Knowledge Graph in Astronomical Research with Large Language Models: Quantifying Driving Forces in Interdisciplinary Scientific Discovery

Abstract

 Identifying and predicting the factors that con- tribute to the success of interdisciplinary research is crucial for advancing scientific discovery. How- ever, there is a significant lack of methods to quan- tify the integration of new ideas and technological advancements within a field and how they trigger further scientific breakthroughs. Large language models, with their prowess in extracting key con- cepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we use astronomy as a case study to quantify this process. We extract concepts in as- tronomical research from 297,807 publications be- tween 1993 and 2024 using large language mod- els, resulting in a refined set of 24,939 concepts. These concepts are then adopted to form a knowl- edge graph, where the link strength between any two concepts is determined by their relevance based on the citation-reference relationships. By cal- culating this relevance across different time peri- ods, we quantify the impact of numerical simula- tions and artificial intelligence on astronomical re- search, demonstrating the possibility of quantifying the gradual integration of interdisciplinary research and its further branching that leads to the flourish-ing of scientific domains.

²⁷ 1 Introduction

 Interdisciplinary collaborations often drive innovation in re- search by introducing new theoretical, analytical, or compu- tational tools to specific scientific domains. These new tools can revitalize and open up fields that might otherwise remain stagnant. For instance, the theoretical understanding of quan- tum physics and general relativity has driven much of modern cosmology [\[Weinberg, 2008\]](#page-12-0), and each subsequent engineer- ing breakthrough leads to new windows of observation. A prime example is the detection of gravitational waves with LIGO [\[Abbott](#page-8-0) *et al.*, 2016], which was made possible by the convergence of cutting-edge technologies in interferome- try. Simultaneously, high-performance computing has paved the way for understanding complex systems in the cosmos, such as the evolution of galaxies [\[McAlpine](#page-11-0) *et al.*, 2016; [Pillepich](#page-12-1) *et al.*, 2018] and the inner workings of stars and 42 stellar atmospheres [\[Gudiksen](#page-10-0) *et al.*, 2011], through N-body 43 or hydrodynamical simulations. ⁴⁴

The advancement of astronomy also relies heavily on the 45 revolution of statistical and analytical methods, which allow ⁴⁶ for proper inferences based on observations. The introduction of even well-known statistical techniques to astrophysics 48 often leads to key turning points in the field. For exam- ⁴⁹ ple, a cornerstone of our understanding of cosmology comes 50 from analyzing the power spectrum of the cosmic microwave 51 background [\[Hu and Dodelson, 2002\]](#page-10-1), while the detection 52 of planetary systems outside the solar system has benefited 53 from Gaussian Processes [\[Hara and Ford, 2023\]](#page-10-2). More re- ⁵⁴ cently, the advent of deep learning, with numerous successes 55 in sciences such as AlphaFold [\[Jumper](#page-11-1) *et al.*, 2021], has pro- ⁵⁶ pelled much of the field to rethink statistical inference in as-
57 tronomy. This includes using generative models as surro- ⁵⁸ gates for the likelihood or posterior [\[Cranmer](#page-10-3) *et al.*, 2020; ⁵⁹ Sun *et al.*[, 2023a\]](#page-12-2) and employing flow-based generative mod- 60 els to capture higher-order moment information in stochastic 61 fields [\[Diaz Rivero and Dvorkin, 2020\]](#page-10-4). ⁶²

However, the underpinnings of these successful interdis- 63 ciplinary results often stem from a rigorous process of de- ⁶⁴ bate and adaptation within the community. New thought 65 processes are initially treated as disruptors, but a subset of 66 these promising methods subsequently becomes integrated 67 into the field's knowledge base. Over time, such integra- ⁶⁸ tion gains significant traction and further creates branch- ⁶⁹ ing of knowledge in the field, fostering its growth. Con- ⁷⁰ sider the example of numerical simulation, which was initially viewed as a "distraction" from pure mathematical in- ⁷² terest in solving N-body problems and Navier-Stokes equa- ⁷³ tions [\[Bertschinger, 1998\]](#page-10-5). However, astrophysics has grad- ⁷⁴ ually acknowledged that some aspects of the field are non- ⁷⁵ linear and beyond analytical understanding. The integration $\frac{76}{6}$ of numerical simulations has subsequently led to the thriving 77 study of galaxy evolution [\[McAlpine](#page-11-0) *et al.*, 2016], a widely ⁷⁸ researched topic, and has also gradually permeated into more ⁷⁹ specialized domains like solving the accretion physics of 80 black holes and protoplanetary disks [Jiang *et al.*[, 2014;](#page-11-2) 81 $Bai, 2016$].

However, while such integration and branching off are intuitively clear, studying and quantifying them remains a chal- ⁸⁴ lenge. Questions such as how long it might take for a field 85

 to adopt a new concept and what quantitative impact it has on the field still evades rigorous study. A key bottleneck is the difficulty in defining and extracting the various concepts described in a paper. The classical approach of classification using only keywords or the field [Xu *et al.*[, 2018\]](#page-12-3) of research might lack granularity. Other implicit methods that aim to ex- [t](#page-11-3)ract vectorized semantic representations from papers [\[Meijer](#page-11-3) *et al.*[, 2021\]](#page-11-3) are hard to parse at the human level, let alone op-erate on such representations.

 Recent breakthroughs in large language models (LLMs), particularly generalized pre-trained transformer techniques [\[Brown](#page-10-7) *et al.*, 2020; [OpenAI](#page-11-4) *et al.*, 2023], have demon- strated exceptional zero-shot/few-shot capabilities across var- ious downstream tasks and have shown broad domain knowl- edge coverage [\[Bubeck](#page-10-8) *et al.*, 2023]. The synergy between LLMs and knowledge graphs constitutes an active area of re- search. LLMs have shown reasonable performance in tasks such as entity identification for knowledge graph construc- tion, and their capabilities can be significantly enhanced when coupled with knowledge graphs as external knowledge sources [Pan *et al.*[, 2023;](#page-12-4) Zhu *et al.*[, 2023\]](#page-13-0).

 Armed with this advancement, in this study, we explore the possibility of using LLMs as a bridging tool by distilling concepts from research papers in astronomy and astrophysics and constructing knowledge graphs to study their relation- ships and co-evolution over time. To the best of our knowl- edge, this is the first time an LLM-based knowledge graph has been constructed for astrophysics. The combination of the LLM-extracted concepts with our proposed citation- reference-based relevance allows us to quantitatively analyze cross-domain interactions over time and the co-evolution of subfields in astronomy.

 This paper is organized as follows: In Section [2,](#page-1-0) we outline the dataset used for this study. Section [3](#page-1-1) details the method- ologies employed, including knowledge graph construction with large language model agents and the citation-reference- based relevance to quantify the interconnection between dif- ferent concepts. We present our findings in Section [4,](#page-5-0) includ- ing a case study focusing on how numerical simulations were gradually adopted by the astronomical community, and by ex- tension, quantifying the current impact of machine learning in astronomy. We discuss and conclude in Section [5.](#page-6-0)

¹²⁸ 2 Literature in Astronomical Research

 This study employs a dataset of 297, 807 arXiv papers in the fields of astronomy and astrophysics, collected from 1993 to 2024 and sourced from the NASA Astrophysics Data System (NASA/ADS) [\[Accomazzi, 2024\]](#page-10-9). Astrophysics is known to be a field where the vast majority of publications are on arXiv and easily searchable on ADS. Therefore, the number of arXiv papers here comprises a close-to-complete collection of literature that was published in the field.

 We downloaded all PDFs from arXiv and performed OCR with Nougat [\[Blecher](#page-10-10) *et al.*, 2023]. Through human inspec- tion, we found that Nougat did a great transcription of the data with minimal failure. The same set of data was cur- rently used to train various specialized LLMs in astronomy (Pan et al., in prep., Arora et al,, in prep.), following AstroL- LaMA and AstroLLaMA-Chat [\[Dung Nguyen](#page-10-11) *et al.*, 2023; ¹⁴³ [Perkowski](#page-12-5) *et al.*, 2024], and auxiliary minor mistakes were 144 identified and cleaned up during those iterations. 145

A key component of this paper is understanding the re- ¹⁴⁶ lation of concepts, as viewed by the research community, ¹⁴⁷ through the citation relation within the existing literature. The ¹⁴⁸ fact that NASA/ADS oversees a close to complete literature 149 makes astronomy one of the well-curated fields to explore 150 this study. We further extract the citation-reference relation ¹⁵¹ for the entire corpus using the NASA/ADS $API¹$ $API¹$ $API¹$ to quantify 152 the interaction among various scientific concepts during their 153 co-evolution. 154

3 Constructing a Knowledge Graph for 155 Astronomy 156

Constructing a knowledge graph between concepts in astro- ¹⁵⁷ physics requires two essential components: extracting the ¹⁵⁸ concepts in astronomical literature through large language 159 model agents, and determining the strength of interconnec- 160 tivity between concepts through the underlying relationships 161 between paper citations. In this section, we explore these ¹⁶² components in more detail.

3.1 Concept Extraction with Large Language 164 Models and the set of th

The key challenges in distilling concepts from publications 166 using large language models are twofold. Firstly, LLM agents 167 may generate hallucinations, producing lists of concepts that 168 deviate from the expectations of human experts. Secondly, ¹⁶⁹ even when the concepts are accurately distilled, the models 170 may yield concepts that are either too detailed, overly broad, 171 or merely synonymous with each other, thereby diminishing 172 the practical relevance of understanding their interrelation- ¹⁷³ ships. To address these challenges, we employ a multi-agent 174 system in this study, as shown in Figure [1.](#page-2-0) This system con-
175 sists of three parts: (a) extraction of concepts from astronom- 176 ical publications; (b) nearest neighbor search of the concepts; 177 and (c) merging of the concepts. This iterative approach enables control over the granularity of the knowledge graph, tai- ¹⁷⁹ loring it to our purpose.

In this study, we focus on extracting key concepts from the 181 titles and abstracts of astronomical publications to minimize ¹⁸² computational cost. In astronomy, the abstract often encap- ¹⁸³ sulates the essential information, including scientific moti- ¹⁸⁴ vation, methods, and data sources. The abstracts from the ¹⁸⁵ 300,000 papers amount to a total of approximately 2 billion ¹⁸⁶ tokens. To efficiently handle this large-scale data while main- ¹⁸⁷ taining cost-effectiveness, we leverage open-source large lan- ¹⁸⁸ guage models for concept extraction. Specifically, we em- ¹⁸⁹ ploy MISTRAL-7B-INSTRUCT-V0.2[2](#page-1-3) [Jiang *et al.*[, 2023\]](#page-11-5) as ¹⁹⁰ our inference model and $JINA-EMBEDDINGS-V2-BASE-EN³$ $JINA-EMBEDDINGS-V2-BASE-EN³$ $JINA-EMBEDDINGS-V2-BASE-EN³$ 191 [Günther *et al.*, 2023] for text embedding. 192

¹ https://ui.adsabs.harvard.edu/help/api/

² [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](#page-0-0)

³ [https://huggingface.co/jinaai/jina-embeddings-v2-base-en](#page-0-0)

Figure 1: Schematic plot outlining the knowledge graph construction using large language model agents. The extraction of concepts comprises three main phases: (1) Concept Extraction, where agents construct scientific concepts from documents; (2) Vectorization and Nearest Neighbor Finding, in which concepts are vectorized and grouped by semantic similarity; (3) Concept Merging, where similar concepts are combined to form a more coarse-grained structures. The connections between concepts are then defined by citation-reference relevance as detailed in Section [3.2,](#page-2-1) with concepts involved in more citation-reference pairs assigned a higher relevance.

Concept Extraction: The first agent is prompted to extract a preliminary set of scientific concepts from the abstracts and 195 titles^{[4](#page-2-2)}. While most of these concepts appear to be valid, some of them seem to be hallucinations that are not perti- nent to astronomy, such as "misleading result" and "mater- nal entity in astronomy". To address this issue, a secondary LLM agent is deployed to explain and clarify each term, en- suring the removal of ambiguities and allowing only scientif- ically valid concepts to proceed. In this clarifying step, we utilize the entire document as an additional source enhanced by retrieval augmented generation to assist our agent in ac- curately understanding the meanings of various scientific ter- minologies. The validated scientific concepts are denoted as $\{c_1, c_2, \ldots, c_N\}.$

 Vectorize and Nearest Neighbor Finding: Once the con- cepts are extracted and validated, they are transformed into vector representations using the text-embedding models, en- abling the accurate computation of similarity measures. We group the concepts based on the cosine similarity of their corresponding vector representations into M clusters, repre-213 sented as $\{\{c_j^i, j = 1, ..., k_i\}, i = 1, ..., M\}$. The num-214 ber of elements in each cluster, k_i , is adaptively determined based on a predefined cosine similarity threshold among the elements within the cluster. In this study, we set the thresh- old at 0.85, striking a balance between the granularity of the concepts and the computational feasibility of the subsequent ²¹⁹ steps.

Concept Merging: Finally, the final agent merges these 220 grouped concepts by analyzing clusters of semantically sim- ²²¹ ilar concepts and distilling them into more general, unified 222 entities. For example, the concepts "X-Shooter spectra", ²²³ "Saturn's transmission spectrum," and "Keck LRIS spectro- ²²⁴ graph" were combined into the broader concept of "spectro- ²²⁵ graph". This merging simplifies the structure of the knowl- ²²⁶ edge graph, reducing redundancy. Furthermore, a coarser ²²⁷ knowledge graph improves the readability of the visualiza- ²²⁸ tion. 229

We iterate the neighbour finding and merging steps three 230 times, gradually coarsening the collection of concepts from ²³¹ 1,057,280, 164,352, and finally 24,797 concepts, respec- ²³² tively. We found, through domain expert evaluation that, the ²³³ granularity of the concepts after three iterations is appropri- ²³⁴ ate, with sufficient concepts covering the broad range of top- ²³⁵ ics explored and methods employed in the literature, but with ²³⁶ enough fine-grained level to understand the subtle evolution ²³⁷ of the field in astrophysics. Some of the final concepts in- ²³⁸ clude the commonly known concepts such as "dark matter", ²³⁹ "inflation", and etc. On average, each paper consists of ~ 10 240 concepts. 241

3.2 Determining Concept Relevance 242

Upon defining the concepts, perhaps more critical is to de-
243 termine, quantitatively, how strongly two concepts are rel- ²⁴⁴ evant. The relevancy of two concepts is certainly subjec- ²⁴⁵ tive—concepts that were deemed irrelevant at a certain point ²⁴⁶ in time by the domain expert community might gradually be- ²⁴⁷ come relevant over time. However, such temporal evolution ²⁴⁸

⁴All code and prompts will be made public after review.

²⁴⁹ is exactly what we are after to understand the shift of knowl-²⁵⁰ edge over time.

 To gauge how two concepts are perceived as relevant by the community at a fixed point in time, the citation-reference re- lationships between articles become a natural annotated link between the concepts. In the following, we will define based on the probability with which a pair of concepts appears si- multaneously in a certain article and its neighboring docu- ments that have a citation-reference relationship, the prox- imity of the two concepts. This metric between concepts is inspired by the process by which researchers randomly sam- ple through the network of articles from one concept to an- other. If the researcher can find another new concept from the parent concept that they were originally interested in by searching through the direct citation relation from the pa- per which contains the parent concept, and this leads the re- searcher to another paper with a new concept, the two con- cepts are deemed close. However, if the two concepts can only be found through a small subset of papers of the par- ent concepts and their citations or references, then the two concepts are deemed further apart at that point in time. We emphasize that while the linkage (and here, the hypothetical "search") is done through the domain of the published liter- ature, the knowledge graph is constructed at the level of the extracted concepts.

²⁷⁴ More formally, let the final set of concepts be denoted as 275 C : $\{c_1, c_2, \ldots, c_n\}$, identified using large-language model-²⁷⁶ based agents as outlined in Section [3.1.](#page-1-5) Let these con-²⁷⁷ cepts be associated with a corpus of academic papers, N : ${278}$ { n_1, n_2, \ldots, n_k }, and a set of citation-reference relationships 279 L : $\{(n_a, n_b)|n_a, n_b \in \mathbb{N}, \exists n_a \rightarrow n_b\}$, where $n_a \rightarrow n_b$ sig-280 nifies that paper n_a cites paper n_b . To explore the propagation 281 of a concept c_{α} within this network, we define the probabil-282 ity of encountering another concept c_β starting from a spe-283 cific paper n_k that discusses c_α . This probability, denoted as 284 $p_{\alpha \to \beta | n_k}$, is formulated as:

$$
p_{\alpha \to \beta | n_k} = \frac{\mathcal{N}_{\beta}}{|S(n_k, \mathcal{L}, \beta)|}.\tag{1}
$$

285 The set $S(n_k, L, \beta)$ is defined through an iterative process 286 starting with the initial paper set n_k (denoted as S_0). In each ²⁸⁷ iteration, we expand the set by including papers that are di-²⁸⁸ rectly cited by any paper in the current set and have not been 289 included in previous sets. Formally, if S_{n-1} is the set of pa-290 pers at iteration $n-1$, then $S_n = S_{n-1} \cup \{n_e | (n_s, n_e) \in$ 291 L, $n_s \in S_{n-1}, n_e \notin S_{n-1}$. The iteration continues until at 292 least one paper in the current set contains concept c_{β} , at which 293 point we denote the final set as S_T and set $S_T = S(n_k, L, \beta)$. 294 The number of papers containing c_β within $S(n_k, L, \beta)$ is set 295 to be N_β .

 Typically, the growth of the sets follows a pattern where $|S_0| = 1$, $|S_1| \sim 10^2$, and $|S_2| \sim 10^4$ in our experiments. This means that if the concepts cannot be found directly from a direct citation from the original paper that contains the par- ent concept, the number of papers "needed to be read", i.e., |S|, will drastically reduce the relevance of the two concepts. Nonetheless, if the concepts are very prevalent, after a cer-303 tain level of search, the numerator N_β would then offset the volume of search.

As this probability pertains to just a specific paper contain-
305 ing concept c_{α} , the probability of transitioning from concept 306 c_{α} to c_{β} , for all the papers S_{α} that contain c_{α} , would then be 307 the expectation averaging over all papers in S_α , or, $\qquad \qquad$ 308

$$
p_{\alpha \to \beta} = \frac{1}{|S_{\alpha}|} \sum_{n_k \in S_{\alpha}} p_{\alpha \to \beta | n_k}
$$
 (2)

The above equation computes the average probability of mov- 309 ing from c_{α} to c_{β} across all papers that contain c_{α} . To assess 310 the bidirectional relevance of concepts c_{α} and c_{β} , and we will 311 assume that the order of transition between two concepts is ³¹² not relevant, we define the citation-reference relevance be- ³¹³ tween them as the geometric average of the probabilities of ³¹⁴ transitioning in both directions: 315

$$
p_{\alpha,\beta} = (p_{\alpha \to \beta} \cdot p_{\beta \to \alpha})^{1/2} \tag{3}
$$

Finally, the transition probability attains the following trivial 316 properties: (1) $p_{\alpha,\beta} \leq 1, \forall c_{\alpha}, c_{\beta} \in C$; (2) $p_{\alpha,\alpha} \equiv 1, \forall c_{\alpha} \in \mathbb{R}$ C; and (3) $p_{\alpha,\beta} = p_{\beta,\alpha}, \forall c_{\alpha}, c_{\beta} \in \mathbb{C}$. These properties 318 ensure that the relevance metric is well-defined and consis- ³¹⁹ tent, providing a foundation for analyzing the relationships ³²⁰ between concepts in the knowledge graph. 321

3.3 From Concept Relevance to Knowledge Graph 322

From the relevance defined as $p_{\alpha,\beta}$ above, which serves as 323 a robust metric for the link strength between two nodes, ³²⁴ we can visualize the knowledge as a force-directed graph. ³²⁵ [A](#page-10-13) force-directed graph [\[Kobourov, 2012;](#page-11-6) [Bannister](#page-10-13) *et al.*, ³²⁶ [2012\]](#page-10-13), alternatively known as a spring-embedder or force- ³²⁷ based layout, serves as a visual tool designed to illustrate ³²⁸ relational data within network graphs. This method lever- ³²⁹ ages simulation techniques inspired by physical systems, ar- ³³⁰ ranging nodes—which symbolize entities or concepts—and ³³¹ links—which depict the relationships or connections between 332 these nodes—in an aesthetically coherent and insightful lay- ³³³ out. These graphs utilize the concept of attraction and repul- ³³⁴ sion forces to strategically distribute nodes. 335

By iteratively updating the positions of nodes based on 336 these attraction and repulsion forces, the force-directed graph 337 algorithm converges to a layout that minimizes the overall en- ³³⁸ ergy of the system. This results in an informative 3D repre- ³³⁹ sentation of the knowledge graph, where closely related con-
sac cepts are automatically positioned near each other, enhancing ³⁴¹ the visibility of the density and connectivity within the graph. ³⁴² The capacity of force-directed graphs to dynamically repre- ³⁴³ sent complex relational data makes them particularly suitable 344 for visualizing the knowledge graph. 345

In our context, the link strength between two nodes (con- ³⁴⁶ cepts) is set to their citation-reference relevance, $p_{\alpha,\beta}$. Con- 347 cepts with higher relevance will attract each other more ³⁴⁸ strongly [\[Cheong](#page-10-14) *et al.*, 2021], causing them to be positioned 349 closer together in the visualized graph. Conversely, the re- ³⁵⁰ pulsion force is applied between all pairs of nodes, ensuring 351 that they remain adequately spaced to prevent overlap and ³⁵² maintain clear visual separation. By leveraging the citation- ³⁵³ reference relevance as the link strength between concepts, we ³⁵⁴ can create a graph that intuitively conveys the relationships 355 and clustering of ideas within the astronomical literature. 356

Figure 2: Visualization of a knowledge graph of 24,939 concepts, constructed from 297,807 astronomical research papers. Only concepts appearing in more than 20 papers and links with a link strength greater than 0.001 are displayed. Each concept is categorized into one of the following domains: (A) Galaxy Physics, (B) Cosmology & Nongalactic Physics, (C) Earth & Planetary Science, (D) High Energy Astrophysics, (E) Solar & Stellar Physics, (F) Statistics & AI, (G) Numerical Simulation, or (H) Instrumental Design. In the upper panels, we show connections between galaxy physics and other scientific domains. In the lower panel, we highlight the concepts from simulation, statistics, and observational instruments and their respective locations with respect to galaxy physics. Unsurprisingly, the technological concepts are generally more globally spread, as the same techniques can have wide implications for a broad range of topics in astronomy. Machine learning techniques are still at the periphery of the knowledge graph, suggesting that their integration in astronomy is still in its early stages. The interactive version of the knowledge graph is made publicly available after review.

357 4 Intersection between Technological ³⁵⁸ Advancement and Scientific Discovery

 Our knowledge graph consists of 24,939 concepts, ex- tracted from 297,807 astronomical research papers, with 339,983,272 interconnections. The visualization of the knowledge graph as a force-directed graph is shown in Fig- ure [2.](#page-4-0) The filamentous structure shown in the knowledge graph demonstrates the close interconnections across various subdomains within astronomical research.

 For clarity, we only display concepts that appear in at least 20 papers and consider only those links with a citation-368 reference relevance $p_{\alpha,\beta} > 0.001$. This leads to 9,367 nodes and 32,494 links for the visualization. We set the size of the nodes to be proportional to the logarithm of their frequency of occurrence in the papers.

 In the visualization, we further categorize all the concepts into scientific concepts, following the categorization of astro-374 physics on arXiv^{[5](#page-5-1)}, namely Astrophysics of Galaxies,^{[6](#page-5-2)} Cos-[7](#page-5-3)5 mology and Nongalactic Astrophysics,⁷ Earth and Planetary 376 Astrophysics,^{[8](#page-5-4)} High Energy Astrophysics,^{[9](#page-5-5)} and Solar and Stellar Astrophysics,^{[10](#page-5-6)}. As we aim to understand how con- cepts in technological advancement propel scientific discov- eries, we further define another three classes of "technolog- ical" domains, which we identify as Statistics and Machine Learning, Numerical Simulation, and Instrumental Design. 382 The classifications below are conducted using GPT- 4^{11} 4^{11} 4^{11} .

 Figure [2](#page-4-0) illustrates how relevant concepts cluster within the same domain and how different domains interconnect. The upper panels demonstrate how the different scientific clus- ters interact with each other. For instance, galaxy physics, as anticipated, connects with both the largest scales in astro- nomical research, such as cosmology and general relativity, and the smaller scales, including stellar physics and planetary physics. The lower panel shows how the technological con- cepts are embedded within the scientific concepts, including numerical simulations, statistics, machine learning, and in- strumental design. The technological concepts are generally distributed more globally in the knowledge graph, demon-strating their omnipresence in different subfields.

³⁹⁶ Interestingly, as shown in the figure, despite the booming ³⁹⁷ interest and popularity, machine learning techniques, particu-³⁹⁸ larly deep learning, are situated only at the peripheral region

⁹High Energy Astrophysics explores cosmic ray production, gamma ray astronomy, supernovae, neutron stars, and black holes.

¹⁰Solar and Stellar Astrophysics pertains to the investigation of white dwarfs, star formation, stellar evolution, and helioseismology.

¹¹<https://openai.com/index/gpt-4/>

Figure 3: The citation-reference relevance for five distinct time periods to investigate the temporal integration of technological techniques into scientific research. The middle and lower panels illustrate a consistent increase in the count of concepts, both in terms of scientific concepts (bottom panel) and technical concepts (middle panel). The upper panel shows the total cross-linkage between individual technical domains and scientific concepts, with lower values indicating stronger adoption. The upper panel reveals a two-phase evolution, with an observed latency of approximately five years. The two phases signify the period of development and introduction of new techniques in astronomy and their subsequent adoption by the community (see text for details). While still modest, machine learning has begun to reach integration levels comparable to those of numerical simulations seen two decades earlier.

of the knowledge graph. This suggests that machine learning 399 techniques are not yet fully integrated into the astronomical ⁴⁰⁰ research community, at least from the citation-reference point 401 of view. We will provide a more quantitative comparison of ⁴⁰² this observation in the following section. 403

4.1 Numerical Simulations in Astronomy 404

To demonstrate how technological advancement drives scien- ⁴⁰⁵ tific discovery, we will study in more depth the impact of nu- ⁴⁰⁶ merical simulations on astronomy. In modern-day astronom- ⁴⁰⁷ ical research, numerical simulation has become an indispens- ⁴⁰⁸ able tool. However, this was not always the case. The scien- ⁴⁰⁹ tific community experienced a gradual transition from focus- ⁴¹⁰ ing primarily on theoretical deduction and analytical formulas 411 to modeling complex phenomena through numerical simula- ⁴¹² tions. ⁴¹³

To understand this transition, we assess the average rele- ⁴¹⁴ vance between numerical simulations and scientific concepts 415 across various time periods. We divided the dataset into five ⁴¹⁶ time periods from 1993 to 2020. In each time period, we 417 recalculate the citation-reference relevance using the papers 418 published within that specific timeframe. 419

As shown in the bottom panel of Figure [3,](#page-5-8) unsurprisingly, ⁴²⁰ the number of "scientific concepts" has surged over time. ⁴²¹ Complementary to these scientific concepts, we also see that 422 the number of technical concepts has surged alongside, espe- ⁴²³

⁵ <https://arxiv.org/archive/astro-ph>

⁶Astrophysics of Galaxies focuses on phenomena related to galaxies and the Milky Way, including star clusters, interstellar medium, galactic structure, formation, dynamics, and active galactic nuclei.

 7 Cosmology and Nongalactic Astrophysics covers the early universe's phenomenology, cosmic microwave background, dark matter, cosmic strings, and the large-scale structure of the universe.

⁸Earth and Planetary Astrophysics studies deal with the interplanetary medium, planetary physics, extrasolar planets, and the formation of the solar system.

 cially in terms of numerical simulations and statistical meth- ods, which are shown as red and blue lines in the middle panel. On the other hand, despite the interest in the field, the number of concepts in machine learning in the astronom- ical literature, as shown by the green line, is still an order of magnitude lagging behind these other well-developed techno-logical concepts.

 Perhaps more interesting is showing the weighted "inter- section" between the scientific concepts and the technical concepts, which is shown in the top panels. The top panel shows the weighted "linkage" among all the scientific con- cepts with the specific technical domain. If the new meth- ods are well-adopted in the astronomical community and ad- vance scientific discovery, we should see an improvement in the average citation-reference linkage (large values in the top panel). Viewed this way, there is a clear two-phase evolution with the gradient of the integration oscillating positively (blue arrow) and negatively (red arrow).

 This is perhaps not surprising. For any technological ad- vancement, it might once be proposed with many techni- cally focused papers written; however, the citation-reference relation is mostly limited to the "technologists," leading to a dilution of the cross-correlation, which is shown by the red arrow. For example, during the period of 1993-2000, there have been many works focusing on the development of N-body simulation techniques [?; [Romeo](#page-12-6) *et al.*, 2004; [Springel, 2005\]](#page-12-7). Yet, the integration remains marginal. How- ever, from 2000 onward, the astronomical community began to embrace N-body simulations to resolve scientific ques[t](#page-13-1)ions [Paz *et al.*[, 2006;](#page-12-8) Peñarrubia *et al.*, 2006; [Zhou and](#page-13-1) [Lin, 2007\]](#page-13-1), resulting in a increase in citation-reference rel- evance during this time. A similar two-phase pattern is ob- served from [2010, 2015) to [2015, 2020), during which time hydrodynamical simulations developed [\[Genel](#page-10-15) *et al.*, 2014; Carlesi *et al.*[, 2014b;](#page-10-16) Carlesi *et al.*[, 2014a\]](#page-10-17) and gradually [g](#page-12-1)ained acceptance [\[McAlpine](#page-11-0) *et al.*, 2016; [Pillepich](#page-12-1) *et al.*, [2018\]](#page-12-1) within the community. The delay between the devel- opment of new technologies and their impact on scientific dis-covery spans approximately five years.

⁴⁶³ 4.2 Machine Learning in Astrophysics

 The revelation of the two-phase adoption in numerical simu- lations leads to the possibility of better quantifying the inte- gration of machine learning in astronomy. In recent years, we have seen a booming interest in AI and its applications in sci- ence. As modern-day astronomy is driven by big data, with billions of sources routinely being surveyed, it is not surpris- ing that astronomy has also seen a drastic integration of AI to advance data processing and analysis [\[Baron, 2019\]](#page-10-18).

 Figure [4](#page-7-0) shows the average cross-domain linkage, as de- fined in the top panel of Figure [3,](#page-5-8) but between the concepts in machine learning and the five scientific domains. In terms of the application of machine learning in astronomy, Cosmol- ogy & Nongalactic Astrophysics takes the lead, as it ben- efits from machine learning's capacity to manage complex, [l](#page-12-10)arge data sets from simulations and surveys [\[Villaescusa-](#page-12-10) Navarro *et al.*[, 2021b;](#page-12-10) [Villaescusa-Navarro](#page-12-11) *et al.*, 2021a; Sun *et al.*[, 2023b\]](#page-12-12). This is followed by Galaxy Physics, which leverages ML for tasks like photometric redshift prediction [Sun *et al.*[, 2023a\]](#page-12-2) and galactic morphology classifi- 482 cation [\[Robertson](#page-12-13) *et al.*, 2023]. Solar and Stellar Physics have 483 also shown promise in emulating and analyzing stellar spec- ⁴⁸⁴ tra [Ting *et al.*[, 2019\]](#page-12-14). High Energy Astrophysics and Earth 485 & Planetary Astrophysics have been slower to adopt ML. ⁴⁸⁶

But is machine learning now well-adopted in astronomical 487 research? Figures [2](#page-4-0) and [3](#page-5-8) paint an interesting picture. On the ⁴⁸⁸ one hand, the top panel of Figure [3](#page-5-8) shows that there has been a 489 rapid increase in the cross-science-and-AI citation-reference 490 relevance, demonstrating a huge interest among the commu- ⁴⁹¹ nity. For instance, the scientific-technology score remains flat 492 and low before 2015, signifying that despite a history of AI 493 in astronomy—such as the use of neural networks for galaxy ⁴⁹⁴ [m](#page-12-15)orphology classification as early as 1992 [\[Storrie-Lombardi](#page-12-15) 495] et al.[, 1992\]](#page-12-15)—its impact remained minimal until the surge in 496 popularity of deep learning post-2015. ⁴⁹⁷

Yet, at the same time, even currently, Figure [2](#page-4-0) shows that 498 most of these concepts still occupy a peripheral position in 499 the knowledge graph. This suggests that, from a citation- ⁵⁰⁰ reference relevance perspective, such concepts are still con- ⁵⁰¹ sidered niche within the broader scientific community. This is 502 perhaps not too surprising because, compared to the deep in- ⁵⁰³ tegration of numerical simulations, quantitatively, the cross- ⁵⁰⁴ linkage score of machine learning with astronomy remains 505 only at the level that numerical simulations and traditional ⁵⁰⁶ statistics were twenty years ago. 507

Perhaps what is strikingly lacking is that the number of ma- ⁵⁰⁸ chine learning concepts in the astronomical literature remains 509 an order of magnitude smaller than that of numerical simula- ⁵¹⁰ tions, as shown in the middle panel of Figure [3.](#page-5-8) This might 511 imply that the machine learning techniques widely adopted in 512 astronomy, even at present, remain some of the more classi- ⁵¹³ cal techniques, such as linear regression and random forests 514 [\[Nyheim](#page-11-7) *et al.*, 2024]. The rapid adoption of "existing" tech- 515 niques, while encouraging, might also signify a bigger under- 516 lying problem of lack of innovation in applying AI to astron- ⁵¹⁷ omy. However, if the two-phase evolution applies, we should 518 expect that in the coming years, there will be more novel 519 deep learning techniques introduced before they are gradu- ⁵²⁰ ally adopted by the community. 521

5 Discussions and Conclusions 522

A quantitative study of the evolution of concepts and their 523 interconnections would not be possible without modern-day ⁵²⁴ LLMs, partly due to the large amount of arduous work re- ⁵²⁵ quired to manually label, extract concepts, and classify top- ⁵²⁶ ics, which can be easily done with minimal computing re- ⁵²⁷ sources in our case. Even when manual extraction is possible, 528 the taxonomy of a scientific field is often limited—tailored to s29 provide vague contours of the domain, e.g., for publication 530 purposes, rather than a deep and more fine-grained differen- ⁵³¹ tiation of the knowledge embedded in the field. 532

In this study, we construct, to the best of our knowledge, ⁵³³ the first LLM-based knowledge graph in the domain of as- ⁵³⁴ tronomy and astrophysics. The knowledge graph comprises 535 24,939 concepts extracted through a careful iterative process 536 with LLMs from 297,807 papers. We design a relevance metric defined through the citation-reference relations in the as- ⁵³⁸

Figure 4: Integration of machine learning in different subfields of astronomy. The integration is defined as the average crossdomain linkage similar to the top panel of Figure [3.](#page-5-8) Cosmology and Nongalactic Astrophysics currently lead the application of machine learning in astronomy, followed by Galaxy Physics and Solar & Stellar Physics. The adoption of machine learning concepts in Earth & Planetary Physics and High Energy Astrophysics still lags behind.

 tronomical literature to understand the relations as well as the temporal evolution between different concepts. The relevance metric follows the intuition of how humans search for new concepts by quantifying the degree of separation in the cita- tion network as well as the prevalence of the concepts in the field. The relevance is then applied as the linkage strength of the force-directed graph to construct the knowledge graph, allowing us to visualize the knowledge in the field in detail.

 Based on this knowledge graph, we evaluate the tem- poral evolution of the relevance of numerical simulations and machine learning in astronomical research. We showed that while numerical simulations are routinely adopted in modern-day astronomy, the concepts related to them have gone through a long process of gradually being integrated into and accepted by the community. We also found that the integration of numerical simulation into scientific discovery shows a two-phase process, in which a five-year latency can be observed between the development of techniques, where the relevance of the techniques and the science might tem- porarily diminish, followed by the flourishing period, where the methods mature and are widely applied to astronomical research. We also found that the same trend can be found in classical statistical analysis.

 By the same metric, we found that, despite much of the in- terest and the booming field of deep learning, the impact of deep learning in astronomy remains marginal. While there is a drastic increase in the technique-science cross-referencing, quantitatively, the referencing remains at a level that we ob- served for numerical simulations about two decades ago. Fur- thermore, the number of machine learning concepts intro- duced in astronomy remains an order of magnitude smaller than that of numerical simulations and classical statistical methods, which might imply that the current rapid increase in relevance is driven mainly by the adoption of established machine learning techniques from decades ago. Nonethe- 573 less, if the two-phase transition applies, we expect more in- ⁵⁷⁴ novative techniques will be gradually introduced. In fact, ⁵⁷⁵ in recent years, we have seen many more modern-day tech- ⁵⁷⁶ niques, both in terms of flow-based and score-based gener- ⁵⁷⁷ ative models [\[De Santi](#page-10-19) *et al.*, 2024; Zhao *et al.*[, 2023\]](#page-12-16), be- ⁵⁷⁸ ing introduced, as well as, like this study, the application of 579 LLMs in astronomical research [\[Dung Nguyen](#page-10-11) *et al.*, 2023; 580 [Perkowski](#page-12-5) *et al.*, 2024]. The metric introduced here will be 581 able to continue monitoring this process. 582

This study primarily aims to show a proof of concept, using LLM-based Knowledge Graph to quantifiably understand 584 the evolution of astronomical research. As such our study 585 certainly has much room for improvement. For instance, ⁵⁸⁶ proper robust extraction of scientific concepts from literature 587 heavily relies on the alignment between the agents and the 588 researchers' perception. In our study, the concepts are au- ⁵⁸⁹ tonomously extracted through the LLM agent, with the gran-
soc ularity of the concepts optimized through merging and prun- ⁵⁹¹ ing. Such an LLM agent can certainly benefit from a subset 592 of high-quality annotated data and comparison with existing ⁵⁹³ hierarchical taxonomies. The process of concept pruning and 594 merging is also somewhat crude, involving vectorizing the 595 concepts and performing a cosine similarity search. A bet- ⁵⁹⁶ ter method would involve further comparing these concepts, ⁵⁹⁷ utilizing the capabilities of large language models for more ⁵⁹⁸ detailed concept differentiation and pruning. 599

In a nutshell, our study demonstrates the potential of LLM- 600 based knowledge graphs in uncovering the intricate relation- ⁶⁰¹ ships and evolution of astronomical research. By providing a 602 quantitative framework for analyzing the integration of new 603 technologies and methodologies, this approach opens up new 604 avenues for understanding the dynamics of interdisciplinary 605 research and the factors that drive scientific progress, in as- ⁶⁰⁶ tronomy and beyond. 607

Ethical Statement 608

In this study, we construct a knowledge graph by extract- 609 ing concepts from the astronomical literature available on the 610 arXiv preprint server. Our work aims to advance the under- ⁶¹¹ standing of the evolution and interconnections of scientific 612 concepts within the field of astronomy. We emphasize that 613 our study does not involve the direct reproduction or distri- ⁶¹⁴ bution of the original literature itself. Instead, we focus on 615 distilling and analyzing the key concepts present in the exist- ⁶¹⁶ ing body of work. 617

To ensure ethical compliance and respect for intellectual 618 property rights, we will only release the extracted concepts 619 and their relationships, without sharing or reproducing the 620 original text or any substantial portions of the literature. This 621 approach minimizes the risk of copyright infringement and ⁶²² maintains the integrity of the original authors' works. 623

Furthermore, the field of astronomical research generally 624 operates under an open-sky policy, which promotes collab- ⁶²⁵ oration, transparency, and the free exchange of scientific 626 knowledge. This policy aligns with our research objectives 627 and mitigates potential ethical or monetary disputes arising 628 from our work. Our goal is to provide insights that benefit the ϵ 629

⁶³⁰ astronomical community and contribute to the advancement

⁶³¹ of scientific understanding.

⁶³² Acknowledgments

⁶³³ References

 [Abbott *et al.*, 2016] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Af- feldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, B. Allen, A. Allocca, P. A. Altin, S. B. Anderson, W. G. Anderson, K. Arai, M. A. Arain, M. C. Araya, C. C. Arceneaux, J. S. Areeda, N. Arnaud, K. G. Arun, S. Ascenzi, G. Ashton, M. Ast, S. M. Aston, P. Astone, P. Aufmuth, C. Aulbert, S. Babak, P. Bacon, M. K. M. Bader, P. T. Baker, F. Baldaccini, G. Ballardin, S. W. Ballmer, J. C. Barayoga, S. E. Barclay, B. C. Barish, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M. A. Barton, I. Bartos, R. Bassiri, A. Basti, J. C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Behnke, M. Bejger, C. Belczynski, A. S. Bell, C. J. Bell, B. K. Berger, J. Bergman, G. Bergmann, C. P. L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I. A. Bilenko, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, A. Bisht, M. Bitossi, C. Biwer, M. A. Bizouard, J. K. Blackburn, C. D. Blair, D. G. Blair, R. M. Blair, S. Bloemen, O. Bock, T. P. Bodiya, M. Boer, G. Bogaert, C. Bogan, A. Bohe, P. Bojtos, C. Bond, F. Bondu, R. Bonnand, B. A. Boom, R. Bork, V. Boschi, S. Bose, Y. Bouffanais, A. Bozzi, C. Bradaschia, P. R. Brady, V. B. Braginsky, M. Branchesi, J. E. Brau, T. Briant, A. Brillet, M. Brinkmann, V. Bris- son, P. Brockill, A. F. Brooks, D. A. Brown, D. D. Brown, N. M. Brown, C. C. Buchanan, A. Buikema, T. Bulik, H. J. Bulten, A. Buonanno, D. Buskulic, C. Buy, R. L. Byer, M. Cabero, L. Cadonati, G. Cagnoli, C. Cahillane, 664 J. Calderón Bustillo, T. Callister, E. Calloni, J. B. Camp, K. C. Cannon, J. Cao, C. D. Capano, E. Capocasa, F. Car- bognani, S. Caride, J. Casanueva Diaz, C. Casentini, S. Caudill, M. Cavaglia, F. Cavalier, R. Cavalieri, G. Cella, ` C. B. Cepeda, L. Cerboni Baiardi, G. Cerretani, E. Ce- sarini, R. Chakraborty, T. Chalermsongsak, S. J. Cham- berlin, M. Chan, S. Chao, P. Charlton, E. Chassande- Mottin, H. Y. Chen, Y. Chen, C. Cheng, A. Chincarini, A. Chiummo, H. S. Cho, M. Cho, J. H. Chow, N. Chris- tensen, Q. Chu, S. Chua, S. Chung, G. Ciani, F. Clara, J. A. Clark, F. Cleva, E. Coccia, P. F. Cohadon, A. Colla, C. G. Collette, L. Cominsky, M. Constancio, A. Conte, L. Conti, D. Cook, T. R. Corbitt, N. Cornish, A. Corsi, S. Cortese, C. A. Costa, M. W. Coughlin, S. B. Coughlin, J. P. Coulon, S. T. Countryman, P. Couvares, E. E. Cowan, D. M. Coward, M. J. Cowart, D. C. Coyne, R. Coyne, K. Craig, J. D. E. Creighton, T. D. Creighton, J. Cripe, S. G. Crowder, A. M. Cruise, A. Cumming, L. Cun- ningham, E. Cuoco, T. Dal Canton, S. L. Danilishin, S. D'Antonio, K. Danzmann, N. S. Darman, C. F. Da Silva Costa, V. Dattilo, I. Dave, H. P. Daveloza, M. Davier, G. S. Davies, E. J. Daw, R. Day, S. De, D. DeBra, G. De-686 breczeni, J. Degallaix, M. De Laurentis, S. Deléglise, W. Del Pozzo, T. Denker, T. Dent, H. Dereli, V. Der- ⁶⁸⁷ gachev, R. T. DeRosa, R. De Rosa, R. DeSalvo, S. Dhu- ⁶⁸⁸ randhar, M. C. Díaz, L. Di Fiore, M. Di Giovanni, A. Di 689 Lieto, S. Di Pace, I. Di Palma, A. Di Virgilio, G. Dojci- ⁶⁹⁰ noski, V. Dolique, F. Donovan, K. L. Dooley, S. Doravari, ⁶⁹¹ R. Douglas, T. P. Downes, M. Drago, R. W. P. Drever, J. C. ⁶⁹² Driggers, Z. Du, M. Ducrot, S. E. Dwyer, T. B. Edo, M. C. ⁶⁹³ Edwards, A. Effler, H. B. Eggenstein, P. Ehrens, J. Eich- ⁶⁹⁴ holz, S. S. Eikenberry, W. Engels, R. C. Essick, T. Etzel, 695 M. Evans, T. M. Evans, R. Everett, M. Factourovich, V. Fa- ⁶⁹⁶ fone, H. Fair, S. Fairhurst, X. Fan, Q. Fang, S. Farinon, ⁶⁹⁷ B. Farr, W. M. Farr, M. Favata, M. Fays, H. Fehrmann, ⁶⁹⁸ M. M. Fejer, D. Feldbaum, I. Ferrante, E. C. Ferreira, ⁶⁹⁹ F. Ferrini, F. Fidecaro, L. S. Finn, I. Fiori, D. Fiorucci, R. P. ⁷⁰⁰ Fisher, R. Flaminio, M. Fletcher, H. Fong, J. D. Fournier, ⁷⁰¹ S. Franco, S. Frasca, F. Frasconi, M. Frede, Z. Frei, ⁷⁰² A. Freise, R. Frey, V. Frey, T. T. Fricke, P. Fritschel, ⁷⁰³ V. V. Frolov, P. Fulda, M. Fyffe, H. A. G. Gabbard, J. R. ⁷⁰⁴ Gair, L. Gammaitoni, S. G. Gaonkar, F. Garufi, A. Gatto, ⁷⁰⁵ G. Gaur, N. Gehrels, G. Gemme, B. Gendre, E. Genin, ⁷⁰⁶ A. Gennai, J. George, L. Gergely, V. Germain, Abhirup 707 Ghosh, Archisman Ghosh, S. Ghosh, J. A. Giaime, K. D. ⁷⁰⁸ Giardina, A. Giazotto, K. Gill, A. Glaefke, J. R. Gleason, ⁷⁰⁹ E. Goetz, R. Goetz, L. Gondan, G. Gonzalez, J. M. Gonza- ´ ⁷¹⁰ lez Castro, A. Gopakumar, N. A. Gordon, M. L. Gorodet- ⁷¹¹ sky, S. E. Gossan, M. Gosselin, R. Gouaty, C. Graef, P. B. ⁷¹² Graff, M. Granata, A. Grant, S. Gras, C. Gray, G. Greco, ⁷¹³ A. C. Green, R. J. S. Greenhalgh, P. Groot, H. Grote, ⁷¹⁴ S. Grunewald, G. M. Guidi, X. Guo, A. Gupta, M. K. ⁷¹⁵ Gupta, K. E. Gushwa, E. K. Gustafson, R. Gustafson, ⁷¹⁶ J. J. Hacker, B. R. Hall, E. D. Hall, G. Hammond, ⁷¹⁷ M. Haney, M. M. Hanke, J. Hanks, C. Hanna, M. D. Han- ⁷¹⁸ nam, J. Hanson, T. Hardwick, J. Harms, G. M. Harry, ⁷¹⁹ I. W. Harry, M. J. Hart, M. T. Hartman, C. J. Haster, ⁷²⁰ K. Haughian, J. Healy, J. Heefner, A. Heidmann, M. C. ⁷²¹ Heintze, G. Heinzel, H. Heitmann, P. Hello, G. Hem- ⁷²² ming, M. Hendry, I. S. Heng, J. Hennig, A. W. Hepton- ⁷²³ stall, M. Heurs, S. Hild, D. Hoak, K. A. Hodge, D. Hof- ⁷²⁴ man, S. E. Hollitt, K. Holt, D. E. Holz, P. Hopkins, ⁷²⁵ D. J. Hosken, J. Hough, E. A. Houston, E. J. Howell, ⁷²⁶ Y. M. Hu, S. Huang, E. A. Huerta, D. Huet, B. Hughey, ⁷²⁷ S. Husa, S. H. Huttner, T. Huynh-Dinh, A. Idrisy, N. In- ⁷²⁸ dik, D. R. Ingram, R. Inta, H. N. Isa, J. M. Isac, M. Isi, ⁷²⁹ G. Islas, T. Isogai, B. R. Iyer, K. Izumi, M. B. Jacob- ⁷³⁰ son, T. Jacqmin, H. Jang, K. Jani, P. Jaranowski, S. Jawa- ⁷³¹ har, F. Jiménez-Forteza, W. W. Johnson, N. K. Johnson- 732 McDaniel, D. I. Jones, R. Jones, R. J. G. Jonker, L. Ju, ⁷³³ K. Haris, C. V. Kalaghatgi, V. Kalogera, S. Kandhasamy, ⁷³⁴ G. Kang, J. B. Kanner, S. Karki, M. Kasprzack, E. Kat- ⁷³⁵ savounidis, W. Katzman, S. Kaufer, T. Kaur, K. Kawabe, ⁷³⁶ F. Kawazoe, F. Kéfélian, M. S. Kehl, D. Keitel, D. B. 737 Kelley, W. Kells, R. Kennedy, D. G. Keppel, J. S. Key, ⁷³⁸ A. Khalaidovski, F. Y. Khalili, I. Khan, S. Khan, Z. Khan, ⁷³⁹ E. A. Khazanov, N. Kijbunchoo, C. Kim, J. Kim, K. Kim, ⁷⁴⁰ Nam-Gyu Kim, Namjun Kim, Y. M. Kim, E. J. King, ⁷⁴¹ P. J. King, D. L. Kinzel, J. S. Kissel, L. Kleybolte, ⁷⁴² S. Klimenko, S. M. Koehlenbeck, K. Kokeyama, S. Ko- ⁷⁴³ ley, V. Kondrashov, A. Kontos, S. Koranda, M. Korobko, ⁷⁴⁴ W. Z. Korth, I. Kowalska, D. B. Kozak, V. Kringel, B. Kr- ⁷⁴⁵

 ishnan, A. Krolak, C. Krueger, G. Kuehn, P. Kumar, ´ R. Kumar, L. Kuo, A. Kutynia, P. Kwee, B. D. Lackey, M. Landry, J. Lange, B. Lantz, P. D. Lasky, A. Laz- zarini, C. Lazzaro, P. Leaci, S. Leavey, E. O. Lebigot, C. H. Lee, H. K. Lee, H. M. Lee, K. Lee, A. Lenon, M. Leonardi, J. R. Leong, N. Leroy, N. Letendre, Y. Levin, B. M. Levine, T. G. F. Li, A. Libson, T. B. Littenberg, N. A. Lockerbie, J. Logue, A. L. Lombardi, L. T. Lon- don, J. E. Lord, M. Lorenzini, V. Loriette, M. Lormand, G. Losurdo, J. D. Lough, C. O. Lousto, G. Lovelace, H. Luck, A. P. Lundgren, J. Luo, R. Lynch, Y. Ma, T. Mac- ¨ Donald, B. Machenschalk, M. MacInnis, D. M. Macleod, F. Magana-Sandoval, R. M. Magee, M. Mageswaran, ˜ E. Majorana, I. Maksimovic, V. Malvezzi, N. Man, I. Man- del, V. Mandic, V. Mangano, G. L. Mansell, M. Manske, M. Mantovani, F. Marchesoni, F. Marion, S. Marka, ´ Z. Marka, A. S. Markosyan, E. Maros, F. Martelli, ´ L. Martellini, I. W. Martin, R. M. Martin, D. V. Mar- tynov, J. N. Marx, K. Mason, A. Masserot, T. J. Massinger, M. Masso-Reid, F. Matichard, L. Matone, N. Mavalvala, N. Mazumder, G. Mazzolo, R. McCarthy, D. E. Mc- Clelland, S. McCormick, S. C. McGuire, G. McIntyre, J. McIver, D. J. McManus, S. T. McWilliams, D. Meacher, G. D. Meadors, J. Meidam, A. Melatos, G. Mendell, D. Mendoza-Gandara, R. A. Mercer, E. Merilh, M. Mer- zougui, S. Meshkov, C. Messenger, C. Messick, P. M. Meyers, F. Mezzani, H. Miao, C. Michel, H. Middle- ton, E. E. Mikhailov, L. Milano, J. Miller, M. Millhouse, Y. Minenkov, J. Ming, S. Mirshekari, C. Mishra, S. Mi- tra, V. P. Mitrofanov, G. Mitselmakher, R. Mittleman, A. Moggi, M. Mohan, S. R. P. Mohapatra, M. Montani, B. C. Moore, C. J. Moore, D. Moraru, G. Moreno, S. R. Morriss, K. Mossavi, B. Mours, C. M. Mow-Lowry, C. L. Mueller, G. Mueller, A. W. Muir, Arunava Mukherjee, D. Mukherjee, S. Mukherjee, N. Mukund, A. Mullavey, J. Munch, D. J. Murphy, P. G. Murray, A. Mytidis, I. Nardecchia, L. Naticchioni, R. K. Nayak, V. Necula, K. Nedkova, G. Nelemans, M. Neri, A. Neunzert, G. New- ton, T. T. Nguyen, A. B. Nielsen, S. Nissanke, A. Nitz, F. Nocera, D. Nolting, M. E. N. Normandin, L. K. Nut- tall, J. Oberling, E. Ochsner, J. O'Dell, E. Oelker, G. H. Ogin, J. J. Oh, S. H. Oh, F. Ohme, M. Oliver, P. Opper- mann, Richard J. Oram, B. O'Reilly, R. O'Shaughnessy, C. D. Ott, D. J. Ottaway, R. S. Ottens, H. Overmier, B. J. Owen, A. Pai, S. A. Pai, J. R. Palamos, O. Palashov, C. Palomba, A. Pal-Singh, H. Pan, Y. Pan, C. Pankow, F. Pannarale, B. C. Pant, F. Paoletti, A. Paoli, M. A. Papa, H. R. Paris, W. Parker, D. Pascucci, A. Pasqualetti, R. Pas- saquieti, D. Passuello, B. Patricelli, Z. Patrick, B. L. Pearl- stone, M. Pedraza, R. Pedurand, L. Pekowsky, A. Pele, S. Penn, A. Perreca, H. P. Pfeiffer, M. Phelps, O. Piccinni, M. Pichot, M. Pickenpack, F. Piergiovanni, V. Pierro, G. Pillant, L. Pinard, I. M. Pinto, M. Pitkin, J. H. Poeld, R. Poggiani, P. Popolizio, A. Post, J. Powell, J. Prasad, V. Predoi, S. S. Premachandra, T. Prestegard, L. R. Price, M. Prijatelj, M. Principe, S. Privitera, R. Prix, G. A. Prodi, L. Prokhorov, O. Puncken, M. Punturo, P. Puppo, 803 M. Pürrer, H. Qi, J. Qin, V. Quetschke, E. A. Quintero, R. Quitzow-James, F. J. Raab, D. S. Rabeling, H. Rad-

kins, P. Raffai, S. Raja, M. Rakhmanov, C. R. Ramet, ⁸⁰⁵ P. Rapagnani, V. Raymond, M. Razzano, V. Re, J. Read, 806 C. M. Reed, T. Regimbau, L. Rei, S. Reid, D. H. Reitze, ⁸⁰⁷ H. Rew, S. D. Reyes, F. Ricci, K. Riles, N. A. Robertson, ⁸⁰⁸ R. Robie, F. Robinet, A. Rocchi, L. Rolland, J. G. Rollins, 809 V. J. Roma, J. D. Romano, R. Romano, G. Romanov, J. H. ⁸¹⁰ Romie, D. Rosińska, S. Rowan, A. Rüdiger, P. Ruggi, 811 K. Ryan, S. Sachdev, T. Sadecki, L. Sadeghian, L. Salconi, ⁸¹² M. Saleem, F. Salemi, A. Samajdar, L. Sammut, L. M. ⁸¹³ Sampson, E. J. Sanchez, V. Sandberg, B. Sandeen, G. H. ⁸¹⁴ Sanders, J. R. Sanders, B. Sassolas, B. S. Sathyaprakash, ⁸¹⁵ P. R. Saulson, O. Sauter, R. L. Savage, A. Sawadsky, ⁸¹⁶ P. Schale, R. Schilling, J. Schmidt, P. Schmidt, R. Schn- ⁸¹⁷ abel, R. M. S. Schofield, A. Schönbeck, E. Schreiber, 818 D. Schuette, B. F. Schutz, J. Scott, S. M. Scott, D. Sell- ⁸¹⁹ ers, A. S. Sengupta, D. Sentenac, V. Sequino, A. Sergeev, 820 G. Serna, Y. Setyawati, A. Sevigny, D. A. Shaddock, ⁸²¹ T. Shaffer, S. Shah, M. S. Shahriar, M. Shaltev, Z. Shao, ⁸²² B. Shapiro, P. Shawhan, A. Sheperd, D. H. Shoemaker, ⁸²³ D. M. Shoemaker, K. Siellez, X. Siemens, D. Sigg, A. D. ⁸²⁴ Silva, D. Simakov, A. Singer, L. P. Singer, A. Singh, ⁸²⁵ R. Singh, A. Singhal, A. M. Sintes, B. J. J. Slagmolen, J. R. 826 Smith, M. R. Smith, N. D. Smith, R. J. E. Smith, E. J. Son, ⁸²⁷ B. Sorazu, F. Sorrentino, T. Souradeep, A. K. Srivastava, ⁸²⁸ A. Staley, M. Steinke, J. Steinlechner, S. Steinlechner, ⁸²⁹ D. Steinmeyer, B. C. Stephens, S. P. Stevenson, R. Stone, ⁸³⁰ K. A. Strain, N. Straniero, G. Stratta, N. A. Strauss, ⁸³¹ S. Strigin, R. Sturani, A. L. Stuver, T. Z. Summerscales, ⁸³² L. Sun, P. J. Sutton, B. L. Swinkels, M. J. Szczepańczyk, 833 M. Tacca, D. Talukder, D. B. Tanner, M. Tápai, S. P. 834 Tarabrin, A. Taracchini, R. Taylor, T. Theeg, M. P. Thirug- ⁸³⁵ nanasambandam, E. G. Thomas, M. Thomas, P. Thomas, 836 K. A. Thorne, K. S. Thorne, E. Thrane, S. Tiwari, V. Ti- ⁸³⁷ wari, K. V. Tokmakov, C. Tomlinson, M. Tonelli, C. V. ⁸³⁸ Torres, C. I. Torrie, D. Töyrä, F. Travasso, G. Traylor, 839 D. Trifirò, M. C. Tringali, L. Trozzo, M. Tse, M. Turconi, 840 D. Tuyenbayev, D. Ugolini, C. S. Unnikrishnan, A. L. Ur- ⁸⁴¹ ban, S. A. Usman, H. Vahlbruch, G. Vajente, G. Valdes, ⁸⁴² M. Vallisneri, N. van Bakel, M. van Beuzekom, J. F. J. ⁸⁴³ van den Brand, C. Van Den Broeck, D. C. Vander-Hyde, ⁸⁴⁴ L. van der Schaaf, J. V. van Heijningen, A. A. van Veg- ⁸⁴⁵ gel, M. Vardaro, S. Vass, M. Vasúth, R. Vaulin, A. Vec- 846 chio, G. Vedovato, J. Veitch, P. J. Veitch, K. Venkateswara, ⁸⁴⁷ D. Verkindt, F. Vetrano, A. Viceré, S. Vinciguerra, D. J. ⁸⁴⁸ Vine, J. Y. Vinet, S. Vitale, T. Vo, H. Vocca, C. Vor- ⁸⁴⁹ vick, D. Voss, W. D. Vousden, S. P. Vyatchanin, A. R. ⁸⁵⁰ Wade, L. E. Wade, M. Wade, S. J. Waldman, M. Walker, 851 L. Wallace, S. Walsh, G. Wang, H. Wang, M. Wang, ⁸⁵² X. Wang, Y. Wang, H. Ward, R. L. Ward, J. Warner, ⁸⁵³ M. Was, B. Weaver, L. W. Wei, M. Weinert, A. J. We- ⁸⁵⁴ instein, R. Weiss, T. Welborn, L. Wen, P. Weßels, T. West- ⁸⁵⁵ phal, K. Wette, J. T. Whelan, S. E. Whitcomb, D. J. 856 White, B. F. Whiting, K. Wiesner, C. Wilkinson, P. A. ⁸⁵⁷ Willems, L. Williams, R. D. Williams, A. R. Williamson, ⁸⁵⁸ J. L. Willis, B. Willke, M. H. Wimmer, L. Winkelmann, ⁸⁵⁹ W. Winkler, C. C. Wipf, A. G. Wiseman, H. Wittel, 860 G. Woan, J. Worden, J. L. Wright, G. Wu, J. Yablon, ⁸⁶¹ I. Yakushin, W. Yam, H. Yamamoto, C. C. Yancey, M. J. ⁸⁶² Yap, H. Yu, M. Yvert, A. ZadroZny, L. Zangrando, 863

- ⁸⁶⁴ M. Zanolin, J. P. Zendri, M. Zevin, F. Zhang, L. Zhang,
- ⁸⁶⁵ M. Zhang, Y. Zhang, C. Zhao, M. Zhou, Z. Zhou, X. J.
- ⁸⁶⁶ Zhu, M. E. Zucker, S. E. Zuraw, J. Zweizig, LIGO Scien-
- ⁸⁶⁷ tific Collaboration, and Virgo Collaboration. Observation
- ⁸⁶⁸ of Gravitational Waves from a Binary Black Hole Merger.
- ⁸⁶⁹ *Physics Review Letter*, 116(6):061102, February 2016.
- ⁸⁷⁰ [Accomazzi, 2024] Alberto Accomazzi. Decades of Trans-⁸⁷¹ formation: Evolution of the NASA Astrophysics ⁸⁷² Data System's Infrastructure. *arXiv e-prints*, page ⁸⁷³ arXiv:2401.09685, January 2024.
- ⁸⁷⁴ [Bai, 2016] Xue-Ning Bai. Towards a Global Evolutionary ⁸⁷⁵ Model of Protoplanetary Disks. *The Astrophysical Jour-*⁸⁷⁶ *nal*, 821(2):80, April 2016.
- ⁸⁷⁷ [Bannister *et al.*, 2012] Michael J. Bannister, David Epp-⁸⁷⁸ stein, Michael T. Goodrich, and Lowell Trott. Force-⁸⁷⁹ Directed Graph Drawing Using Social Gravity and Scal-⁸⁸⁰ ing. *arXiv e-prints*, page arXiv:1209.0748, September ⁸⁸¹ 2012.
- ⁸⁸² [Baron, 2019] Dalya Baron. Machine Learning in As-⁸⁸³ tronomy: a practical overview. *arXiv e-prints*, page ⁸⁸⁴ arXiv:1904.07248, April 2019.
- ⁸⁸⁵ [Bertschinger, 1998] Edmund Bertschinger. Simulations of ⁸⁸⁶ Structure Formation in the Universe. *Annual Review of* ⁸⁸⁷ *Astronomy and Astrophysics*, 36:599–654, January 1998.
- ⁸⁸⁸ [Blecher *et al.*, 2023] Lukas Blecher, Guillem Cucurull, ⁸⁸⁹ Thomas Scialom, and Robert Stojnic. Nougat: Neural ⁸⁹⁰ Optical Understanding for Academic Documents. *arXiv* ⁸⁹¹ *e-prints*, page arXiv:2308.13418, August 2023.
- ⁸⁹² [Brown *et al.*, 2020] Tom B. Brown, Benjamin Mann, Nick ⁸⁹³ Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-⁸⁹⁴ wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, ⁸⁹⁵ Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, ⁸⁹⁶ Gretchen Krueger, Tom Henighan, Rewon Child, Aditya ⁸⁹⁷ Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Win-⁸⁹⁸ ter, Christopher Hesse, Mark Chen, Eric Sigler, Ma-⁸⁹⁹ teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, ⁹⁰⁰ Christopher Berner, Sam McCandlish, Alec Radford, Ilya ⁹⁰¹ Sutskever, and Dario Amodei. Language Models are Few-⁹⁰² Shot Learners. *arXiv e-prints*, page arXiv:2005.14165, ⁹⁰³ May 2020.
- ⁹⁰⁴ [Bubeck *et al.*, 2023] Sebastien Bubeck, Varun Chan- ´ ⁹⁰⁵ drasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, ⁹⁰⁶ Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott ⁹⁰⁷ Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio ⁹⁰⁸ Ribeiro, and Yi Zhang. Sparks of Artificial General ⁹⁰⁹ Intelligence: Early experiments with GPT-4. *arXiv* ⁹¹⁰ *e-prints*, page arXiv:2303.12712, March 2023.
- ⁹¹¹ [Carlesi *et al.*, 2014a] Edoardo Carlesi, Alexander Knebe, ⁹¹² Geraint F. Lewis, Scott Wales, and Gustavo Yepes. ⁹¹³ Hydrodynamical simulations of coupled and uncoupled ⁹¹⁴ quintessence models - I. Halo properties and the cosmic ⁹¹⁵ web. *Monthly Notices of the Royal Astronomical Society*, ⁹¹⁶ 439(3):2943–2957, April 2014.
- ⁹¹⁷ [Carlesi *et al.*, 2014b] Edoardo Carlesi, Alexander Knebe, ⁹¹⁸ Geraint F. Lewis, and Gustavo Yepes. Hydrodynamical

simulations of coupled and uncoupled quintessence mod-
919 els - II. Galaxy clusters. *Monthly Notices of the Royal* ⁹²⁰ *Astronomical Society*, 439(3):2958–2969, April 2014. ⁹²¹

- [Cheong *et al.*, 2021] Se-Hang Cheong, Yain-Whar Si, and 922 Raymond K. Wong. Online force-directed algorithms for ⁹²³ visualization of dynamic graphs. *Information Sciences*, ⁹²⁴ 556:223–255, 2021. ⁹²⁵
- [Cranmer *et al.*, 2020] Kyle Cranmer, Johann Brehmer, and 926 Gilles Louppe. The frontier of simulation-based infer- 927 ence. *Proceedings of the National Academy of Science*, ⁹²⁸ 117(48):30055–30062, December 2020. ⁹²⁹
- [De Santi *et al.*, 2024] Federico De Santi, Massimiliano 930 Razzano, Francesco Fidecaro, Luca Muccillo, Lucia Pa- ⁹³¹ palini, and Barbara Patricelli. Deep learning to detect grav- ⁹³² itational waves from binary close encounters: Fast param- ⁹³³ eter estimation using normalizing flows. *Physical Review* ⁹³⁴ *D*, 109(10):102004, May 2024. 935
- [Diaz Rivero and Dvorkin, 2020] Ana Diaz Rivero and Cora ⁹³⁶ Dvorkin. Flow-based likelihoods for non-Gaussian in- ⁹³⁷ ference. *Physical Review D*, 102(10):103507, November ⁹³⁸ $2020.$ 939
- [Dung Nguyen *et al.*, 2023] Tuan Dung Nguyen, Yuan-Sen ⁹⁴⁰ Ting, Ioana Ciucă, Charlie O'Neill, Ze-Chang Sun, Maja 941 Jabłońska, Sandor Kruk, Ernest Perkowski, Jack Miller, 942 Jason Li, Josh Peek, Kartheik Iyer, Tomasz Różański, 943 Pranav Khetarpal, Sharaf Zaman, David Brodrick, Ser- ⁹⁴⁴ gio J. Rodríguez Méndez, Thang Bui, Alyssa Goodman, 945 Alberto Accomazzi, Jill Naiman, Jesse Cranney, Kevin ⁹⁴⁶ Schawinski, and UniverseTBD. AstroLLaMA: Towards 947 Specialized Foundation Models in Astronomy. *arXiv e-* ⁹⁴⁸ *prints*, page arXiv:2309.06126, September 2023.
- [Genel *et al.*, 2014] Shy Genel, Mark Vogelsberger, Volker 950 Springel, Debora Sijacki, Dylan Nelson, Greg Snyder, Vi- ⁹⁵¹ cente Rodriguez-Gomez, Paul Torrey, and Lars Hernquist. ⁹⁵² Introducing the Illustris project: the evolution of galaxy ⁹⁵³ populations across cosmic time. *Monthly Notices of the* ⁹⁵⁴ *Royal Astronomical Society*, 445(1):175–200, November ⁹⁵⁵ $2014.$ 956
- [Gudiksen et al., 2011] B. V. Gudiksen, M. Carlsson, V. H. 957 Hansteen, W. Hayek, J. Leenaarts, and J. Martínez-Sykora. 958 The stellar atmosphere simulation code Bifrost. Code 959 description and validation. *Astronomy & Astrophysics*, ⁹⁶⁰ 531:A154, July 2011. 961
- [Günther et al., 2023] Michael Günther, Jackmin Ong, Is- 962 abelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Mo- ⁹⁶³ hammad Kalim Akram, Susana Guzman, Georgios Mas- ⁹⁶⁴ trapas, Saba Sturua, Bo Wang, Maximilian Werk, Nan ⁹⁶⁵ Wang, and Han Xiao. Jina Embeddings 2: 8192-Token 966 General-Purpose Text Embeddings for Long Documents. ⁹⁶⁷ *arXiv e-prints*, page arXiv:2310.19923, October 2023. ⁹⁶⁸
- [Hara and Ford, 2023] Nathan C. Hara and Eric B. Ford. Sta- 969 tistical Methods for Exoplanet Detection with Radial Ve- ⁹⁷⁰ locities. *Annual Review of Statistics and Its Application*, ⁹⁷¹ 10(1):623–649, March 2023. 972
- [Hu and Dodelson, 2002] Wayne Hu and Scott Dodelson. ⁹⁷³ Cosmic Microwave Background Anisotropies. *Annual Re-* ⁹⁷⁴

- ⁹⁷⁵ *view of Astronomy and Astrophysics*, 40:171–216, January ⁹⁷⁶ 2002.
- ⁹⁷⁷ [Jiang *et al.*, 2014] Yan-Fei Jiang, James M. Stone, and ⁹⁷⁸ Shane W. Davis. A Global Three-dimensional Radiation ⁹⁷⁹ Magneto-hydrodynamic Simulation of Super-Eddington ⁹⁸⁰ Accretion Disks. *The Astrophysical Journal*, 796(2):106,

⁹⁸¹ December 2014.

 [Jiang *et al.*, 2023] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lelio Renard Lavaud, ´ Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 987 Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7B. *arXiv e-prints*, page arXiv:2310.06825, October 2023.

 [Jumper *et al.*, 2021] John Jumper, Richard Evans, Alexan- der Pritzel, Tim Green, Michael Figurnov, Olaf Ron- neberger, Kathryn Tunyasuvunakool, Russ Bates, Au-993 gustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, An- drew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure predic- tion with AlphaFold. *Nature*, 596(7873):583–589, August ¹⁰⁰³ 2021.

- ¹⁰⁰⁴ [Kobourov, 2012] Stephen G. Kobourov. Spring Embedders ¹⁰⁰⁵ and Force Directed Graph Drawing Algorithms. *arXiv e-*¹⁰⁰⁶ *prints*, page arXiv:1201.3011, January 2012.
- ¹⁰⁰⁷ [McAlpine *et al.*, 2016] S. McAlpine, J. C. Helly, ¹⁰⁰⁸ M. Schaller, J. W. Trayford, Y. Qu, M. Furlong, ¹⁰⁰⁹ R. G. Bower, R. A. Crain, J. Schaye, T. Theuns, C. Dalla ¹⁰¹⁰ Vecchia, C. S. Frenk, I. G. McCarthy, A. Jenkins, ¹⁰¹¹ Y. Rosas-Guevara, S. D. M. White, M. Baes, P. Camps, ¹⁰¹² and G. Lemson. The EAGLE simulations of galaxy ¹⁰¹³ formation: Public release of halo and galaxy catalogues. ¹⁰¹⁴ *Astronomy and Computing*, 15:72–89, April 2016.
- ¹⁰¹⁵ [Meijer *et al.*, 2021] H. J. Meijer, J. Truong, and R. Karimi. ¹⁰¹⁶ Document Embedding for Scientific Articles: Efficacy ¹⁰¹⁷ of Word Embeddings vs TFIDF. *arXiv e-prints*, page ¹⁰¹⁸ arXiv:2107.05151, July 2021.
- ¹⁰¹⁹ [Nyheim *et al.*, 2024] Bendik Nyheim, Signe Riemer-¹⁰²⁰ Sørensen, Rodrigo Parra, and Claudia Cicone. Machine ¹⁰²¹ Learning based Pointing Models for Radio/Sub-millimeter ¹⁰²² Telescopes. *arXiv e-prints*, page arXiv:2402.08589, ¹⁰²³ February 2024.
- ¹⁰²⁴ [OpenAI *et al.*, 2023] OpenAI, Josh Achiam, Steven Adler, ¹⁰²⁵ Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia ¹⁰²⁶ Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam ¹⁰²⁷ Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, ¹⁰²⁸ Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-¹⁰²⁹ ing Bao, Mohammad Bavarian, Jeff Belgum, Irwan

Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christo- ¹⁰³⁰ pher Berner, Lenny Bogdonoff, Oleg Boiko, Made- ¹⁰³¹ laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim ¹⁰³² Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie 1033 Campbell, Andrew Cann, Brittany Carey, Chelsea Carl- ¹⁰³⁴ son, Rory Carmichael, Brooke Chan, Che Chang, Fo- ¹⁰³⁵ tis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Ja- ¹⁰³⁶ son Chen, Mark Chen, Ben Chess, Chester Cho, Casey ¹⁰³⁷ Chu, Hyung Won Chung, Dave Cummings, Jeremiah Cur- ¹⁰³⁸ rier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah ¹⁰³⁹ Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve ¹⁰⁴⁰ Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna ¹⁰⁴¹ Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón 1042 Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, ¹⁰⁴³ Elie Georges, Christian Gibson, Vik Goel, Tarun Gogi- ¹⁰⁴⁴ neni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor- ¹⁰⁴⁵ don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua ¹⁰⁴⁶ Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, ¹⁰⁴⁷ Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes ¹⁰⁴⁸ Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Pe- ¹⁰⁴⁹ ter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli ¹⁰⁵⁰ Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, ¹⁰⁵¹ Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, ¹⁰⁵² Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer ¹⁰⁵³ Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, ¹⁰⁵⁴ Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, ¹⁰⁵⁵ Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hen- ¹⁰⁵⁶ drik Kirchner, Jamie Kiros, Matt Knight, Daniel Koko- ¹⁰⁵⁷ tajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- ¹⁰⁵⁸ stantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, ¹⁰⁵⁹ Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade ¹⁰⁶⁰ Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly ¹⁰⁶¹ Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, ¹⁰⁶² Ryan Lowe, Patricia Lue, Anna Makanju, Kim Mal- ¹⁰⁶³ facini, Sam Manning, Todor Markov, Yaniv Markovski, ¹⁰⁶⁴ Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc- ¹⁰⁶⁵ Grew, Scott Mayer McKinney, Christine McLeavey, ¹⁰⁶⁶ Paul McMillan, Jake McNeil, David Medina, Aalok ¹⁰⁶⁷ Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, ¹⁰⁶⁸ Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 1069 Mossing, Tong Mu, Mira Murati, Oleg Murk, David ¹⁰⁷⁰ Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 1071 Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long 1072 Ouyang, Cullen O'Keefe, Jakub Pachocki, Alex Paino, Joe ¹⁰⁷³ Palermo, Ashley Pantuliano, Giambattista Parascandolo, ¹⁰⁷⁴ Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, ¹⁰⁷⁵ Andrew Peng, Adam Perelman, Filipe de Avila Bel- ¹⁰⁷⁶ bute Peres, Michael Petrov, Henrique Ponde de Oliveira 1077 Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. ¹⁰⁷⁸ Pong, Tolly Powell, Alethea Power, Boris Power, Eliza- ¹⁰⁷⁹ beth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya ¹⁰⁸⁰ Ramesh, Cameron Raymond, Francis Real, Kendra Rim- ¹⁰⁸¹ bach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, ¹⁰⁸² Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish ¹⁰⁸³ Sastry, Heather Schmidt, David Schnurr, John Schulman, ¹⁰⁸⁴ Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica ¹⁰⁸⁵ Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric ¹⁰⁸⁶ Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, ¹⁰⁸⁷ Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie ¹⁰⁸⁸ Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thomp- son, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre- ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Ceron´ Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report. *arXiv e-prints*, page arXiv:2303.08774, March 2023.

 [Pan *et al.*, 2023] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying Large Lan- guage Models and Knowledge Graphs: A Roadmap. *arXiv e-prints*, page arXiv:2306.08302, June 2023.

- ¹¹⁰⁹ [Paz *et al.*, 2006] D. J. Paz, D. G. Lambas, N. Padilla, 1110 and M. Merchán. Shapes of clusters and groups of ¹¹¹¹ galaxies: comparison of model predictions with observa-¹¹¹² tions. *Monthly Notices of the Royal Astronomical Society*, ¹¹¹³ 366(4):1503–1510, March 2006.
- 1114 [Peñarrubia et al., 2006] Jorge Peñarrubia, Andrew J. Ben-¹¹¹⁵ son, David Mart´ınez-Delgado, and Hans Walter Rix. Mod-¹¹¹⁶ eling Tidal Streams in Evolving Dark Matter Halos. *The* ¹¹¹⁷ *Astrophysical Journal*, 645(1):240–255, July 2006.

 [Perkowski *et al.*, 2024] Ernest Perkowski, Rui Pan, Tuan Dung Nguyen, Yuan-Sen Ting, Sandor Kruk, Tong Zhang, Charlie O'Neill, Maja Jablonska, Zechang Sun, Michael J. Smith, Huiling Liu, Kevin Schaw- inski, Kartheik Iyer, Ioana Ciuca, and UniverseTBD. ˘ AstroLLaMA-Chat: Scaling AstroLLaMA with Conver- sational and Diverse Datasets. *Research Notes of the American Astronomical Society*, 8(1):7, January 2024.

 [Pillepich *et al.*, 2018] Annalisa Pillepich, Volker Springel, 1127 Dylan Nelson, Shy Genel, Jill Naiman, Rüdiger Pakmor, Lars Hernquist, Paul Torrey, Mark Vogelsberger, Rainer Weinberger, and Federico Marinacci. Simulating galaxy formation with the IllustrisTNG model. *Monthly Notices of the Royal Astronomical Society*, 473(3):4077–4106, January 2018.

 [Robertson *et al.*, 2023] Brant E. Robertson, Sandro Tac- chella, Benjamin D. Johnson, Ryan Hausen, Adebusola B. Alabi, Kristan Boyett, Andrew J. Bunker, Stefano Carni- ani, Eiichi Egami, Daniel J. Eisenstein, Kevin N. Hainline, Jakob M. Helton, Zhiyuan Ji, Nimisha Kumari, Jianwei Lyu, Roberto Maiolino, Erica J. Nelson, Marcia J. Rieke, 1139 Irene Shivaei, Fengwu Sun, Hannah Übler, Christina C. Williams, Christopher N. A. Willmer, and Joris Wit- stok. Morpheus Reveals Distant Disk Galaxy Morpholo- gies with JWST: The First AI/ML Analysis of JWST Im- ages. *The Astrophysical Journal Letters*, 942(2):L42, Jan-uary 2023.

- [Romeo *et al.*, 2004] Alessandro B. Romeo, Cathy Horel- 1145 lou, and Jöran Bergh. A wavelet add-on code for 1146 new-generation N-body simulations and data de-noising ¹¹⁴⁷ (JOFILUREN). *Monthly Notices of the Royal Astronomi-* ¹¹⁴⁸ *cal Society*, 354(4):1208–1222, November 2004. 1149
- [Springel, 2005] Volker Springel. The cosmological simula- ¹¹⁵⁰ tion code GADGET-2. *Monthly Notices of the Royal As-* ¹¹⁵¹ *tronomical Society*, 364(4):1105–1134, December 2005. ¹¹⁵²
- [Storrie-Lombardi *et al.*, 1992] M. C. Storrie-Lombardi, ¹¹⁵³ O. Lahav, Jr. Sodre, L., and L. J. Storrie-Lombardi. Mor- ¹¹⁵⁴ phological Classification of Galaxies by Artificial Neural ¹¹⁵⁵ Networks. *Monthly Notices of the Royal Astronomical* ¹¹⁵⁶ *Society*, 259:8P, November 1992.
- [Sun *et al.*, 2023a] Zechang Sun, Joshua S. Speagle, Song ¹¹⁵⁸ Huang, Yuan-Sen Ting, and Zheng Cai. Zephyr : Stitch- ¹¹⁵⁹ ing Heterogeneous Training Data with Normalizing Flows ¹¹⁶⁰ for Photometric Redshift Inference. *arXiv e-prints*, page ¹¹⁶¹ arXiv:2310.20125, October 2023. 1162
- [Sun *et al.*, 2023b] Zechang Sun, Yuan-Sen Ting, and Zheng 1163 Cai. Quasar Factor Analysis-An Unsupervised and Proba- ¹¹⁶⁴ bilistic Quasar Continuum Prediction Algorithm with La- ¹¹⁶⁵ tent Factor Analysis. *The Astrophysical Journal Supple-* ¹¹⁶⁶ *ment Series*, 269(1):4, November 2023.
- [Ting *et al.*, 2019] Yuan-Sen Ting, Charlie Conroy, Hans- 1168 Walter Rix, and Phillip Cargile. The Payne: Self- ¹¹⁶⁹ consistent ab initio Fitting of Stellar Spectra. *The Astro-* ¹¹⁷⁰ *physical Journal*, 879(2):69, July 2019. 1171
- [Villaescusa-Navarro *et al.*, 2021a] Francisco Villaescusa- ¹¹⁷² Navarro, Daniel Anglés-Alcázar, Shy Genel, David N. 1173 Spergel, Yin Li, Benjamin Wandelt, Andrina Nicola, Le- ¹¹⁷⁴ ander Thiele, Sultan Hassan, Jose Manuel Zorrilla Matilla, ¹¹⁷⁵ Desika Narayanan, Romeel Dave, and Mark Vogelsberger. ¹¹⁷⁶ Multifield Cosmology with Artificial Intelligence. *arXiv* ¹¹⁷⁷ *e-prints*, page arXiv:2109.09747, September 2021. 1178
- [Villaescusa-Navarro *et al.*, 2021b] Francisco Villaescusa- ¹¹⁷⁹ Navarro, Daniel Anglés-Alcázar, Shy Genel, David N. 1180 Spergel, Rachel S. Somerville, Romeel Dave, Annalisa ¹¹⁸¹ Pillepich, Lars Hernquist, Dylan Nelson, Paul Torrey, ¹¹⁸² Desika Narayanan, Yin Li, Oliver Philcox, Valentina ¹¹⁸³ La Torre, Ana Maria Delgado, Shirley Ho, Sultan Has- ¹¹⁸⁴ san, Blakesley Burkhart, Digvijay Wadekar, Nicholas ¹¹⁸⁵ Battaglia, Gabriella Contardo, and Greg L. Bryan. ¹¹⁸⁶ The CAMELS Project: Cosmology and Astrophysics ¹¹⁸⁷ with Machine-learning Simulations. *The Astrophysical* ¹¹⁸⁸ *Journal*, 915(1):71, July 2021. 1189

[Weinberg, 2008] Steven Weinberg. *Cosmology*. 2008. 1190

- [Xu *et al.*, 2018] J. Xu, Y. Bu, Y. Ding, et al. Understanding 1191 the formation of interdisciplinary research from the per- ¹¹⁹² spective of keyword evolution: a case study on joint atten- ¹¹⁹³ tion. *Scientometrics*, 117:973–995, 2018.
- [Zhao *et al.*, 2023] Xiaosheng Zhao, Yuan-Sen Ting, Kangn- ¹¹⁹⁵ ing Diao, and Yi Mao. Can diffusion model conditionally ¹¹⁹⁶ generate astrophysical images? *Monthly Notices of the* ¹¹⁹⁷ *Royal Astronomical Society*, 526(2):1699–1712, Decem- ¹¹⁹⁸ ber 2023. ¹¹⁹⁹
- [Zhou and Lin, 2007] Ji-Lin Zhou and Douglas N. C. Lin.
- 1201 Planetesimal Accretion onto Growing Proto-Gas Giant
1202 Planets. The Astrophysical Journal, 666(1):447-465,
- Planets. *The Astrophysical Journal*, 666(1):447–465, September 2007.
- [Zhu *et al.*, 2023] Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng,
- Huajun Chen, and Ningyu Zhang. LLMs for Knowl-
- edge Graph Construction and Reasoning: Recent Capa-bilities and Future Opportunities. *arXiv e-prints*, page
- arXiv:2305.13168, May 2023.