
Casting hybrid digital-analog training into
hierarchical energy-based learning

Timothy Nest∗♦
timothy.nest@mila.quebec

Maxence Ernoult†♦
maxence@rain.ai

Abstract

Deep learning requires new approaches to combat the rising cost of training large
models. The combination of energy-based analog circuits and the Equilibrium
Propagation (EP) algorithm offers one compelling alternative to backpropagation
(BP) for gradient-based optimization of neural nets. In this work, we introduce
a hybrid framework comprising feedforward (FF) and energy-based (EB) blocks
housed on digital and analog circuits. We derive a novel algorithm to compute
gradients end-to-end via BP and EP, through FF and EB parts respectively, enabling
EP to be applied to much more flexible and realistic architectures as analog units
are incorporated into digital circuitry over time. We demonstrate the effectiveness
of the proposed approach, showing that a standard Hopfield Network can be split
into any shape while maintaining automatic differentiation performance. We apply
it to ImageNet32 where we establish new SOTA in the EP and BP-alternative
literature (46% top-1). An extended version of this paper and code is available
here.

1 Introduction

Deep learning today relies on three factors: i) GPUs, ii) feedforward (FF) models and iii) backprop
(BP). With skyrocketing demands of AI compute, exploration of new compute paradigms has become
an economic, and environmental necessity [Strubell et al., 2020]. One path towards this goal is analog
in-memory computing [Sebastian et al., 2020], promising constant time complexity as well as reduced
energy consumption [Cosemans et al., 2019]. By mapping a neural network onto a “self-learning”
energy-based (EB) analog circuit [Kendall et al., 2020, Stern et al., 2023, Dillavou et al., 2023,
Scellier, 2024] loss gradients can be derived via two physical relaxations to equilibrium [Scellier
et al., 2024]. Equilibrium propagation (EP) [Scellier and Bengio, 2017], is a suitable algorithm for
learning in such a setting due to its strong theoretical guarantees, scalability (among BP-alternatives)
[Laborieux and Zenke, 2022, 2023] and putative(10, 000×) increase in energy-efficiency and speed
[Yi et al., 2023]. Still, end-to-end EP-training presents significant challenges when executed on
analog hardware, including non-ideal physical behaviors affecting both inference [Wang et al., 2023,
Ambrogio et al., 2023] and parameter optimization [Nandakumar et al., 2020, Spoon et al., 2021,
Lammie et al., 2024], as well as incompatibility with operations including nonlinearities, batchnorm,
and attention [Spoon et al., 2021, Jain et al., 2022, Liu et al., 2023, Li et al., 2023]. One possibility is
hybrid systems incorporating both FF and EB components. Indeed, the design of inferential engines
made of analog and digital parts is nearing commercial maturity [Ambrogio et al., 2023], yet in-situ
learning of such systems remains unexplored.

Here, we propose a theoretical framework to extend end-to-end gradient computation to a setting
where the system may or may not be fully analog. Our work contends that a combination of digital

∗Montreal Institute of Learning Algorithms (MILA)
†Rain AI
♦Equal contribution

Second Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2024(MLNCP 2024).

https://github.com/rain-neuromorphics/hybrid_bp_ep_official

and analog hardware, with FF and EB parts trained via BP and EP respectively, can leverage advances
from both digital and analog hardware in the near-term. Specifically, we introduce Feedforward-tied
Energy-based Models (ff-EBMs, Section 3.1) whose inference pathway is a composition of FF
and EB modules (Alg. 1). We show that gradients in ff-EBMs can be computed in an end-to-end
fashion (Section 3.3), via BP in FF blocks and EP in EB blocks (Theorem 3.1, Alg. 2) (Section 3.2),
and that when each analog block comprises a single layer, the ff-EBM is purely FF (Lemma A.1),
whose training is equivalent to BP (Corollary A.1). Finally, we demonstrate the effectiveness of
our algorithm on ff-EBMs where EBM blocks are DHNs (Section 4). We show that i) gradient
estimates computed by our algorithm (Alg. 2) near perfectly match gradients computed by end-to-
end automatic differentiation (Fig. 2), ii) a standard DHN model can be split into a ff-EBM with
equivalent layers and architecture without compromising performance and remaining on par with
automatic differentiation, with significant reductions in run-time due to the use of smaller EB blocks
(Section 4.2), iii) the proposed approach scales, yielding 46 % top-1 (70% top-5) validation accuracy
on ImageNet32, beating the current SOTA for BP alternatives by a large margin.

2 Background

Notations. Given a differentiable mapping A : Rn → Rm, we denote its total derivative wrt sj as
dsjA(s) := dA(s)/dsj ∈ Rm, its partial derivative wrt sj as ∂jA(s) := ∂A(s)/∂sj ∈ Rm. When
A takes scalar values (m = 1), its gradient wrt sj is denoted as∇jA(s) := ∂jA(s)⊤.

2.1 Energy-based models (EBMs)

For a given static input and set of weights, EBMs implicitly yield a prediction through the minimiza-
tion of an energy function, making them a kind of implicit model. Namely, an EBM is defined by a
(scalar) energy function E : s, θ, x→ E(s, θ, x) ∈ R where x, s, and θ respectively denote a static
input, hidden and output neuron states, and model parameters (weights). Each such tuple defines a
configuration with an associated scalar energy value. Among all configurations for an input x and
model parameters θ, the model prediction s⋆ is an equilibrium state which minimizes the energy :

s⋆ := argmin
s

E(s, θ, x). (1)

2.2 Standard bilevel optimization

Assuming that ∇2
sE(x, s⋆, θ) is invertible, note that the equilibrium state s⋆ implicitly depends on

x and θ via the implicit function theorem [Dontchev et al., 2009]. Thus our goal when training an
EBM is to adjust parameters θ such that s⋆(x, θ) minimizes a cost function ℓ : s, y → ℓ(s, y) ∈ R
where y is some ground-truth associated with x. More formally, our objective can be cast as a bilevel
optimization problem [Zucchet and Sacramento, 2022]:

min
θ
C(x, θ, y) := ℓ(s⋆, y) s.t. s⋆ = argmin

s
E(s, θ, x). (2)

To solve Eq. (2) we compute the gradient of its outer objective C(x, θ, y) wrt to θ (dθC(x, θ, y)) and
perform gradient descent over θ.

2.3 Equilibrium Propagation (EP)

An algorithm used to train an EBM as Eq. (2) may be called an EBL algorithm [Scellier et al., 2024].
EP [Scellier and Bengio, 2017] is an EBL algorithm which computes an estimate of dθC(x, θ, y) in
at least two phases. In its first phase, the model evolves freely to s⋆ = argmins E(s, θ, x). Then, the
model is slightly nudged towards decreasing values of cost ℓ and evolves to an equilibrium state sβ .
In practice, we augment the energy function E by a term βℓ(s, y) where β ∈ R⋆ is a nudging factor.
Weights are updated to increase the energy of s⋆ and decrease that of sβ , thereby “contrasting” these
two states. More formally, Scellier and Bengio [2017] prescribe in the seminal EP paper:

sβ := argmin
s

[E(s, θ, x) + βℓ(s, y)] , ∆θEP :=
α

β
(∇2E(s⋆, θ, x)−∇2E(sβ , θ, x)) , (3)

where α denotes some learning rate. EP comes in different flavors depending on the form of β
inside Eq. (3). Centered EP (C-EP), where two nudged states of opposite nudging strengths (±β) are
contrasted, performs best in practice [Laborieux et al., 2021, Scellier et al., 2024] and reads:

2

∆θC−EP :=
α

2β
(∇2E(s−β , θ, x)−∇2E(sβ , θ, x)) , (4)

3 Tying energy-based models with ff blocks

Here we introduce our model, its associated optimization problem and learning algorithm. We show
how learning amounts to solving a multi-level optimization problem (Section 3.2), and propose a
BP-EP gradient chaining algorithm as a solution (Section 3.3, Theorem 3.1, Alg. 2). We highlight
that ff-EBMs reduce to standard ff nets (Lemma A.1) and the proposed BP-EP gradient chaining
algorithm to standard BP (Corollary A.1) when each EB block comprises a single hidden layer.
Finally, we highlight in red and blue the parts of the model and associated algorithms performed
inside feedforward (digital) and EB (analog) blocks respectively.

3.1 Feedforward-tied Energy-based Models (ff-EBMs)

Inference procedure. We define Feedforward-tied Energy-based Models (ff-EBMs) as compo-
sitions of feedforward and EB transformations. Namely, an data sample x is fed into the first FF
transformation F 1 parameterized by some weights ω1, yielding an output x1

⋆. x1
⋆ is fed as a static

input into the first EB block E1 with parameters θ1, and relaxes to equilibrium s1⋆. s1⋆ is fed into the
next FF transformation F 1 with weights ω1 and so on until reaching the output layer ô.

Algorithm 1 ff-EBM inference
1: s← x
2: for k = 1 · · ·N − 1 do
3: x← F k

(
s, ωk

)
4: s← Optim

s

[
Ek(s, θk, x)

]
5: end for
6: ô← FN (s, ωN) Figure 1: Depiction of the forward (left) and

backward (right) pathways through a ff-EBM,
with blue and pink blocks denoting EB and FF
transformations.

A formal definition of the inference procedure for ff-EBMs is given inside Definition A.1, and more
compactly inside Fig. 1 and Alg. 1.

Form of the energy functions. Given the kth EB block of a ff-EBM, the associated energy function
Ek takes some static input xk from the output of the preceding FF transformation, has hidden neurons
sk and is parameterized by weights θk. More precisely:

Ek(sk, θk, xk) := Gk(sk)− sk
⊤
· xk + Uk(sk, θk) (5)

Eq. (5) reveals three contributions to the energy. The first corresponds to the non-linearity applied
inside the EB block, the second to a purely FF contribution from previous FF block F k, and the third
to internal interactions within the layers of the EB block. An interesting edge case is when Uk = 0
for all k’s, i.e. no intra-block layer interactions, i.e. the EB block comprises a single layer. In this
case, sk⋆ is simply a feedforward mapping xk through σ and in turn the ff-EBM is simply a standard
feedforward architecture (see Lemma A.1 inside Appendix A.1.1.

3.2 Multi-level optimization of ff-EBMs

In the same way that learning EBMs can be cast as a bilevel optimization problem, learning ff-EBMs
is a multi-level optimization problem where variables optimized in the inner subproblems are EB
block variables s1, · · · , sN−1. To make this clear, we re-write the energy function of the kth block
Ek from Eq. (5) to highlight the dependence between two consecutive EB block states. Namely, by
writing Ẽk(sk, θk, sk−1

⋆ , ωk) := Ek
(
sk, θk, F k

(
sk−1
⋆ , ωk−1

))
, it can be seen that the equilibrium

state sk⋆ obtained by minimizing Ek will be dependent upon the equilibrium state sk−1
⋆ of the previous

3

EB block, which propagates back through prior EB blocks. Thus, the learning problem for a ff-EBM
3:

min
θ

ℓ(sN−1
⋆ , y) s.t. sN−1

⋆ = argmin
s

ẼN−1(s, sN−2
⋆), · · · , s.t. s1⋆ = argmin

s
Ẽ1(s, x) (6)

3.3 A BP–EP gradient chaining algorithm

Main result: explicit BP-EP chaining. Based on the multilevel optimization problem in Eq. (6) ,
we state the main theoretical result of this paper in Theorem 3.1 (see proof in Appendix A.2.1) and
the resulting algorithm (Alg. 2), which also comes in another flavor (see Appendix A.3.1).

Theorem 3.1 (Informal). Assuming a ff-EBM model, we denote s1⋆, x
1
⋆, · · · , sN−1

⋆ , ô⋆ the states
computed during the forward pass as depicted in Alg. 1. We define the nudged state of block k,
denoted as skβ , implicitly through∇1Fk(skβ , θ

k, xk
⋆, δs

k, β) = 0 with:

Fk(sk, θk, xk
⋆, δs

k, β) := Ek(sk, θk, xk
⋆) + βsk

⊤
· δsk (7)

Denoting δsk and ∆xk the error signals computed at the input of the feedforward block F k and of
the EB block Ek respectively, then the following chain rule applies:

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∇ωN ℓ(ô⋆, y) (8)
∀k = 2 · · ·N − 1 : ∆xk = dβ

(
∇3E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0
, gθk = dβ

(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0

δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk, gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk
(9)

Algorithm 2 Implicit BP-EP gradient chaining (Theorem (3.1))

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: sβ ← Optim

s

[
Ẽk(s, θk, sk−1

⋆ , ωk) + βs⊤ · δs
]

▷ EP through Ẽk

4: s−β ← Optim
s

[
Ẽk(s, θk, sk−1

⋆ , ωk)− βs⊤ · δs
]

5: gθk ← 1
2β

(
∇2Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇2Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
6: gωk ← 1

2β

(
∇4Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇4Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
▷ i-BP through F k

7: δs← 1
2β

(
∇3Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇3Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
8: end for

4 Experiments
In this section, we present the ff-EBMs used in our experiments (Section 4.1) and conduct a static
gradient analysis, where we observe that gradients computed by our algorithm are near perfectly
aligned with those computed by automatic differentiation (Fig. 2). We then show on CIFAR-10 that
performance of ff-EBMs does not degrade on block splits of decreasing size (despite much lower wall
clock time)(Section 4.2). Finally, we perform further ff-EBM training experiments on CIFAR-100 and
ImageNet32 where we establish a new performance state-of-the-art in the EP literature (Section 4.3).

4.1 Setup & static gradient analysis

Model. Using the same notations as in Eq. (5), the ff-EBMs at use in this section are defined
through:{

Uk
FC(s

k, θk) := − 1
2s

k⊤ · θk · sk,
Uk
CONV(s

k, θk) := − 1
2s

k •
(
θk ⋆ sk

) ,

{
F k
BN(s

k−1, ωk) := BN
(
P
(
ωk
CONV ⋆ sk−1

L

)
;ωk

α, ω
k
β

)
,

F k
ID(s

k−1) := sk−1
L

(10)

3we omit parameter dependence of the loss and the energy functions for readability

4

with BN(·;ωk
αω

k
β), P and ⋆ the batchnorm, pooling and convolution operations, • the generalized

dot product for tensors and sk :=
(
sk

⊤

1 , · · · sk⊤

L

)⊤
the state of block k comprising L layers. Weight

matrices θk are symmetric and has a sparse, block-wise structure such that each layer skℓ is bidirection-
ally connected to its neighboring layers skℓ−1 and skℓ+1 through connections θkℓ−1 and θk

⊤

ℓ respectively
(see Appendix A.1.3), either with fully connected (Uk

FC) and convolutional operations (Uk
CONV). The

non-linearity σ applied within EB blocks is σ(x) := min
(
max

(
x
2 , 0

)
, 1
)
. Additional details about

equilibrium computation can be found inside Appendix A.1.3.

Figure 2: Cosine similarity of EP/ID grads on
a random sample x,y.

Gradient comparison of EP and ID on ff-EBMs.
We conducted comparisons between gradients ob-
tained via our algorithm and an ID baseline (imple-
mented as BP through time, see Alg. 12 inside ap-
pendix) showing near perfect alignment between ID
and EP weight gradients. In practice the use of nor-
malization in between blocks and of the GOE weight
initialization are instrumental for good gradient es-
timation.

4.2 Splitting experiment

For a given EBM and a fixed number layers, we considered two models of depth (L = 6 and L = 12)
with various block splits maintaining equivalent architecture 4. These experiments employ a tolerance-
based (TOL) convergence. We observe that performance achieved by EP on 6-layer EBM is improved
and WCT reduced with smaller blocks. Performance is maintained across 4 distinct splits between
89% and 90% and is on par with both the ID baseline for each, and with the literature 5 [Scellier
et al., 2024, Laborieux and Zenke, 2022]. The same trend is seen in ff-EBMs with L = 12 where
an accuracy of 92% across 3 splits, matching ID, and surpassing EP state-of-the art on CIFAR-10
[Scellier et al., 2024]. The significant reduction in WCT observed is due to the fact that by design
training time for ff-EBMs scales linearly with number of blocks rather than supralinearly with number
of layers.

EP ID
Top-1 (%) WCT Top-1 (%) WCT

L =6

bs=6 89.2 ±0.2 7:01 87.3 ±0.4 6:51
bs=3 89.8 ±0.2 5:17 89.3 ±0.2 5:10
bs=2 90.1 ±0.1 3:57 90., ±0.1 4:05

EP ID
Top-1 (%) WCT Top-1 (%) WCT

L =12

bs=4 89.4 ±0.7 11:59 89.5 ±0.2 8:28
bs=3 92.5 ±0.2 7:33 92.0 ±0.1 4:16
bs=2 92.0 ±0.2 3:14 91.5 ±0.2 3:07

Figure 3: Validation accuracy and Wall Clock Time (WCT) obtained on CIFAR-10 by EP (Alg. 2)
and ID on models with different number of layers (L) and block sizes (“bs”). 3 seeds are used.

4.3 Scaling experiment

We consider ff-EBMs of fixed block size 2 and train them with two different depths (L = 12
and L = 15) on CIFAR-100 and ImageNet32 by EP and ID 1. We observe that EP matches ID
performance on all models and tasks, and the performance obtained by training the 15-layer models
by exceeds ImageNet32 SOTA for EP by 10% [Laborieux and Zenke, 2022] and by around 5% among
all BP-alternatives [Høier et al., 2023].

5 Discussion

4(e.g. for L = 6, 1 block of 6 layers, 2 blocks of 3 layers, etc.)
5in EBMs of roughly equivalent size

5

Table 1: Validation accuracy and WCT on CIFAR100 and ImageNet32 by EP and AD on models with
different number of layers (L) and a BS of 2. For comparison, we show best published results for
ImageNet32 by EP [Laborieux and Zenke, 2022] and all backprop alternatives [Høier et al., 2023].

EP ID
Top-1 (%) Top-5 (%) WCT Top-1 (%) Top-5 (%) WCT

CIFAR100 L=12 69.3 ±0.2 89.9 ±0.5 4:33 69.2±0.1 90.0 ±0.2 4:16
L=15 71.2±0.2 90.2±1.2 2:54 71.1±0.3 90.9 ±0.1 2:44

ImageNet32 L=12 44.7 ±0.1 61:00 ±0.1 65:23 44.7 ±0.6 68.9±0.6 57:00
L=15 46.0 ±0.1 70.0 ±0.2 46:00 45.5 ±0.1 69.0 ±0.1 40:01

Laborieux and Zenke [2022] 36.5 60.8 – – – –
Høier et al. [2023] 41.5 64.9 – – – –

Figure 4: ff-EBMs as hierar-
chical systems implementing
EP at chip scale (adapted from
[Yi et al., 2023]) using EB ana-
log processors from resistors
(green), diodes (blue), volt-
age sources (purple), ADCs
and DACs (adapted from
[Scellier, 2024]), digital pro-
cessors, memory buffers, all
linked by digital busses (red).

Related work. There is a growing body of work showing scalabil-
ity of EP on vision tasks. Most notably, Laborieux and Zenke [2022]
introduced holomorphic EP where loss gradients are computed with
adiabatic oscillations via nudging in the complex plane Scellier et al.
[2022] proposed a black-box version of EP where details about
the system may not be known. These advances could be readily
applied inside our EP-BP chaining algorithm to EB blocks. The
work closest to ours, albeit without clear algorithmic prescriptions,
is that of Zach [2021] where FF model learning is cast as a deeply
nested optimization whose consecutive layers are tied by pair-wise
energy functions, as does [Høier et al., 2023]. Such settings can be
construed as a particular case of ff-EBM learning by EP where each
EB block comprises a single layer (Uk = 0 inside Eq. (5).

Limitations and future work. While ff-EBM learning inherits
some pitfalls of BP nothing prevents FF modules inside ff-EBMs
from being trained via any BP alternative. BP can be parameterized
by feedback weights to obviate weight transport from the inference
circuit to the gradient computation circuit [Akrout et al., 2019]; its
gradients approximated as finite differences of feedback operators
[Ernoult et al., 2022]; or computed via implicit forward-mode differ-
entiation with random weight perturbations in the inference circuit
[Hiratani et al., 2022, Fournier et al., 2023, Malladi et al., 2023];
local layer-wise loss functions can be used to prevent “backward
locking” [Belilovsky et al., 2019, Ren et al., 2022, Hinton, 2022].

One extension of this study is to incorporate more realism into ff-
EBMs. Beyond DHNs, Deep Resistive Nets (DRNs) Scellier [2024]
Kendall et al. [2020] are exact models of idealized analog circuits
trainable by EP. As such, using DRNs as EB blocks inside ff-EBMs
is an exciting direction, which brings new challenges [Rasch et al.,
2023, Lammie et al., 2024]. Finally, considerable work is needed to prove ff-EBM further at scale on
more difficult tasks (e.g. standard ImageNet), deeper architectures and novel data.

Concluding remarks and broader impact. We show that ff-EBMs constitute a novel framework
for deep-learning in heterogeneous hardware settings. We hope that this can help overcome the
typical division between digital versus analog or BP versus BP-free algorithms and that the greater
energy-efficiency afforded by this framework provides a pragmatic, near-term blueprint to mitigate
the dramatic carbon footprint of AI training [Strubell et al., 2020].As fully analog training accelerators
remain far from commercial maturity, we believe this work offers an incremental and sustainable
plan for gradually integrating analog, energy-based computational primitives as they are integrated
into existing digital accelerators.

6

References
A. Agarwala and S. S. Schoenholz. Deep equilibrium networks are sensitive to initialization statistics.

In International Conference on Machine Learning, pages 136–160. PMLR, 2022.

M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed. Deep learning without weight
transport. Advances in neural information processing systems, 32, 2019.

L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Proceedings, 1st First International Conference on Neural Networks, volume 2,
pages 609–618. IEEE, 1987.

S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A. Nomura, T. Yasuda,
A. Chen, A. Friz, et al. An analog-ai chip for energy-efficient speech recognition and transcription.
Nature, 620(7975):768–775, 2023.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in neural information
processing systems, 32, 2019.

E. Belilovsky, M. Eickenberg, and E. Oyallon. Greedy layerwise learning can scale to imagenet. In
International conference on machine learning, pages 583–593. PMLR, 2019.

P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled variant of imagenet as an alternative to
the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

S. Cosemans, B. Verhoef, J. Doevenspeck, I. Papistas, F. Catthoor, P. Debacker, A. Mallik, and
D. Verkest. Towards 10000tops/w dnn inference with analog in-memory computing–a circuit
blueprint, device options and requirements. In 2019 IEEE International Electron Devices Meeting
(IEDM), pages 22–2. IEEE, 2019.

S. Dillavou, B. Beyer, M. Stern, M. Miskin, A. Liu, and D. Durian. Transistor-based self-learning
networks. In APS March Meeting Abstracts, volume 2023, pages D07–006, 2023.

A. L. Dontchev, R. T. Rockafellar, and R. T. Rockafellar. Implicit functions and solution mappings:
A view from variational analysis, volume 616. Springer, 2009.

M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Updates of equilibrium prop match
gradients of backprop through time in an rnn with static input. Advances in neural information
processing systems, 32, 2019.

M. M. Ernoult, F. Normandin, A. Moudgil, S. Spinney, E. Belilovsky, I. Rish, B. Richards, and
Y. Bengio. Towards scaling difference target propagation by learning backprop targets. In
International Conference on Machine Learning, pages 5968–5987. PMLR, 2022.

L. Fournier, S. Rivaud, E. Belilovsky, M. Eickenberg, and E. Oyallon. Can forward gradient match
backpropagation? In International Conference on Machine Learning, pages 10249–10264. PMLR,
2023.

G. Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

N. Hiratani, Y. Mehta, T. Lillicrap, and P. E. Latham. On the stability and scalability of node
perturbation learning. Advances in Neural Information Processing Systems, 35:31929–31941,
2022.

R. Høier, D. Staudt, and C. Zach. Dual propagation: Accelerating contrastive hebbian learning
with dyadic neurons. In International Conference on Machine Learning, 2023. URL https:
//icml.cc/virtual/2023/poster/23795.

S. Jain, H. Tsai, C.-T. Chen, R. Muralidhar, I. Boybat, M. M. Frank, S. Woźniak, M. Stanisavljevic,
P. Adusumilli, P. Narayanan, et al. A heterogeneous and programmable compute-in-memory
accelerator architecture for analog-ai using dense 2-d mesh. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 31(1):114–127, 2022.

7

https://icml.cc/virtual/2023/poster/23795
https://icml.cc/virtual/2023/poster/23795

J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier. Training end-to-end analog
neural networks with equilibrium propagation. arXiv preprint arXiv:2006.01981, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

A. Laborieux and F. Zenke. Holomorphic equilibrium propagation computes exact gradients through
finite size oscillations. Advances in Neural Information Processing Systems, 35:12950–12963,
2022.

A. Laborieux and F. Zenke. Improving equilibrium propagation without weight symmetry through
jacobian homeostasis. arXiv preprint arXiv:2309.02214, 2023.

A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D. Querlioz. Scaling equilibrium
propagation to deep convnets by drastically reducing its gradient estimator bias. Frontiers in
neuroscience, 15:633674, 2021.

C. Lammie, F. Ponzina, Y. Wang, J. Klein, M. Zapater, I. Boybat, A. Sebastian, G. Ansaloni, and
D. Atienza. Lionheart: A layer-based mapping framework for heterogeneous systems with analog
in-memory computing tiles. arXiv preprint arXiv:2401.09420, 2024.

W. Li, M. Manley, J. Read, A. Kaul, M. S. Bakir, and S. Yu. H3datten: Heterogeneous 3-d integrated
hybrid analog and digital compute-in-memory accelerator for vision transformer self-attention.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023.

R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow, R. Urtasun, and R. Zemel. Reviving and
improving recurrent back-propagation. In International Conference on Machine Learning, pages
3082–3091. PMLR, 2018.

S. Liu, C. Mu, H. Jiang, Y. Wang, J. Zhang, F. Lin, K. Zhou, Q. Liu, and C. Chen. Hardsea: Hybrid
analog-reram clustering and digital-sram in-memory computing accelerator for dynamic sparse
self-attention in transformer. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2023.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017.

S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and S. Arora. Fine-tuning language
models with just forward passes. Advances in Neural Information Processing Systems, 36:53038–
53075, 2023.

S. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani, I. Boybat, G. Karunaratne,
R. Khaddam-Aljameh, U. Egger, A. Petropoulos, et al. Mixed-precision deep learning based
on computational memory. Frontiers in neuroscience, 14:406, 2020.

F. J. Pineda. Generalization of back-propagation to recurrent neural networks. Physical review letters,
59(19):2229, 1987.

M. J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli, F. Odermatt, N. Li, S. Nandakumar,
P. Narayanan, H. Tsai, et al. Hardware-aware training for large-scale and diverse deep learning
inference workloads using in-memory computing-based accelerators. Nature communications, 14
(1):5282, 2023.

M. Ren, S. Kornblith, R. Liao, and G. Hinton. Scaling forward gradient with local losses. arXiv
preprint arXiv:2210.03310, 2022.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015.

B. Scellier. A deep learning theory for neural networks grounded in physics. arXiv preprint
arXiv:2103.09985, 2021.

8

B. Scellier. A fast algorithm to simulate nonlinear resistive networks. arXiv preprint
arXiv:2402.11674, 2024.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

B. Scellier and Y. Bengio. Equivalence of equilibrium propagation and recurrent backpropagation.
Neural computation, 31(2):312–329, 2019.

B. Scellier, S. Mishra, Y. Bengio, and Y. Ollivier. Agnostic physics-driven deep learning. arXiv
preprint arXiv:2205.15021, 2022.

B. Scellier, M. Ernoult, J. Kendall, and S. Kumar. Energy-based learning algorithms for analog
computing: a comparative study. Advances in Neural Information Processing Systems, 36, 2024.

A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou. Memory devices and applica-
tions for in-memory computing. Nature nanotechnology, 15(7):529–544, 2020.

K. Spoon, H. Tsai, A. Chen, M. J. Rasch, S. Ambrogio, C. Mackin, A. Fasoli, A. M. Friz, P. Narayanan,
M. Stanisavljevic, et al. Toward software-equivalent accuracy on transformer-based deep neural
networks with analog memory devices. Frontiers in Computational Neuroscience, 15:675741,
2021.

M. Stern, S. Dillavou, D. Jayaraman, D. J. Durian, and A. J. Liu. Physical learning of power-efficient
solutions. arXiv preprint arXiv:2310.10437, 2023.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for modern deep
learning research. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13693–13696, 2020.

Z. Wang, P. S. Nalla, G. Krishnan, R. V. Joshi, N. C. Cady, D. Fan, J.-s. Seo, and Y. Cao. Digital-
assisted analog in-memory computing with rram devices. In 2023 International VLSI Symposium
on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), pages 1–4. IEEE, 2023.

S.-i. Yi, J. D. Kendall, R. S. Williams, and S. Kumar. Activity-difference training of deep neural
networks using memristor crossbars. Nature Electronics, 6(1):45–51, 2023.

C. Zach. Bilevel programs meet deep learning: A unifying view on inference learning methods. arXiv
preprint arXiv:2105.07231, 2021.

N. Zucchet and J. Sacramento. Beyond backpropagation: implicit gradients for bilevel optimization.
arXiv preprint arXiv:2205.03076, 2022.

9

A Appendix

Contents

A.1 Model details . 11

A.1.1 Feedforward-tied EBMs (ff-EBMs) . 11

A.1.2 Feedforward nets as a special case . 11

A.1.3 Equilibrium computation . 11

A.2 Main theoretical result . 14

A.2.1 Proof of Theorem 3.1 . 14

A.2.2 An alternative proof of Theorem 3.1 . 18

A.3 Resulting algorithms . 21

A.3.1 Explicit BP-EP chaining . 21

A.3.2 Recovering backprop through feedforward nets as a special case 21

A.3.3 Detailed implementation of the implicit BP-EP chaining algorithm (Alg. 2) 22

A.4 Static gradient analysis . 24

A.4.1 Static comparison of EP and ID on ff-EBMs 24

A.4.2 Algorithmic baselines . 24

A.4.3 Extending [Ernoult et al., 2019] . 27

A.4.4 Details about Fig. 5 . 29

A.5 Experimental Details . 30

A.5.1 Datasets . 30

A.5.2 Data preprocessing . 30

A.5.3 Simulation details . 30

10

A.1 Model details

A.1.1 Feedforward-tied EBMs (ff-EBMs)

We first formally define Feedforward-tied Energy-based Models (ff-EBMs) with precise assumptions
on the energy-based and feedforward blocks.

Definition A.1 (ff-EBMs). A Feedforward-tied Energy-based Model (ff-EBM) of size N comprises
N twice differentiable feedforward mapping F 1, · · · , FN and N − 1 twice differentiable energy
functions E1, · · · , EN−1 with respect to all their variables. For a given x, the inference procedure
reads as: 

s0 := x
xk
⋆ := F k(sk−1

⋆ , ωk), sk⋆ := argmin
s

Ek(s, θk, xk
⋆) ∀k = 1 · · ·N − 1

ô⋆ := FN (sN−1
⋆ , ωN)

(11)

Finally, we assume that ∀k = 1 · · ·N − 1,∇2
1E

k(sk⋆, θ
k, ωk) is invertible.

A.1.2 Feedforward nets as a special case

We show that when energy-based blocks comprise a single layer only, the ff-EBM becomes purely
feedforward.

Lemma A.1. We consider ff-EBM per Def. (A.1) where the energy functions Ek have the form:

Ek(sk, θk, xk) := Gk(sk)− sk
⊤
· xk + Uk(sk, θk). (12)

We assume that Uk = 0 for k = 1 · · ·N − 1, s→ ∇G(s) is invertible and we denote σ := ∇G−1.
Then, the resulting model is a feedforward model described by the following recursive equations: s0⋆ = x

xk
⋆ = F k(sk−1

⋆ , ωk), sk⋆ = σ(xk
⋆) ∀k = 1 · · ·N − 1

ô⋆ := FN (sN−1
⋆ , ωN)

(13)

Proof of Lemma A.1. Let k ∈ [1, N − 1]. By definition of sk⋆ and xk
⋆:

∇1E
k(sk⋆, θ

k, xk
⋆) = 0

⇔ ∇Gk(sk⋆)− xk
⋆ +∇1U

k(sk⋆, θ
k) = 0

⇔ sk⋆ = σ
(
xk
⋆ −∇1U

k(sk⋆, θ
k)
)

(14)

Therefore Eq. (13) is immediately obtained from Eq. (14) with Uk = 0.

A.1.3 Equilibrium computation

For a single block. As mentioned in Section 3.1, the energy function of the kth EB block has the
form:

Ek(sk, θk, xk) := Gk(sk)− sk
⊤
· xk + Uk(sk, θk), (15)

where xk is the output of the preceding feedforward block. For a given choice of a continuously
invertible activation function, Gk

σ is defined as:

Gk
σ(s

k) :=

dim(sk)∑
i=1

∫ si

σ−1
i (ui)dui such that ∇Gk

σ(s
k)i = σ−1

i (ski) ∀i = 1 · · · dim(sk).

(16)

11

To be more explicit and as we did previously, we re-write the augmented energy-function which
encompasses both the kth EB block and the feedforward module that precedes it:

Ẽk(sk, θk, sk−1
⋆ , ωk) := Ek

(
sk, θk, F k

(
sk−1
⋆ , ωk

))
. (17)

Deep Hopfield Nets (DHNs) as EB blocks. In our experiments, we used weight matrices of the
form:

θk =


0 θk

⊤

1 0

θk1 0 θk
⊤

2

0 θk2
.
. . . 0 θk

⊤

L

θkL 0

 , (18)

whereby each layer ℓ is only connected to its adjacent neighbors. Therefore, fully connected and
convolutional DHNs with L layers have an energy function of the form:

Uk
FC(s

k, θk) := −1

2
sk⊤ · θk · sk = −1

2

∑
ℓ

sk
⊤

ℓ+1 · θkℓ · skℓ (19)

Uk
CONV(s

k, θk) := −1

2
sk •

(
θk ⋆ sk

)
= −1

2

∑
ℓ

skℓ+1 •
(
θkℓ ⋆ skℓ

)
(20)

Synchronous fixed-point iteration. We showed that when G is chosen such that∇G = σ−1 for
some activation function σ, then the steady state of the kth block reads:

sk⋆ := σ
(
xk −∇1U

k(sk⋆, θ
k)
)
, (21)

which justifies the following fixed-point iteration scheme, when the block is influenced by some error
signal δs with nudging strength β:

sk±β,t+1 ← σ
(
xk −∇1U

k(sk±β,t, θ
k)∓ βδsk

)
. (22)

The dynamics prescribed by Eq. 22 are also used for the inference phase with β = 0. To further refine
Eq. (22), let us re-write Eq. (22) with a layer index ℓ where ℓ ∈ [1, Lk] with Lk being the number of
layers in the kth block, and replacing xk by its explicit expression:

∀ℓ = 1 · · ·Lk : skℓ,±β,t+1 ← σ
(
F k

(
sk−1
⋆ , ωk−1

)
−∇skℓ

Uk(sk±β,t, θ
k)∓ βδsk

)
. (23)

As done in past EP works [Ernoult et al., 2019, Laborieux et al., 2021, Laborieux and Zenke, 2022,
2023, Scellier et al., 2024] and for notational convenience, we introduce the primitive function of the
kth block as:

Φk
(
sk, θk, sk−1

⋆ , ωk
)
:= sk

⊤
· F k

(
sk−1
⋆ , ωk

)
− Uk(sk, θk) (24)

such that Eq. (23) re-writes:

∀ℓ = 1 · · ·Lk : skℓ,±β,t+1 ← σ
(
∇skℓ

Φ
(
sk±β,t, θ

k, sk−1
⋆ , ωk

)
∓ βδsk

)
. (25)

Eq. (25) depicts a synchronous scheme where all layers are simultaneously updated at each timestep.

12

Asynchronous fixed-point iteration. Another possible scheme, employed by Scellier et al. [2024],
instead prescribes to asynchronously update odd and even layers and was shown to speed up conver-
gence in practice:

 ∀ odd ℓ ∈ {1, · · · , Lk} : sk
ℓ,±β,t+ 1

2

← σ
(
∇skℓ

Φ
(
sk±β,t, θ

k, sk−1
⋆ , ωk

)
∓ βδsk

)
,

∀ even ℓ ∈ {1, · · · , Lk} : skℓ,±β,t+1 ← σ
(
∇skℓ

Φ
(
sk±β,t+ 1

2

, θk, sk−1
⋆ , ωk

)
∓ βδsk

)
.

(26)

We formally depict this procedure as the subroutine Asynchronous inside Alg. 3. In practice, we
observe that it was more practical to use a fixed number of iterations rather than using a convergence
criterion with a fixed threshold.

Algorithm 3 Asynchronous (for all blocks until penultimate)

Input: T , θk, ωk, sk−1
⋆ , β, δsk

Output: skβ
1: sk ← 0
2: for t = 1 · · ·T do
3: ∀ odd ℓ ∈ {1, · · · , Lk} : skℓ,β ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
4: ∀ even ℓ ∈ {1, · · · , Lk} : skℓ,β ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
5: end for

Resulting ff-EBM inference algorithm. With the aforementioned details in hand, we re-write the
inference algorithm Alg. 1 presented in the main as a Forward subroutine.

Algorithm 4 Forward
Input: T , x, W = {θ1, ω1, · · ·ωN}
Output: s1, · · · , sN−1 or ô depending on the context

1: s0 ← x
2: for k = 1 · · ·N − 1 do
3: sk ← Asynchronous

(
T, θk, ωk, sk−1

)
▷ Alg. 3

4: end for
5: ô← FN

(
s, ωN

)

13

A.2 Main theoretical result

A.2.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is structured as follows:

• We directly solve the multilevel problem optimization defined inside Eq. (6) using a
Lagrangian-based approach (Lemma A.2), yielding optimal Lagrangian multipliers, block
states and loss gradients.

• We show that by properly nudging the blocks, EP implicitly estimates the previously derived
Lagrangian multipliers (Lemma A.3).

• We demonstrate Theorem 3.1 by combining Lemma A.2 and Lemma A.3.

• Finally, we highlight that when a ff-EBM is a feedforward net (Lemma A.1), then the
proposed algorithm reduces to BP (Corollary A.1).

Lemma A.2 (Lagrangian-based approach). Assuming a ff-EBM (Def. A.1), we denote
s1⋆, x

1
⋆, · · · , sN−1

⋆ , ô⋆ the states computed during the forward pass as prescribed by Eq. (11). Then,
the gradients of the objective function C := ℓ(ô(sN−1

⋆), y) as defined in the multilevel optimization
problem (Eq. (6)), where it is assumed that ℓ is differentiable, read:


dωNC = ∂2F

N (sN−1
⋆ , ωN)⊤ · ∂1ℓ(ô⋆, y),

dθkC = ∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1,

dωkC = ∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1,

(27)

where λ1
⋆, · · · , λN−1

⋆ satisfy the following conditions: ∇sN−1ℓ(ô(sN−1
⋆), y) +∇2

1Ẽ
N−1(sN−1

⋆ , θN−1, sN−2
⋆ , ωN−1) · λN−1

⋆ = 0
∀k = N − 2, · · · , 1 :

∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ +∇2
1Ẽ

k
(
sk⋆, θ

k, sk−1
⋆ , ωk

)
· λk

⋆ = 0
(28)

Proof of Lemma A.2. Denoting s := (s1, · · · , sN−1)⊤ the state variables of the energy-based
blocks, λ := (λ1, · · · , λN−1)⊤ the Lagrangian multipliers associated with each of these variables,
W := {θ1, ω1, · · · , θN−1, ωN−1} the energy-based and feedforward parameters and ô(sN−1) :=
FN

(
sN−1, ωN−1

)
the logits, the Lagrangian of the multilevel optimization problem as defined in

Eq. (6) reads:

L(s, λ,W) := ℓ
(
ô(sN−1), y

)
+

N−1∑
k=1

λk⊤
· ∇1Ẽ

k(sk, θk, sk−1, ωk), s0 := x (29)

Writing the associated Karush-Kuhn-Tucker (KKT) conditions ∂1,2L(s⋆, λ⋆,W) := 0 satisfied by
optimal states and Lagrangian multipliers s⋆ and λ⋆, we get :

∇1Ẽ
k(sk⋆, θ

k, sk−1
⋆ , ωk) = 0 ∀k = 1, · · · , N − 1 (30)

∇sN−1ℓ(ô(sN−1
⋆), y) +∇2

1Ẽ
N−1(sN−1

⋆ , θN−1, sN−2
⋆ , ωN−1) · λN−1

⋆ = 0 (31)

∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ +∇2
1Ẽ

k
(
sk⋆, θ

k, sk−1
⋆ , ωk

)
· λk

⋆ = 0 ∀k = N − 2, · · · , 1
(32)

Eq. (30) governs the bottom-up block-wise relaxation procedure (as depicted in Alg. 1), while Eq. (31)
and Eq. (32) governs error propagation in the last block and previous blocks respectively. Given
s⋆ and λ⋆ by Eq. (30) – Eq. (32), the total derivative of the loss function with respect to the model
parameters read:

14

dW ℓ(ô⋆, y) = dW

ℓ (ô⋆, y) +

N−1∑
k=1

λk⊤

⋆ · ∇1Ẽ
k(sk⋆, θ

k, sk−1
⋆ , ωk)︸ ︷︷ ︸

=0 (Eq. (30))


= dWL(s⋆, λ⋆,W)

= dW s⊤⋆ · ∂1L(s⋆, λ⋆,W)︸ ︷︷ ︸
=0 (Eq. (30))

+dWλ⊤
⋆ · ∂2L(s⋆, λ⋆,W)︸ ︷︷ ︸

=0 (Eq. (31)–(32))

+∂3L(s⋆, λ⋆,W)

= ∂3L(s⋆, λ⋆,W) (33)

More precisely, applying Eq. (33) to the feedforward and energy-based block parameters yields:

dωN ℓ(ô⋆, y) = ∂2F
N (sN−1

⋆ , ωN)⊤ · ∇1ℓ(ô⋆, y),

dθkℓ(ô⋆, y) = ∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1

dωkℓ(ô⋆, y) = ∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · λk
⋆ ∀k = 1 · · ·N − 1

Lemma A.3 (Computing Lagrangian multipliers by EP). Under the same hypothesis as Lemma A.2,
we define the nudged state of block k, denoted as skβ , implicitly through∇1Fk(skβ , θ

k, xk
⋆, δs

k, β) = 0
with:

Fk(sk, θk, xk
⋆, δs

k, β) := Ek(sk, θk, xk
⋆) + βsk

⊤
· δsk. (34)

Defining (δsk)k=1···N−1 recursively as:

δsN−1 := ∇sN−1ℓ(ô⋆, y), δsk := dβ

(
∇3Ẽ

k+1
(
sk+1
β , θk+1, sk⋆, ω

k+1
))∣∣∣

β=0
∀k = 1 · · ·N−2,

(35)
then we have:

λk
⋆ = dβ

(
skβ

)
|β=0 ∀k = 1 · · ·N − 1, (36)

where (λk)k=1···N−1 are the Lagrangian multipliers associated to the multilevel optimization problem
defined in Eq. (6).

Proof of Lemma A.3. We prove this result by backward induction on k.

Initialization (k = N − 1). By definition, sN−1
β satisfies :

β∇sN−1ℓ (ô⋆, y) +∇1Ẽ
N−1

(
sN−1
β , θN−1, sN−2

⋆ , ωN−1
)
= 0 (37)

Differentiating Eq. (37) with respect to β and evaluating the resulting expression at β = 0, we obtain:

∇sN−1ℓ (ô⋆, y) +∇2
1Ẽ

N−1
(
sN−1
⋆ , θN−1, sN−2

⋆ , ωN−1
)
· dβsN−1

β |β=0 = 0 (38)

Substracting out Eq. (31) defining the Lagrangian multiplier λN−1
⋆ and Eq. (38), we obtain:

∇2
1Ẽ

N−1
(
sN−1
⋆ , θN−1, sN−2

⋆ , ωN−1
)
·
(
dβs

N−1
β |β=0 − λN−1

⋆

)
= 0 (39)

By invertibility of∇2
1Ẽ

N−1
(
sN−1
⋆ , θN−1, sN−2

⋆ , ωN−1
)
, we therefore have that:

λN−1
⋆ = dβs

N−1
β |β=0 (40)

15

Backward induction step (k + 1→ k). Let us assume that λk+1
⋆ = dβs

k+1
β |β=0. We want to prove

that λk
⋆ = dβs

k
β |β=0. Again, sk+1

β satisfies by definition:

βδsk +∇1Ẽ
k
(
skβ , θ

k, sk−1
⋆ , ωk

)
= 0, δsk := dβ

(
∇3Ẽ

k+1
(
sk+1
β , θk+1, sk⋆, ω

k+1
))∣∣∣

β=0
.

(41)

On the one hand, proceeding as for the initialization step, differentiating Eq. (41) with respect to β
and taking β = 0 yields:

δsk +∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = 0. (42)

On the other hand, note that δsk rewrites :

δsk = dβ

(
∇3Ẽ

k+1
(
sk+1
β , θk+1, sk⋆, ω

k+1
))∣∣∣

β=0

= ∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· dsk+1

β

∣∣∣
β=0

= ∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ , (43)

where we used at the last step the recursion hypothesis. Therefore combining Eq. (42) and Eq. (43),
we get:

∇2
1,3Ẽ

k+1
(
sk+1
⋆ , θk+1, sk⋆, ω

k+1
)
· λk+1

⋆ +∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = 0. (44)

Finally, we substract out Eq. (32) and Eq. (44) to obtain:

∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) ·
(
dβs

k
β |β=0 − λk

⋆

)
= 0. (45)

We conclude again by invertibility of∇2
1Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) that λk
⋆ = dβs

k
β |β=0.

Theorem A.1 (Formal). Assuming a ff-EBM model, we denote s1⋆, x
1
⋆, · · · , sN−1

⋆ , ô⋆ the states
computed during the forward pass as prescribed by Alg. 1. We define the nudged state of block k,
denoted as skβ , implicitly through∇1Fk(skβ , θ

k, xk
⋆, δs

k, β) = 0 with:

Fk(sk, θk, xk
⋆, δs

k, β) := Ek(sk, θk, xk
⋆) + βsk

⊤
· δsk. (46)

Denoting δsk and ∆xk the error signals computed at the input of the feedforward block F k and of
the energy-based block Ek respectively, gθk and gωk the gradients of the loss function:

∀k = 1, · · · , N − 1 : gθk := dθkC, ∀k = 1 · · ·N : gωk := dωkC, (47)
then the following chain rule applies:

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∂2F
N
(
sN−1
⋆ , ωN

)⊤ · ∇1ℓ(ô⋆, y) (48)

∀k = 1 · · ·N − 1 : ∆xk = dβ

(
∇3E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0
, gθk = dβ

(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣∣

β=0

δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk, gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk
(49)

Proof of Theorem A.1. Combining Lemma A.2 and Lemma A.3, the following chain rule computes
loss gradients correctly:

16

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∂2F
N
(
sN−1
⋆ , ωN

)⊤ · ∇1ℓ(ô⋆, y) (50)

∀k = 1 · · ·N − 1 : ∆sk−1 = dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

, gθk = ∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0

gωk = ∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1⋆,ω

k

) · dβskβ |β=0

(51)

Therefore to conclude the proof, we need to show that ∀k = 1, · · · , N − 1:

dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

= ∂1F
k
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0
(52)

∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = dβ
(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣

β=0
(53)

∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0
(54)

Let k ∈ [1, N − 1]. We prove Eq. (52) as:

dβ

(
∇3Ẽ

k
(
skβ , θ

k, sk−1
⋆ , ωk

))∣∣∣
β=0

= dβ
(
∇sk−1Ek

(
skβ , θ

k, F k
(
sk−1
⋆ , ωk

)))∣∣
β=0

= ∂1F
k
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0

Eq. (53) can be obtained as:

∇2
1,2Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = dβ

(
∇2Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)
)∣∣∣

β=0

= dβ
(
∇2E

k(skβ , θ
k, xk

⋆)
)∣∣

β=0

Finally and similarly, we have:

∇2
1,4Ẽ

k(sk⋆, θ
k, sk−1

⋆ , ωk) · dβskβ |β=0 = dβ

(
∇4Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)
)∣∣∣

β=0

= dβ
(
∇ωkEk(skβ , θ

k, F k
(
sk−1
⋆ , ωk

)
)
)∣∣

β=0

= dβ

(
∂2F

(
sk−1
⋆ , ωk

)⊤ · ∇3E
k(skβ , θ

k, xk
⋆)
)∣∣∣

β=0

= ∂2F
(
sk−1
⋆ , ωk

)⊤ · dβ (∇3E
k(skβ , θ

k, xk
⋆)
)∣∣

β=0

17

A.2.2 An alternative proof of Theorem 3.1

An energy function for ff-EBMs? While it is clear that the energy function of a ff-EBM is not
E =

∑N−1
k=1 Ẽk (which would correspond in this case to the “single block” standard case), one may

wonder if:

• ff-EBM inference (Alg. 1) can still be described as the minimization of some energy
function?

• Therefore, if Theorem 3.1 can be derived by directly applying EP to this energy function?

We show below that this is indeed the case. We follow Zach [2021], denoting s :=

(s1
⊤
, · · · , sN−1⊤)⊤ and W = {W1, · · · ,WN−1}, by picking the following energy function:

F (s,W, x, β) :=

N−1∑
k=1

{
Ẽk

(
sk,W k, sk−1

⋆

)
+
[
∇3Ẽ

k+1
(
sk+1,W k+1, sk⋆

)
−∇3Ẽ

k+1
(
sk+1
⋆ ,W k+1, sk⋆

)]⊤
·
(
sk − sk⋆

)}
+ ẼN−1

(
sN−1,WN−1, sN−2

⋆

)
+ βℓ̃(sN−1, y,WN), (55)

where we locally redefine x as the concatenation of all block inputs, i.e. x ←
(x⊤, s1

⊤

⋆ , · · · , sN−2⊤

⋆)⊤, and with s⋆ := (s1
⊤

⋆ , · · · , sN−1⊤

⋆) implicitly defined through
∇1F(s⋆,W, x, β = 0) = 0. In Lemma A.4, we show that the free steady state of the above
energy function (s⋆ obtained with β = 0 inside Eq. (55)) indeed corresponds to the states computed
by the ff-EBM inference scheme (Alg. 1).

Lemma A.4. Let Ẽ1, · · · , ẼN−1 be the block-wise energy functions of a ff-EBM defined per Def. A.1.
Assume s⋆ implicitly defined through∇1F(s⋆,W, β = 0) = 0 where F is defined by Eq. (55). Then:

s0⋆ := x, ∀k = 1, · · ·N − 1 : ∇1Ẽ
k(sk⋆,W

k, sk−1
⋆) = 0 (56)

Proof of Lemma A.4. For k = N − 1, the stationarity condition∇sN−1F(s⋆,W, x, β) yields:

∇1Ẽ
N−1

(
sN−1
⋆ ,WN−1, sN−2

⋆

)
+ 0 = 0. (57)

Then, for any 1 ≤ k < N − 1,∇skF(s⋆,W, x, β) = 0 yields:

∇1Ẽ
k(sk⋆,W

k, sk−1
⋆) +

[
∇3Ẽ

k+1
(
sk+1,W k+1, sk⋆

)
−∇3Ẽ

k+1
(
sk+1
⋆ ,W k+1, sk⋆

)]
︸ ︷︷ ︸

=0

= 0 (58)

Eq. (57) and Eq. (57) indeed correspond to ff-EBM inference as depicted inside Alg. 1.

The EP fundamental Lemma. For self-containedness of this paper, we restate the fundamental EP
result below inside Lemma A.5.
Lemma A.5 ([Scellier, 2021]). Let F(s,W, x, β) be a twice differentiable function of the three
variables s, W and β. For fixed W , x and β, let sβ be a point that satisfies the stationarity condition:

∇1F(sβ ,W, x, β) = 0, (59)

and suppose that ∇2
1F(sβ ,W, x, β) is invertible. Then, in the neighborhood of this point, we can

define a continuously differentiable function (x,W, β)→ sβ such that Eq. (59) holds for any (x,W, β)
in this neighborhood. Furthermore, we have the following identity:

dW (∇βF(sβ ,W, x, β)) = dβ (∇2F(sβ ,W, x, β)) (60)

In particular, Eq. (60) may be evaluated with F = E + βℓ at β = 0 to yield the EP learning rule,
denoting C := ℓ(s⋆, y) [Scellier and Bengio, 2017]:

dWC = dβ (∇2F(sβ ,W, x, β)) |β=0 (61)

18

Theorem 3.1 as a direct application of EP. Now we know Eq. (55) defines a valid energy function
for ff-EBMs and with Lemma A.5 in hand, we are ready to apply EP directly to this energy function.
We rewrite below the block-wise free energy functions at use inside Theorem 3.1 and used in practice
inside Alg. 2 to nudge a block of energy Ẽk given some top-down error signal δk:{

F̃k(sk,W k, sk−1
⋆ , δsk, β) := Ẽk(sk,W k, sk−1

⋆) + βsk
⊤ · δsk,

δsk := dβ

(
∇3Ẽ

k+1
(
skβ ,W

k+1, sk⋆

))∣∣∣
β=0

if k < N − 1 else∇1ℓ̃(s
N−1
⋆ , y,WN)

(62)

In Theorem A.2, we show that the direct application of Lemma A.5 to F as defined inside Eq. (55)
yields the same gradient formula for each parameter W k and the same nudged block states as those
prescribed by Theorem 3.1 for sufficiently small β.
Theorem A.2 (Informal). Let F be defined as in Eq. (55) satisfying the same assumptions as in
Lemma A.5. For fixed W , x and β, let sβ satisfy the stationarity condition:

∇1F(sβ ,W, x, β) = 0.

Then, we have:

dWkC = dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)∣∣∣

β=0
, ∇1F̃k(skβ ,W

k, sk−1
⋆ , δsk, β) = O(β2) (63)

Proof of Theorem A.2. Lemma A.5 yielding:

dWkC = dβ (∇WkF(sβ ,W, x, β))|β=0 ,

proving Eq. (63) amounts to show that:

dβ (∇WkF(sβ ,W, x, β))|β=0 = dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)∣∣∣

β=0
, (64)

∇1F̃k(skβ ,W
k, sk−1

⋆ , δsk, β) = O(β2) (65)

On the one hand, we have:

∇WkF(sβ ,W, x, β) = ∇2Ẽ
k(skβ ,W

k, sk−1
⋆)

+
(
∇2

2,3Ẽ
k(skβ ,W

k, sk−1
⋆)−∇2

2,3Ẽ
k(sk⋆,W

k, sk−1
⋆)

)
·
(
sk−1
β − sk−1

⋆

)
(66)

For notational convenience, we define A(β) :=
(
∇2

2,3Ẽ
k(skβ ,W

k, sk−1
⋆)−∇2

2,3Ẽ
k(sk⋆,W

k, sk−1
⋆)

)
.

Note that A(β = 0) = 0. Differentiating Eq. (66) with respect to β and taking β = 0 yields:

dβ (∇WkF(sβ ,W, x, β)) |β=0 = dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)
|β=0

+ dβA(β)|β=0 ·
(
sk−1
β=0 − sk−1

⋆

)
︸ ︷︷ ︸

=0

+A(0)︸︷︷︸
=0

·
(
sk−1
β − sk−1

⋆

)
= dβ

(
∇2Ẽ

k(skβ ,W
k, sk−1

⋆)
)
|β=0,

which proves Eq. (64).

On the other hand, the stationary condition∇skF(sβ ,W, x, β) on the last block (k = N − 1) yields:

∇1Ẽ
N−1(sN−1

β ,WN−1, sN−2
⋆) + β∇1ℓ̃(s

N−1
β , y,WN) = 0

⇒∇1Ẽ
N−1(sN−1

β ,WN−1, sN−2
⋆) + β∇1ℓ̃(s

N−1
⋆ , y,WN) = O(β2)

⇔∇1F̃N−1(sN−1
β ,WN−1, sN−2

⋆ , δsN , β) = O(β2). (67)

19

For previous blocks, i.e. k < N − 1, we have:

∇skF(sβ ,W, x, β) = 0

⇔∇1Ẽ
k(skβ ,W

k, sk−1
⋆) +∇3Ẽ

k+1
(
sk+1
β ,W k+1, sk⋆

)
−∇3Ẽ

k+1
(
sk+1
⋆ ,W k+1, sk⋆

)
= 0

⇒∇1Ẽ
k(skβ ,W

k, sk−1
⋆) + dβ

(
∇3Ẽ

k+1
(
sk+1
β ,W k+1, sk⋆

))∣∣∣
β=0

= O(β2)

⇔∇1F̃k(skβ ,W
k, sk−1

⋆ , δsk, β) = O(β2). (68)

Altogether, Eq. (67) and Eq. (68) finishes to prove Eq. (65).

20

A.3 Resulting algorithms

A.3.1 Explicit BP-EP chaining

We presented in Alg. 2 a “pure” EP algorithm where the BP-EP gradient chaining is implicit. We
show below, inside Alg. 5, an alternative implementation (equivalent in the limit β → 0) where
the use of BP through feedforward modules is explicit and which is the direct implementation of
Theorem A.1. We also show the resulting algorithm when the ff-EBM reduces to a feedforward
net (Lemma A.1) inside Alg. 7, highlight in blue the statements which differ from the general case
presented inside Alg. 5.

Algorithm 5 Explicit BP-EP gradient chaining (Theorem (3.1))

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: sβ ← Optim

s

[
Ek(s, θk, xk

⋆) + βs⊤ · δs
]

▷ EP through Ek

4: s−β ← Optim
s

[
Ek(s, θk, xk

⋆)− βs⊤ · δs
]

5: gθk ← 1
2β

(
∇2E

k(sβ , θ
k, xk

⋆)−∇2E
k(s−β , θ

k, xk
⋆)
)

6: ∆x← 1
2β

(
∇3E

k(sβ , θ
k, xk

⋆)−∇3E
k(s−β , θ

k, xk
⋆)
)

7: gωk ← ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆x ▷ Explicit BP through F k

8: δs← ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆x
9: end for

A.3.2 Recovering backprop through feedforward nets as a special case

Corollary A.1. Under the same hypothesis as Theorem A.1 and Lemma A.1, then the following chain
rule applies to compute error signals backward from the output layer:

δsN−1 := ∇sN−1ℓ(ô⋆, y), gωN = ∇ωN ℓ(ô⋆, y)
∆xk = σ′(xk

⋆)⊙ δsk

δsk−1 = ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk, gωk = ∂2F
k
(
sk−1
⋆ , ωk

)⊤ ·∆xk

(69)

Proof of Corollary A.1. Let k ∈ [1, N − 1]. As we can directly apply Theorem A.1 here, proving
the result simply boils down to showing that:

∆xk = σ′(xk
⋆)⊙ δsk (70)

First, we notice that when Ek is of the form of Eq. (12), then ∆xk reads as:

∆xk = dβ
(
∇3E

k(skβ , θ
k, xk

⋆)
)∣∣

β=0
= − dβ

(
skβ

)∣∣
β=0

. (71)

skβ satisfies, by definition and when Uk = 0:

σ−1(skβ)− xk
⋆ + βδsk = 0

⇔ skβ = σ
(
xk
⋆ − βδsk

)
(72)

Combining Eq. (71) and Eq. (72) yields Eq. (70), and therefore, along with Theorem A.1, the
chain-rule Eq. (69).

We showcase in Alg. 6 and Alg. 7 the resulting algorithms implicit and explicit BP-EP chaining
respectively, with lines in blue highlighting differences with the general algorithm Alg. 2.

21

Algorithm 6 Implicit BP-EP gradient chaining with Uk = 0

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: sβ , s−β ← σ

(
xk
⋆ − βδsk

)
, σ

(
xk
⋆ + βδsk

)
▷ EP through Ẽk

4: gωk ← 1
2β

(
∇4Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇4Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
▷ i-BP through F k

5: δs← 1
2β

(
∇3Ẽ

k(sβ , θ
k, sk−1

⋆ , ωk)−∇3Ẽ
k(s−β , θ

k, sk−1
⋆ , ωk)

)
6: end for

Algorithm 7 Explicit BP-EP gradient chaining with Uk = 0

1: δs, gωN ← ∇sN−1ℓ(ô⋆, y),∇ωN ℓ(ô⋆, y) ▷ Single backprop step
2: for k = N − 1 · · · 1 do
3: ∆x← − 1

2β

(
σ
(
xk
⋆ − βδsk

)
− σ

(
xk
⋆ + βδsk

))
4: gωk ← ∂2F

k
(
sk−1
⋆ , ωk

)⊤ ·∆x ▷ Explicit BP through F k

5: δs← ∂1F
k
(
sk−1
⋆ , ωk

)⊤ ·∆x
6: end for

A.3.3 Detailed implementation of the implicit BP-EP chaining algorithm (Alg. 2)

Nudging the last block. From looking at the procedure prescribed by Theorem 3.1 and algorithms
thereof (Alg. 2, Alg. 5), all the error signals used to nudge the EB blocks are stationary, including the
top-most block where the loss error signal is fed in. Namely, the augmented energy function of the
last block reads as:

FN−1(sN−1, θN−1, xN−1
⋆ , β) := EN−1(sN−1, θN−1, xN−1

⋆) + βsN−1⊤ · ∇sN−1ℓ(ô⋆, y), (73)

where ô⋆ := FN
(
sN−1
⋆ , ωN

)
is constant. Up to a constant, Eq. (74) uses the cost function linearized

around sN−1
⋆ instead of the cost function itself. This is, however, in contrast with most EP implemen-

tations where the nudging force acting upon the EB block is usually elastic, i.e. the nudging depends
on the current state of the EB block. More precisely, instead of using Eq. (73), we instead use:

FN−1(sN−1, θN−1, xN−1
⋆ , β) := EN−1(sN−1, θN−1, xN−1

⋆) + βℓ(FN (sN−1, ωN), y), (74)

This results in the following asynchronous fixed-point dynamics for the last block:

 ∀ odd ℓ ∈ {1, · · · , Lk} : sk
ℓ,±β,t+ 1

2

← σ
(
∇skℓ

Φ
(
sk±β,t, θ

k, sk−1
⋆ , ωk

)
∓ β∇skℓ(s

k
±β,t, y)

)
,

∀ even ℓ ∈ {1, · · · , Lk} : skℓ,±β,t+1 ← σ
(
∇skℓ

Φ
(
sk±β,t+ 1

2

, θk, sk−1
⋆ , ωk

)
∓ β∇skℓ(s

k
±β,t, y)

)
.

The resulting Asynchronous subroutine, applying for the last block, is depicted inside Alg. 8.

Readout. Laborieux et al. [2021] introduced the idea of the “readout” whereby the last linear layer
computing the loss logits is not part of the EB free block dynamics but simply “reads out” the state of
the penultimate block. In all our experiments we use such a readout in combination with the cross
entropy loss function. Using our formalism, our readout is simply the last feedforward transformation
used inside ℓ, namely FN (·, ωN).

Detailed implicit EP-BP chaining algorithm. We provide a detailed implementation of our
algorithm presented in the main (Alg. 2) in Alg. 11. As usually done for EP experiments, we
always perform a “free phase” to initialize the block states (Forward subroutine, Alg. 4). Then, two

22

Algorithm 8 Asynchronous (for last block)

Input: T , θN−1, ωN−1, ωN , sk−1
⋆ , β, ℓ (cost function), y

Output: sN−1
β

1: sN−1 ← 0
2: for t = 1 · · ·T do
3: ∀ odd ℓ ∈ {1, · · · , LN}:
4: sN−1

ℓ,β ← σ
(
∇sN−1

ℓ
Φ
(
sN−1
β , θN−1, sN−2

⋆ , ωN−1
)
− β∇sN−1

ℓ
ℓ(FN (sN−1, ωN), y)

)
5: ∀ even ℓ ∈ {1, · · · , LN}:
6: sN−1

ℓ,β ← σ
(
∇sN−1

ℓ
Φ
(
sN−1
β , θN−1, sN−2

⋆ , ωN−1
)
− β∇sN−1

ℓ
ℓ(FN (sN−1, ωN), y)

)
7: end for

nudged phases are applied to the last block and parameter gradients subsequently computed, as done
classically (BlockGradient subroutine for the last block, Alg. 9), with an extra computation to
compute the error current to be applied to the penultimate block (δsN−2). Then, the same procedure
is recursed backward through blocks (Alg. 10), until reaching first block.

Algorithm 9 BlockGradient (for last block)
Input: T , sN−2

⋆ , θN−1, ωN−1, ωN , β, ℓ, y
Output:δsN−2

1: sN−1
β ← Asynchronous

(
T, θN−1, ωN−1, ωN , β, ℓ, y

)
▷ Alg. 8

2: sN−1
−β ← Asynchronous

(
T, θN−1, ωN−1, ωN ,−β, ℓ, y

)
3: gωN ← 1

2

(
∇sN−1ℓ(FN

(
sN−1
β , ωN

)
) +∇sN−1ℓ(FN

(
sN−1
−β , ωN

)
)
)

4: gθN−1 ← 1
2β

(
∇2Ẽ

N−1(sN−1
β , θN−1, sN−2

⋆ , ωN−1)−∇2Ẽ
N−1(sN−1

−β , θN−1, sN−2
⋆ , ωN−2)

)
5: gωN−1 ← 1

2β

(
∇4Ẽ

N−1(sN−1
β , θN−1, sN−2

⋆ , ωN−1)−∇4Ẽ
N−1(sN−1

−β , θN−1, sN−2
⋆ , ωN−2)

)
6: δsN−2 ← 1

2β

(
∇3Ẽ

N−1(sN−1
β , θN−1, sN−2

⋆ , ωN−1)−∇3Ẽ
N−1(sN−1

−β , θN−1, sN−2
⋆ , ωN−2)

)

Algorithm 10 BlockGradient (for all blocks until penultimate)
Input: T , sk−1

⋆ , θk, ωk, β, δs
Output:δsk−1

1: skβ ← Asynchronous
(
T, θk, ωk, β, δs

)
▷ Alg. 3

2: sk−β ← Asynchronous
(
T, θk, ωk,−β, δs

)
3: gθk ← 1

2β

(
∇2Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)−∇2Ẽ
k(sk−β , θ

k, sk−1
⋆ , ωk)

)
4: gωk ← 1

2β

(
∇4Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)−∇4Ẽ
k(sk−β , θ

k, sk−1
⋆ , ωk)

)
5: δsk−1 ← 1

2β

(
∇3Ẽ

k(skβ , θ
k, sk−1

⋆ , ωk)−∇3Ẽ
k(sk−β , θ

k, sk−1
⋆ , ωk)

)

Algorithm 11 Detailed implicit BP-EP gradient chaining

1: s1⋆, · · · , sN−1
⋆ ← Forward (Tfree, x,W) ▷ Alg. 4

2: δs← BlockGradient
(
Tnudge, s

N−2
⋆ , θN−1, ωN−1, ωN , β, ℓ, y

)
▷ Alg. 9

3: for k = N − 2 · · · 1 do
4: δs← BlockGradient

(
Tnudge, s

k−1
⋆ , θk, ωk, β, δs

)
▷ Alg. 10

5: end for

23

A.4 Static gradient analysis

Important foreword. The whole subsection is dedicated to an important tool when developing
code for EP research. While EP is agnostic to how the steady states are obtained – the EP theory only
prescribes they are energy minimizers – they can be obtained in practice (i.e. in simulations) through
fixed-point iteration schemes (see Appendix A.1.1). The below formally defines the computational
graph spanned by these schemes and abstract them away into a transition function K and defines three
different techniques to compute gradients on this graph: Automatic Differentiation (AD, Prop. A.1),
Implicit Differentiation (ID, Def. A.3) or Equilibrium Propagation (EP, Def. A.4). After defining
each of these algorithms formally, we will state and demonstrate an equivalence between EP and ID
(Theorem A.4) which we test numerically and relied upon for the development of our codebase.

A.4.1 Static comparison of EP and ID on ff-EBMs

In order to study the transient dynamics of ID and EP, we define, with W k := {θk, ωk}:{
ĝIDWk(t) :=

∑T
k=0 dWk(T−k)C(x,W k, y),

ĝEP
Wk(β, t) :=

1
2β

(
∇WkẼk(skβ,t,W

k, sk−1
⋆)−∇WkẼk(sk−β,t,W

k, sk−1
⋆)

)
,

(75)

where sk±β,t is computed with the nudging error current δsk computed with Alg. 2, and T is the total
number of iterations used for both ID and EP in the gradient computation phase.

Figure 5: EP and ID partially computed gradients ((ĝEP
w (t))t≥0 in black dotted curves and (ĝIDw (t))t≥0

in plain colored curves) going backward through equilibrium for ID and forward through the nudging
phase for EP [Ernoult et al., 2019] for a random sample x and associated label y. The ff-EBM
comprises 6 blocks and 15 layers in total, with block sizes of either 2 or 3 layers. Each sub-panel
represents a layer (labeled on the y-axis) with each curve corresponding to a randomly selected
weight. “Backward” time is indexed from t = 0 to T = 120, starting from block 6 backward to block
1, with 20 fixed-point iteration dynamics being used for both EP and ID within each block.

For a given block k, dWk(T−k)C(x,W, y) is the “sensitivity” of the loss C to parameter W k at timestep
T − k so that ĝIDWk(t) is a ID gradient truncated at T − t. Fig. 6 depicts the computational graph
that is differentiated through when using ID and shows where ĝIDWk(t) are obtained correspondingly.
Similarly, ĝEP

Wk(t) is an EP gradient truncated at t steps forward through the nudged phase. When T

is sufficiently large, ĝIDWk(T) and ĝEP
Wk(T) converge to dWkC(x,W, y). Fig. 5 displays (ĝIDWk(t))t≥0

and (ĝEP
Wk(t))t≥0 on an heterogeneous ff-EBM of 6 blocks and 15 layers (16 if counting the last linear

“readout” layer computing the logits) with blocks comprising 2 or 3 layers for a randomly selected
sample x and its associated label y – see caption for a detailed description. It can be seen EP and
ID error weight gradients qualitatively match very well throughout time, across layers and blocks.
We also display the cosine similarity between the final EP and ID weight gradient estimate ĝIDWk(T)

and ĝEP
Wk(T) for each layer and observe that EP and ID weight gradients are near perfectly aligned.

Theorem A.3 generalizes the equivalence between EP and ID to ff-EBMs [Ernoult et al., 2019].

Theorem A.3 (Informal). Assuming ∀k = 1 · · ·N − 1 : sk0 = · · · = skτ = sk⋆:

∀k = 1 · · ·N − 1, ∀t = 0 · · · τ : ĝAD
Wk(t) = ĝIDWk(t) = lim

β→0
ĝEP
Wk(β, t) (76)

A.4.2 Algorithmic baselines

Definition of the computational graph being optimized. We abstract fixed-point iteration dynam-
ics away into a kernel function K which, given some block state skt yields skt+1.

24

... ...

Figure 6: Light grey: computational graph associated with ff-EBM inference (Alg. 1) when applying
fixed-point iteration to compute equilibrium states within each block (Eq. (??)) where the node skt
denotes the state of block k (comprising several layers) at timestep t. Blue arrows: backward auto-
matic differentiation (AD) through the computational graph where ĝIDWk(t) is the partially computed
gradient truncated at T − t. Since the states which are differentiated through are taken at equilibrium
(skt = sk⋆ ∀t = 0 · · · τ) this instantiation of AD can be viewed as Implicit Differentiation (ID).

Definition A.2 (Form of the computational graph through equilibrium).

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ :

x0 = x, skt = K(skt−1,W
k
t−1 = W k, xk = sk−1

τ), C = ℓ(FN (sN−1
τ , ωN), y) := ℓ̃(sN−1, y)

(77)

Note that we emphasize, through the W k
t−1 = W k notation, that the parameters W k are shared across

all timesteps t = 1, · · · , τ . This will help us define loss gradient with respect to W k
t−1 further below,

i.e. how much W k contributes at time t − 1 to changing the loss C. The total contribution of W k

reads as the sum of the elemental contributions of all W k
t . This intuition is more precisely illustrated

further below. Given the computational graph defined in Def. A.2, we can now formally define the
Automatic Differentiation (AD) baseline.

Automatic Differentiation (AD). Our goal is to compute:

gAD
Wk := ĝAD

Wk(τ) with: ĝAD
Wk(t) :=

t∑
k=1

∂Wk
τ−k
C (78)

In plain words, ĝAD
Wk(t) denotes the loss gradient for parameter W k truncated at the tth step moving

backward in time. We formally define below Automatic Differentiation (AD).

Proposition A.1 (Automatic Differentiation (AD)). The gradients ĝAD
Wk(t) can be computed using the

following recursive equations:

∀k = N − 1 · · · 1 :

δsk0 = δxk+1
τ if k < N − 1 else ∇1ℓ̃(s

N−1
τ , y)

δxk
0 = 0, ĝAD

Wk(0) = 0

∀t = 1, · · · , τ : δskt = ∂1K(skτ−t,W
k, xk = sk−1

τ)⊤ · δsk−1
t−1

ĝAD
Wk(t) = ĝAD

Wk(t− 1) + ∂2K(skτ−t,W
k, xk = sk−1

τ)⊤ · δskt−1

δxk
t = δxk

t−1 + ∂3K(skτ−t,W
k, xk = sk−1

τ)⊤ · δskt−1

(79)

Proof of Prop. A.1. This is a straightforward application of the chain rule applied to Eq. (77).

Implicit Differentiation (ID). We define the steady state of block k, which we denote sk⋆ , as the
fixed point of Eq. (77). With this notation in hand, we can define Implicit Differentiation (ID) in this
setting.

25

Definition A.3 (Implicit Differentiation (ID)). Denoting sk⋆ the fixed point of Eq. (77) inside block k,
we define Implicit Differentiation (ID) through the following recursive equations:

∀k = N − 1 · · · 1 :

δsk0 = δxk+1
τ if k < N − 1 else∇1ℓ̃(s

N−1
τ , y)

δxk
0 = 0, ĝIDWk(0) = 0

∀t = 1, · · · , τ : δskt = ∂1K(sk⋆,W
k, xk = sk−1

⋆)⊤ · δsk−1
t−1

ĝIDWk(t) = ĝIDWk(t− 1) + ∂2K(sk⋆,W
k, xk = sk−1

⋆)⊤ · δskt−1

δxk
t = δxk

t−1 + ∂3K(sk⋆,W
k, xk = sk−1

⋆)⊤ · δskt−1

(80)

We are now ready to state a simple algorithmic equivalence between ID and AD, which we built upon
for our implementation of Alg. 12.

Corollary A.2 (Equivalence of ID and AD). Assuming that:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : skt = sk⋆, (81)

where sk⋆ denotes the fixed-point of Eq. 77, then automatic differentiation (Prop. A.1) and implicit
differentiation (Def. A.3) are equivalent, namely:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : ĝIDWk(t) = ĝAD
Wk(t) (82)

Proof of Corollary A.2. This is a straightforward application of the definition of AD (Prop. A.1 along
with the hypothesis made inside Corollary A.2.

Resulting implementation of ID. We describe our implementation of ID inside Alg. 12. First, we
relax all blocks sequentially to equilibrium following Alg. 4 and we do not track gradients throughout
this first phase, using Tfree fixed-point iteration steps per block. Then, initializing the block states
with those computed at the previous step, we re-execute the same procedure (still with Alg. 4), this
time tracking gradients and using Tnudge steps fixed-point iteration steps for each block. Then, we
use automatic differentiation to backpropagate through the last Tnudge steps for each block, namely
backpropagating, backward in time, through equilibrium.

Algorithm 12 Our implementation of ID

1: Without tracking gradients: ▷ e.g. with torch.no_grad()
2: s1⋆, · · · , sN−1

⋆ ← Forward (Tfree, x,W) ▷ Alg. 4
3: Initialize block states at s1⋆, · · · , sN−1

⋆
4: ô⋆ ← Forward (Tnudge, x,W) ▷ This time gradients are tracked
5: C ← ℓ(ô⋆, y)
6: Backpropagate C backward through the last Tnudge steps for each block ▷ e.g. C.backward()

An important note about this implementation of ID. Note that this is not a standard implementa-
tion of ID and it may be surprising at first glance to implement ID as AD, thereby loosing the constant
O(1) memory cost of ID with respect to the length of the computational graph. Instead, the memory
cost of Alg. 12 is O((N − 1)τ) 6. However, our goal is not so much to optimize for memory usage
(as in the context of Deep Equilibrium Models [Bai et al., 2019]) but to code an algorithmic baseline
which we know to be equivalent to EP. Lastly, note that this implementation of ID is also known as
Recurrent Backprop (RBP, [Almeida, 1987, Pineda, 1987]) or Von-Neumann RBP [Liao et al., 2018],
and that ID generally comes in many more algorithmic flavors [?].

6We are not accounting for the spatial depth (L) of the computational graph in this cost. In this case, standard
ID would have memory cost O(L) and our implementation inside Alg. 12 O(L(N − 1)τ).

26

A.4.3 Extending [Ernoult et al., 2019]

In order to state a formal equivalence between EP and ID, we first need to formally define EP in the
context of the aforementioned computational graph defined in Def. A.2.

Definition A.4 (Equilibrium Propagation (EP)). Denoting sk⋆ the fixed point of Eq. (77) inside block k
and assuming that the transition kernel K has the form K(s,W k, xk) = ∇1Φ(s,W

k, xk), we define
Equilibrium Propagation (EP) through the following recursive equations:

∀k = N − 1 · · · 1 :

δsk = ∆xk+1
τ if k < N − 1 else∇1ℓ̃(s

N−1
τ , y)

∆xk
0 = 0, ĝEP

Wk(0) = 0, skβ,t=0 = sk⋆

∀t = 1, · · · , τ :
skβ,t+1 = ∇1Φ(s

k
β,t,W

k, xk = sk−1
⋆)− βδsk

ĝEP
Wk(β, t) = − 1

2β

(
∇2Φ(s

k
β,t+1,W

k, xk = sk−1
⋆)−∇2Φ(s

k
−β,t+1,W

k, xk = sk−1
⋆)

)
∆xk

β,t = − 1
2β

(
∇3Φ(s

k
β,t+1,W

k, xk = sk−1
⋆)−∇3Φ(s

k
−β,t+1,W

k, xk = sk−1
⋆)

)
Now that we have properly defined ID and EP, we are ready to state the main result of this section
about the algorithmic equivalence between ID and EP which our coding work significantly built upon.
Theorem A.4 (Extension of [Ernoult et al., 2019] to ff-EBMs). Assuming that:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : skt = sk⋆, (83)

where sk⋆ denotes the fixed-point of Eq. (77) and that the transition kernel K has the form
K(s,W k, xk) = ∇1Φ(s,W

k, xk), then implicit differentiation (Def. A.3) and equilibrium prop-
agation (Def. A.4) are equivalent in the limit β → 0, namely:

∀k = 1, · · · , N − 1, ∀t = 1, · · · , τ : lim
β→0

ĝEP
Wk(β, t) = ĝIDWk(t) (84)

Proof of Theorem A.4. This proof follows the exact same methodology as that of Ernoult et al. [2019].
For self-containedness though and because of some subtle differences, we carry out here the derivation.
We first define:

∆skt := dβs
k
t+1|β=0 − dβs

k
t |β=0. (85)

Note that since skβ,t=0 = s⋆, dβskt |β=0 = 0 since s⋆ does not depend on θ. Furthermore, note that
by differentiating the equation satisfied by skβ,t+1 with respect to β and evaluating the resulting
expressions at β = 0 yields:

dβs
k
β,t+1|β=0 = ∂1K(sk⋆,W

k, xk = sk−1
⋆) · dβskβ,t|β=0 − δsk (86)

In particular, evaluating Eq. (86) for t = 0 yields:

∆sk0 = dβs
k
β,1|β=0 − dβs

k
β,0|β=0︸ ︷︷ ︸
=0

= −δsk. (87)

Therefore, substracting Eq. (86) across two timesteps yields altogether:

∆skt = ∂1K(sk⋆,W
k, xk = sk−1

⋆) ·∆skt−1

= ∇2
1Φ(s

k
⋆,W

k, xk = sk−1
⋆) ·∆skt−1

= ∇2
1Φ(s

k
⋆,W

k, xk = sk−1
⋆)⊤ ·∆skt−1

= ∂1K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·∆skt−1 (88)

27

Note that ĝEP
Wk(t) rewrites:

ĝEP
Wk(β, t) = −dβ

(
∇2Φ(s

k
β,t+1,W

k, xk = sk−1
⋆)

)
+O(β2)

= −∇2
1,2Φ(s

k
⋆,W

k, xk = sk−1
⋆) · dβskβ,t+1|β=0 +O(β2)

= −∇2
1,2Φ(s

k
⋆,W

k, xk = sk−1
⋆) ·∆skt −∇2

1,2Φ(s
k
⋆,W

k, xk = sk−1
⋆) · dβskβ,t|β=0 +O(β2)

= −∇2
1,2Φ(s

k
⋆,W

k, xk = sk−1
⋆)︸ ︷︷ ︸

=∇2
2,1Φ(sk⋆,W

k,xk=sk−1
⋆)⊤

·∆skt + ĝEP
Wk(β, t− 1) +O(β2)

= ∂2K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·
(
−∆skt

)
+ ĝEP

Wk(β, t− 1) +O(β2) (89)

Likewise, we can show that:

∆xk
β,t = ∂3K(sk⋆,W

k, xk = sk−1
⋆)⊤ ·

(
−∆skt

)
+∆xk

β,t−1 +O(β2) (90)

Altogether, Eq. (87), Eq. (88) Eq. (89) and Eq. (90) yield, denoting ĝEP
Wk(t) := limβ→0 ĝ

EP
Wk(β, t)

and ∆xk
t := limβ→0 ∆xk

β,t:

∀k = N − 1, · · · , 1 :

−∆sk0 = δsk = ∆xk+1
τ if k < N − 1 else ∇1ℓ̃(s

N−1
τ , y), ĝEP

Wk(0) = 0, ∆xk
0 = 0 (91)

∀t = 1, · · · , τ : −∆skt = ∂1K(sk⋆,W
k, xk = sk−1

⋆)⊤ · (−∆skt−1)
ĝEP
Wk(t) = ĝEP

Wk(t− 1) + ∂2K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·
(
−∆skt

)
∆xk

t = ∂3K(sk⋆,W
k, xk = sk−1

⋆)⊤ ·
(
−∆skt

)
+∆xk

t−1

(92)

Starting from k = N − 1, (−∆sN−1
t)t∈J1,τK and (δsN−1

t)t∈J1,τK, (∆xN−1
t)t∈J1,τK and

(δxN−1)t∈J1,τK, (ĝEP
WN−1(t))t∈J1,τK and (ĝIDWN−1(t))t∈J1,τK satisfy the same initial conditions and

recursive equations, therefore there are all (pair-wise) equal for t = 1, · · · , τ . Therefore in particular,
∆xN−1

τ = δxN−1
τ such that (−∆sN−2

t)t∈J1,τK and (δsN−2
t)t∈J1,τK from the previous (N − 2)th

block satisfy the same initial conditions, such that the reasonning applying to k = N − 1 recurses for
k < N − 1, which yields Eq. (84).

28

A.4.4 Details about Fig. 5

Precise hyperparameters to reproduce Fig. 5 can be found inside our repository. Fig. 7 precisely
depict the architecture at use for these experiments.

Conv-64

BatchNorm

Conv-128

BatchNorm

Pool

Conv-128

Conv-256

BatchNorm

Pool

Conv-256

Conv-256

Conv-512

BatchNorm

Pool

Conv-512

BatchNorm

Pool

Conv-512

BatchNorm

Linear

Conv-512

Conv-512

Conv-512

Conv-512

Linear

Conv-64

Figure 7: Architecture used for the static gradient analysis. The color code used to label layers
matches that of Fig. 5. In the context of the static gradient analysis, “block” k is defined as all layers
participating in Ẽk, which therefore includes F k and Ek modules (rather than one of these taken
alone).

29

A.5 Experimental Details

A.5.1 Datasets

Simulations were run on CIFAR-10, CIFAR-100 and Imagenet32 datasets, all consisting of color
images of size 32× 32 pixels. CIFAR-10 [Krizhevsky, 2009] includes 60,000 color images of objects
and animals. Images are split into 10 classes, with 6,000 images per class. Training data and test data
include 50,000 images, and 10,000 images respectively. CIFAR-100 [Krizhevsky, 2009] likewise
comprises 60,000 and features a diverse set of objects and animals split into 100 distinct classes.
Each class contains 600 images. Like CIFAR-10, the dataset is divided into a training set with 50,000
images and a test set containing the remaining 10,000 images. The ImageNet32 dataset [Chrabaszcz
et al., 2017] is a downsampled version of the original ImageNet dataset Russakovsky et al. [2015]
containing 1,000 classes with 1,281,167 training images, 50,000 validation images, 100,000 test
images and 1000 classes.

A.5.2 Data preprocessing

All data were normalized according to statistics shown in 2 and augmented with 50% random
horizontal flips. Images were randomly cropped and padded with the last value along the edge of the
image.

Table 2: Data Normalization. Input images were normalized by conventional mean (µ) and standard
deviation (σ) values for each dataset. All images used are color (three channels).

Dataset Mean (µ) Standard deviation (σ)

CIFAR-10/100 (0.4914, 0.4822, 0.4465) (0.2470, 0.2435, 0.2616)
Imagenet32 (0.485, 0.456, 0.406) (0.3435, 0.336, 0.3375)

A.5.3 Simulation details

Weight initialization. EP, similar to other machine learning paradigms reliant on fixed-point
iteration [Bai et al., 2019], is highly sensitive to initialization statistics [Agarwala and Schoenholz,
2022], hence conventionally difficult to tune, and requiring many iterations for the three relaxation
phases. Initialization of weights as Gaussian Orthogonal Ensembles (GOE) ensures better stability
(reduced variance) and, combined with other stabilizing measures discussed below, empirically yields
faster convergence.
According to GOE, weights are intialized as:

Wij ∼
{
N (0, V

N), if i ̸= j

N (0, 2V
N), if i = j

where N (µ, σ2) denotes a Gaussian (normal) distribution with mean µ and variance σ2. N was
manually tuned for each architecture.

State initialization. All layers are initialized as zero matrices.

Activation functions. An important detail for faithful reproduction of these experiments is the
choice and placement of activation functions applied during the iterative fixed-point procedure. In the
literature, activations (i.e. “clamping”) is conventionally applied at each layer, with the exception
of the final layer, where it is sometimes included e.g. Scellier et al. [2024], and sometimes omitted
Laborieux et al. [2021], depending on the loss function at use. For these experiments we used both
the standard hard activation employed by Ernoult et al. [2019] and Scellier et al. [2024], and the more
conservative one given in [Laborieux et al., 2021]. For the tolerance based and splitting experiments,
we generalize the approach of Laborieux et al. [2021], by scaling values by a variable factor α instead
of a fixed value 0.5 . Details are given in Table 3.

In practice, we find that the smaller scaling factors corresponding with the “laborieux” activation,
in conjunction with GOE, and the omission of clamping at the output of each block significantly

30

Table 3: Activation functions
Name Description Source

ernoult σ(x) = max(min(x, 1), 0) [Ernoult et al., 2019]
laborieux σ(x) = max(min(0.5× x, 1), 0) [Laborieux et al., 2021]
nest σ(x) = max(min(α× x, 1), 0) This work

enhances gradient stability and speeds convergence in deep multi-block settings. In the interest of
multi-scale uniformity and consistency with previous literature [Laborieux et al., 2021] Ernoult et al.
[2019], we apply clamping activations on all layers in our 6-layer architecture.

For the scaling experiments, we apply the “laborieux” activation at every layer except the output of
each block. For the 12-layer splitting experiment, we do the same, omitting clamping from the output
of the final layer of each block in the block-size=4 and block-size=3 experiments. However, in the
block-size=2 case we clamp the output of the second and fourth blocks to preserve dynamics of the
block-size=4 split. Such consistency is not possible for the block-size=3 experiment, constituting a
possible discrepancy in dynamics.

Cross-entropy loss and softmax readout. Following [Laborieux et al., 2021], all models were
implemented such that the output y is removed from the system (e.g. not included in the relaxation
dynamics) but is instead the function of a weight matrix: Wout of size dim(y)× dim(s), where s is
the state of the final layer. For each time-step t, ŷt = softmax(Woutst).

The cross-entropy cost function associated with the softmax readout is then:

l(s, y,Wout) = −
C∑

c=1

yc log(softmaxc(Wout · s)).

Convention to count layers. It is important to note that by convention we refer to architectures
throughout this text to the exclusion of the softmax readout, which is technically an additional layer,
though not involved in the relaxation process.

Architecture. All convolutional layers used in experiments are of kernel size 3 and stride and
padding 1. Max-pooling was applied with a window of 2× 2 and stride of 2. For the 6-layer model
used in Table ?? , batchnorm was applied after the first layer convolution and pooling operation.
All other models in both experiments use batch-normalization on the first layer of each block after
convolution and pooling (where applied). These details exclude the linear softmax readout of size n
classes.

Hyperparameters. Detailed hyperparameters for to reproduce Table ?? and Table 1 are given
inside the configuration files of our repository. Note that all architectural details for the 12-layer
models are identical across splitting and scaling experiments. Additionally, identical hyperparameters
were used for CIFAR100 and Imagenet experiments of Table 1. Unlike previous literature, the
use of GOE intialization eliminates the need for separate layerwise learning rates and initialization
parameters. One noteworthy detail is that only 100 epochs were used for the larger model for Table 1
compared with 200 epochs for the smaller 12-layer model. This was due to prohibitively long run-time
of training the larger model. Noteably, performance still significantly improves with decreased overall
runtime.

Root-finding algorithms. While in principle any root-finding algorithm may be used for the
two relaxation phases of our EP implementation (for inference and gradient computation), our
implementation utilized a simple fixed-point iteration procedure, in which neuron states are initialized
as zero vectors with values updated asynchronously on each iteration to that of the gradient of the total
system energy with respect to current state. An approximate illustration of this procedure is found in
Alg. 3. As indicated in Section 4.2, two variants of the convergence procedure were employed, one in
which the average value of current state is compared to that of the previous state for each layer, and
relaxation is truncated when values for all layers have a difference of less than 1e-4. This was known

31

as the tolerance-based (TOL) procedure. Notably, tolerance-based convergence criteria were applied
on the free phase only, with nudging computed with a fixed value of iterations. This was to ensure
consistency between ID and EP, though in practice a tolerance can be applied equally to the nudging
phase.

Algorithm 13 Asynchronous with Tolerance (for all blocks until penultimate)

Input: T , θk, ωk, sk−1
⋆ , β, δsk

Output: skβ
1: sk ← 0
2: c←∞
3: for t = 1 · · ·T do
4: ∀ odd ℓ ∈ {1, · · · , Lk} : skℓ,β,temp ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
5: ∀ even ℓ ∈ {1, · · · , Lk} : skℓ,β,temp ← σ

(
∇skℓ

Φ
(
skβ , θ

k, sk−1
⋆ , ωk

)
− βδsk

)
6: if t ≥ 2 then
7: ∀ ℓ ∈ {1, · · · , Lk} : ckℓ ←

skℓ,β,temp−skℓ,β
|skℓ,β |

8: if mean(ck) ≤ Tol then
9: BREAK;

10: end if
11: end if
12: skℓ,β ← skℓ,β,temp

13: end for

Supplementary results with a fixed number of iterations. In addition to the TOL-based pro-
cedure, we obtained results for 4.2 using the more conventional approach of [Scellier and Bengio,
2019][Laborieux et al., 2021][Ernoult et al., 2019], applying fixed number of iterations on the first
and second relaxation phases (see ??). This approach was also the default used for our scaling
experiments in 4.3. Importantly, with the TOL procedure described above Alg 3 becomes Alg 13.
Results using a fixed iteration root-finding scheme are shown in 4

Table 4: Validation accuracy and Wall Clock Time (WCT) obtained on CIFAR-10 by EP (Alg. 2) and
ID on models with different number of layers (L) and block sizes (“bs”). 3 seeds are used.

EP ID
Top-1 (%) WCT Top-1 (%) WCT

L =6
bs=6 88.8±0.2 8:06 87.3 ±0.6 8:05
bs=3 89.5±0.2 8:01 89.2±0.2 7:40
bs=2 90.1±0.2 7:47 90.0 ±0.2 7:18

L =12
bs=4 91.6±0.1 7:49 91.6±0.1 7:08
bs=3 92.2±0.2 6:06 92.2±0.1 5:59
bs=2 91.7±0.2 6:10 91.8±0.1 6:08

Other details. All experiments were run using Adam optimizer [Kingma and Ba, 2014]and Cosine
Annealing scheduler[Loshchilov and Hutter, 2017], specifying some minimum learning rates and
setting maximum T equal to epochs (i.e. no warm restarts). Code was implemented in Pytorch 2.0
and all simulations were run on NVIDIA A100 SXM4 40GB GPUs.

32

	Introduction
	Background
	Energy-based models (EBMs)
	Standard bilevel optimization
	Equilibrium Propagation (EP)

	Tying energy-based models with ff blocks
	Feedforward-tied Energy-based Models (ff-EBMs)
	Multi-level optimization of ff-EBMs
	A BP–EP gradient chaining algorithm

	Experiments
	Setup & static gradient analysis
	Splitting experiment
	Scaling experiment

	Discussion
	Appendix
	Model details
	Feedforward-tied EBMs (ff-EBMs)
	Feedforward nets as a special case
	Equilibrium computation

	Main theoretical result
	Proof of Theorem 3.1
	An alternative proof of Theorem 3.1

	Resulting algorithms
	Explicit BP-EP chaining
	Recovering backprop through feedforward nets as a special case
	Detailed implementation of the implicit BP-EP chaining algorithm (Alg. 2)

	Static gradient analysis
	Static comparison of EP and ID on ff-EBMs
	Algorithmic baselines
	Extending ernoult2019updates
	Details about Fig. 5

	Experimental Details
	Datasets
	Data preprocessing
	Simulation details

