T-BSO.
First, we compare the memory overhead during training
with the widely used BPTT learning method in BSNNs,
demonstrating the efficiency of our BSO and T-BSO in
backpropagation. Second, we validate the effectiveness
of the temporal-aware mechanism by analyzing T-BSO’s
performance improvement over BSO.
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Figure 4. Memory cost comparison between the widely used BPTT
algorithm in BSNN and our BSO/T-BSO across varying time steps.

Training cost comparison for three BSNN learning meth-
ods (i.e., BPTT vs. BSO vs. T-BSO). BSO and T-
BSO eliminate backpropagation through time, achieving

time-invariant memory consumption and avoiding BPTT’s
quadratic memory overhead. We validate this through train-
ing memory measurements on CIFAR-10 under identical
configurations (backbone, batch size, etc.). As shown in Fig-
ure 4, BPTT algorithms commonly used in existing BSNNs
increase memory usage with time steps, whereas BSO and T-
BSO maintain constant memory. Specifically, when the time
step grows from 1 to 35, the memory cost of BPTT increases
from 2.86GB to 58.18GB (20.3×), while our BSO and T-
BSO both maintain constant memory usage, 2.9GB and
3.1GB, respectively. The minor overhead in T-BSO arises
from its temporal-aware module. These results demonstrate
that our BSO and T-BSO algorithm significantly reduce
memory requirements during training.
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Figure 5. Performance comparison between our BSO and T-BSO
under different time steps. T-BSO consistently outperforms BSO
across time steps and exhibits a larger increase over time steps.

Comparative analysis of our BSO and T-BSO algorithms.
In T-BSO, we introduce the time-aware threshold to con-
sider the time information when updating the weights. We
evaluate the accuracy of BSO and T-BSO at different time
steps using experiments on the CIFAR-100 dataset and the
VGG-11 network. The experimental results are shown in
Figure 5. It can be seen that both BSO and T-BSO show
improved performance with the increase of time steps. In ad-
dition, due to the better utilization of temporal information
by the temporal-aware threshold, T-BSO always outper-
forms BSO in each time step, and the performance increases
significantly with the time step.

5.4. Hyperparameter and Scalability Study of T-BSO

As discussed above, we demonstrate the training efficiency
of BSO and T-BSO, as well as the superior performance of
T-BSO. In this part, we conduct a more in-depth analysis
of our advanced T-BSO learning algorithm, including the
hyperparameter study and the scalability to non-vision tasks.

Hyperparameter study of T-BSO. Given that T-BSO
introduces new hyperparameters, we analyze its sensitiv-
ity to parameter variations, including threshold γ and the
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Table 3. Effect of the threshold γ in T-BSO on performance.

γ (×10−5) 0.005 0.02 0.05 0.08
ACCURACY (%) 73.75 73.33 73.40 73.24

γ (×10−5) 0.1 0.15 0.2 5.0
ACCURACY (%) 73.38 73.34 73.41 72.83

Table 4. Effect of decay rates for momentum in T-BSO, i.e., β1

and β2, on performance.

γ 1− β1 1− β2 ACCURACY

5.0× 10−7

1.5× 10−4
1.5× 10−6 73.22
1.0× 10−5 73.31
1.5× 10−5 73.29

1.0× 10−3
1.5× 10−6 73.17
1.0× 10−5 73.40
1.5× 10−5 73.34

decay rates for momentum (β1 and β2). Experiments are
performed using VGG-11 architecture on CIFAR-100 with
T=2 time steps. The analysis of γ is presented in Table 3.
The threshold parameter γ maintains stable performance
across a range from 5.0 × 10−8 to 5.0 × 10−5, with ac-
curacy varying only between 72.83% and 73.41%. This
stability demonstrates low sensitivity to threshold selection.
The analysis of decay rates for momentum is shown in
Table 4. Despite the wide range of decay rates settings, per-
formance variations remain minimal. Optimal performance
is achieved with smaller decay rates (1− β1 = 1.5× 10−4,
1 − β2 = 1.5 × 10−5), yielding an accuracy of 73.29%.
These results demonstrate that while T-BSO’s design intro-
duces several hyperparameters, it exhibits low sensitivity to
hyperparameters. Such robustness is beneficial, as it guar-
antees consistent performance across a variety of settings.

Scalability Study of T-BSO. Existing online training
methods have been primarily validated on image tasks, leav-
ing their scalability to other domains unexplored. To address
this limitation, we evaluate T-BSO’s effectiveness on audio
tasks by conducting experiments on the Google Speech
Command (GSC) dataset (Warden, 2018). We evaluate T-
BSO by employing the VGG-11 backbone with T = 4, as
shown in Table 5. Our approach is benchmarked against
existing SNN methods, specifically ATIF (Castagnetti et al.,
2023) and STS-T (Wang et al., 2023). Our exploration
on the GSC dataset demonstrates T-BSO’s superior perfor-
mance. T-BSO achieves the highest accuracy of 96.12%
while being the only method supporting online training.
Additionally, T-BSO operates with 1-bit quantization and
maintains the model size of 1.26MB. These findings show
that our approach extends well to non-visual tasks, high-
lighting its applicability beyond image-based uses.

Table 5. Performance comparison of T-BSO on the GSC dataset.

METHOD
ONLINE

TRAINING
BINARY
WEIGHT

TIME
STEP

MODEL
SIZE (MB)

ACC.
(%)

ATIF % % 4 44.74 94.31
STS-T % % 4 6.24 95.18

T-BSO " " 4 1.26 96.12

6. Conclusion
This paper introduces BSO, a novel online optimization al-
gorithm designed specifically for BSNNs. Unlike existing
training methods, BSO eliminates the need for such auxil-
iary storage by directly updating binary weights through a
flip-based mechanism guided by gradient momentum. This
design preserves the efficiency advantages of BSNNs in
both forward and backward processes. To further improve
performance, the paper proposes T-BSO, a temporal-aware
extension of BSO that incorporates second-order gradient
moments to dynamically adjust flipping thresholds across
time steps. This enhancement captures the intrinsic temporal
dynamics of spiking activity and leads to more stable and ef-
fective optimization. Theoretical analysis establishes regret
bounds for both BSO and T-BSO, confirming convergence
under standard assumptions. Experiments demonstrate that
BSO and T-BSO achieve competitive accuracy while signifi-
cantly reducing training overhead, representing a substantial
advance toward efficient and scalable BSNN training.
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A. Convergence Proof
In this section, we prove Theorem 4.1.

Definition A.1. A function f : Rd → R is convex if for any x, y ∈ R, for all λ ∈ [0, 1],

λf(x) + (1− λ)f(x) ≥ f(λx+ (1− λ)y). (19)

Also, notice that a convex function can be lower bounded by a hyperplane at its tangent.

Lemma A.2. If a function f : Rd → R is convex, then for all x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)T (y − x). (20)

The above lemma can be used to upper bound the regret and our proof for the main theorem is constructed by substituting
the hyperplane with the BSO update rules.

Consider an online optimization scenario, where at each round k ∈ 1, 2, . . . , T , an algorithm predicts the parameter wk and
incurs a loss based on a convex cost function fk(w). The sequence{fk}Tk=1 is arbitrary and unknown in advance.

Definition A.3. The regret R(T ) of an online algorithm over T rounds is defined as:

R(T ) =
T∑

k=1

fk(Wk)− min
W∗∈X

T∑
k=1

fk(W
∗), (21)

where X is the feasible set of parameters.

Our objective is to analyze the regret of BSO and demonstrate that it achieves sublinear regret, implying that the average
regret per time step diminishes as T increases.

Assumption A.4 (Convexity). Each loss function fk(W ) is convex with respect to W for all k = 1, 2, . . . , T .

Assumption A.5 (Bounded Gradients). There exists a constant G > 0 such that for all k,

∥∇WLk(W )∥ ≤ G.

Theorem A.6. Let fk be a function with bounded gradients such that |∇fk(w)|2 ≤ G and |∇fw(w)|∞ ≤ G∞ for all
w ∈ Rd. Furthermore, assume that any w generated by BSO remains bounded. And the γ and β decay by

√
k. Then BSO

achieves a regret bound of R(T ) = O(
√
T ).

Proof. First, for each iteration k and flipped position i:

Wk,iMk,i − γ ≥ 0, (22)

the inner product decomposes as:

⟨Mk,Wk −W ∗⟩ =
d∑

i=1

Mk,i(Wk,i −W ∗
i ), (23)

For each dimension i, since Wk,i,W
i ∈ −1, 1:

|Wk,i −W i| ≤ |Wk,i|+ |W ∗
i | ≤ 2. (24)

For each iteration k:
⟨Mk,Wk −W ∗⟩ ≤ |Mk|∞|Wk −W ∗|1 + 2γ|i : Wk+1,i ̸= Wk,i|. (25)

Consider the recursion:
|Mk|∞ ≤

β√
k
G+ (1− β√

k
)|Mk−1|∞. (26)

By induction, this leads to:

|Mk|∞ = O(
1√
k
). (27)
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Therefore:
T∑

k=1

|Mk|∞ ≤
T∑

k=1

O(
1√
k
) = O(

√
T ). (28)

Finally:

RT ≤ 2

T∑
k=1

γk + 2

T∑
k=1

|Mk|∞ = O(
√
T ). (29)

Theorem A.7. Let fk be a function with bounded gradients such that |∇fk(w)|2 ≤ G and |∇fk(w)|∞ ≤ G∞ for all
w ∈ Rd. Furthermore, assume that any w generated by BSO remains bounded. When γk and β1,k, β2,k decay by 1/

√
k, the

algorithm achieves a regret bound of R(T ) = O(T 3/4).

Proof. First, we establish the moment bounds. For the first-order moment:

Mk =
β1√
k
Mk−1 + (1− β1√

k
)Gk. (30)

Through recursion, we obtain:
|Mk|∞ = O(1/

√
k). (31)

For the second-order moment:
vk =

β2√
k
· vk−1 + (1− β2√

k
) ·G2

k. (32)

Similarly:
|vk|∞ = O(1/

√
k). (33)

For the critical ratio, we derive:

|Mk/
√
vk + ϵ|∞ = |Mk|∞/

√
|vk|∞ = O(1/

√
k)/

√
O(1/

√
k) = O(k−1/4). (34)

At each iteration k and flipped position i:
Wk,iMk,i/

√
vk,i − γk ≥ 0. (35)

The inner product decomposes as:

⟨Mk,Wk −W ∗⟩ =
d∑

i=1

Mk,i(Wk,i −W ∗
i ). (36)

For each dimension i, since Wk,i,W
i ∈ −1, 1:

|Wk, i−W,i| ≤ 2. (37)

Therefore, at each iteration k:

⟨Mk,Wk −W ∗⟩ ≤ |Mk|∞|Wk −W ∗|1 + 2γk|i : Wk+1,i ̸= Wk,i|. (38)

From the moment bounds:
T∑

k=1

|Mk/
√
vk + ϵ|∞ ≤

T∑
k=1

O(k−1/4) = O(T 3/4). (39)

Finally:

RT ≤ 2

T∑
k=1

γk + 2

T∑
k=1

|M l
k/
√

vlk + ϵ|∞ = O(T 3/4). (40)
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Table 6. Training hyperparameters about BSO

Dataset Epoch Batch size γ β LR
CIFAR-10 400 128 5e-7 1− 10−3 0.1
CIFAR-100 400 128 5e-7 1− 10−3 0.1
DVS-CIFAR10 400 128 1e-6 1− 10−3 0.1

Table 7. Training hyperparameters about T-BSO

Dataset Epoch Batch size γ β1 β2 LR
CIFAR-10 400 128 5e-7 1− 10−3 1− 10−5 0.1
CIFAR-100 400 128 5e-7 1− 10−3 1− 10−5 0.1
ImageNet(pre-train) 100 64 1e-6 1− 10−3 1− 10−5 0.1
ImageNet(finetune) 30 64 1e-11 1− 10−8 1− 10−5 0.1
DVS-CIFAR10 400 128 1e-6 1− 10−3 1− 10−5 0.1

B. Implementation Details
B.1. Datasets

We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng
et al., 2009), CIFAR10-DVS (Li et al., 2017).

CIFAR-10 CIFAR-10 is a dataset consisting of color images across 10 object categories, with 50,000 training samples and
10,000 testing samples. Each image is 32 × 32 pixels with three color channels. We preprocess the data by normalizing the
inputs using the global mean and standard deviation and apply data augmentation techniques including random cropping,
horizontal flipping, and cutout (DeVries, 2017). At each time step, the input to the first layer of the SNNs corresponds
directly to the pixel values, which can be interpreted as a real-valued input current.

CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 but contains 100 object categories instead of 10. It includes 50,000
training samples and 10,000 testing samples, with the same preprocessing applied as in CIFAR-10. Both CIFAR-10 and
CIFAR-100 are distributed under the MIT License.

ImageNet ImageNet-1K is a large-scale dataset consisting of color images across 1,000 object categories, with 1,281,167
training samples and 50,000 validation images. We apply standard preprocessing techniques, where training images
are randomly resized and cropped to 224 × 224, followed by normalization after random horizontal flipping for data
augmentation. For testing images, they are resized to 256 × 256, center-cropped to 224 × 224, and then normalized. At each
time step, the inputs are converted into a real-valued input current.

DVS-CIFAR10 The DVS-CIFAR10 dataset is a neuromorphic version of the CIFAR-10 dataset, generated using a Dynamic
Vision Sensor (DVS). It contains 10,000 samples, one-sixth of the original CIFAR-10, and consists of spike trains with
two channels corresponding to ON- and OFF-event spikes. The pixel resolution is expanded to 128 × 128. We split the
dataset into 9,000 training samples and 1,000 testing samples. For data preprocessing, we reduce the time resolution
by accumulating spike events (Fang et al., 2021) into 10 time steps and lower the spatial resolution to 48 × 48 through
interpolation. We apply random cropping augmentation to the input data, similar to CIFAR-10, and normalize the inputs
based on the global mean and standard deviation across all time steps.

B.2. Settings

For our proposed BSO and T-BSO algorithm, we apply the NDOT and OTTT for online training framework. The training
hyper-parameters are detailed in Table 6 and Table 7. Our BSO and T-BSO are tested with online update strategies, which
updates the parameters in real-time at each time step to fully explore the potential of online training for BSNNs. For a
fair comparison, we implement our Q-SNN (Wei et al., 2024) based on the VGG-11 architecture. For the GSC dataset,
we employ a VGG-11 architecture with T = 4. The training hyperparameters are set as:γ = 5 × 10−7, β1 = 0.001,
β2 = 1× 10−5. The GSC data are processed as follows: raw audio signals are converted to Mel-spectrograms, which are
then resized to 32×32 pixels and normalized with a mean of 0.5 and a standard deviation of 0.5.
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