

000 001 002 003 004 005 TRAINING-FREE MULTIMODAL LARGE LANGUAGE 006 MODEL ORCHESTRATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Different Multimodal Large Language Models (MLLMs) cannot be integrated into a unified multimodal input-output system directly. In previous work, training has been considered as an inevitable component due to challenges in modal alignment, Text-to-Speech efficiency and other integration issues. In this paper, we introduce Multimodal Large Language Model Orchestration (MLLM Orchestration), an effective approach for creating interactive multimodal AI systems without additional training. MLLM Orchestration leverages the inherent reasoning capabilities of large language models to coordinate specialized models through explicit workflows, enabling natural multimodal interactions while maintaining modularity, improving interpretability, and significantly enhancing computational efficiency. Our orchestration framework is built upon three key innovations: (1) a central controller LLM that analyzes user inputs and dynamically routes tasks to appropriate specialized models through carefully designed agents; (2) a parallel Text-to-Speech architecture that enables true full-duplex interaction with seamless interruption handling and natural conversational flow; and (3) a cross-modal memory integration system that maintains coherent context across modalities through intelligent information synthesis and retrieval, selectively avoiding unnecessary modality calls in certain scenarios to improve response speed. Extensive evaluations demonstrate that MLLM Orchestration achieves comprehensive multimodal capabilities without additional training, performance improvements of up to 7.8% over traditional jointly-trained approaches on standard benchmarks, reduced latency by 10.3%, and significantly enhanced interpretability through explicit orchestration processes. Our work establishes orchestration as a practical alternative to joint training for multimodal systems, offering greater efficiency, adaptability, and transparency for next-generation AI interactions.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) OpenAI et al. (2023); Team et al. (2023); Grattafiori et al. (2024); Liu et al. (2024a) have enabled sophisticated multimodal capabilities. GPT-4o Hurst et al. (2024) demonstrated the feasibility of processing multiple modalities simultaneously, sparking interest in omni-modal models. This pursuit aligns with human intuition - seamlessly integrating visual, auditory, and textual information. Such unified processing offers more fluid interactions and comprehensive understanding by leveraging complementary information across modalities Zhang et al. (2023); Chen et al. (2024b); Wang et al. (2024b); Tong et al. (2024); Fu et al. (2024).

The development of omni-modal capabilities has progressed through several key technical advances. Following GPT-4o's success, research efforts have primarily focused on two core aspects: modality expansion and natural interaction enhancement. For modality expansion, early attempts like MiniGPT-4 Zhu et al. (2023) established foundational techniques through a two-stage alignment approach, using a pre-trained BLIP-2 visual encoder and a lightweight projection layer. LLaVA-NeXT Liu et al. (2024a) further extended this by introducing a unified visual representation learning framework, while LLaMA-Omni Fang et al. (2024) and RLAIF-V Yu et al. (2024) proposed novel architectures for handling diverse modalities. For natural interaction enhancement, as demonstrated in Figure 1 (a): VITA Fu et al. (2024) pioneered non-awakening interaction and audio interrupt handling capabilities through a three-stage training pipeline (bilingual instruction fine-tuning, mul-

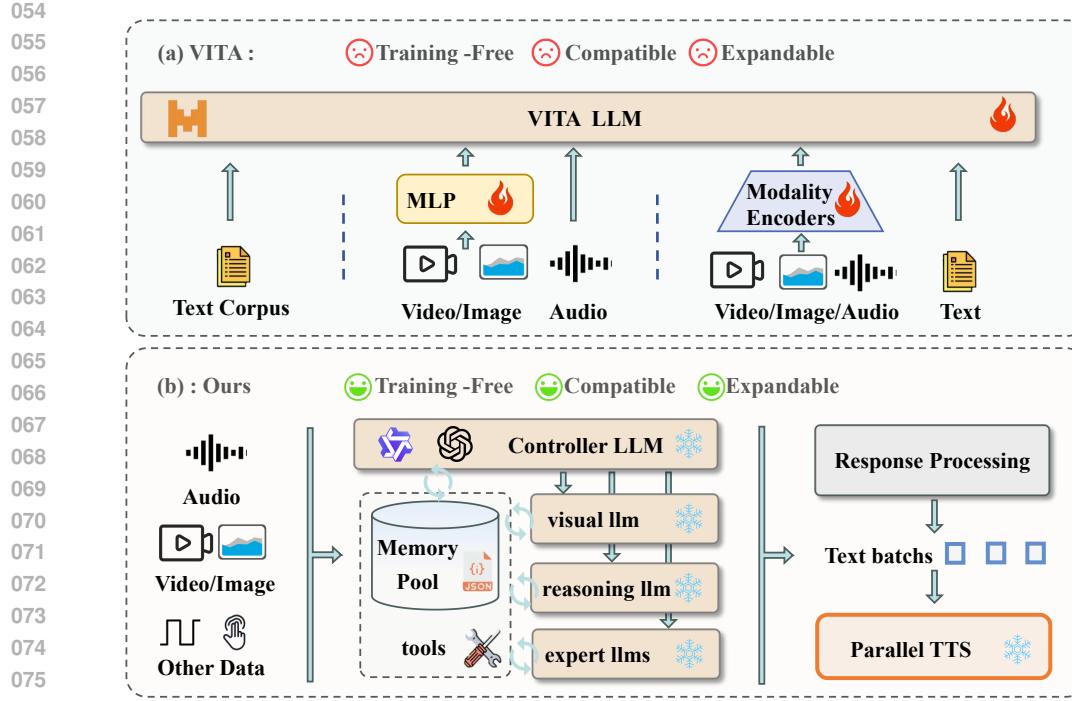


Figure 1: illustrates the training procedures of VITA(a) and our Training-Free Multimodal Large Language Model Orchestration (b). Our framework presents a training-free and efficient pipeline for handling omni data.

timodal alignment training, and multimodal instruction fine-tuning) , while HumanOmni Zhao et al. (2024) focused on human-centric scenarios .

However, existing omni-modal methods Zhu et al. (2023); Liu et al. (2023); Team et al. (2023); Liu et al. (2024a); Shin et al. (2024); Alayrac et al. (2022); Zhao et al. (2024); Fang et al. (2024); Grattafiori et al. (2024) predominantly rely on retraining and expanding a single base model to accommodate multiple modalities. This paradigm suffers from two critical limitations. First, it incurs substantial training costs: aligning heterogeneous modalities necessitates extensive customized datasets and intensive fine-tuning, resulting in significant human effort and computational overhead. Second, it exhibits poor extensibility: modifying the base model or incorporating new modalities generally requires complete retraining, severely limiting rapid adaptation to new scenarios and evolving user demands.

To overcome these limitations, we explore an *agent-based approach* for omni-modal capabilities without retraining. By integrating specialized models dynamically, we enable seamless multimodal interactions while addressing three key challenges: (1) **Assignment**: Dynamically routing tasks to suitable specialized models; (2) **Memory**: Sharing context among heterogeneous models; and (3) **Efficiency**: Ensuring responsive interaction despite coordination overhead. Our training-free MLLM Orchestration framework (Figure 2) integrates three components: a central **Controller LLM** that analyzes user intent and dispatches tasks to expert models; a unified **Cross-modal Memory** storing structured interaction histories in standardized JSON format; and a **Parallel Text-to-Speech (TTS)** architecture reducing latency through semantic-based segmentation. These components enable interpretable, extensible, and responsive multimodal interactions, offering users a unified “super-model“ experience composed of specialized expert subsystems while avoiding the overhead and rigidity of training-based approaches.

The main contributions can be summarized as follows:

- **Training-free Orchestration Framework.** A novel multimodal orchestration paradigm that enables efficient interaction through intelligent scheduling and coordination, eliminating the need for extensive training or large datasets.

- **Cross-modal Memory Integration.** A memory integration mechanism that unifies multimodal information into textual representations, enabling seamless context sharing across modalities without training requirements.
- **Parallel Batch TTS Processing.** A high-performance TTS architecture achieving near real-time response through intelligent chunking and buffering, significantly reducing perceived latency while maintaining output quality.
- **Experimental Results.** Our framework achieves comparable or superior performance to state-of-the-art training-based methods (e.g., +1.93% on MMBench, +2.73% on Ai2d), while reducing latency by 10.3% through parallel processing optimizations.

2 RELATED WORK

2.1 OMNI-MODAL TRAINING AND MULTIMODAL ALIGNMENT

In recent years, Multimodal Large Language Models (MLLMs) have made significant progress with the support of end-to-end training techniques, leading to the emergence of two main technical approaches in training paradigms: full-parameter training and parameter-efficient training. Among these, VITAFu et al. (2024), as the first open-source interactive omni-modal large language model, adopted an innovative three-stage training process that includes bilingual instruction fine-tuning, multimodal alignment training, and multimodal instruction fine-tuning. In terms of parameter-efficient training, Freeze-OmniWang et al. (2024d) proposed a novel freezing training strategy that maintains fixed language model parameters while only training modal adapters. This method not only significantly reduces computational resource requirements but also effectively avoids catastrophic forgetting. Similarly, works like Mini-Omni2Xie & Wu (2024), LLaMA-OmniFang et al. (2024), and MoshiDéfossez et al. (2024) have adopted similar parameter-efficient training strategies, providing important references for reducing the costs associated with multimodal training.

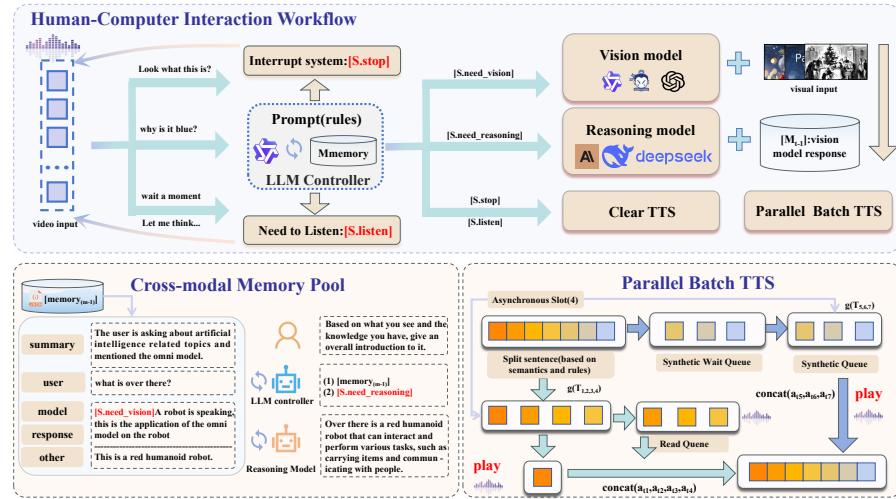
2.2 AGENT-BASED MULTIMODAL SYSTEMS

In the field of agent systems, a series of innovative research works have recently emergedWu et al. (2023); Kumar et al. (2024); Liu et al. (2024b); Chen et al. (2023); Han et al. (2024). These works mainly focus on two directions: enhancing multimodal capabilities and optimizing interaction experience. AutoGenWu et al. (2023) proposed a multi-agent dialogue framework that achieves automatic decomposition and collaborative processing of complex tasks through flexible agent interaction patterns and behavioral strategies. mmctagent Kumar et al. (2024) designed a novel multimodal agent architecture that enhanced agent decision-making capabilities in complex visual scenarios through deep alignment of vision-language-behavior and cross-modal reasoning mechanisms. LLaVA-PlusLiu et al. (2024b) explored the tool learning paradigm for agents, proposing a progressive tool discovery and usage mechanism that enables agents to autonomously select and combine appropriate tools based on task requirements.

In agent orchestration, CrewAIDuan & Wang (2024) focuses on role-based agent orchestration, supporting collaboration and task allocation among multiple agents. TaskWeaverQiao et al. (2023) provides an agent-based task automation framework, enabling more flexible workflow management. In professional domain applications, LawLuoSun et al. (2024) developed a multi-round dialogue collaborative framework , simulating real legal consultation scenarios through four professional agents; In intelligent orchestration and optimization, Self-Organized AgentsIshibashi & Nishimura (2024) explored an LLM multi-agent framework for ultra-large-scale code generation and optimization, CMATLiang et al. (2024) successfully enhanced small language model performance through multi-agent collaboration.

In contrast, our proposed system adopts a different approach from traditional agent orchestration, focusing on LLM’s intelligent orchestration mechanism. Through an innovative multimodal LLM orchestration framework, the system has achieved integration of video, image, text, and audio modalities, demonstrating high efficiency, flexibility, and scalability. Compared to existing agent systems, our solution is more lightweight and efficient, requiring no complex agent collaboration mechanisms or training, directly achieving multimodal capability coordination through LLM orchestration. Through comprehensive open-sourcing of the system, we hope to provide new research direc-

162 tions for the multimodal LLM orchestration field and promote the application of this technology in
 163 broader practical scenarios.
 164



181 Figure 2: Overview of the MLLM Orchestration framework, featuring core components such as the
 182 Central Controller LLM (text generation, vision LLM, and specialized LLMs), multimodal memory
 183 integration system, and parallel text-to-speech synthesis mechanism. The training-free pipeline of
 184 MLLM Orchestration is transparent, providing good interpretability.
 185

3 METHOD

186 Our MLLM Orchestration framework enables seamless multimodal interaction through a training-
 187 free approach. The method consists of three primary modules: **MLLM Orchestration Reasoning**,
 188 **Cross-modal Memory Integration**, and **Parallel Text-to-Speech (TTS) Generation**. These mod-
 189 ules work collaboratively to achieve efficient task orchestration and multimodal fusion.
 190

191 **Problem Definition.** Given a user query q_t at turn t , the system must generate both a natural
 192 language response o_t and an audio output a_t . Let M_{t-1} denote the accumulated memory storing
 193 relevant multimodal information. The system operates as:

$$F : (q_t, M_{t-1}) \mapsto (o_t, a_t) \quad (1)$$

194 where $a_t = \text{TTS}(o_t)$ represents speech synthesis of the text response.
 195

196 As shown in Equation (1), our system takes user query q_t and historical memory M_{t-1} as input, and
 197 generates both text response o_t and audio response a_t . Unlike previous training-based approaches,
 198 we propose a training-free orchestration approach that leverages the inherent reasoning and plan-
 199 ing capabilities of a controller LLM. Our method processes inputs through three key orchestration
 200 steps: (1) the controller LLM analyzes user intent and selects appropriate specialized models through
 201 control token generation, (2) the cross-modal memory integration module retrieves and integrates
 202 relevant historical information from M_{t-1} using semantic similarity matching, and (3) the parallelized
 203 TTS module efficiently generates the final audio response a_t through semantic segmentation and
 204 batch processing. This modular design enables dynamic orchestration of specialized models
 205 without requiring end-to-end training.
 206

3.1 MLLM ORCHESTRATION

207 After receiving the user input q_t , the first step in our orchestration workflow involves the **controller**
 208 **LLM**. This controller is responsible for interpreting the user’s current intent based on both the im-
 209 mediate query and the accumulated cross-modal context M_{t-1} , forming the input $x_t = (q_t, M_{t-1})$.
 210 It outputs an ordered token sequence:
 211

$$Y_t = f_{\text{ctrl}}(x_t) = [y_1, y_2, \dots, y_L] \quad (2)$$

216 where each token y_i can either be a content token (for natural language response) or a special control
 217 token that drives orchestration behavior. We define the content function $\mathcal{C} : Y_t \rightarrow C_t$ that extracts
 218 content tokens and the control function $\mathcal{S} : Y_t \rightarrow S_t$ that extracts control tokens. The controller's
 219 output sequence Y_t can be decomposed as:

$$220 \quad Y_t = C_t \sqcup S_t \quad (3)$$

222 where $C_t = \mathcal{C}(Y_t)$ denotes the ordered content tokens and $S_t = \mathcal{S}(Y_t) \subseteq \mathcal{S}_{\text{vocab}}$ represents the
 223 set of control tokens, with $\mathcal{S}_{\text{vocab}}$ being the predefined vocabulary of special control tokens (e.g.,
 224 `[S.need_vision]`, `[S.stop]`, `[S.listen]`). The operator \sqcup denotes ordered concatenation
 225 preserving token positions.

226 **Control Token Design.** To enable training-free orchestration capability, we design a structured
 227 control token vocabulary. Our control tokens follow the format `[S.action_modality]`, where
 228 core tokens include: `[S.need_vision]` for visual analysis, `[S.need_reasoning]` for logical
 229 tasks, `[S.listen]` for awaiting user input, and `[S.stop]` for interruption handling. The
 230 controller is guided by a dynamic prompt template that incorporates available expert models and
 231 their capabilities.

232 **Prompt Construction.** Our system employs a prompt composer that dynamically constructs controller
 233 instructions based on: (1) current dialogue context, (2) available expert model registry, and
 234 (3) user query characteristics. The base template includes sections for available tools, expected output
 235 format, and behavioral guidelines for different interaction states (listening, speaking, waiting).
 236 For instance, when the controller recognizes that the user's question refers to a visual object, it may
 237 output:

$$238 \quad S_t = \{ \text{[S.need_vision]} \} \quad (4)$$

239 which activates the visual model module in the next phase. The complete algorithm of our MLLM
 240 Orchestration framework is detailed in Algorithm 1 in Appendix A.

242 3.2 CROSS-MODAL MEMORY INTEGRATION

244 Once the controller LLM has determined the required modalities via the output control token set
 245 $S_t \subseteq \mathcal{S}$, the orchestration process proceeds by activating the corresponding expert models. These
 246 models require access to relevant multimodal inputs, either provided directly by the user or stored
 247 from previous turns. To support this, we design a **cross-modal memory pool** that serves as a unified
 248 knowledge base for storing and retrieving structured multimodal context across the entire dialogue
 249 session.

250 At each turn t , when the controller outputs special tokens such as `[S.need_vision]`,
 251 `[S.need_speech]`, or other modality-specific instructions, the system must determine which
 252 expert models to invoke. We formalize this process using a modality selection function:

$$254 \quad \delta_{\text{modality}}(x_t) = \begin{cases} \{m_1, \dots, m_k\}, & [S.\text{need_}m_i] \in f_{\text{ctrl}}(x_t), \\ 255 \quad \emptyset, & \text{otherwise,} \end{cases} \quad (5)$$

256 where $m_i \in \mathcal{M}$ is a registered modality (e.g., vision, reasoning, audio), and \mathcal{M} denotes the set
 257 of available expert modules in the system. This function maps the controller's output to a set of
 258 concrete modality requirements for the current interaction.

260 For each selected modality $m_i \in \delta_{\text{modality}}(x_t)$, a retrieval function h_{m_i} is invoked to extract the most
 261 relevant context or input data from the cross-modal memory pool M_{t-1} . For example, when visual
 262 information is needed, the system computes:

$$263 \quad v_t = h_{\text{vision}}(q_t, M_{t-1}) \quad (6)$$

264 where v_t represents the retrieved visual data (e.g., image embeddings, scene descriptions, or OCR
 265 results) relevant to the current query. For generality, we denote the set of all retrieved data as
 266 $\{d_t^1, d_t^2, \dots, d_t^k\}$, where each d_t^i corresponds to a modality-specific data unit.

268 The retrieved data is integrated into the LLM's reasoning flow using a modality-aware integration
 269 function:

$$270 \quad \tilde{Y}_t = I(Y_t, \{d_t^1, d_t^2, \dots, d_t^k\}) \quad (7)$$

270 where \tilde{Y}_t is the updated token sequence that replaces placeholder control tokens with actual data
 271 descriptions or summaries. Accordingly, the final generated answer becomes:
 272

$$273 \quad O_t = C_t(\{d_t^1, d_t^2, \dots, d_t^k\}) \quad (8)$$

274 which denotes the complete response content informed by multimodal inputs.
 275

276 **Memory Pool Structure.** The cross-modal memory pool is updated at every turn t to include
 277 new multimodal observations, system actions, and dialogue entries. Each memory item follows a
 278 structured format:
 279

$$279 \quad m_i = \{\text{timestamp, modality, content, relevance_score}\} \quad (9)$$

280 where entries are indexed by semantic similarity and temporal proximity. This enables efficient stor-
 281 age and retrieval of multimodal information while maintaining extensibility for future modalities.
 282

283 **Memory Compression.** As the conversation progresses, the memory pool M_t expands, which can
 284 eventually exceed the LLM’s input length constraints. To address this, we implement a content-
 285 aware compression strategy with three key principles: (1) *Recency*: more recent interactions re-
 286 ceive higher preservation priority, (2) *Relevance*: semantically similar content to current queries
 287 is retained, and (3) *Diversity*: maintaining representation across different modalities. We define a
 288 memory compression function:
 289

$$289 \quad M'_t = h_{\text{compress}}(M_t, \lambda_{\text{rec}}, \lambda_{\text{rel}}, \lambda_{\text{div}}) \quad (10)$$

290 which outputs a condensed memory M'_t that retains essential information for future reasoning. The
 291 compression is guided by weighted factors for recency (λ_{rec}), relevance (λ_{rel}), and diversity (λ_{div}).
 292 For instance, older image descriptions and their related QA pairs may be summarized into abstracted
 293 forms, while trivial or redundant entries are discarded. In summary, the cross-modal memory mod-
 294 ule serves as a critical interface for knowledge persistence, dynamic context fusion, and efficient
 295 memory management, enabling the system to perform long-range multimodal reasoning without
 296 retraining or data loss.
 297

298 3.3 PARALLEL BATCH TTS GENERATION

299 Parallel batch TTS is a critical component for system feedback to human users. Therefore, we
 300 designed a segmentation strategy based on semantic analysis, which divides a complete sentence
 301 into different batches according to both semantic coherence and predefined rules. These batches are
 302 processed in parallel, significantly reducing the overall synthesis time. This approach ensures that
 303 there are no semantic interruptions during the output of complete meanings, thereby enhancing the
 304 fluency and naturalness of the audio output.
 305

306 To optimize for latency and fluency, the system adopts a segmentation-based batch synthesis ap-
 307 proach. Upon receiving the finalized content tokens C_t , we first apply a rule-based segmentation
 308 strategy that divides text at natural prosodic boundaries (commas, periods, clauses) to produce se-
 309 mantically coherent chunks:
 310

$$310 \quad T = \text{segment}(C_t) = [T_1, T_2, \dots, T_n] \quad (11)$$

311 where each segment T_i represents a self-contained phrase or clause. Our segmentation rules priori-
 312 tize: (1) semantic completeness (avoiding mid-phrase breaks), (2) optimal length (10-50 characters
 313 per segment), and (3) prosodic naturalness (respecting punctuation boundaries).
 314

315 The TTS function $g(T_i)$ is applied to each segment T_i independently and in parallel:
 316

$$316 \quad a_{t,i} = g(T_i) \quad \text{for } i = 1, 2, \dots, n \quad (12)$$

317 To minimize latency, we employ a streaming synthesis and playback strategy. As soon as the first
 318 segment $a_{t,1}$ is synthesized, it begins playback immediately while subsequent segments are being
 319 synthesized asynchronously:
 320

$$321 \quad \text{play}(a_{t,i}) \parallel \{g(T_{i+1}), g(T_{i+2}), \dots, g(T_n)\} \quad (13)$$

322 where \parallel denotes parallel execution. The final audio stream a_t is constructed through real-time
 323 concatenation with prosodic adjustments at segment boundaries:
 324

$$324 \quad a_t = \text{stream_concat}(a_{t,1}, a_{t,2}, \dots, a_{t,n}) \quad (14)$$

324 This streaming approach significantly reduces the perceived latency as users begin hearing the re-
 325 sponse while the system continues to synthesize remaining segments. The system maintains a buffer
 326 of synthesized segments to ensure smooth playback transitions, while the stream_concat operation
 327 handles real-time prosodic adjustments to maintain natural speech flow across segment boundaries.
 328

329 **3.4 EXAMPLE WORKFLOW**

330 Consider a scenario where a user shows an image of their garden and asks “What flowers
 331 are blooming in this image?” At turn t_1 , the controller LLM analyzes the query and outputs
 332 $f_{ctrl}(q_{t_1}, M_{t_1-1}) \rightarrow \{[\text{S.need_vision}]\}$, triggering the visual model. The system retrieves
 333 visual information $v_{t_1} = h_{\text{vision}}(q_{t_1}, M_{t_1-1})$ and identifies various flowers. The response is gener-
 334 ated and segmented as $T_{t_1} = \text{segment}(C_{t_1})$, producing “I can see several roses and tulips in full
 335 bloom” which enters the TTS pipeline.
 336

337 While the system is speaking, the user interrupts with “How many roses...” The controller imme-
 338 diately detects the interruption pattern and executes $f_{ctrl}(q_{t_2}, M_{t_2-1}) \rightarrow \{[\text{S.stop}]\}$, followed
 339 by $\text{clear}(Q_{\text{TTS}})$ to stop the current speech output. As the question is incomplete, it also outputs
 340 $[\text{S.listen}]$ and updates the memory $M_{t_2} = M_{t_2-1} \cup \{(q_{t_2}, v_{t_1})\}$.
 341

342 The user completes their question “...how many roses are there?” The system processes this follow-
 343 up query using the cached visual information from memory $v_{t_1} \in M_{t_2}$, without needing to reactivate
 344 the vision model. The response “There are 3 red roses in the image” is synthesized through parallel
 345 TTS, where $\text{play}(g(T_{t_3,1})) \parallel g(T_{t_3,2})$ enables immediate playback while preparing subsequent seg-
 346 ments.
 347

348 This natural interaction flow demonstrates how the system seamlessly integrates visual processing
 349 (h_{vision}), memory management (M_t), and streaming speech synthesis while maintaining responsive
 350 user interaction through interrupt handling ($\text{clear}(Q_{\text{TTS}})$).
 351

352 **4 EXPERIMENTS AND RESULTS**

353 **4.1 EXPERIMENTAL SETUP**

354 Our experiments validate training-free orchestration superiority, framework flexibility, and pipeline
 355 explainability. We use Qwen2.5-14BChu et al. (2024) as controller and various executors: Qwen2.5-
 356 VLBai et al. (2025); Yang et al. (2024a), LLaVA-VideoZhang et al. (2024b), and othersZhang et al.
 357 (2024a); Guo et al. (2025); Li et al. (2024).
 358

359 **Baselines.** We compare against: (1) Commercial solutions: GPT-4oHurst et al. (2024), Claude
 360 3.5Anthropic (2024), Gemini-1.5-ProTeam et al. (2024); (2) Open-source omni-models: Qwen2.5-
 361 Omni, VITA, M2-omni; (3) Specialized multimodal models used in isolation.
 362

363 **Evaluation.** We evaluate on general understanding (MMEFu et al. (2023)), vision tasks (MM-
 364 StarChen et al. (2024a), LVBenchWang et al. (2024c)), temporal reasoning (MMMUYue et al.
 365 (2024)), and specialized domains (MathVisionWang et al. (2024a), CC-OCRYYang et al. (2024b)).
 366

367 **4.2 COMPARISON WITH MAINSTREAM OMNI MODELS**

368 Table 1 compares our framework with state-of-the-art omni-modal models. Our approach achieves
 369 competitive performance: on MMStar, we reach **69.37%**, exceeding GPT-4o (64.70%) by 4.67%
 370 and Qwen2.5-Omni (64.00%) by 5.37%. On MMMU, we achieve **70.04%**, improving over GPT-4o
 371 and Qwen2.5-Omni (both 59.20%) by 10.84%. While Gemini-1.5-Pro shows superior Video-MME
 372 performance (75.00% vs 65.58%), our method demonstrates competitive results with training-free
 373 modularity.
 374

375 **Finding 1:** Training-free orchestration achieves competitive
 376 performance compared to commercial and open-source omni-modal models
 377 while providing superior modularity and interpretability.

Model	General	Vision	Temporal	Efficiency
	Video-MME	MMStar	MMMU	Time (s)
GPT-4o	71.90	64.70	59.20	1.2
Qwen2.5	64.30	64.00	59.20	6.0
VITA	59.20	46.40	47.30	3.7
IXC2.5	60.60	—	—	—
M2-omni	60.40	60.50	51.20	—
Ours	65.58	69.37	70.04	3.2

Table 1: Comparison with leading multimodal models across general understanding, vision, temporal reasoning, and efficiency metrics.

4.3 COMPARISON WITH MULTIMODAL LLM

We further compare our method with various other multimodal models to validate its effectiveness across diverse scenarios.

Model	General Multimodal			Vision Understanding		
	MME	MMBench-EN	MMBench-CN	MMStar	LVBench	Video-MME
Qwen2.5-VL-7B	1673	84.45	84.98	59.94	45.30	56.62
Qwen2.5-VL-32B	1915	85.55	88.77	66.43	49.00	62.39
Qwen2.5-VL-72B	1980	86.61	90.44	68.22	47.30	65.74
Qwen-VL-Max	2281	77.60	76.40	—	—	51.30
Qwen2.5-Omni	2340	81.80	—	64.0	—	64.30
VITA	2006.5	71.80	—	46.40	—	59.20
LLaVA-OV-7B	—	80.80	—	61.70	—	58.20
LLaVA-OV-72B	—	85.90	—	66.10	26.90	66.20
InternVL-2-8B	—	81.70	—	59.40	—	—
InternVL-2-26B	—	83.40	—	60.40	—	—
Gemini-1.5-Pro	—	—	70.90	—	33.10	75.00
GPT-4V	517/1409	75.00	74.30	57.10	—	59.90
GPT-4o	2310.3	83.10	—	64.70	34.70	71.90
Ours	1922	88.54	89.35	69.37	50.27	65.58

Table 2: Performance comparison on general multimodal and vision understanding tasks.

Our orchestration method achieves strong results on key benchmarks, with state-of-the-art performance on MMBench-EN (**88.54%**) and competitive performance on MMStar (**69.37%**) and LVbench (**50.27%**). Resource analysis shows intelligent task routing enables computational efficiency.

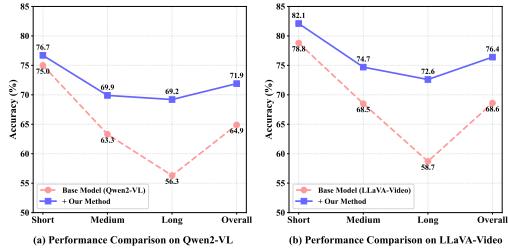
Finding 2: Cross-modal memory pooling for context integration can enhance performance in complex visual tasks that require context awareness.

4.4 VIDEO UNDERSTANDING PERFORMANCE

Beyond static image tasks, we examine video understanding enhancement. Figure 3 shows significant gains across video lengths. For Qwen2-VL, we see +1.7%, +6.6%, and +12.9% improvements on short, medium, and long videos respectively (+7.0% overall). LLaVA-Video shows +3.3%, +6.2%, and +13.9% improvements (+7.8% overall), highlighting temporal reasoning capabilities.

432 4.5 TEXT-TO-SPEECH PROCESSING EFFICIENCY
433

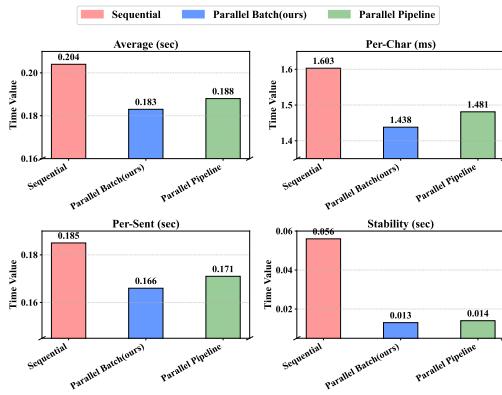
434 Figure 4 shows our parallel processing reduces average time from 0.204s to 0.183s (10.3% reduction)
435 while improving stability (standard deviation: 0.056s → 0.013s). These improvements demon-
436 strate effective segmentation and parallel synthesis for real-time interaction.



437
438
439 Figure 3: Performance comparison on Video-
440 MME benchmark. The improvements are par-
441 ticularly significant for longer videos, where our
442 controller’s ability to maintain temporal context
443 while integrating audio information proves most
444 beneficial.
445
446

456 5 CONCLUSIONS
457

458 In this paper, we present a novel, training-free orchestration framework for multimodal large
459 language models, offering an innovative solution for the seamless integration of omni-modal fusion.
460 Unlike traditional approaches that require extensive training data for feature-level fusion, our frame-
461 work achieves elegant integration of multimodal capabilities through intelligent orchestration. The
462 central controller LLM, with its excellent natural language understanding capabilities, automatically
463 decomposes complex tasks and precisely invokes corresponding expert models through specific
464 tokens. This flexible routing mechanism not only enables unified processing of multimodal inputs but
465 also implements intelligent task decomposition and dynamic scheduling based on task characteris-
466 tics. We innovatively designed a semantic-based batch processing TTS mechanism that significantly
467 improves system response efficiency through intelligent segmentation, parallel processing, and re-
468 sult merging. Notably, our unified memory pool system, through standardized token encapsulation,
469 successfully addresses the challenges faced by traditional systems in multimodal memory manage-
470 ment. This design not only eliminates the inconvenience of switching between multiple independent
471 models but also achieves coherent and natural multi-turn dialogue experiences through intelligent
472 context management, providing users with an experience similar to interacting with a single super-
473 LLM. A key advantage of our framework is that the expert model pool can be dynamically expanded
474 or reduced at any time without requiring system retraining, offering exceptional flexibility in adapt-
475 ing to new capabilities and requirements. We believe this LLM orchestration-based approach will
476 open up new possibilities for building more intelligent and natural human-computer interaction sys-
477 tems.
478
479
480
481
482
483
484
485



458 Figure 4: TTS processing architecture compar-
459 ison showing significant improvements in both
460 speed and stability with our parallel batch ap-
461 proaches.
462
463

486 REFERENCES
487

488 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
489 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
490 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
491 23736, 2022.

492 Anthropic. Claude-3.5. <https://www.anthropic.com/news/clause-3-5-sonnet>,
493 2024. Accessed: 2024-02-11.

494 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
495 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
496 2025.

497 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
498 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
499 models? *arXiv preprint arXiv:2403.20330*, 2024a.

500 Wei-Ge Chen, Irina Spiridonova, Jianwei Yang, Jianfeng Gao, and Chunyuan Li. Llava-interactive:
501 An all-in-one demo for image chat, segmentation, generation and editing. *arXiv preprint
502 arXiv:2311.00571*, 2023.

503 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
504 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
505 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer
506 vision and pattern recognition*, pp. 24185–24198, 2024b.

507 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
508 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
509 2024.

510 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
511 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
512 logue. *arXiv preprint arXiv:2410.00037*, 2024.

513 Zhihua Duan and Jialin Wang. Exploration of llm multi-agent application implementation based on
514 langgraph+ crewai. *arXiv preprint arXiv:2411.18241*, 2024.

515 Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni:
516 Seamless speech interaction with large language models. *arXiv preprint arXiv:2409.06666*, 2024.

517 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
518 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
519 large language models. *arXiv preprint arXiv:2306.13394*, 2023.

520 Chaoyou Fu, Haojia Lin, Zuwei Long, Yunhang Shen, Meng Zhao, Yifan Zhang, Shaoqi Dong,
521 Xiong Wang, Di Yin, Long Ma, et al. Vita: Towards open-source interactive omni multimodal
522 llm. *arXiv preprint arXiv:2408.05211*, 2024.

523 Aaron Grattafiori et al. The llama 3 herd of models. *IEEE Spectrum*, 2024.

524 Qingpei Guo, Kaiyou Song, Zipeng Feng, Ziping Ma, Qinglong Zhang, Sirui Gao, Xuzheng Yu,
525 Yunxiao Sun, Jingdong Chen, Ming Yang, et al. M2-omni: Advancing omni-mllm for com-
526 prehensive modality support with competitive performance. *arXiv preprint arXiv:2502.18778*, 2025.

527 Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm
528 multi-agent systems: Challenges and open problems. *arXiv preprint arXiv:2402.03578*, 2024.

529 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
530 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
531 arXiv:2410.21276*, 2024.

532 Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework
533 toward ultra large-scale code generation and optimization. *arXiv preprint arXiv:2404.02183*,
534 2024.

535

540 Somnath Kumar, Yash Gadhia, Tanuja Ganu, and Akshay Nambi. Mmctagent: Multi-modal critical
 541 thinking agent framework for complex visual reasoning. *arXiv preprint arXiv:2405.18358*, 2024.
 542

543 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 544 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 545 *arXiv:2408.03326*, 2024.

546 Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu Shi, Jun Wang, and JingSong Yang. Cmat: A
 547 multi-agent collaboration tuning framework for enhancing small language models. *arXiv preprint*
 548 *arXiv:2404.01663*, 2024.

549 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 550 Llava-next: Improved reasoning, ocr, and world knowledge. *arXiv preprint*, 2024a.

552 Haotian Liu et al. Visual instruction tuning. *arXiv preprint arXiv:2304.08485*, 2023.

554 Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng Li, Tianhe Ren, Xueyan Zou, Jianwei Yang,
 555 Hang Su, Jun Zhu, et al. Llava-plus: Learning to use tools for creating multimodal agents. In
 556 *European Conference on Computer Vision*, pp. 126–142. Springer, 2024b.

557 OpenAI et al. Gpt-4 technical report. Technical report, OpenAI, 2023.

559 Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong,
 560 Jue Zhang, Lu Wang, et al. Taskweaver: A code-first agent framework. *arXiv preprint*
 561 *arXiv:2311.17541*, 2023.

562 Byung-Kwan Shin et al. X-llava: Enhanced cross-lingual large vision-language alignment. *arXiv*
 563 *preprint*, 2024.

565 Jingyun Sun, Chengxiao Dai, Zhongze Luo, Yangbo Chang, and Yang Li. Lawluo: A chinese law
 566 firm co-run by llm agents. *arXiv preprint arXiv:2407.16252*, 2024.

567 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 568 Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
 569 standing across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

571 Gemini Team et al. Gemini: A family of highly capable multimodal models. *arXiv preprint*
 572 *arXiv:2312.11805*, 2023.

574 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 575 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 576 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing*
 577 *Systems*, 37:87310–87356, 2024.

578 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hong-
 579 sheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances in*
 580 *Neural Information Processing Systems*, 37:95095–95169, 2024a.

581 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 582 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 583 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

585 Weihang Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu
 586 Huang, Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark.
 587 *arXiv preprint arXiv:2406.08035*, 2024c.

588 Xiong Wang, Yangze Li, Chaoyou Fu, Yunhang Shen, Lei Xie, Ke Li, Xing Sun, and Long Ma.
 589 Freeze-omni: A smart and low latency speech-to-speech dialogue model with frozen llm. *arXiv*
 590 *preprint arXiv:2411.00774*, 2024d.

592 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 593 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 agent conversation. *arXiv preprint arXiv:2308.08155*, 2023.

594 Zhifei Xie and Changqiao Wu. Mini-omni2: Towards open-source gpt-4o with vision, speech and
 595 duplex capabilities. *arXiv preprint arXiv:2410.11190*, 2024.

596

597 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 598 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 599 arXiv:2412.15115*, 2024a.

600 Zhibo Yang, Jun Tang, Zhaohai Li, Pengfei Wang, Jianqiang Wan, Humen Zhong, Xuejing Liu,
 601 Mingkun Yang, Peng Wang, Yuliang Liu, et al. Cc-ocr: A comprehensive and challenging ocr
 602 benchmark for evaluating large multimodal models in literacy. *arXiv preprint arXiv:2412.02210*,
 603 2024b.

604

605 Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
 606 Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for
 607 super gpt-4v trustworthiness. *arXiv preprint arXiv:2405.17220*, 2024.

608

609 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 610 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 611 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

612

613 Pan Zhang, Xiaoyi Dong, Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao,
 614 Haodong Duan, Songyang Zhang, Shuangrui Ding, et al. Internlm-xcomposer: A vision-
 615 language large model for advanced text-image comprehension and composition. *arXiv preprint
 arXiv:2309.15112*, 2023.

616

617 Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
 618 Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language
 619 model supporting long-contextual input and output. *arXiv preprint arXiv:2407.03320*, 2024a.

620

621 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 622 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024b.

623

624 Jiaxing Zhao, Qize Yang, Yixing Peng, Detao Bai, Shimin Yao, Boyuan Sun, Xiang Chen, Shenghao
 625 Fu, Weixuan Chen, Xihan Wei, and Liefeng Bo. Humanomni: A large vision-speech language
 626 model for human-centric video understanding. *arXiv preprint arXiv:2501.15111*, 2024.

627

628 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
 629 hancing vision-language understanding with advanced large language models. *arXiv preprint
 630 arXiv:2304.10592*, 2023.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647