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ABSTRACT

Different Multimodal Large Language Models (MLLMs) cannot be integrated into
a unified multimodal input-output system directly. In previous work, training has
been considered as an inevitable component due to challenges in modal align-
ment, Text-to-Speech efficiency and other integration issues. In this paper, we
introduce Multimodal Large Language Model Orchestration (MLLM Orchestra-
tion), an effective approach for creating interactive multimodal AI systems with-
out additional training. MLLM Orchestration leverages the inherent reasoning
capabilities of large language models to coordinate specialized models through
explicit workflows, enabling natural multimodal interactions while maintaining
modularity, improving interpretability, and significantly enhancing computational
efficiency. Our orchestration framework is built upon three key innovations: (1)
a central controller LLM that analyzes user inputs and dynamically routes tasks
to appropriate specialized models through carefully designed agents; (2) a parallel
Text-to-Speech architecture that enables true full-duplex interaction with seamless
interruption handling and natural conversational flow; and (3) a cross-modal mem-
ory integration system that maintains coherent context across modalities through
intelligent information synthesis and retrieval, selectively avoiding unnecessary
modality calls in certain scenarios to improve response speed. Extensive evalua-
tions demonstrate that MLLM Orchestration achieves comprehensive multimodal
capabilities without additional training, performance improvements of up to 7.8%
over traditional jointly-trained approaches on standard benchmarks, reduced la-
tency by 10.3%, and significantly enhanced interpretability through explicit or-
chestration processes. Our work establishes orchestration as a practical alternative
to joint training for multimodal systems, offering greater efficiency, adaptability,
and transparency for next-generation AI interactions.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) OpenAI et al. (2023); Team et al. (2023);
Grattafiori et al. (2024); Liu et al. (2024a) have enabled sophisticated multimodal capabilities. GPT-
4o Hurst et al. (2024) demonstrated the feasibility of processing multiple modalities simultaneously,
sparking interest in omni-modal models. This pursuit aligns with human intuition - seamlessly inte-
grating visual, auditory, and textual information. Such unified processing offers more fluid interac-
tions and comprehensive understanding by leveraging complementary information across modalities
Zhang et al. (2023); Chen et al. (2024b); Wang et al. (2024b); Tong et al. (2024); Fu et al. (2024).

The development of omni-modal capabilities has progressed through several key technical advances.
Following GPT-4o’s success, research efforts have primarily focused on two core aspects: modal-
ity expansion and natural interaction enhancement. For modality expansion, early attempts like
MiniGPT-4 Zhu et al. (2023) established foundational techniques through a two-stage alignment
approach, using a pre-trained BLIP-2 visual encoder and a lightweight projection layer. LLaVA-
NeXT Liu et al. (2024a) further extended this by introducing a unified visual representation learning
framework, while LLaMA-Omni Fang et al. (2024) and RLAIF-V Yu et al. (2024) proposed novel
architectures for handling diverse modalities. For natural interaction enhancement, as demonstrated
in Figure 1 (a): VITA Fu et al. (2024) pioneered non-awakening interaction and audio interrupt
handling capabilities through a three-stage training pipeline (bilingual instruction fine-tuning, mul-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(b) : Ours Training -Free Compatible  Expandable

(a) VITA :  Training -Free Compatible Expandable
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Figure 1: illustrates the training procedures of VITA(a) and our Training-Free Multimodal Large
Language Model Orchestration (b). Our framework presents a training-free and efficient pipeline
for handling omni data.

timodal alignment training, and multimodal instruction fine-tuning) , while HumanOmni Zhao et al.
(2024) focused on human-centric scenarios .

However, existing omni-modal methods Zhu et al. (2023); Liu et al. (2023); Team et al. (2023);
Liu et al. (2024a); Shin et al. (2024); Alayrac et al. (2022); Zhao et al. (2024); Fang et al. (2024);
Grattafiori et al. (2024) predominantly rely on retraining and expanding a single base model to
accommodate multiple modalities. This paradigm suffers from two critical limitations. First, it in-
curs substantial training costs: aligning heterogeneous modalities necessitates extensive customized
datasets and intensive fine-tuning, resulting in significant human effort and computational over-
head. Second, it exhibits poor extensibility: modifying the base model or incorporating new modal-
ities generally requires complete retraining, severely limiting rapid adaptation to new scenarios and
evolving user demands.

To overcome these limitations, we explore an agent-based approach for omni-modal capabilities
without retraining. By integrating specialized models dynamically, we enable seamless multi-
modal interactions while addressing three key challenges: (1) Assignment: Dynamically routing
tasks to suitable specialized models; (2) Memory: Sharing context among heterogeneous models;
and (3) Efficiency: Ensuring responsive interaction despite coordination overhead. Our training-
free MLLM Orchestration framework (Figure 2) integrates three components: a central Controller
LLM that analyzes user intent and dispatches tasks to expert models; a unified Cross-modal Mem-
ory storing structured interaction histories in standardized JSON format; and a Parallel Text-to-
Speech (TTS) architecture reducing latency through semantic-based segmentation. These com-
ponents enable interpretable, extensible, and responsive multimodal interactions, offering users a
unified “super-model“ experience composed of specialized expert subsystems while avoiding the
overhead and rigidity of training-based approaches.

The main contributions can be summarized as follows:

• Training-free Orchestration Framework. A novel multimodal orchestration paradigm
that enables efficient interaction through intelligent scheduling and coordination, eliminat-
ing the need for extensive training or large datasets.
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• Cross-modal Memory Integration. A memory integration mechanism that unifies mul-
timodal information into textual representations, enabling seamless context sharing across
modalities without training requirements.

• Parallel Batch TTS Processing. A high-performance TTS architecture achieving near
real-time response through intelligent chunking and buffering, significantly reducing per-
ceived latency while maintaining output quality.

• Experimental Results. Our framework achieves comparable or superior performance to
state-of-the-art training-based methods (e.g., +1.93% on MMbench, +2.73% on Ai2d),
while reducing latency by 10.3% through parallel processing optimizations.

2 RELATED WORK

2.1 OMNI-MODAL TRAINING AND MULTIMODAL ALIGNMENT

In recent years, Multimodal Large Language Models (MLLMs) have made significant progress with
the support of end-to-end training techniques, leading to the emergence of two main technical ap-
proaches in training paradigms: full-parameter training and parameter-efficient training. Among
these, VITAFu et al. (2024), as the first open-source interactive omni-modal large language model,
adopted an innovative three-stage training process that includes bilingual instruction fine-tuning,
multimodal alignment training, and multimodal instruction fine-tuning. In terms of parameter-
efficient training, Freeze-OmniWang et al. (2024d) proposed a novel freezing training strategy that
maintains fixed language model parameters while only training modal adapters. This method not
only significantly reduces computational resource requirements but also effectively avoids catas-
trophic forgetting. Similarly, works like Mini-Omni2Xie & Wu (2024), LLaMA-OmniFang et al.
(2024), and MoshiDéfossez et al. (2024) have adopted similar parameter-efficient training strategies,
providing important references for reducing the costs associated with multimodal training.

2.2 AGENT-BASED MULTIMODAL SYSTEMS

In the field of agent systems, a series of innovative research works have recently emergedWu et al.
(2023); Kumar et al. (2024); Liu et al. (2024b); Chen et al. (2023); Han et al. (2024). These works
mainly focus on two directions: enhancing multimodal capabilities and optimizing interaction ex-
perience. AutoGenWu et al. (2023) proposed a multi-agent dialogue framework that achieves au-
tomatic decomposition and collaborative processing of complex tasks through flexible agent inter-
action patterns and behavioral strategies. mmctagent Kumar et al. (2024) designed a novel multi-
modal agent architecture that enhanced agent decision-making capabilities in complex visual sce-
narios through deep alignment of vision-language-behavior and cross-modal reasoning mechanisms.
LLaVA-PlusLiu et al. (2024b) explored the tool learning paradigm for agents, proposing a progres-
sive tool discovery and usage mechanism that enables agents to autonomously select and combine
appropriate tools based on task requirements.

In agent orchestration, CrewAIDuan & Wang (2024) focuses on role-based agent orchestration, sup-
porting collaboration and task allocation among multiple agents. TaskWeaverQiao et al. (2023) pro-
vides an agent-based task automation framework, enabling more flexible workflow management. In
professional domain applications, LawLuoSun et al. (2024) developed a multi-round dialogue col-
laborative framework , simulating real legal consultation scenarios through four professional agents;
In intelligent orchestration and optimization, Self-Organized AgentsIshibashi & Nishimura (2024)
explored an LLM multi-agent framework for ultra-large-scale code generation and optimization,
CMATLiang et al. (2024) successfully enhanced small language model performance through multi-
agent collaboration.

In contrast, our proposed system adopts a different approach from traditional agent orchestration,
focusing on LLM’s intelligent orchestration mechanism. Through an innovative multimodal LLM
orchestration framework, the system has achieved integration of video, image, text, and audio modal-
ities, demonstrating high efficiency, flexibility, and scalability. Compared to existing agent systems,
our solution is more lightweight and efficient, requiring no complex agent collaboration mecha-
nisms or training, directly achieving multimodal capability coordination through LLM orchestra-
tion. Through comprehensive open-sourcing of the system, we hope to provide new research direc-
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tions for the multimodal LLM orchestration field and promote the application of this technology in
broader practical scenarios.
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Figure 2: Overview of the MLLM Orchestration framework, featuring core components such as the
Central Controller LLM (text generation, vision LLM, and specialized LLMs), multimodal memory
integration system, and parallel text-to-speech synthesis mechanism. The training-free pipeline of
MLLM Orchestration is transparent, providing good interpretability.

3 METHOD

Our MLLM Orchestration framework enables seamless multimodal interaction through a training-
free approach. The method consists of three primary modules: MLLM Orchestration Reasoning,
Cross-modal Memory Integration, and Parallel Text-to-Speech (TTS) Generation. These mod-
ules work collaboratively to achieve efficient task orchestration and multimodal fusion.

Problem Definition. Given a user query qt at turn t, the system must generate both a natural
language response ot and an audio output at. Let Mt−1 denote the accumulated memory storing
relevant multimodal information. The system operates as:

F : (qt,Mt−1) 7→ (ot, at) (1)

where at = TTS(ot) represents speech synthesis of the text response.

As shown in Equation (1), our system takes user query qt and historical memory Mt−1 as input, and
generates both text response ot and audio response at. Unlike previous training-based approaches,
we propose a training-free orchestration approach that leverages the inherent reasoning and plan-
ning capabilities of a controller LLM. Our method processes inputs through three key orchestration
steps: (1) the controller LLM analyzes user intent and selects appropriate specialized models through
control token generation, (2) the cross-modal memory integration module retrieves and integrates
relevant historical information from Mt−1 using semantic similarity matching, and (3) the paral-
lelized TTS module efficiently generates the final audio response at through semantic segmentation
and batch processing. This modular design enables dynamic orchestration of specialized models
without requiring end-to-end training.

3.1 MLLM ORCHESTRATION

After receiving the user input qt, the first step in our orchestration workflow involves the controller
LLM. This controller is responsible for interpreting the user’s current intent based on both the im-
mediate query and the accumulated cross-modal context Mt−1, forming the input xt = (qt,Mt−1).
It outputs an ordered token sequence:

Yt = fctrl(xt) = [y1, y2, . . . , yL] (2)
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where each token yi can either be a content token (for natural language response) or a special control
token that drives orchestration behavior. We define the content function C : Yt → Ct that extracts
content tokens and the control function S : Yt → St that extracts control tokens. The controller’s
output sequence Yt can be decomposed as:

Yt = Ct ⊔ St (3)

where Ct = C(Yt) denotes the ordered content tokens and St = S(Yt) ⊆ Svocab represents the
set of control tokens, with Svocab being the predefined vocabulary of special control tokens (e.g.,
[S.need vision], [S.stop], [S.listen]). The operator ⊔ denotes ordered concatenation
preserving token positions.

Control Token Design. To enable training-free orchestration capability, we design a structured
control token vocabulary. Our control tokens follow the format [S.action modality], where
core tokens include: [S.need vision] for visual analysis, [S.need reasoning] for log-
ical tasks, [S.listen] for awaiting user input, and [S.stop] for interruption handling. The
controller is guided by a dynamic prompt template that incorporates available expert models and
their capabilities.

Prompt Construction. Our system employs a prompt composer that dynamically constructs con-
troller instructions based on: (1) current dialogue context, (2) available expert model registry, and
(3) user query characteristics. The base template includes sections for available tools, expected out-
put format, and behavioral guidelines for different interaction states (listening, speaking, waiting).
For instance, when the controller recognizes that the user’s question refers to a visual object, it may
output:

St = {[S.need vision]} (4)
which activates the visual model module in the next phase. The complete algorithm of our MLLM
Orchestration framework is detailed in Algorithm 1 in Appendix A.

3.2 CROSS-MODAL MEMORY INTEGRATION

Once the controller LLM has determined the required modalities via the output control token set
St ⊆ S, the orchestration process proceeds by activating the corresponding expert models. These
models require access to relevant multimodal inputs, either provided directly by the user or stored
from previous turns. To support this, we design a cross-modal memory pool that serves as a unified
knowledge base for storing and retrieving structured multimodal context across the entire dialogue
session.

At each turn t, when the controller outputs special tokens such as [S.need vision],
[S.need speech], or other modality-specific instructions, the system must determine which
expert models to invoke. We formalize this process using a modality selection function:

δmodality(xt) =

{
{m1, . . . ,mk}, [S.need mi] ∈ fctrl(xt),

∅, otherwise,
(5)

where mi ∈ M is a registered modality (e.g., vision, reasoning, audio), and M denotes the set
of available expert modules in the system. This function maps the controller’s output to a set of
concrete modality requirements for the current interaction.

For each selected modality mi ∈ δmodality(xt), a retrieval function hmi
is invoked to extract the most

relevant context or input data from the cross-modal memory pool Mt−1. For example, when visual
information is needed, the system computes:

vt = hvision(qt,Mt−1) (6)

where vt represents the retrieved visual data (e.g., image embeddings, scene descriptions, or OCR
results) relevant to the current query. For generality, we denote the set of all retrieved data as
{d1t , d2t , . . . , dkt }, where each dit corresponds to a modality-specific data unit.

The retrieved data is integrated into the LLM’s reasoning flow using a modality-aware integration
function:

Ỹt = I(Yt, {d1t , d2t , . . . , dkt }) (7)

5
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where Ỹt is the updated token sequence that replaces placeholder control tokens with actual data
descriptions or summaries. Accordingly, the final generated answer becomes:

Ot = Ct({d1t , d2t , . . . , dkt }) (8)

which denotes the complete response content informed by multimodal inputs.

Memory Pool Structure. The cross-modal memory pool is updated at every turn t to include
new multimodal observations, system actions, and dialogue entries. Each memory item follows a
structured format:

mi = {timestamp,modality, content, relevance score} (9)

where entries are indexed by semantic similarity and temporal proximity. This enables efficient stor-
age and retrieval of multimodal information while maintaining extensibility for future modalities.

Memory Compression. As the conversation progresses, the memory pool Mt expands, which can
eventually exceed the LLM’s input length constraints. To address this, we implement a content-
aware compression strategy with three key principles: (1) Recency: more recent interactions re-
ceive higher preservation priority, (2) Relevance: semantically similar content to current queries
is retained, and (3) Diversity: maintaining representation across different modalities. We define a
memory compression function:

M ′
t = hcompress(Mt, λrec, λrel, λdiv) (10)

which outputs a condensed memory M ′
t that retains essential information for future reasoning. The

compression is guided by weighted factors for recency (λrec), relevance (λrel), and diversity (λdiv).
For instance, older image descriptions and their related QA pairs may be summarized into abstracted
forms, while trivial or redundant entries are discarded. In summary, the cross-modal memory mod-
ule serves as a critical interface for knowledge persistence, dynamic context fusion, and efficient
memory management, enabling the system to perform long-range multimodal reasoning without
retraining or data loss.

3.3 PARALLEL BATCH TTS GENERATION

Parallel batch TTS is a critical component for system feedback to human users. Therefore, we
designed a segmentation strategy based on semantic analysis, which divides a complete sentence
into different batches according to both semantic coherence and predefined rules. These batches are
processed in parallel, significantly reducing the overall synthesis time. This approach ensures that
there are no semantic interruptions during the output of complete meanings, thereby enhancing the
fluency and naturalness of the audio output.

To optimize for latency and fluency, the system adopts a segmentation-based batch synthesis ap-
proach. Upon receiving the finalized content tokens Ct, we first apply a rule-based segmentation
strategy that divides text at natural prosodic boundaries (commas, periods, clauses) to produce se-
mantically coherent chunks:

T = segment(Ct) = [T1, T2, . . . , Tn] (11)

where each segment Ti represents a self-contained phrase or clause. Our segmentation rules priori-
tize: (1) semantic completeness (avoiding mid-phrase breaks), (2) optimal length (10-50 characters
per segment), and (3) prosodic naturalness (respecting punctuation boundaries).

The TTS function g(Ti) is applied to each segment Ti independently and in parallel:

at,i = g(Ti) for i = 1, 2, . . . , n (12)

To minimize latency, we employ a streaming synthesis and playback strategy. As soon as the first
segment at,1 is synthesized, it begins playback immediately while subsequent segments are being
synthesized asynchronously:

play(at,i)∥{g(Ti+1), g(Ti+2), . . . , g(Tn)} (13)

where ∥ denotes parallel execution. The final audio stream at is constructed through real-time
concatenation with prosodic adjustments at segment boundaries:

at = stream concat(at,1, at,2, . . . , at,n) (14)

6
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This streaming approach significantly reduces the perceived latency as users begin hearing the re-
sponse while the system continues to synthesize remaining segments. The system maintains a buffer
of synthesized segments to ensure smooth playback transitions, while the stream concat operation
handles real-time prosodic adjustments to maintain natural speech flow across segment boundaries.

3.4 EXAMPLE WORKFLOW

Consider a scenario where a user shows an image of their garden and asks “What flowers
are blooming in this image?” At turn t1, the controller LLM analyzes the query and outputs
fctrl(qt1 ,Mt1−1) → {[S.need vision]}, triggering the visual model. The system retrieves
visual information vt1 = hvision(qt1 ,Mt1−1) and identifies various flowers. The response is gener-
ated and segmented as Tt1 = segment(Ct1), producing “I can see several roses and tulips in full
bloom” which enters the TTS pipeline.

While the system is speaking, the user interrupts with “How many roses...” The controller imme-
diately detects the interruption pattern and executes fctrl(qt2 ,Mt2−1) → {[S.stop]}, followed
by clear(QTTS) to stop the current speech output. As the question is incomplete, it also outputs
[S.listen] and updates the memory Mt2 = Mt2−1 ∪ {(qt2 , vt1)}.
The user completes their question “...how many roses are there?” The system processes this follow-
up query using the cached visual information from memory vt1 ∈Mt2 , without needing to reactivate
the vision model. The response “There are 3 red roses in the image” is synthesized through parallel
TTS, where play(g(Tt3,1))∥g(Tt3,2) enables immediate playback while preparing subsequent seg-
ments.

This natural interaction flow demonstrates how the system seamlessly integrates visual processing
(hvision), memory management (Mt), and streaming speech synthesis while maintaining responsive
user interaction through interrupt handling (clear(QTTS)).

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Our experiments validate training-free orchestration superiority, framework flexibility, and pipeline
explainability. We use Qwen2.5-14BChu et al. (2024) as controller and various executors: Qwen2.5-
VLBai et al. (2025); Yang et al. (2024a), LLaVA-VideoZhang et al. (2024b), and othersZhang et al.
(2024a); Guo et al. (2025); Li et al. (2024).

Baselines. We compare against: (1) Commercial solutions: GPT-4oHurst et al. (2024), Claude
3.5Anthropic (2024), Gemini-1.5-ProTeam et al. (2024); (2) Open-source omni-models: Qwen2.5-
Omni, VITA, M2-omni; (3) Specialized multimodal models used in isolation.

Evaluation. We evaluate on general understanding (MMEFu et al. (2023)), vision tasks (MM-
StarChen et al. (2024a), LVBenchWang et al. (2024c)), temporal reasoning (MMMUYue et al.
(2024)), and specialized domains (MathVisionWang et al. (2024a), CC-OCRYang et al. (2024b)).

4.2 COMPARISON WITH MAINSTREAM OMNI MODELS

Table 1 compares our framework with state-of-the-art omni-modal models. Our approach achieves
competitive performance: on MMStar, we reach 69.37%, exceeding GPT-4o (64.70%) by 4.67%
and Qwen2.5-Omni (64.00%) by 5.37%. On MMMU, we achieve 70.04%, improving over GPT-4o
and Qwen2.5-Omni (both 59.20%) by 10.84%. While Gemini-1.5-Pro shows superior Video-MME
performance (75.00% vs 65.58%), our method demonstrates competitive results with training-free
modularity.

Finding 1: Training-free orchestration achieves competitive
performance compared to commercial and open-source omni-modal models
while providing superior modularity and interpretability.
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Model General Vision Temporal Efficiency

Video-MME MMStar MMMU Time (s)

GPT-4o 71.90 64.70 59.20 1.2
Qwen2.5 64.30 64.00 59.20 6.0
VITA 59.20 46.40 47.30 3.7
IXC2.5 60.60 – – –
M2-omni 60.40 60.50 51.20 –
Ours 65.58 69.37 70.04 3.2

Table 1: Comparison with leading multimodal models across general understanding, vision, tempo-
ral reasoning, and efficiency metrics.

4.3 COMPARISON WITH MULTIMODAL LLM

We further compare our method with various other multimodal models to validate its effectiveness
across diverse scenarios.

Model General Multimodal Vision Understanding

MME MMBench-EN MMBench-CN MMStar LVBench Video-MME

Qwen2.5-VL-7B 1673 84.45 84.98 59.94 45.30 56.62
Qwen2.5-VL-32B 1915 85.55 88.77 66.43 49.00 62.39
Qwen2.5-VL-72B 1980 86.61 90.44 68.22 47.30 65.74

Qwen-VL-Max 2281 77.60 76.40 – – 51.30
Qwen2.5-Omni 2340 81.80 – 64.0 – 64.30
VITA 2006.5 71.80 – 46.40 – 59.20
LLaVA-OV-7B – 80.80 – 61.70 – 58.20
LLaVA-OV-72B – 85.90 – 66.10 26.90 66.20

InternVL-2-8B – 81.70 – 59.40 – –
InternVL-2-26B – 83.40 – 60.40 – –
Gemini-1.5-Pro – – 70.90 – 33.10 75.00
GPT-4V 517/1409 75.00 74.30 57.10 – 59.90
GPT-4o 2310.3 83.10 – 64.70 34.70 71.90
Ours 1922 88.54 89.35 69.37 50.27 65.58

Table 2: Performance comparison on general multimodal and vision understanding tasks.

Our orchestration method achieves strong results on key benchmarks, with state-of-the-art per-
formance on MMBench-EN (88.54%) and competitive performance on MMStar (69.37%) and
LVBench (50.27%). Resource analysis shows intelligent task routing enables computational ef-
ficiency.

Finding 2: Cross-modal memory pooling for context integration can
enhance performance in complex visual tasks that require context
awareness.

4.4 VIDEO UNDERSTANDING PERFORMANCE

Beyond static image tasks, we examine video understanding enhancement. Figure 3 shows sig-
nificant gains across video lengths. For Qwen2-VL, we see +1.7%, +6.6%, and +12.9% improve-
ments on short, medium, and long videos respectively (+7.0% overall). LLaVA-Video shows +3.3%,
+6.2%, and +13.9% improvements (+7.8% overall), highlighting temporal reasoning capabilities.
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4.5 TEXT-TO-SPEECH PROCESSING EFFICIENCY

Figure 4 shows our parallel processing reduces average time from 0.204s to 0.183s (10.3% reduc-
tion) while improving stability (standard deviation: 0.056s → 0.013s). These improvements demon-
strate effective segmentation and parallel synthesis for real-time interaction.
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Figure 3: Performance comparison on Video-
MME benchmark. The improvements are par-
ticularly significant for longer videos, where our
controller’s ability to maintain temporal context
while integrating audio information proves most
beneficial.
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Figure 4: TTS processing architecture compar-
ison showing significant improvements in both
speed and stability with our parallel batch ap-
proaches.

5 CONCLUSIONS

In this paper, we present a novel, training-free orchestration framework for multimodal large lan-
guage models, offering an innovative solution for the seamless integration of omni-modal fusion.
Unlike traditional approaches that require extensive training data for feature-level fusion, our frame-
work achieves elegant integration of multimodal capabilities through intelligent orchestration. The
central controller LLM, with its excellent natural language understanding capabilities, automatically
decomposes complex tasks and precisely invokes corresponding expert models through specific to-
kens. This flexible routing mechanism not only enables unified processing of multimodal inputs but
also implements intelligent task decomposition and dynamic scheduling based on task characteris-
tics. We innovatively designed a semantic-based batch processing TTS mechanism that significantly
improves system response efficiency through intelligent segmentation, parallel processing, and re-
sult merging. Notably, our unified memory pool system, through standardized token encapsulation,
successfully addresses the challenges faced by traditional systems in multimodal memory manage-
ment. This design not only eliminates the inconvenience of switching between multiple independent
models but also achieves coherent and natural multi-turn dialogue experiences through intelligent
context management, providing users with an experience similar to interacting with a single super-
LLM. A key advantage of our framework is that the expert model pool can be dynamically expanded
or reduced at any time without requiring system retraining, offering exceptional flexibility in adapt-
ing to new capabilities and requirements. We believe this LLM orchestration-based approach will
open up new possibilities for building more intelligent and natural human-computer interaction sys-
tems.
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