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Abstract

Vision transformer model (ViT) is widely used and performs well in vision tasks
due to its ability to capture long-range dependencies. However, the time complexity
and memory consumption increase quadratically with the number of input patches
which limits the usage of ViT in real-world applications. Previous methods have
employed linear attention to mitigate the complexity of the original self-attention
mechanism at the expense of effectiveness. In this paper, we propose QT-ViT
models that improve the previous linear self-attention using quadratic Taylor ex-
pansion. Specifically, we substitute the softmax-based attention with second-order
Taylor expansion, and then accelerate the quadratic expansion by reducing the time
complexity with a fast approximation algorithm. The proposed method capitalizes
on the property of quadratic expansion to achieve superior performance while
employing linear approximation for fast inference. Compared to previous studies
of linear attention, our approach does not necessitate knowledge distillation or high-
order attention residuals to facilitate the training process. Extensive experiments
demonstrate the efficiency and effectiveness of the proposed QT-ViTs, showcasing
the state-of-the-art results. Particularly, the proposed QT-ViTs consistently surpass
the previous SOTA EfficientViTs under different model sizes, and achieve a new
Pareto-front in terms of accuracy and speed.

1 Introduction

Compared to convolutional neural networks (CNNs), vision transformers (ViTs) are getting more
and more attention due to their strong performance across various computer vision tasks, such as
image classification [33, 16, 8, 37, 38, 21], object detection [4, 13], semantic segmentation [36, 15]
and low-level vision [20, 32, 31, 30]. The effectiveness of ViT comes from the multi-head self-
attention (MHSA) operation that allows the model to capture long-range information by calculating
the attention score between each pair of patches. However, this mechanism necessitates quadratic
time and storage complexity O(n2) related to the number of input patches n, and the original ViTs
require significant computational and storage resources when applied to real-world applications.

To overcome the aforementioned problem, previous researches focus on improving the original self-
attention mechanism by using local attention such as window attention [23], dilated attention [10]
and random attention [27]. Another family of methods is to utilize linear attention [11, 2, 5, 3]
that decomposes the original softmax function into two non-linear kernels so that the order of
matrix multiplications in attention score calculation is changed to reduce the quadratic computational
complexity into a linear one. Many papers focus on designing non-linear kernels and novel linear-
attention architectures for better approximation, e.g., Hydra-attention [2] uses the hydra trick to their
multi-head attention by setting as many heads as features. Performer [5] uses fast attention via a
positive orthogonal random features approach to approximate the softmax attention. EfficientViT [3]
replaces softmax with ReLU non-linear activation and applies depthwise and group convolution to
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Figure 1: The accuracy-speed trade-offs of the proposed QT-ViTs and other state-of-the-art trans-
former models on the ImageNet dataset. Latencies are evaluated on the AMD Instinct MI250
GPU.

improve its performance. Flatten transformer [14] utilizes focused attention based on ReLU to force
the attention operation to focus on more informative regions.

Previous linear attention methods reduce the complexity of the attention mechanism from O(n2d) to
O(nd2) at the expense of the performance on visual tasks, where d is the patch dimensionality. Some
of them necessitate the knowledge distillation method [7] or high-order attention residuals [39] to
make up for the performance gap. However, the GPU memory consumption will severely increase
which makes these methods unsuitable for training large transformer models.

In this paper, we explore the utilization of second-order (quadratic) Taylor expansion to approximate
the original softmax attention. We theoretically show that this approximation can be decomposed
into two non-linear kernels through the utilization of the Kronecker product [34]. By employing
this approach, the computational complexity can be changed from O(n2d) to O(nd3). We then
propose a fast approximation algorithm to accelerate the computation of the Kronecker product,
thereby reducing the complexity to O(nd2). In contrast to the first-order (linear) Taylor expansion [7]
and other linear attention methods, we can utilize the high-order information within the softmax
function to achieve superior performance while at the same time preserving the efficiency of linear
attention. Experimental results on the ImageNet dataset show that the proposed QT-ViTs can achieve
a superior accuracy-speed trade-off when compared to other state-of-the-art methods, as shown in
Fig. 1. Additionally, we conduct experiments on object detection and semantic segmentation tasks to
further validate the effectiveness of our approach.

2 Preliminaries

In this section, we first introduce the preliminaries of softmax attention and linear attention. Then,
we provide an overview of various instantiations of the original linear attention method used in ViT
and analyze their advantages and disadvantages.
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2.1 Softmax Self-Attention

Softmax self-attention operation is the key component in the transformer model. Given an input
matrix X ∈ RN×d where N is the number of patches and d is the dimension of each patch, we first
map the input matrix to the query, key and value embeddings by using the matrix multiplications:

Q = XWQ, K = XWK , V = XWV , (1)

where WQ, WK and WV ∈ Rd×d are learnable matrices. Then, the attention score is computed on
each pair of patches to capture the global information as shown below:

Ok =

N∑
i=1

Sim(Qk,Ki)∑N
j=1 Sim(Qk,Kj)

Vi =

N∑
i=1

exp(QkK
⊤
i /

√
d)∑N

j=1 exp(QkK⊤
j /

√
d)

Vi, (2)

where Sim(Qk,Ki) = exp(QkK
⊤
i /

√
d) is the similarity measurement function in the softmax

attention, Qk, Ki (Kj), Vi, Ok are the corresponding k-th, i-th (j-th), i-th, k-th row vectors of
the query, key, value and output matrices, respectively. The inner product of the query-key pair is
first computed to calculate the similarity between the pair, then a scale is applied for stability and
a softmax function is used to transfer the similarity into probability. This probability is applied to
the value matrix to get the final attention score output. The softmax attention computes the inner
products of all the query-key pairs and results in a O(N2d) time complexity.

2.2 Linear Self-Attention

The overhead of the computation of Eq. 2 mainly comes from the matrix multiplication. By decompos-
ing the similarity function into two separate kernel embeddings, i.e., Sim(Qk,Ki) = ϕ(Qk)ϕ(Ki)

⊤,
and the original softmax attention function can be changed into linear attention by exchanging the
order of matrix multiplication:

Ok =

N∑
i=1

ϕ(Qk)ϕ(Ki)
⊤∑N

j=1 ϕ(Qk)ϕ(Kj)⊤
Vi =

ϕ(Qk)
(∑N

i=1 ϕ(Ki)
⊤Vi

)
ϕ(Qk)

(∑N
j=1 ϕ(Kj)⊤

) , (3)

where the complexity is changed from O(N2d) to O(Nd2). Since the patch dimension d is always
smaller than the number of patches N in the popular ViT architectures, the computation overhead
can thus be reduced.

However, in order to losslessly decompose the similarity function in the softmax attention
Sim(Qk,Ki) into the product of two kernel embeddings ϕ(Qk) and ϕ(Ki), the dimensionality
of the kernel function needs to be infinite which is unable to apply to real-world applications. Thus,
a series of instantiations are proposed trying to compute ϕ(·) efficiently while preserving as much
information of the original similarity function as possible.

In the following, we use q ≜ Qk and k ≜ Ki to represent row vectors in query matrix Q and key
matrix K that do not belong to any specific row.

2.3 Instantiations of the Kernel Function

Linear transformer was first proposed in [19] and ϕ(x) = elu(x) + 1 was used as the kernel
function. EfficientViT [3] used ϕ(x) = ReLU(x) as the instantiation. Both methods ensure that
ϕ(q)ϕ(k)⊤ ≥ 0 which is consistent with the property of the similarity measurement function
Sim(·). Flatten Transformer [14] argued that previous approximations smooth the distribution of
linear attention which failed to focus on more informative regions, and proposed a focused function
ϕp(x) =

||ReLU(x)||
||ReLU(x)∗∗p||ReLU(x)∗∗p where || · || represents the Euclidean norm and (·)∗∗p is element-

wise power p of the input. Hydra attention [2] used cosine similarity as the kernel ϕ(x) = x/||x||2,
PolyNL [1] used mean kernel ϕ(x) = x/

√
N , and AFT-Simple [41] proposed different functions for

query ϕ(q) = sigmoid(q) and key ϕ(k) = softmax(k), respectively. These methods suffered from
the performance drop since they lacked sufficient expression ability to replicate the original softmax
attention mechanism.
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Besides the aforementioned methods, some studies approximated the similarity function with kernel
expansions such as angular kernel expansion [39] with Sim(q,k) = 1/2+ 1/π · (qk⊤)+Hr or first
order Taylor expansion [7] with Sim(q,k) = 1+qk⊤/

√
d+Hr where Hr represents the high-order

residuals. These methods necessitated the masked output of original softmax attention as Hr and
applied the knowledge distillation (KD) method to further enhance the performance which severely
increased the GPU memory consumption and were unsuitable for training large transformer models.

3 Methods

In this section, we propose to use second-order (quadratic) Taylor expansion to approximate the
similarity measurement function Sim(·, ·)in Eq. 2. Compared to the first-order (linear) Taylor expan-
sion [7], quadratic approximation contains less information in the high-order residuals. Therefore, we
can directly ignore them and derive a good performance without utilizing masked softmax attention
output or the KD method.

However, it is non-trivial to decompose the quadratic Taylor expansion into separate kernel embed-
dings with linear time complexity. Thus, in the following we first give a theoretical derivation by
using the Kronecker product to decompose the quadratic expansion. Then, a fast approximation
algorithm is applied to accelerate the computation of the Kronecker product.

3.1 Decompose Quadratic Taylor Expansion

The quadratic Taylor expansion of the similarity measurement function is expressed as:

Sim(q,k) = exp

(
< q,k >√

d

)
≈ 1 +

< q,k >√
d

+
< q,k >2

2d

=

(
<q,k>√

d
+ 1
)2

+ 1

2

=
< ϕ(q), ϕ(k) >2 +1

2
, (4)

where < ·, · > is the dot product and ϕ(x) =
[

x
4√
d
, 1
]

is used for vectors q and k. However, since
the quadratic term exists in Eq. 4, it is challenging to decompose the equation into two separate kernel
embeddings. In the following, we show that this problem can be solved by using the Kronecker
product.

Given two vectors a = {ai}di=1 and b = {bi}di=1, we can easily derive:

< a,b >2=

(
d∑

i=1

aibi

)2

=

d∑
i=1

a2i b
2
i + 2

d−1∑
i=1

d∑
j=i+1

aibiajbj . (5)

This is equal to first computing the Kronecker product of each vector and then applying dot product,
i.e., given Kr(x) = vec(x⊗x) where ⊗ represents the Kronecker product and vec(·) is the vectorized
output, we have:

< Kr(a),Kr(b) >=[a1a, · · ·, ada] · [b1b, · · ·, bdb]
=[a1a1, · · ·, a1ad, a2a1, · · ·, a2ad, · · ·, ada1, · · ·, adad]
· [b1b1, · · ·, b1bd, b2b1, · · ·, b2bd, · · ·, bdb1, · · ·, bdbd]

=

d∑
i=1

a2i b
2
i + 2

d−1∑
i=1

d∑
j=i+1

aibiajbj

= < a,b >2 . (6)
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Then, we can apply Eq. 6 to Eq. 4 and decompose the similarity function into two separate kernel
embeddings:

Sim(q,k) ≈ < ϕ(q), ϕ(k) >2 +1

2

=
< Kr(ϕ(q),Kr(ϕ(k)) > +1

2
=< φ(q), φ(k) >, (7)

where

φ(x) =

[
1√
2
Kr(ϕ(x)),

1√
2

]
=

[
1√
2
vec(ϕ(x)⊗ ϕ(x)),

1√
2

]
(8)

is the kernel function applied to the query and key vectors. Note that given a vector x ∈ Rd, Kronecker
product gives an output vector with quadratic length Kr(x) ∈ Rd2

. Thus, the time complexity of
linear attention using the decomposed quadratic Taylor expansion is O(Nd3) . Compared to the
original softmax attention with O(N2d) time complexity, the proposed method does not yield an
advantage.

3.2 Reduce the Time Complexity

Recall that the computational burden primarily arises from the Kronecker product that quadratically
expands the input dimension. Thus, there are several simple ways to reduce the dimension. For
example, a pooling function can be applied on the input vector y = pool(x) ∈ Rd/p where p is the
dimensionality reduction factor. The output dimension of the Kronecker product can be reduced
to Kr(y) ∈ Rd2/p2

, and the corresponding time complexity of the linear attention is O(Nd3/p2).
Another way is to divide the input vector into c chunks x = [x1, · · ·,xc] and compute the Kronecker
product within each chunk Kr(x

i) ∈ Rd2/c2 , and finally concatenate them together to derive the
output o = concat

(
Kr(x

1), · · ·,Kr(x
c)
)
∈ Rd2/c. The time complexity of the linear attention

using this method is O(Nd3/c).

Although methods mentioned above can decrease the computational load, they do not actually reduce
the time complexity. In the following, we propose a fast approximation algorithm to accelerate the
computation of the Kronecker product, and reduce the computational complexity from O(Nd3) to
O(Nd2).

By rewriting the definition of Kr(ϕ(x)) in Eq. 8 in its element-wise form, we can get:

Kr(ϕ(x)) = Kr([
x
4
√
d
, 1])

=

[
x1
4
√
d
· [ x

4
√
d
, 1], · ··, xd

4
√
d
· [ x

4
√
d
, 1], [

x
4
√
d
, 1]

]
=

[
{x1x1√

d
, · · ·, x1xd√

d
,
x1
4
√
d
}, · · ·, {xdx1√

d
, · · ·, xdxd√

d
,
xd
4
√
d
}, { x1

4
√
d
, · · ·, xd

4
√
d
, 1}
]
. (9)

Note that the order of the elements in the above equation does not influence the result of the inner
product < Kr(ϕ(q),Kr(ϕ(k)) > in Eq. 7 as long as Kr(ϕ(q)) and Kr(ϕ(k)) change the order of
their elements in the same manner. Thus, Eq. 9 can be written as:

K̂r(ϕ(x)) = concat

(
{xixj}di,j=1√

d
,
{xi}di=1

4
√
d

,
{xi}di=1

4
√
d

, 1

)
, (10)

which is divided into four terms. The first is the quadratic term that contains d2 components
representing the multiplication of each pair of elements in x (including self-multiplication), the
second and third terms are the linear term with length d each, and the fourth term is the constant
term. Since the computational load of the inner product in Eq. 10 mainly comes from the quadratic
term, it is important to reduce the number of elements in this term. Randomly preserving d items
from d2 elements is an efficient approach but leads to poor results. Employing grouping techniques
help selecting the most representative items at the cost of increasing the computational complexity
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compared to random selection. We empirically find that using the self-multiplication terms {x2
i }di=1

can effectively represent all quadratic terms, while at the same time maintaining high efficiency.

Therefore, the Kronecker product in Eq. 10 can be replaced with a compact version:

K̃r(ϕ(x)) = concat

(
α ·

√
d
{x2

i }di=1√
d

, β ·
√
2
{xi}di=1

4
√
d

, γ

)
= concat

(
α · {x2

i }di=1, β · 4

√
4

d
{xi}di=1, γ

)
, (11)

in which we merge items of the same kind and multiply them by the square root of the number of
the same items so as not to affect the inner-product result in Eq. 7. Learnable scalar parameters α, β
and γ are used as the trade-off parameters. Note that given a vector x ∈ Rd, this compact version of
the Kronecker product gives an output of length 2d + 1. Therefore, the time complexity of linear
attention using the decomposed quadratic Taylor expansion is reduced from O(Nd3) to O(Nd2).
We further found that the linear term can be discarded without hurting the classification performance,
thus we set β = 0 in the following experiments.

4 Experiments

In this section, we apply our linear attention with quadratic Taylor expansion to vision transformers
and propose a series of QT-ViT models. We empirically investigate the effectiveness and efficiency
of the proposed models on the ImageNet-1k classification dataset. Additional results regarding the
performance on object detection and semantic segmentation tasks are provided in the appendices.

4.1 Image Classification

Datasets and model architectures. The ImageNet-1k classification dataset is used for training and
evaluation, which contains 1.28M training images and 50K validation images from 1000 different
classes. We utilize the model architecture proposed in EfficientViT [3] and replace the kernel
function with our proposed compact quadratic Taylor expansion kernel. An absolute positional
embedding is added to the key matrix before applying linear attention, and a non-linear shortcut
o = o+GELU(BN(v)) is added to the output of the linear attention o where v is the value matrix.
Different exponential moving average (EMA) decay parameters are used, and all the other training
settings and hyper-parameters remain the same.

Compared methods and evaluation metrics. To verify the effectiveness of the proposed QT-ViTs,
we compare our method with a series of competitors including (1) Vision transformers with lin-
ear attention such as ViTALiTy [7], Castling-ViT [39], EfficientViT [3], FLatten Transformer [14]
and Hydra Attention ViT [2]; (2) Other vision transformers with sparse attention or hierarchical
architectures such as Swin [23], SwinV2 [22], FasterViT [17], PoolFormer [40], MobileViT [25],
MobileViTV2 [26] and CSwin [9]; (3) State-of-the-art CNN models and CNN-Transformer com-
bined model architectures such as CoAtNet [6], CMT [12], ConvNeXt [24], EfficientNet [28] and
EfficientNetV2 [29].

The proposed QT-ViTs and other baseline models are evaluated based on the accuracy-speed trade-
offs as shown in Fig. 1. Furthermore, we measure the classification performance with top-1/top-5
accuracy. The efficiency of the model is represented by the FLOPs and parameters. Finally, we
evaluate the inference speed of the models on the AMD Instinct MI250 GPU in Fig. 1.

Experimental results. The effectiveness and efficiency of the proposed QT-ViTs are evaluated on
the ImageNet-1k dataset by comparing them to other state-of-the-art baseline methods mentioned
above. The results are shown in Tab. 1 and all methods are gathered by their FLOPs into five groups
including: <1G, 1∼3G, 3∼5G, 5∼10G and >10G.

As shown in the table, the proposed QT-ViTs achieve new SOTA accuracy-efficiency trade-off across
different FLOPs range. For example, we outperform ViTALiTy who uses the first-order Taylor
expansion by a large margin without using knowledge distillation or high-order residuals that severely
increase the GPU memory consumption during training. Compared to vision transformer with sparse
attention such as CSWin, our QT-ViT-4 achieves 84.7% top-1 accuracy with only 5.26G FLOPs while
CSwin-B has 84.2% top-1 accuracy with 15.00G FLOPs, which means that we have 0.5% higher top-1
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Table 1: Image classification results on ImageNet-1k dataset. QT-ViTs are compared with SOTA
baselines. Methods are grouped based on FLOPs.

FLOPs Model Parameters FLOPs Top-1 Acc Top-5 Acc
range Architecture (M) (G) (%) (%)

<1G ViTALiTy-DeiT-T [7] - 0.33 71.9 -
EfficientNet-B1 [28] 7.8 0.70 79.1 94.4
PoolFormer-S12 [40] 11.9 1.82 77.2 -
EfficientViT-B1 [3] 9.1 0.52 79.4 94.3

CMT [12] 9.5 0.60 79.1 94.5
MobileViT-XS [25] 2.3 0.70 74.8 92.3

MobileViTV2-0.5 [26] 1.4 0.50 70.2 -
QT-ViT-1 (ours) 9.4 0.52 79.6 94.7

1∼3G Castling-DeiT-T [39] 5.6 1.18 76.0 92.5
EfficientNet-B3 [28] 12.0 1.80 81.6 95.7
EfficientViT-B2 [3] 24.3 1.60 82.1 95.8
FLatten-PVT-T [14] 12.2 2.00 77.8 -

QT-ViT-2 (ours) 24.9 1.60 82.5 95.9

3∼5G PoolFormer-S24 [40] 21.4 3.40 80.3 -
EfficientNet-B4 [28] 19.0 4.20 82.9 96.4

Swin-T [23] 29.0 4.50 81.3 95.5
EfficientViT-B3 [3] 49.0 4.00 83.5 96.4

FasterViT-1 [17] 53.4 5.30 83.2 96.5
ConvNeXt-T [24] 29.0 4.50 82.1 -
QT-ViT-3 (ours) 49.7 3.97 83.9 96.7

5∼10G PoolFormer-M36 [40] 56.2 8.78 82.1 -
EfficientNet-B5 [28] 30.0 9.90 83.6 96.7

EfficientNetV2-S [29] 22.0 8.40 83.9 -
SwinV2-T [22] 28.0 6.60 82.8 -

EfficientViT-L1 [3] 53.0 5.30 84.5 96.9
EfficientViT-L2 [3] 64.0 6.96 85.1 97.0

Castling-MViTv2-B [39] 51.9 9.82 85.0 97.2
FasterViT-2 [17] 75.9 8.70 84.2 96.8
QT-ViT-4 (ours) 53.0 5.26 84.7 96.7
QT-ViT-5 (ours) 64.1 6.96 85.2 97.0

>10G PoolFormer-M48 [40] 73.5 11.56 82.5 -
CSWin-B [9] 78.0 15.00 84.2 -

EfficientViT-L3 [3] 246.0 28.00 85.8 97.2
Castling-DeiT-B [39] 87.2 17.28 84.2 -

Hydra-DeiT-B [2] - 17.46 80.6 -
FLatten-CSwin-B [14] 75.0 15.00 84.5 -

SwinV2-B [22] 88.0 21.80 84.6 -
CoAtNet-3 [6] 168.0 35.00 84.5 -

FasterViT-4 [17] 424.6 36.60 85.4 97.3
QT-ViT-6 (ours) 246.8 27.60 86.0 97.3

accuracy with 64.9% less FLOPs. For CNN competitors, the QT-ViT-3 outperforms ConvNeXt-T
by 1.8% top-1 accuracy with 11.8% less FLOPs. Finally, compared to the current state-of-the-art
vision transformer model, the proposed QT-ViT-1∼6 outperforms EfficientViT-B1∼B3 & L1∼L3 by
0.2%, 0.4%, 0.4%, 0.2%, 0.1%, 0.2% respectively with roughly the same FLOPs and parameters.
The accuracy-speed trade-offs of the proposed QT-ViTs and other models are shown in Fig. 1.
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Table 2: Results of using different kernels. The baseline method uses the original self-attention
operation with O(N2d) computational complexity and is used as the strong baseline. Other methods
use different linear attentions.

Method Kernel ϕ(q) ϕ(k) Top-1 Acc (%)

baseline - - - 79.8
EfficientViT [3] ReLU non-linearity ReLU(x) 79.4

Hydra [2] cosine similarity x/||x||2 79.1
PolyNL [1] mean x/

√
N 78.8

AFT-Simple [41] sigmoid & softmax σ(x) softmax(x) 78.9
Castling-ViT [39] angular kernel Sim(q,k) = 1

2 + 1
π · (qk⊤) 79.1

ViTALiTy [7] 1st order Taylor expansion [x/ 4
√
d, 1] 78.5

QT-ViT (ours) 2nd order Taylor expansion
[

1√
2
K̃r(ϕ(x)),

1√
2

]
79.6

4.2 Ablation Study

In this section, we conduct several ablation studies to further verify the superiority of our proposed
quadratic Taylor expansion kernel.

Results of using different kernels. We compare the results of using quadratic Taylor expansion kernel
with other kernels used in various linear attention vision transformers including EfficientViT [3] which
uses ReLU kernel, Hydra attention [2] that utilizes cosine kernel, PolyNL [1] with the mean kernel,
AFT-Simple [41] that proposes different kernels for query and key, angular kernel expansion [39] and
first order Taylor expansion [7]. All methods use the same training settings and network architecture
except the kernel used for computing the linear self-attention. The baseline method uses the original
self-attention operation with O(N2d) computational complexity and is used as a strong baseline for
comparison.

As the results shown in Tab. 2, the proposed quadratic (2nd order) Taylor expansion outperforms
all other competitors which demonstrates the effectiveness of the proposed method. For example,
we achieve a 1.1% better top-1 accuracy compared to the linear (1st order) Taylor expansion kernel,
0.2% better than ReLU, 0.5% better than cosine, 0.8% better than mean, 0.7% better than sigmoid &
softmax and 0.5% better than the angular kernel.

Ablation on reducing the time complexity of the Kronecker product. In Sec. 3.2, we mentioned
several ways of reducing the computational burden of the Kronecker product including:

Method 1: applying a pooling function on the input vector y= pool(x) ∈ Rd/p;

Table 3: Ablation on reducing the time complexity of the Kronecker product. The experiments are
conducted using the QT-ViT-1 model on the ImageNet-1k dataset.

Method Hyper-param Time Comp. Params (M) FLOPs (G) Top-1 Acc (%)

baseline - O(Nd3) 9.4 0.65 79.7

1 p=2 O(Nd3/p2)
9.4 0.55 79.3

p=4 9.4 0.52 79.1

2
c=2

O(Nd3/c)
9.4 0.58 79.4

c=4 9.4 0.55 79.3
c=8 9.4 0.53 79.1

3 - O(Nd2) 9.4 0.52 61.8
4 (ours) - O(Nd2) 9.4 0.52 79.6
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Method 2: dividing the input vector into c chunks, compute the Kronecker product within each chunk
and concatenate them together to derive the final output;

Method 3: randomly preserving d items from d2 quadratic elements in K̂r(ϕ(x)) (Eq. 10);

Method 4: using the self-multiplication terms to represent all quadratic terms to derive the compact
version of the original Kronecker product K̃r(ϕ(x)) (Eq. 11).

The classification results of using different methods mentioned above are shown in Tab. 3, in which
the baseline method computes the original Kronecker product and is used to compare with other
efficient methods. We can see that reducing input dimension with the pooling function (method 1) or
dividing it into chunks (method 2) are not efficient enough since p and c are small compared to the
dimension d of the vector and has a higher time complexity. Besides, the classification performances
are not satisfying because too much information is lost. Randomly selecting quadratic items (method
3) is computationally friendly but has sub-optimal performance. The proposed compact version of
the original Kronecker product (method 4) performs best among all the methods which indicates that
using the self-multiplication terms to represent quadratic terms is enough to preserve the information
in the output of the Kronecker product.

4.3 Visualization 1st order 

Taylor

Ball

Bird

Dog

Taxi

Query ReLU
2nd order 

Taylor

Figure 2: Attention maps from different linear attention methods
including the first-order Taylor expansion, ReLU non-linearity func-
tion and the second-order Taylor expansion (ours).

We plot the results of the self-
attention maps from the last
block given a specific query
(column 1, marked as red on
the original images) using dif-
ferent attention methods in-
cluding first-order Taylor ex-
pansion [7] (column 2), ReLU
non-linearity function [3] (col-
umn 3) and the quadratic Tay-
lor expansion used in the pro-
posed QT-ViT (column 4). We
can see that the proposed QT-
ViT can exhibit a more focused
and sharper response on atten-
tion feature maps. Further-
more, given a query vector,
QT-ViT captures reasonable
features on the feature map
more accurately compared to
the competitors. For exam-
ple, QT-ViT concentrates on
both ears of the dog given the
query on the left ear of the
dog. We can intuitively ob-
serve the advantages of QT-
ViT from Fig. 2.

5 Conclusion

In this paper, we propose a new linear attention method to approximate the usage of softmax self-
attention in the original vision transformer models. By conducting quadratic Taylor expansion of
the similarity measurement function with the help of the Kronecker product, we can successfully
decompose the similarity function into the product of two kernel embeddings while reserving high-
order information and maintaining the effectiveness of the original self-attention. Furthermore, we
propose a fast approximation algorithm to accelerate the computation of the Kronecker product
and reduce the time complexity from O(Nd3) to O(Nd2) without much loss of information. We
conduct experiments on the proposed QT-ViT models using the benchmark dataset ImageNet-1k,
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and the results show that we can achieve a better accuracy-efficiency trade-off compared to other
state-of-the-art transformers and CNNs.
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A Object Detection on COCO 2017 Dataset

We conduct experiments on the COCO 2017 dataset to further validate the effectiveness of the
proposed QT-ViT models. The COCO 2017 dataset has 118K training images, 5K validation
images and 20K test-dev images. We use the mask R-CNN [18] as the object detection framework,
EfficientViTs [3] and the proposed QT-ViTs as the backbone models. The experimental results
are shown in the following table. We can see that the proposed QT-ViT has better mAP than the
state-of-the-art model EfficientViT under the same training setting.

Table 4: Experimental results on COCO 2017 dataset using different backbones.

Backbone AP AP50 AP75 Params (M)

EfficientViT-B1 39.1 58.0 41.8 57.6
QT-ViT-1 39.3 58.2 42.1 57.9

EfficientViT-B2 40.8 59.5 44.3 68.0
QT-ViT-2 41.1 59.7 44.7 68.5

EfficientViT-B3 42.3 60.6 45.5 92.1
QT-ViT-3 42.6 60.9 45.9 93.1

In the following table, we show the results of using absolute positional embedding (APE) on object
detection. Note that APE has little impact on the latency, FLOPs, and top-1 accuracy for image
classification tasks thus we do not show the corresponding results in the main section.

Table 5: Experimental results on COCO 2017 dataset using different backbones.

Backbone AP AP50 AP75

QT-ViT-1 w/ APE 39.3 58.2 42.1
QT-ViT-1 w/o APE 39.2 58.2 42.0

QT-ViT-2 w/ APE 41.1 59.7 44.7
QT-ViT-2 w/o APE 41.0 59.7 44.6

QT-ViT-3 w/ APE 42.6 60.9 45.9
QT-ViT-3 w/o APE 42.5 60.8 45.8

B Semantic Segmentation on ADE20K dataset

We further verify the effectiveness of the proposed QT-ViT on the semantic segmentation task
using the ADE20K dataset, which contains 20K training images from 150 semantic categories, 2K
validation images and 3K test-dev images. UperNet [35] is used as the framework for the experiments.
As shown in the table below, using QT-ViTs as the backbone models achieve better mIoU on the
ADE20K dataset than using the EfficientViTs as backbones. The results show that the proposed
QT-ViT performs well on the semantic segmentation task.

C Memory Footprint

The masked output of the original softmax attention has been shown to be useful in previous studies
such as Vitality [7] and Castling-ViT [39]. It is also shown to be useful in our method and the
experiments using QTViT-1 on the ImageNet dataset are shown below. However, it requires more
GPU memory during training, which is not suitable for training large models. Thus, we do not use
this strategy in our method. For the integrity of the paper, we still list the results of using original
softmax in the following table, the experiments are conducted with QT-ViT-1 on ImageNet dataset.
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Table 6: The effectiveness of APE.

Backbone mIoU mAcc Params (M)

EfficientViT-B1 32.8 45.3 32.5
QT-ViT-1 33.2 45.6 32.8

EfficientViT-B2 35.8 49.0 43.7
QT-ViT-2 36.3 49.4 44.3

EfficientViT-B3 38.0 51.0 68.8
QT-ViT-3 38.5 51.5 69.7

Table 7: The impact of using original softmax attention during training.

Method GPU memory required per GPU during Training (GB) Top-1 Acc (%)

w/o original softmax 13.9 79.6
w/ original softmax 15.8 (+13.7%) 79.8

D Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It takes lots of computational resources for training the models from scratch.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Contents in the main paper has all the information needed to reproduce the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not include code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We show all the experimental details in the main section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is time consuming to conduct experiments several times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: It is a research about fundamental vision transformer model.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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