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Abstract

Academic Documents stored in PDF format
can be transformed into plain text structured
markup languages to enhance accessibility.
Markup languages allow for easier updates and
customization, making academic content more
adaptable and accessible to diverse usage, such
as linguistic corpus compilation.

Existing end-to-end decoder transformer mod-
els can transform screenshots of documents
into markup language, their flexibility is su-
perior to encoder transformers based on Doc-
ument Layout Analysis. However, decoder
transformers have more parameters and operate
more slowly. Their token-by-token decoding
from scratch wastes a lot of inference steps in
generating dense text, which can be directly
copied from PDF files.

To solve this problem, we introduce EditTrans,
whose features allow identifying a queue of
to-be-edited text from a PDF before starting
to generate markup language. EditTrans con-
tains a lightweight classifier that is fine-tuned
from a Document Layout Analysis model on
162,127 pages of documents from arXiv. In
our evaluations, EditTrans reduced the num-
ber of generation steps by 42.9% compared to
end-to-end decoder transformer models.

1 Introduction

Transforming Academic Documents (AD) from
PDF to markup languages such as HTML or Mark-
down significantly enhances their accessibility and
usability. This conversion not only improves web
accessibility but also boosts document interac-
tivity, enhances search-ability and indexing, and
guarantees compatibility across different platforms
(Frankston et al., 2024). Such documents typically
delivered in PDF format contain complex elements
including mathematical formulas, figures, head-
ers, and tables, as well as densely layouted text.
ADs vary greatly in layout and content, posing

challenges for in computational document process-
ing (Li et al., 2020b). In order to overcome these
challenges and implement a faithful extraction pro-
cess, a precise Document Understanding (DU) is
required, which enables accurate reproduction of
text, figures, and tables in a structured format, en-
suring the integrity and functionality of the original
document are maintained in the new markup file.

DU predominantly refers to the process of auto-
mated classifying, and extracting information with
rich typesetting formats from digital-born docu-
ments or scanned documents (Cui et al., 2021).
One method involves using a transformer encoder
for Document Layout Analysis, followed by text
content extraction and understanding (Huang et al.,
2022). Recent works focus on document screen-
shots due to the generality and complexity of the
models (Lee et al., 2023). For instance, Donut
(Kim et al., 2022) is an end-to-end transformer de-
coder model for DU from screenshots. Based on
Donut’s development, Nougat (Blecher et al., 2023)
was introduced as a method that transforms aca-
demic PDFs into Markdown, a markup language.

However, Nougat has drawbacks due to process-
ing speed because it generates text token-by-token
from scratch which significantly slows down the
overall document transformation process. Given
that ADs frequently contain dense text that can be
directly copied from PDFs, adopting an edit-based
approach should speed up the transformation pro-
cess and save computational costs.

Text-editing models have become a prominent
alternative for monolingual text-generation tasks
with high degree of textual overlap between the
source and target, such as Grammatical Error Cor-
rection, Style Transfer, and Text Simplification
(Malmi et al., 2022). These models focus on mak-
ing minimal changes to adapt or correct the existing
text, which also fits the paradigm of AD transfor-
mation.

In this paper, our contributions are:



» EditTrans which can identify and put copy-
able text from PDF into the edit queue before
Nougat generation starts.

* It is lightweight with only 1.1M trainable pa-
rameters and a weights file size of less than
SMB.

* We release the dataset-making scripts as well
as the arXiv numbers of the documents in the
experiments to enhance reproducibility and
observe copyright.

2 Related Work

2.1 Academic Documents Transformation

GROBID (GRO, 2008-2024) is a machine learning
library for extracting, parsing, and re-structuring
documents including PDF into structured XML
encoded documents. However, it is not flexible
because it converts formulas and tables into images
thus hampering subsequent accessibility. docTR
(Mindee, 2021) and DocBed (Zhu et al., 2022)
first identify the document layout and then ex-
tract text content. Donut (Kim et al., 2022), is
a Document Understanding model consisting of a
visual encoder and language model decoder with-
out obtaining texts directly from the document.
Nougat (Blecher et al., 2023) follows Donut in im-
plementing screenshot-to-Markdown transforma-
tion of Academic Documents. LOCR (Sun et al.,
2024) solves the problem of Nougat’s hallucina-
tion and repetition using an additional location
prompt. Kosmos-2.5 (Lv et al., 2023) and DocOwl-
1.5 (Hu et al., 2024) implement a more general-
ized screenshot-to-Markdown transformation with
Vision-Language methods and larger model size.

The approach described in this paper is an at-
tempt to edit Nougat’s input sequence to speed up
the transformation.

2.2 Document Layout Analysis (DLA)

Recent DLA models have become increasingly
powerful thanks to the availability of large-scale
document layout datasets (Zhong et al., 2019; Li
et al., 2020b; Pfitzmann et al., 2022; Jaume et al.,
2019). Computer Vision models have been able to
extract layouts in screenshots of documents (Yang
and Hsu, 2021; Li et al., 2020a; Wu et al., 2021).
Language models have also been applied to recog-
nize layouts. LayoutLM (Xu et al., 2020) and its
variant VILA (Shen et al., 2022) are transformer en-
coder models that analyze document layouts from

the texts and their 2D coordinates. LayoutLMv2
and 3 (Xu et al., 2021; Huang et al., 2022) addi-
tionally attaches visual features to the transformer
encoder.

In this work, our Copyable Text Identification
model is fine-tuned from LayoutLMv3 (Huang
et al., 2022).

2.3 Text Generation with Text-Editing Models

Transformers decoder models generate outputs
token-by-token from scratch thus making them
slow at inference time. Text-editing models pro-
vide several benefits over decoder models in-
cluding faster inference speed, higher sample
efficiency as well as better control and inter-
pretability of the outputs (Malmi et al., 2022).
LaserTagger (Malmi et al., 2019) implements the
Sentence Fusion task with three actions: KEEP,
DELETE, and REPLACE. FELIX (Mallinson et al.,
2020) and EdiT5 (Mallinson et al., 2022) also
achieve text reordering. PIE (Awasthi et al., 2019),
Seq2Edits (Stahlberg and Kumar, 2020) and GEC-
ToR (Omelianchuk et al., 2020) edit the text using
the Iterative Refinement approach. There is a blog
post! about Google Search correcting user input us-
ing EdiT5 (Mallinson et al., 2022) with low-latency
features.

Our work organizes copyable text into edit
queues, which mimics the behavior of Text-editing
models.

3 Methodology

EditTrans streamlines academic document transfor-
mation into three steps: (1) EditTrans begins by
classifying spans extracted from PDF pages and
identifying which portions of the spans are copy-
able; (2) EditTrans then organizes the classified
spans into an edit queue and delineates a stop cri-
terion for each edit needed; (3) For each span re-
quiring editing, EditTrans utilizes the pre-trained
Nougat. (Blecher et al., 2023) model to execute the
necessary edits. Figure 1 briefly demonstrates how
we can copy text from a PDF and save Nougat’s
inference steps.

EditTrans is expected to produce the same out-
put as Nougat (i.e. generate Markdown). But, Edit-
Trans requires a PDF page as input while Nougat
requires a screenshot of the PDF page.

1https://research.google/blog/
grammar-checking-at-google-search-scale/


https://research.google/blog/grammar-checking-at-google-search-scale/
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Step 1: equation E = mc?, discovered by Albert Einstein.,
KEEP I' DELETE !l INSERT LEFT \

Step 2: equation [TRIGGER]discovered by Albert Einstein.

o

Step 3: equation \(E=mc”*2\), discovered by Albert Einstein.
COPY COPY

Figure 1: An overview of how EditTrans works. Step
1 detects whether the span is copyable or not. Step 2
constructs an edit queue, [TRIGGER] is the edit trigger,
and blue word is the edit stop sign. Step 3 executes the
edit, where the green part is copied from the PDF and
the yellow part is generated by Nougat.

3.1 Copyable Text Identification

Inspired by DLA-related work, we assert that
whether the text is copyable or not is highly corre-
lated with its layout information. Specifically, we
suggest that: (1) Dense plain text found in para-
graphs should be preserved in its entirety. (2) Page
elements such as mathematical formulas, tables,
and titles should be modified to align with Mark-
down formatting standards. (3) Elements that do
not convey relevant content, including page head-
ers, footers, and page numbers, should be excluded
from the final document.

Following VILA (Shen et al., 2022), we assume
that text copyability is homogeneous at the span
level. We use PyMuPDF? to extract span-level text
and bounding boxes from the PDF. Subsequently,
we fine-tune the LayoutLMv3 model for token clas-
sification using LoRA (Hu et al., 2022), omitting
global 1D position embeddings to prevent potential
biases in layout judgment (Tu et al., 2023).

We altered LayoutLLMv3’s classification head to
predict labels as KEEP, DELETE, or INSERT_LEFT.
KEEP indicates that the span should be included
in the Markdown output without editing, DELETE
indicates that the span should be deleted, and
INSERT_LEFT indicates that a trigger for Nougat
generation should be inserted before this span.

This approach is notably different from already
existing text-editing models. Our editing logic in
this paper is to delete text that should not be copied,
and then insert tokens that should be generated
by the decoder, e.g., a mathematical formula is
deleted from the PDF, and an equivalent expression
is generated before the next span of copiable text.

As we have fine-tuned LayoutLMv3 for token
classification, and each span may contain more

2https://github.com/pymupdf/PyMuPDF

than one token, a voting classifier (Diem et al.,
2011) is applied to decide the prediction of the
spans. Details of the fine-tuning hyperparameters
are documented in Appendix A.

3.2 Edit Queue Building

Once we have the span-level edit annotation, we
can turn it into an edit queue () that prompts the pre-
trained Nougat model for which portion of the text
to edit. Each edit queue () starts with an edit trigger,
followed by a sequential processing of each span.
We iterate through each span in edit annotation.

If next span is predicted to label KEEP, we add
span text to (. Note that if the length of the text
characters in this span is less than 5, we do not add
it and instead expect Nougat to generate it because
too short a text makes it difficult to match where
Nougat should stop generating. We then match the
first word in the text of this span with a character
length greater than 3 to sign the Nougat model stop
generation and start copy.

If next span is predicted as DELETE, we do not
add anything to Q.

If next span is INSERT_LFET we will add an edit
trigger first, and then add this span’s text sequence
to ). Similarly to the KEEP span, we will match
the first word with a character length greater than 3
as an edit stop sign to Nougat.

At the end, we will add an extra edit trigger to
allow Nougat to generate end-of-sentence tokens.

3.3 Markup Edits Generation

In this step, we initialize an empty tokens sequence
S and traverse the edit queue Q).

If the next element in () is an edit trigger, a
screenshot of the page and S are fed into the
Nougat model. Nougat’s generation phase involves
the decoding of an auto-regressive model, where it
predicts the next token in sequence until a stopping
criterion is met. We set the stopping criteria to be
the pre-selected stop sign of the next to-be-copied
span or end-of-sentence tokens. The output of the
Nougat model is added to S.

If the next element in the queue is a to-be-copied
span, we simply tokenize the text of this span and
add it to the end of S.

In a nutshell, we copy the simple text from the
PDF and leave Nougat in charge of generating the
complex parts, such as formulas and tables. Finally,
S is outputted and detokenized into Markdown
format.


https://github.com/pymupdf/PyMuPDF

4 Dataset Building

As there is no existing dataset released as PDFs at
this time, we downloaded the I&TEX source code
bundles for the July and August 2023 papers from
arXiv. Then we use a framework (Duan et al., 2023)
that compiles ISTEX to PDF, plus annotates for se-
mantic labels, reading order, and I£TEX code cor-
responding to mathematical formulas and tables
for each element on a page. A part of the down-
loaded source code of the papers was not annotated
successfully, because it was written in a way that
the framework could not parse. A total number of
14,320 papers were annotated.

Spans are extracted from these pages and are
labeled as either KEEP, DELETE, or INSERT_LEFT,
based on the results of the semantic annotation of
the previous step. We mark the captions of figures
and tables as DELETE because they are reordered to
the end of the page in Nougat.

Pages that are empty or challenging to read,
such as those containing full-page images, long
tables, or bibliographies, are excluded from the
dataset. Finally, a dataset was assembled consist-
ing of 180.146 pages, each annotated with span-
level text copyable labels and their corresponding
bounding boxes. We randomly split the training set
size to 162,127 and the test set to 18,019. The vast
majority of the pages in this dataset are in English.

We then attached a Markdown target for each
page, which emulates Nougat’s style of insert-
ing mathematics formulas and tables as IATEX
code. I&TEX is quite flexible because it allows user-
defined macros. Therefore, we normalize the for-
mula and table IATEX codes with LaTeXML?.

The method in this paper extracts text spans from
PDFs, which requires access to the full-text of aca-
demic papers. As arXiv does not grant permission
to repost the full-text*, we publish the scripts for
creating the datasets plus the dataset’s arXiv num-
bers to provide reproducibility.

5 Results

Following Nougat (Blecher et al., 2023), we use
edit distance (Levenshtein, 1966) and F-measures
to evaluate transformation quality. The baseline
model is a pre-trained nougat-base’ model. Our
fine-tuned LayoutLMv3 (Huang et al., 2022) model

Shttps://math.nist.gov/~BMiller/LaTeXML/

4https://info.arxiv.org/help/license/reuse.
html#full_text

Shttps://huggingface.co/facebook/nougat-base

Models Editdist | F11 Steps|
nougat-base 0.1119 0.882 495.03
EditTrans 0.1114 0901 282.77

Table 1: Comparative performance results on the arXiv
test set. Findings demonstrate that for pages amenable
to transformation by Nougat, EditTrans significantly
reduces the number of inference steps required and en-
sures a high-quality document transformation.

achieves an F1-score of 0.92 on the Copyable Text
Identification task.

We noticed that on some pages, especially if
the page contains many formulas or tables, Nougat
tends to hallucinate, becomes repetitive, and simply
fails to hit EditTrans’ stop sign in the edit queue
which results in EditTrans not working. Therefore,
we selected the test set samples that could be trans-
formed to Markdown by Nougat without too many
errors, specifically, we chose test set sample pages
with an edit distance of less than 0.25 in Nougat’s
baseline transformation results.

Table 1 shows that EditTrans saves 42.9% infer-
ence steps while maintaining transformation qual-
ity. We provide code, weights, and example data in
supplementary material, they will be open-sourced.

6 Conclusion and Future Work

In this paper, we introduce EditTrans, a lightweight
text-editing PDF to Markdown Academic Docu-
ments Transformation tool, which is based on off-
the-shelf models LayoutLMv3 (Huang et al., 2022)
and Nougat (Blecher et al., 2023). We performed
minimal fine-tuning and the weights file size is less
than SMB. EditTrans accelerates the transforma-
tion by saving 42.9% of the decoding steps.

We observed that some documents could not be
fully transformed by Nougat due to issues with
hallucination and repetition. These issues persist
with EditTrans which does not control Nougat dur-
ing the generation phase. LOCR (Sun et al., 2024)
addresses these problems by correcting Nougat’s
output through visual positional guidance, signif-
icantly reducing hallucination and repetition er-
rors. Since LOCR complements Nougat’s output, it
should integrate seamlessly with EditTrans. We are
closely monitoring LOCR’s development and plan
to incorporating it with EditTrans upon its release.

Another observed issue is that Nougat discards
figures from pages, while LayoutLMv3 can extract
figures. We will further explore how to insert fig-
ures properly into Markdown output.
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7 Limitations

Due to the limitations of LayoutLMv3 (Huang
et al., 2022), our method currently limits the output
to a maximum of 512 tokens, but we have observed
that many pages exceed this token count. Secondly,
full-page formulas and tables cannot benefit from
our method. Additionally, our method may be less
efficient in batch generation due to synchroniza-
tion.
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» Batch Size: 64

* Epochs: 10

» Weight Decay: 1 x 107°
* Dropout rate: 0.1

* Optimizer: AdamW (Loshchilov and Hutter,
2019)

- Learning Rate: 2 x 107°
-e1x1076

LoRA (Hu et al., 2022):

- Rank: 32
- o 64

o All Parameters: 126,512,776
¢ Trainable Parameters: 1,201,156 (0.94%)

* The LayoutLMv3 model was fine-tuned on an
1xA100 cloud server for 9 hours.
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