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Abstract

It remains difficult to select a machine learning model from a set of candidates in the
absence of a large, labeled dataset. To address this challenge, we propose a framework to
compare multiple models that leverages three aspects of modern machine learning settings:
multiple machine learning classifiers, continuous predictions on all examples, and abundant
unlabeled data. The key idea is to estimate the joint distribution of classifier predictions
using a mixture model, where each component corresponds to a different class. We present
preliminary experiments on a large health dataset and conclude with future directions.

1 Introduction

Comparing machine learning classification models requires access to labeled data, but high-
quality labeled data is often prohibitively expensive to obtain. Despite the practical impor-
tance of model comparison in label-constrained settings, there has been relatively little work
focused on this question. We propose a framework for model comparison that uses labeled
and unlabeled data. Our key insight is to directly estimate the joint class-conditional dis-
tribution of classifier scores using a mixture model, where the latent mixture variable is the
true class (for an extended discussion of related work, please see Sec. B). This framework
has several advantages in that it can characterize any number of classifiers, accepts contin-
uous predictions from each classifier, and exploits both labeled and unlabeled data. The
resulting mixture model can estimate both individual (e.g. calibration error) and relative
performance metrics (e.g. relative accuracy).

Method Details We consider a setting in which a consumer (e.g., a hospital system) must
choose between several classification models. Formally, we have a set of M classification
models {f1, f2, . . . , fM} designed for the same prediction task, so fi : X → ∆D, where
X is the domain of the input and ∆D is the D-simplex representing a model’s predicted
probability for each of the D classes. Models in the set may differ by function class, training
data, or training hyperparameters. For each point x, we let f̂(x) = [f1(x), . . . , fM (x)] ∈
(∆D)M be the model set’s predictions; that is, we observe M simplex draws.

During evaluation, we have access to two datasets: (1) a small labeled dataset, DL =
{(xi, yi)}ℓi=1 and (2) a larger unlabeled dataset DU = {(xi)}ui=1, which are both drawn
i.i.d. from the same distribution. We maximize the likelihood of our datasets, which we
write as: P (DU ,DL) ∝

∑
P (f(xi)|yi)P (yi). Splitting this sum into labeled and unlabeled

components, we get λL
∑

xi∈DL
P (f(xi)|yi = ytrue) +

∑
xi∈DU

∑
y P (f(xi)|yi = y)P (yi = y),

where λL modulates the weight of the labeled data in the likelihood.

We instantiate P (f(x)|y) as a multivariate logit-normal distribution. Through the use of
compositional data transforms to map ∆D to RD−1 (Aitchison, 1982), we are able to model
the transformed data with a multivariate normal distribution (see Fig. 1 for distribution
of transformed probabilities). This parameterization allows us to use Gaussian Mixture
Models, which can be easily and quickly fit with Expectation-Maximization (EM). However,
the approach is flexible to any parameterization amenable to semi-supervised estimation.
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Figure 1: (A) Joint distribution of model predictions. (B) Estimation of ECE for synthetic
model set. (C) Estimation of ECE for real model set. We report results across
10 validation/test splits, and include results for remaining models in XXX.

2 Preliminary experiments

We report results using two classification model sets: one containing three synthetic classi-
fiers, in which we simulate classifier scores to follow a multivariate normal distribution, and
one containing three classifiers trained on real health data (Xie et al., 2022). We begin with
synthetic classifier scores to illustrate performance when the multivariate normal mixture
model is well-specified. On the real data, each classification model is evaluated on its ability
to predict a patient’s risk of hospitalization, based on features available during triage in the
emergency department. We elaborate on the dataset and classifiers in Sec. A, and include
results for additional classifiers, metrics, tasks in Sections C, D, and E.

Figure 1B and C compare the performance of the proposed framework to using labeled
data alone (orange). We also compare to mixture models fit to the unlabeled data alone
(blue) and to the scores of a single classification model (i.e. the marginal distribution of
classifier scores, pink). We observe greatest benefits relative to labeled data alone when
measuring expected calibration error, an important metric in risk-sensitive applications
such as clinical medicine. We hypothesize that this is because estimating ECE requires
binning and then averaging calibration error across bins. This process tends to yield greater
variability when the number of labeled points per bin is small. In contrast, metrics like
AUROC and AUPRC — which measure discriminative power — do not bin predictions and
thus are more competitive with labeled data alone.

Notably, fitting the mixture model on unlabeled data alone provides better ECE esti-
mates than labeled data alone when the amount of labeled data is small (< 100 points).
Furthermore, using the full joint distribution of scores yields better ECE estimates than
only using the marginal distribution of scores from a single classifier, as multiple distinct
predictions for a given example offer more information about underlying ground truth than
any one alone (Dawid and Skene, 1979; Ratner et al., 2017; Platanios et al., 2017).

Future directions First, we intend to extend the framework to non-Gaussian distribu-
tions, since these frequently occur in real-world clinical tasks. The multivariate normal
performs less well in these settings (Sec. 3), and it represents a simple extension of the
framework. Second, classifier choice is ubiquitous across applications, and we hope to apply
our method to tasks beyond healthcare.
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gency department. We focus on three clinically relevant tasks: hospitalization (predict-
ing hospital admission based on features available during triage, P (y = 1) = .45), criti-
cal outcomes (predicting inpatient mortality or a transfer to the ICU within 12 hours,
P (y = 1) = .06), and emergency department revisits (predicting a patient’s return to
the emergency department within 3 days, P (y = 1) = .03). We split and preprocess data
according to prior work (Xie et al., 2022; Movva et al., 2023); for a full list of features,
please refer to Table S1 in Movva et al. (2023). We divide the available data into three
splits, where no patient appears in more than one split. We reserve 30% of the data for
classifier training. We reserve an additional 35% for estimating performance, which we refer
to as the estimation split. Our mixture models are fit to this data. The test split contains
the remaining 35% of available data. No method sees data from the test split, which is used
to estimate ground truth performance. For all experiments where relevant, we set λl to be
2000.

Classification Models We use two sets of candidate classifiers, one with real data and
one with synthetic. The real set of candidate classifiers contains three clinical risk scores.
Each risk score is generated by different machine learning classifier: a logistic regression
(LR), a decision tree (DT), and a multi-layer perceptron (MLP) fit to data in the train split.
To illustrate performance of the proposed mixture model in a well-specified setting, we also
generate a synthetic set of candidate classifiers, in which we simulate each classifier’s scores
based on the empirical mean and variance of its class-conditional score distributions. The
resulting joint distribution of classifier scores is a multivariate Gaussian (in which classifier
scores are still correlated) and allows us to understand the extent to which mixture model
misspecification may play a role in our results.

Metrics and Evaluation We estimate three continuous performance metrics for each
classifier, which are of broad interest to machine learning practitioners: area under the
receive-operating curve (AUROC), area under the precision-recall curve (AUPRC), and the
expected calibration error (ECE). To do so, we directly sample from our mixture model by
first sampling a true label y according to the estimated overall class prevalences and then
simulating the classifier scores by sampling from the corresponding class-conditional score
distribution. For each classifier, we transform these scores back into (predicted) probabilities
and then estimate the performance metrics accordingly.

These metrics capture both each classifier’s ability to differentiate classes (AUROC,
AUPRC) and measure how semantically meaningful the predicted probabilities are (cal-
ibration), which is considered a pre-requisite to the effective, non-discriminatory clinical
decision-making (Crowson et al., 2016; Berk et al., 2017).

Appendix B. Related work

Our work builds on two areas of literature: methods which use a combination of labeled
and unlabeled data to 1) evaluate a single classifier or 2) evaluate the accuracy of multi-
ple proxies. We elaborate on each below, and provide a taxonomy of related work in Table 1.

Semi-supervised classifier evaluation concerns the evaluation of a single classifier, us-
ing both labeled and unlabeled data. There are two types of assumptions works rely on
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to produce a semi-supervised estimate of performance. The first type of assumption places
parametric constraints on the distribution of classifier scores. Several works attempt to fit
a mixture model to the distribution of classifier scores (Welinder et al., 2013; Chouldechova
et al., 2022; Miller et al., 2018), as we do, while others apply techniques from Bayesian cal-
ibration (Ji et al., 2020, 2021). Our work differs in that the proposed framework naturally
accommodates and exploits multiple classifiers, and as our results show, doing so results in
improved estimates of ground truth. As Garg et al. (2022) establish, estimating accuracy
on the unlabeled data is impossible absent assumptions about the nature of the distribution
shift. Examples of these assumptions include covariate shift (Chen et al., 2022; Lu et al.,
2023), conditional independence of features (Steinhardt and Liang, 2016), and calibration
on the unlabeled data (Guillory et al., 2021; Jiang et al., 2022). Here too, a majority of
existing work focuses on evaluating individual classifiers and often rely on larger amounts
of labeled data than we assume (on the order of hundreds of labeled data points). In con-
trast, our focus is on the evaluation of multiple classifiers, when the number of labeled data
points is too small to reliably learn any model of distribution shift between the labeled and
unlabeled data.

Semi-supervised evaluation of multiple proxies was first introduced by Dawid and
Skene (1979), who proposed a method to estimate ground truth in the presence of multiple
potentially noisy proxies. Many follow-on works inherited Dawid-Skene’s strong assumption
of class-conditional independence of proxies (Parisi et al., 2014; Platanios et al., 2017). Such
an assumption is plausible in the context of medical diagnostics that use different biological
features, but does not naturally translate to sets of candidate classifiers, whose predictions
are likely to be correlated. Subsequent work has made an effort to relax the assumption
of class-conditional independence, replacing it with independence conditional on a latent
notion of example difficulty (Goldstein et al., 2009; Paun et al., 2018) or a or annotator
quality (Ratner et al., 2017; Bach et al., 2017). However, these methods are designed to
estimate the accuracy of binary proxies; they do not exploit the continuous probabilities
available in multi-classifier evaluation. Recent work has made progress towards accommo-
dating continuous proxies (Nazabal et al., 2016; Pirš and Štrumbelj, 2019). Their focus is
optimal aggregation, in contrast to our own, which is evaluation.

Appendix C. Results across classifiers

Figure 2 reports ECE estimation results on the hospitalization task across all three synthetic
candidate classifiers. As expected, the use of labeled data alone (orange) is poor with very
few labeled data points. Applying the mixture model to the data without incorporating
any labels (blue) outperforms the use of labeled data alone given small amounts of labeled
data (less than 100 examples). The mixture model fit to the labeled and unlabeled scores
for a single classifier (pink) provides a slight improvement. The proposed approach (green)
outperforms each of these baselines, across all amounts of labeled data. We also report
results for the fully supervised mixture model, for which all labels in the estimation split
are revealed. While this is not a realistic baseline, it serves as useful sanity check for whether
the proposed model converges to ground truth given abundant labeled data.
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Multiple
classifiers

Continuous
predictions

Unlabeled
data

Labeled
data

Dawid-Skene and
others

✓ ✗ ✓ ✓

Unsupervised OOD
evaluation

✗ ✓ ✓ ✗

Semi-supervised
evaluation of single

classifiers
✗ ✓ ✓ ✓

Our method ✓ ✓ ✓ ✓

Table 1: A comparison of prior work and our proposed method. Whereas previous works
only use at most three sources of information, our method is able to estimate the
true labels from multiple classifiers’ continuous predictions with both labeled and
unlabeled examples.

Figure 3 reports ECE estimation results for the same task, on real candidate classifiers,
which have been trained to predict a patient’s risk of hospitalization based on data in
the train split. While the proposed approach outperforms the use of labeled data alone,
as previously seen, our results provide evidence of model misspecification. Indeed, when
applying a test for normality, the Lilliefores test (Abdi and Molin), to the class-conditional
score distributions for each classifier-task combination, we find that the distribution is not
normal (p < 0.001 for every task and classifier).

Consider the ECE estimation performance for the MLP (Figure 3, right). The mixture
model fit to all (x, y) (gray) in the estimation split performs worse than the mixture model
fit to all (x, ) in the estimation split (pink). We see that the performance of the joint mixture
model (green) worsens with additional labeled data. Ultimately, these preliminary results
provide motivation to extend the framework to more flexible parametrizations.

Appendix D. Results on additional metrics

As discussed, the mixture model can be used to estimate any metric that measures dis-
crepancies between p̂(y = 1|x) and y, including AUC and AUPRC. Figure 5 describes the
mixture model’s ability to recover AUC and AUPRC when well-specified (i.e. on the the
set of synthetic classifiers). At very small amounts of labeled data (10 labeled examples),
the mixture model offers improvements over using labeled data alone. The near-perfect per-
formance of the fully-supervised mixture model suggests that it is possible for the mixture
model to estimate AUC and AUPRC accurately. However, the gain relative to labeled data
alone may be smaller in class-balanced, binary classification settings.
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Figure 2: Mixture model performance on simulated classifiers (ECE). We measure
the absolute error when estimating expected calibration across different amounts
of labeled data using different approaches. Here, the mixture model is well-
specified; that is, when the joint distribution of transformed classifier predictions
follows a multivariate normal distribution. The mixture model fit to estimate the
joint distribution outperforms all other considered baselines. Encouragingly, the
mixture model fit to all (x, y) in the estimation split (gray) achives 0 estimation
error, and serves to upper bound the performance of our approach.

Figure 3: Mixture model performance on real classifiers (ECE). Fitting a mixture
model to estimate the joint distribution of classifier predictions (green) outper-
forms the use of labeled data alone, under limited labeled data (< 100 points).
Note, however, that the mixture model with access to all labels in the estimation
split (gray) fails to recover the true ECE; this suggests that the mixture model
is misspecified. For the MLP (right), for example, fitting a mixture model to all
(x, y) in the estimation split (gray) produces worse ECE estimates than fitting to
only (x, ) (pink). This behavior forms our motivation to extend the framework
to more flexible parameterizations.
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Figure 4: Mixture model performance on synthetic classifiers (AUC, AUPRC).
While the mixture model can offer more accurate estimates of AUC and AUPRC
given extremely few labeled examples (e.g. 10), the difference is not meaningful.
Further, there are cases where fitting the mixture model to a single classifier’s
scores (pink) outperforms fitting the mixture model to the joint distribution of
classifier scores. We suspect we would see larger variability in estimates of AUC
using 10 labeled points under higher class imbalance.

Appendix E. Results on additional tasks

Thus far, we have discussed results in the context of predicting patient hospitalization.
Here we consider how our results generalize to two other clinical tasks: predicting a critical
outcome for a patient (defined as death or admission to the intensive care unit) and pre-
dicting whether a patient with revisit the emergency department within three days. Both
tasks demonstrate much lower prevalence of positive visits (.06 and .03 respectively) com-
pared to hospitalization, for which 45% of visits are positive. We restrict our discussion of
these results to the synthetic classifier case, where we simulate classification model scores
based on the empirical mean and variance of each classifier’s class-conditional distribution
of scores, since we have established the role of model misspecification with respect to the
real classifiers.

Figure E plots results for the synthetic classifiers, equating to a setting in which the
model is well-specified. The Gaussian mixture model fit to the joint distribution of trans-
formed model scores (green) and the Gaussian mixture model fit to the marginal distribu-
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Figure 5: Mixture model performance on synthetic classifiers (AUC, AUPRC).
While the mixture model can offer more accurate estimates of AUC and AUPRC
given extremely few labeled examples (e.g. 10), the difference is not meaningful.
Further, there are cases where fitting the mixture model to a single classifier’s
scores (pink) outperforms fitting the mixture model to the joint distribution of
classifier scores. We suspect we would see larger variability in estimates of AUC
using 10 labeled points under higher class imbalance.

tion of transformed model scores (pink) both fail to match the performance of labeled data
alone. The stark difference in performance can be attributed to class imbalance; at very
small sample sizes and very low positive prevalences, it is difficult to observe both classes.
These results suggest the importance of support for both classes in the labeled dataset, and
further suggest that there are certain tasks for which mixture modeling may be too difficult.

Appendix F. Extensions

Multi-class settings Here we explored our method’s performance in binary outcome
settings. However, our method can be easily extended to multi-class outcomes as well. For
a C class mixture, our likelihood can be written as follows:
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Figure 6: Mixture model performance (ECE) on synthetic classifiers across two
additional tasks. On two additional tasks (top: prediction of a critical out-
come, bottom: prediction of an ED revisit), the mixture model parametrization
as a multivariate normal performs poorly. Fitting the GMM to a single model’s
scores (pink) outperforms estimating the joint distribution by a small margin,
but neither compete with the use of a small amount of labeled data. Both tasks
suffer from class imbalance, and thus small samples (less than 100 labeled data
points) may contain no positive examples. A potentially fruitful assumption to
make is that the labeled dataset contains support for all classes.

P (DU ,DL) ∝ λL

∑
xi∈DL

P (f(xi)|yi = ytrue)︸ ︷︷ ︸
labeled likelihood

+
∑

xi∈DU

C∑
y=1

P (f(xi)|yi = y)P (yi = y)︸ ︷︷ ︸
unlabeled likelihood

For each point x, we can access f(x) ∈ (∆D)M . Compositional data transforms provide
one-to-one mappings g : ∆D → RD−1. Thus, we can transform each classifier’s scores
fj(x) to g(fj(x)) ∈ RD−1 without losing any information, which we concatenate across all
classifiers to get g(f(x)) ∈ R(D−1)×M . We can then fit any mixture distribution to these
scores; for instance, a multivariate normal distribution enables us to model the covariance
in class-conditional classifier scores.
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Multi-model Evaluation with Labeled and Unlabeled Data

Once the mixture model parameters are fit, we can estimate any metrics we’d like, such
as ECE, by (1) sampling a true label y, (2) sampling the classifier scores f(x), sampled from
our fitted distribution for g(f(x))|y and applying g−1, and (3) measuring the discrepancies
between the sampled scores for each classifier and true labels.

Multi-model performance metrics While we utilized the joint distribution of classifier
scores to fit our mixture model, each of the metrics we examined were single classification
model scores. In this sense, we used the joint distribution to improve our estimates of the
ground truth labels, but not in the classifier evaluation stage itself.

A growing body of literature on multi-classifier metrics provides some motivation to
measure properties of the classifiers as a set. For instance, some recent work has demon-
strated systemic failures (Bommasani et al., 2022; Kleinberg and Raghavan, 2021) across
classifiers, where, for instance, a set of separate classifiers produces errors on the same in-
stances. Given that we model the full joint distribution of predictions, our method can be
extended to incorporate systemic failure and multi-classifier metrics as well.

Alternative mixture parameterizations Until now, we’ve let g(f(x))|y = c ∼ N (µc,Σc),
but alternative parameterizations are also possible, provided (1) they can accommodate
both labeled and unlabeled data and (2) can be fit to the mixture model framework de-
scribed above. As noted in Appendix C, each of the class-conditional score distributions on
our real-world health dataset were not normal (p < 0.001) across all tasks and classifiers we
examined, so alternative parameterizations are necessary to explore.

Directions to explore include semi-supervised class-conditional variational autoencoders
(Kingma et al., 2014) and Dirichlet mixture models.
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