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Abstract
Identifying and predicting the factors that con-1

tribute to the success of interdisciplinary research2

is crucial for advancing scientific discovery. How-3

ever, there is a significant lack of methods to quan-4

tify the integration of new ideas and technological5

advancements within a field and how they trigger6

further scientific breakthroughs. Large language7

models, with their prowess in extracting key con-8

cepts from vast literature beyond keyword searches,9

provide a new tool to quantify such processes. In10

this study, we use astronomy as a case study to11

quantify this process. We extract concepts in as-12

tronomical research from 297,807 publications be-13

tween 1993 and 2024 using large language mod-14

els, resulting in a refined set of 24,939 concepts.15

These concepts are then adopted to form a knowl-16

edge graph, where the link strength between any17

two concepts is determined by their relevance based18

on the citation-reference relationships. By cal-19

culating this relevance across different time peri-20

ods, we quantify the impact of numerical simula-21

tions and artificial intelligence on astronomical re-22

search, demonstrating the possibility of quantifying23

the gradual integration of interdisciplinary research24

and its further branching that leads to the flourish-25

ing of scientific domains.26

1 Introduction27

Interdisciplinary collaborations often drive innovation in re-28

search by introducing new theoretical, analytical, or compu-29

tational tools to specific scientific domains. These new tools30

can revitalize and open up fields that might otherwise remain31

stagnant. For instance, the theoretical understanding of quan-32

tum physics and general relativity has driven much of modern33

cosmology [Weinberg, 2008], and each subsequent engineer-34

ing breakthrough leads to new windows of observation. A35

prime example is the detection of gravitational waves with36

LIGO [Abbott et al., 2016], which was made possible by37

the convergence of cutting-edge technologies in interferome-38

try. Simultaneously, high-performance computing has paved39

the way for understanding complex systems in the cosmos,40

such as the evolution of galaxies [McAlpine et al., 2016;41

Pillepich et al., 2018] and the inner workings of stars and 42

stellar atmospheres [Gudiksen et al., 2011], through N-body 43

or hydrodynamical simulations. 44

The advancement of astronomy also relies heavily on the 45

revolution of statistical and analytical methods, which allow 46

for proper inferences based on observations. The introduc- 47

tion of even well-known statistical techniques to astrophysics 48

often leads to key turning points in the field. For exam- 49

ple, a cornerstone of our understanding of cosmology comes 50

from analyzing the power spectrum of the cosmic microwave 51

background [Hu and Dodelson, 2002], while the detection 52

of planetary systems outside the solar system has benefited 53

from Gaussian Processes [Hara and Ford, 2023]. More re- 54

cently, the advent of deep learning, with numerous successes 55

in sciences such as AlphaFold [Jumper et al., 2021], has pro- 56

pelled much of the field to rethink statistical inference in as- 57

tronomy. This includes using generative models as surro- 58

gates for the likelihood or posterior [Cranmer et al., 2020; 59

Sun et al., 2023a] and employing flow-based generative mod- 60

els to capture higher-order moment information in stochastic 61

fields [Diaz Rivero and Dvorkin, 2020]. 62

However, the underpinnings of these successful interdis- 63

ciplinary results often stem from a rigorous process of de- 64

bate and adaptation within the community. New thought 65

processes are initially treated as disruptors, but a subset of 66

these promising methods subsequently becomes integrated 67

into the field’s knowledge base. Over time, such integra- 68

tion gains significant traction and further creates branch- 69

ing of knowledge in the field, fostering its growth. Con- 70

sider the example of numerical simulation, which was ini- 71

tially viewed as a “distraction” from pure mathematical in- 72

terest in solving N-body problems and Navier-Stokes equa- 73

tions [Bertschinger, 1998]. However, astrophysics has grad- 74

ually acknowledged that some aspects of the field are non- 75

linear and beyond analytical understanding. The integration 76

of numerical simulations has subsequently led to the thriving 77

study of galaxy evolution [McAlpine et al., 2016], a widely 78

researched topic, and has also gradually permeated into more 79

specialized domains like solving the accretion physics of 80

black holes and protoplanetary disks [Jiang et al., 2014; 81

Bai, 2016]. 82

However, while such integration and branching off are in- 83

tuitively clear, studying and quantifying them remains a chal- 84

lenge. Questions such as how long it might take for a field 85



to adopt a new concept and what quantitative impact it has86

on the field still evades rigorous study. A key bottleneck is87

the difficulty in defining and extracting the various concepts88

described in a paper. The classical approach of classification89

using only keywords or the field [Xu et al., 2018] of research90

might lack granularity. Other implicit methods that aim to ex-91

tract vectorized semantic representations from papers [Meijer92

et al., 2021] are hard to parse at the human level, let alone op-93

erate on such representations.94

Recent breakthroughs in large language models (LLMs),95

particularly generalized pre-trained transformer techniques96

[Brown et al., 2020; OpenAI et al., 2023], have demon-97

strated exceptional zero-shot/few-shot capabilities across var-98

ious downstream tasks and have shown broad domain knowl-99

edge coverage [Bubeck et al., 2023]. The synergy between100

LLMs and knowledge graphs constitutes an active area of re-101

search. LLMs have shown reasonable performance in tasks102

such as entity identification for knowledge graph construc-103

tion, and their capabilities can be significantly enhanced104

when coupled with knowledge graphs as external knowledge105

sources [Pan et al., 2023; Zhu et al., 2023].106

Armed with this advancement, in this study, we explore107

the possibility of using LLMs as a bridging tool by distilling108

concepts from research papers in astronomy and astrophysics109

and constructing knowledge graphs to study their relation-110

ships and co-evolution over time. To the best of our knowl-111

edge, this is the first time an LLM-based knowledge graph112

has been constructed for astrophysics. The combination113

of the LLM-extracted concepts with our proposed citation-114

reference-based relevance allows us to quantitatively analyze115

cross-domain interactions over time and the co-evolution of116

subfields in astronomy.117

This paper is organized as follows: In Section 2, we outline118

the dataset used for this study. Section 3 details the method-119

ologies employed, including knowledge graph construction120

with large language model agents and the citation-reference-121

based relevance to quantify the interconnection between dif-122

ferent concepts. We present our findings in Section 4, includ-123

ing a case study focusing on how numerical simulations were124

gradually adopted by the astronomical community, and by ex-125

tension, quantifying the current impact of machine learning in126

astronomy. We discuss and conclude in Section 5.127

2 Literature in Astronomical Research128

This study employs a dataset of 297, 807 arXiv papers in the129

fields of astronomy and astrophysics, collected from 1993 to130

2024 and sourced from the NASA Astrophysics Data System131

(NASA/ADS) [Accomazzi, 2024]. Astrophysics is known132

to be a field where the vast majority of publications are on133

arXiv and easily searchable on ADS. Therefore, the number134

of arXiv papers here comprises a close-to-complete collection135

of literature that was published in the field.136

We downloaded all PDFs from arXiv and performed OCR137

with Nougat [Blecher et al., 2023]. Through human inspec-138

tion, we found that Nougat did a great transcription of the139

data with minimal failure. The same set of data was cur-140

rently used to train various specialized LLMs in astronomy141

(Pan et al., in prep., Arora et al,, in prep.), following AstroL-142

LaMA and AstroLLaMA-Chat [Dung Nguyen et al., 2023; 143

Perkowski et al., 2024], and auxiliary minor mistakes were 144

identified and cleaned up during those iterations. 145

A key component of this paper is understanding the re- 146

lation of concepts, as viewed by the research community, 147

through the citation relation within the existing literature. The 148

fact that NASA/ADS oversees a close to complete literature 149

makes astronomy one of the well-curated fields to explore 150

this study. We further extract the citation-reference relation 151

for the entire corpus using the NASA/ADS API1 to quantify 152

the interaction among various scientific concepts during their 153

co-evolution. 154

3 Constructing a Knowledge Graph for 155

Astronomy 156

Constructing a knowledge graph between concepts in astro- 157

physics requires two essential components: extracting the 158

concepts in astronomical literature through large language 159

model agents, and determining the strength of interconnec- 160

tivity between concepts through the underlying relationships 161

between paper citations. In this section, we explore these 162

components in more detail. 163

3.1 Concept Extraction with Large Language 164

Models 165

The key challenges in distilling concepts from publications 166

using large language models are twofold. Firstly, LLM agents 167

may generate hallucinations, producing lists of concepts that 168

deviate from the expectations of human experts. Secondly, 169

even when the concepts are accurately distilled, the models 170

may yield concepts that are either too detailed, overly broad, 171

or merely synonymous with each other, thereby diminishing 172

the practical relevance of understanding their interrelation- 173

ships. To address these challenges, we employ a multi-agent 174

system in this study, as shown in Figure 1. This system con- 175

sists of three parts: (a) extraction of concepts from astronom- 176

ical publications; (b) nearest neighbor search of the concepts; 177

and (c) merging of the concepts. This iterative approach en- 178

ables control over the granularity of the knowledge graph, tai- 179

loring it to our purpose. 180

In this study, we focus on extracting key concepts from the 181

titles and abstracts of astronomical publications to minimize 182

computational cost. In astronomy, the abstract often encap- 183

sulates the essential information, including scientific moti- 184

vation, methods, and data sources. The abstracts from the 185

300,000 papers amount to a total of approximately 2 billion 186

tokens. To efficiently handle this large-scale data while main- 187

taining cost-effectiveness, we leverage open-source large lan- 188

guage models for concept extraction. Specifically, we em- 189

ploy MISTRAL-7B-INSTRUCT-V0.22 [Jiang et al., 2023] as 190

our inference model and JINA-EMBEDDINGS-V2-BASE-EN3 191

[Günther et al., 2023] for text embedding. 192

1https://ui.adsabs.harvard.edu/help/api/
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
3https://huggingface.co/jinaai/jina-embeddings-v2-base-en
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Figure 1: Schematic plot outlining the knowledge graph construction using large language model agents. The extraction of concepts com-
prises three main phases: (1) Concept Extraction, where agents construct scientific concepts from documents; (2) Vectorization and Nearest
Neighbor Finding, in which concepts are vectorized and grouped by semantic similarity; (3) Concept Merging, where similar concepts are
combined to form a more coarse-grained structures. The connections between concepts are then defined by citation-reference relevance as
detailed in Section 3.2, with concepts involved in more citation-reference pairs assigned a higher relevance.

Concept Extraction: The first agent is prompted to extract193

a preliminary set of scientific concepts from the abstracts and194

titles4. While most of these concepts appear to be valid,195

some of them seem to be hallucinations that are not perti-196

nent to astronomy, such as “misleading result” and “mater-197

nal entity in astronomy”. To address this issue, a secondary198

LLM agent is deployed to explain and clarify each term, en-199

suring the removal of ambiguities and allowing only scientif-200

ically valid concepts to proceed. In this clarifying step, we201

utilize the entire document as an additional source enhanced202

by retrieval augmented generation to assist our agent in ac-203

curately understanding the meanings of various scientific ter-204

minologies. The validated scientific concepts are denoted as205

{c1, c2, . . . , cN}.206

Vectorize and Nearest Neighbor Finding: Once the con-207

cepts are extracted and validated, they are transformed into208

vector representations using the text-embedding models, en-209

abling the accurate computation of similarity measures. We210

group the concepts based on the cosine similarity of their211

corresponding vector representations into M clusters, repre-212

sented as {{cij , j = 1, . . . , ki}, i = 1, . . . ,M}. The num-213

ber of elements in each cluster, ki, is adaptively determined214

based on a predefined cosine similarity threshold among the215

elements within the cluster. In this study, we set the thresh-216

old at 0.85, striking a balance between the granularity of the217

concepts and the computational feasibility of the subsequent218

steps.219

4All code and prompts will be made public after review.

Concept Merging: Finally, the final agent merges these 220

grouped concepts by analyzing clusters of semantically sim- 221

ilar concepts and distilling them into more general, unified 222

entities. For example, the concepts “X-Shooter spectra”, 223

“Saturn’s transmission spectrum,” and “Keck LRIS spectro- 224

graph” were combined into the broader concept of “spectro- 225

graph”. This merging simplifies the structure of the knowl- 226

edge graph, reducing redundancy. Furthermore, a coarser 227

knowledge graph improves the readability of the visualiza- 228

tion. 229

We iterate the neighbour finding and merging steps three 230

times, gradually coarsening the collection of concepts from 231

1,057,280, 164,352, and finally 24,797 concepts, respec- 232

tively. We found, through domain expert evaluation that, the 233

granularity of the concepts after three iterations is appropri- 234

ate, with sufficient concepts covering the broad range of top- 235

ics explored and methods employed in the literature, but with 236

enough fine-grained level to understand the subtle evolution 237

of the field in astrophysics. Some of the final concepts in- 238

clude the commonly known concepts such as “dark matter”, 239

“inflation”, and etc. On average, each paper consists of ∼ 10 240

concepts. 241

3.2 Determining Concept Relevance 242

Upon defining the concepts, perhaps more critical is to de- 243

termine, quantitatively, how strongly two concepts are rel- 244

evant. The relevancy of two concepts is certainly subjec- 245

tive—concepts that were deemed irrelevant at a certain point 246

in time by the domain expert community might gradually be- 247

come relevant over time. However, such temporal evolution 248



is exactly what we are after to understand the shift of knowl-249

edge over time.250

To gauge how two concepts are perceived as relevant by the251

community at a fixed point in time, the citation-reference re-252

lationships between articles become a natural annotated link253

between the concepts. In the following, we will define based254

on the probability with which a pair of concepts appears si-255

multaneously in a certain article and its neighboring docu-256

ments that have a citation-reference relationship, the prox-257

imity of the two concepts. This metric between concepts is258

inspired by the process by which researchers randomly sam-259

ple through the network of articles from one concept to an-260

other. If the researcher can find another new concept from261

the parent concept that they were originally interested in by262

searching through the direct citation relation from the pa-263

per which contains the parent concept, and this leads the re-264

searcher to another paper with a new concept, the two con-265

cepts are deemed close. However, if the two concepts can266

only be found through a small subset of papers of the par-267

ent concepts and their citations or references, then the two268

concepts are deemed further apart at that point in time. We269

emphasize that while the linkage (and here, the hypothetical270

“search”) is done through the domain of the published liter-271

ature, the knowledge graph is constructed at the level of the272

extracted concepts.273

More formally, let the final set of concepts be denoted as274

C : {c1, c2, . . . , cn}, identified using large-language model-275

based agents as outlined in Section 3.1. Let these con-276

cepts be associated with a corpus of academic papers, N :277

{n1, n2, . . . , nk}, and a set of citation-reference relationships278

L : {(na, nb)|na, nb ∈ N,∃na → nb}, where na → nb sig-279

nifies that paper na cites paper nb. To explore the propagation280

of a concept cα within this network, we define the probabil-281

ity of encountering another concept cβ starting from a spe-282

cific paper nk that discusses cα. This probability, denoted as283

pα→β|nk
, is formulated as:284

pα→β|nk
=

Nβ

|S(nk,L, β)|
. (1)

The set S(nk,L, β) is defined through an iterative process285

starting with the initial paper set nk (denoted as S0). In each286

iteration, we expand the set by including papers that are di-287

rectly cited by any paper in the current set and have not been288

included in previous sets. Formally, if Sn−1 is the set of pa-289

pers at iteration n − 1, then Sn = Sn−1 ∪ {ne|(ns, ne) ∈290

L, ns ∈ Sn−1, ne /∈ Sn−1}. The iteration continues until at291

least one paper in the current set contains concept cβ , at which292

point we denote the final set as ST and set ST = S(nk,L, β).293

The number of papers containing cβ within S(nk,L, β) is set294

to be Nβ .295

Typically, the growth of the sets follows a pattern where296

|S0| = 1, |S1| ∼ 102, and |S2| ∼ 104 in our experiments.297

This means that if the concepts cannot be found directly from298

a direct citation from the original paper that contains the par-299

ent concept, the number of papers “needed to be read”, i.e.,300

|S|, will drastically reduce the relevance of the two concepts.301

Nonetheless, if the concepts are very prevalent, after a cer-302

tain level of search, the numerator Nβ would then offset the303

volume of search.304

As this probability pertains to just a specific paper contain- 305

ing concept cα, the probability of transitioning from concept 306

cα to cβ , for all the papers Sα that contain cα, would then be 307

the expectation averaging over all papers in Sα, or, 308

pα→β =
1

|Sα|
∑

nk∈Sα

pα→β|nk
(2)

The above equation computes the average probability of mov- 309

ing from cα to cβ across all papers that contain cα. To assess 310

the bidirectional relevance of concepts cα and cβ , and we will 311

assume that the order of transition between two concepts is 312

not relevant, we define the citation-reference relevance be- 313

tween them as the geometric average of the probabilities of 314

transitioning in both directions: 315

pα,β = (pα→β · pβ→α)
1/2 (3)

Finally, the transition probability attains the following trivial 316

properties: (1) pα,β ≤ 1,∀cα, cβ ∈ C; (2) pα,α ≡ 1,∀cα ∈ 317

C; and (3) pα,β = pβ,α,∀cα, cβ ∈ C. These properties 318

ensure that the relevance metric is well-defined and consis- 319

tent, providing a foundation for analyzing the relationships 320

between concepts in the knowledge graph. 321

3.3 From Concept Relevance to Knowledge Graph 322

From the relevance defined as pα,β above, which serves as 323

a robust metric for the link strength between two nodes, 324

we can visualize the knowledge as a force-directed graph. 325

A force-directed graph [Kobourov, 2012; Bannister et al., 326

2012], alternatively known as a spring-embedder or force- 327

based layout, serves as a visual tool designed to illustrate 328

relational data within network graphs. This method lever- 329

ages simulation techniques inspired by physical systems, ar- 330

ranging nodes—which symbolize entities or concepts—and 331

links—which depict the relationships or connections between 332

these nodes—in an aesthetically coherent and insightful lay- 333

out. These graphs utilize the concept of attraction and repul- 334

sion forces to strategically distribute nodes. 335

By iteratively updating the positions of nodes based on 336

these attraction and repulsion forces, the force-directed graph 337

algorithm converges to a layout that minimizes the overall en- 338

ergy of the system. This results in an informative 3D repre- 339

sentation of the knowledge graph, where closely related con- 340

cepts are automatically positioned near each other, enhancing 341

the visibility of the density and connectivity within the graph. 342

The capacity of force-directed graphs to dynamically repre- 343

sent complex relational data makes them particularly suitable 344

for visualizing the knowledge graph. 345

In our context, the link strength between two nodes (con- 346

cepts) is set to their citation-reference relevance, pα,β . Con- 347

cepts with higher relevance will attract each other more 348

strongly [Cheong et al., 2021], causing them to be positioned 349

closer together in the visualized graph. Conversely, the re- 350

pulsion force is applied between all pairs of nodes, ensuring 351

that they remain adequately spaced to prevent overlap and 352

maintain clear visual separation. By leveraging the citation- 353

reference relevance as the link strength between concepts, we 354

can create a graph that intuitively conveys the relationships 355

and clustering of ideas within the astronomical literature. 356
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Figure 2: Visualization of a knowledge graph of 24,939 concepts, constructed from 297,807 astronomical research papers. Only concepts
appearing in more than 20 papers and links with a link strength greater than 0.001 are displayed. Each concept is categorized into one
of the following domains: (A) Galaxy Physics, (B) Cosmology & Nongalactic Physics, (C) Earth & Planetary Science, (D) High Energy
Astrophysics, (E) Solar & Stellar Physics, (F) Statistics & AI, (G) Numerical Simulation, or (H) Instrumental Design. In the upper panels,
we show connections between galaxy physics and other scientific domains. In the lower panel, we highlight the concepts from simulation,
statistics, and observational instruments and their respective locations with respect to galaxy physics. Unsurprisingly, the technological
concepts are generally more globally spread, as the same techniques can have wide implications for a broad range of topics in astronomy.
Machine learning techniques are still at the periphery of the knowledge graph, suggesting that their integration in astronomy is still in its early
stages. The interactive version of the knowledge graph is made publicly available after review.



4 Intersection between Technological357

Advancement and Scientific Discovery358

Our knowledge graph consists of 24,939 concepts, ex-359

tracted from 297,807 astronomical research papers, with360

339,983,272 interconnections. The visualization of the361

knowledge graph as a force-directed graph is shown in Fig-362

ure 2. The filamentous structure shown in the knowledge363

graph demonstrates the close interconnections across various364

subdomains within astronomical research.365

For clarity, we only display concepts that appear in at366

least 20 papers and consider only those links with a citation-367

reference relevance pα,β > 0.001. This leads to 9,367 nodes368

and 32,494 links for the visualization. We set the size of the369

nodes to be proportional to the logarithm of their frequency370

of occurrence in the papers.371

In the visualization, we further categorize all the concepts372

into scientific concepts, following the categorization of astro-373

physics on arXiv5, namely Astrophysics of Galaxies,6 Cos-374

mology and Nongalactic Astrophysics,7 Earth and Planetary375

Astrophysics,8 High Energy Astrophysics,9 and Solar and376

Stellar Astrophysics,10. As we aim to understand how con-377

cepts in technological advancement propel scientific discov-378

eries, we further define another three classes of “technolog-379

ical” domains, which we identify as Statistics and Machine380

Learning, Numerical Simulation, and Instrumental Design.381

The classifications below are conducted using GPT-411.382

Figure 2 illustrates how relevant concepts cluster within the383

same domain and how different domains interconnect. The384

upper panels demonstrate how the different scientific clus-385

ters interact with each other. For instance, galaxy physics,386

as anticipated, connects with both the largest scales in astro-387

nomical research, such as cosmology and general relativity,388

and the smaller scales, including stellar physics and planetary389

physics. The lower panel shows how the technological con-390

cepts are embedded within the scientific concepts, including391

numerical simulations, statistics, machine learning, and in-392

strumental design. The technological concepts are generally393

distributed more globally in the knowledge graph, demon-394

strating their omnipresence in different subfields.395

Interestingly, as shown in the figure, despite the booming396

interest and popularity, machine learning techniques, particu-397

larly deep learning, are situated only at the peripheral region398

5https://arxiv.org/archive/astro-ph
6Astrophysics of Galaxies focuses on phenomena related to

galaxies and the Milky Way, including star clusters, interstellar
medium, galactic structure, formation, dynamics, and active galactic
nuclei.

7Cosmology and Nongalactic Astrophysics covers the early uni-
verse’s phenomenology, cosmic microwave background, dark mat-
ter, cosmic strings, and the large-scale structure of the universe.

8Earth and Planetary Astrophysics studies deal with the inter-
planetary medium, planetary physics, extrasolar planets, and the for-
mation of the solar system.

9High Energy Astrophysics explores cosmic ray production,
gamma ray astronomy, supernovae, neutron stars, and black holes.

10Solar and Stellar Astrophysics pertains to the investigation of
white dwarfs, star formation, stellar evolution, and helioseismology.

11https://openai.com/index/gpt-4/
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Figure 3: The citation-reference relevance for five distinct time pe-
riods to investigate the temporal integration of technological tech-
niques into scientific research. The middle and lower panels illus-
trate a consistent increase in the count of concepts, both in terms
of scientific concepts (bottom panel) and technical concepts (middle
panel). The upper panel shows the total cross-linkage between indi-
vidual technical domains and scientific concepts, with lower values
indicating stronger adoption. The upper panel reveals a two-phase
evolution, with an observed latency of approximately five years. The
two phases signify the period of development and introduction of
new techniques in astronomy and their subsequent adoption by the
community (see text for details). While still modest, machine learn-
ing has begun to reach integration levels comparable to those of nu-
merical simulations seen two decades earlier.

of the knowledge graph. This suggests that machine learning 399

techniques are not yet fully integrated into the astronomical 400

research community, at least from the citation-reference point 401

of view. We will provide a more quantitative comparison of 402

this observation in the following section. 403

4.1 Numerical Simulations in Astronomy 404

To demonstrate how technological advancement drives scien- 405

tific discovery, we will study in more depth the impact of nu- 406

merical simulations on astronomy. In modern-day astronom- 407

ical research, numerical simulation has become an indispens- 408

able tool. However, this was not always the case. The scien- 409

tific community experienced a gradual transition from focus- 410

ing primarily on theoretical deduction and analytical formulas 411

to modeling complex phenomena through numerical simula- 412

tions. 413

To understand this transition, we assess the average rele- 414

vance between numerical simulations and scientific concepts 415

across various time periods. We divided the dataset into five 416

time periods from 1993 to 2020. In each time period, we 417

recalculate the citation-reference relevance using the papers 418

published within that specific timeframe. 419

As shown in the bottom panel of Figure 3, unsurprisingly, 420

the number of “scientific concepts” has surged over time. 421

Complementary to these scientific concepts, we also see that 422

the number of technical concepts has surged alongside, espe- 423

https://arxiv.org/archive/astro-ph
https://openai.com/index/gpt-4/


cially in terms of numerical simulations and statistical meth-424

ods, which are shown as red and blue lines in the middle425

panel. On the other hand, despite the interest in the field,426

the number of concepts in machine learning in the astronom-427

ical literature, as shown by the green line, is still an order of428

magnitude lagging behind these other well-developed techno-429

logical concepts.430

Perhaps more interesting is showing the weighted “inter-431

section” between the scientific concepts and the technical432

concepts, which is shown in the top panels. The top panel433

shows the weighted “linkage” among all the scientific con-434

cepts with the specific technical domain. If the new meth-435

ods are well-adopted in the astronomical community and ad-436

vance scientific discovery, we should see an improvement in437

the average citation-reference linkage (large values in the top438

panel). Viewed this way, there is a clear two-phase evolution439

with the gradient of the integration oscillating positively (blue440

arrow) and negatively (red arrow).441

This is perhaps not surprising. For any technological ad-442

vancement, it might once be proposed with many techni-443

cally focused papers written; however, the citation-reference444

relation is mostly limited to the “technologists,” leading to445

a dilution of the cross-correlation, which is shown by the446

red arrow. For example, during the period of 1993-2000,447

there have been many works focusing on the development448

of N-body simulation techniques [?; Romeo et al., 2004;449

Springel, 2005]. Yet, the integration remains marginal. How-450

ever, from 2000 onward, the astronomical community began451

to embrace N-body simulations to resolve scientific ques-452

tions [Paz et al., 2006; Peñarrubia et al., 2006; Zhou and453

Lin, 2007], resulting in a increase in citation-reference rel-454

evance during this time. A similar two-phase pattern is ob-455

served from [2010, 2015) to [2015, 2020), during which time456

hydrodynamical simulations developed [Genel et al., 2014;457

Carlesi et al., 2014b; Carlesi et al., 2014a] and gradually458

gained acceptance [McAlpine et al., 2016; Pillepich et al.,459

2018] within the community. The delay between the devel-460

opment of new technologies and their impact on scientific dis-461

covery spans approximately five years.462

4.2 Machine Learning in Astrophysics463

The revelation of the two-phase adoption in numerical simu-464

lations leads to the possibility of better quantifying the inte-465

gration of machine learning in astronomy. In recent years, we466

have seen a booming interest in AI and its applications in sci-467

ence. As modern-day astronomy is driven by big data, with468

billions of sources routinely being surveyed, it is not surpris-469

ing that astronomy has also seen a drastic integration of AI to470

advance data processing and analysis [Baron, 2019].471

Figure 4 shows the average cross-domain linkage, as de-472

fined in the top panel of Figure 3, but between the concepts in473

machine learning and the five scientific domains. In terms of474

the application of machine learning in astronomy, Cosmol-475

ogy & Nongalactic Astrophysics takes the lead, as it ben-476

efits from machine learning’s capacity to manage complex,477

large data sets from simulations and surveys [Villaescusa-478

Navarro et al., 2021b; Villaescusa-Navarro et al., 2021a;479

Sun et al., 2023b]. This is followed by Galaxy Physics,480

which leverages ML for tasks like photometric redshift pre-481

diction [Sun et al., 2023a] and galactic morphology classifi- 482

cation [Robertson et al., 2023]. Solar and Stellar Physics have 483

also shown promise in emulating and analyzing stellar spec- 484

tra [Ting et al., 2019]. High Energy Astrophysics and Earth 485

& Planetary Astrophysics have been slower to adopt ML. 486

But is machine learning now well-adopted in astronomical 487

research? Figures 2 and 3 paint an interesting picture. On the 488

one hand, the top panel of Figure 3 shows that there has been a 489

rapid increase in the cross-science-and-AI citation-reference 490

relevance, demonstrating a huge interest among the commu- 491

nity. For instance, the scientific-technology score remains flat 492

and low before 2015, signifying that despite a history of AI 493

in astronomy—such as the use of neural networks for galaxy 494

morphology classification as early as 1992 [Storrie-Lombardi 495

et al., 1992]—its impact remained minimal until the surge in 496

popularity of deep learning post-2015. 497

Yet, at the same time, even currently, Figure 2 shows that 498

most of these concepts still occupy a peripheral position in 499

the knowledge graph. This suggests that, from a citation- 500

reference relevance perspective, such concepts are still con- 501

sidered niche within the broader scientific community. This is 502

perhaps not too surprising because, compared to the deep in- 503

tegration of numerical simulations, quantitatively, the cross- 504

linkage score of machine learning with astronomy remains 505

only at the level that numerical simulations and traditional 506

statistics were twenty years ago. 507

Perhaps what is strikingly lacking is that the number of ma- 508

chine learning concepts in the astronomical literature remains 509

an order of magnitude smaller than that of numerical simula- 510

tions, as shown in the middle panel of Figure 3. This might 511

imply that the machine learning techniques widely adopted in 512

astronomy, even at present, remain some of the more classi- 513

cal techniques, such as linear regression and random forests 514

[Nyheim et al., 2024]. The rapid adoption of “existing” tech- 515

niques, while encouraging, might also signify a bigger under- 516

lying problem of lack of innovation in applying AI to astron- 517

omy. However, if the two-phase evolution applies, we should 518

expect that in the coming years, there will be more novel 519

deep learning techniques introduced before they are gradu- 520

ally adopted by the community. 521

5 Discussions and Conclusions 522

A quantitative study of the evolution of concepts and their 523

interconnections would not be possible without modern-day 524

LLMs, partly due to the large amount of arduous work re- 525

quired to manually label, extract concepts, and classify top- 526

ics, which can be easily done with minimal computing re- 527

sources in our case. Even when manual extraction is possible, 528

the taxonomy of a scientific field is often limited—tailored to 529

provide vague contours of the domain, e.g., for publication 530

purposes, rather than a deep and more fine-grained differen- 531

tiation of the knowledge embedded in the field. 532

In this study, we construct, to the best of our knowledge, 533

the first LLM-based knowledge graph in the domain of as- 534

tronomy and astrophysics. The knowledge graph comprises 535

24,939 concepts extracted through a careful iterative process 536

with LLMs from 297,807 papers. We design a relevance met- 537

ric defined through the citation-reference relations in the as- 538
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Figure 4: Integration of machine learning in different subfields
of astronomy. The integration is defined as the average cross-
domain linkage similar to the top panel of Figure 3. Cosmology
and Nongalactic Astrophysics currently lead the application of ma-
chine learning in astronomy, followed by Galaxy Physics and Solar
& Stellar Physics. The adoption of machine learning concepts in
Earth & Planetary Physics and High Energy Astrophysics still lags
behind.

tronomical literature to understand the relations as well as the539

temporal evolution between different concepts. The relevance540

metric follows the intuition of how humans search for new541

concepts by quantifying the degree of separation in the cita-542

tion network as well as the prevalence of the concepts in the543

field. The relevance is then applied as the linkage strength544

of the force-directed graph to construct the knowledge graph,545

allowing us to visualize the knowledge in the field in detail.546

Based on this knowledge graph, we evaluate the tem-547

poral evolution of the relevance of numerical simulations548

and machine learning in astronomical research. We showed549

that while numerical simulations are routinely adopted in550

modern-day astronomy, the concepts related to them have551

gone through a long process of gradually being integrated552

into and accepted by the community. We also found that the553

integration of numerical simulation into scientific discovery554

shows a two-phase process, in which a five-year latency can555

be observed between the development of techniques, where556

the relevance of the techniques and the science might tem-557

porarily diminish, followed by the flourishing period, where558

the methods mature and are widely applied to astronomical559

research. We also found that the same trend can be found in560

classical statistical analysis.561

By the same metric, we found that, despite much of the in-562

terest and the booming field of deep learning, the impact of563

deep learning in astronomy remains marginal. While there is564

a drastic increase in the technique-science cross-referencing,565

quantitatively, the referencing remains at a level that we ob-566

served for numerical simulations about two decades ago. Fur-567

thermore, the number of machine learning concepts intro-568

duced in astronomy remains an order of magnitude smaller569

than that of numerical simulations and classical statistical570

methods, which might imply that the current rapid increase571

in relevance is driven mainly by the adoption of established572

machine learning techniques from decades ago. Nonethe- 573

less, if the two-phase transition applies, we expect more in- 574

novative techniques will be gradually introduced. In fact, 575

in recent years, we have seen many more modern-day tech- 576

niques, both in terms of flow-based and score-based gener- 577

ative models [De Santi et al., 2024; Zhao et al., 2023], be- 578

ing introduced, as well as, like this study, the application of 579

LLMs in astronomical research [Dung Nguyen et al., 2023; 580

Perkowski et al., 2024]. The metric introduced here will be 581

able to continue monitoring this process. 582

This study primarily aims to show a proof of concept, us- 583

ing LLM-based Knowledge Graph to quantifiably understand 584

the evolution of astronomical research. As such our study 585

certainly has much room for improvement. For instance, 586

proper robust extraction of scientific concepts from literature 587

heavily relies on the alignment between the agents and the 588

researchers’ perception. In our study, the concepts are au- 589

tonomously extracted through the LLM agent, with the gran- 590

ularity of the concepts optimized through merging and prun- 591

ing. Such an LLM agent can certainly benefit from a subset 592

of high-quality annotated data and comparison with existing 593

hierarchical taxonomies. The process of concept pruning and 594

merging is also somewhat crude, involving vectorizing the 595

concepts and performing a cosine similarity search. A bet- 596

ter method would involve further comparing these concepts, 597

utilizing the capabilities of large language models for more 598

detailed concept differentiation and pruning. 599

In a nutshell, our study demonstrates the potential of LLM- 600

based knowledge graphs in uncovering the intricate relation- 601

ships and evolution of astronomical research. By providing a 602

quantitative framework for analyzing the integration of new 603

technologies and methodologies, this approach opens up new 604

avenues for understanding the dynamics of interdisciplinary 605

research and the factors that drive scientific progress, in as- 606

tronomy and beyond. 607
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gustin Žı́dek, Anna Potapenko, Alex Bridgland, Clemens993

Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew994

Cowie, Bernardino Romera-Paredes, Stanislav Nikolov,995

Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,996

David Reiman, Ellen Clancy, Michal Zielinski, Martin997

Steinegger, Michalina Pacholska, Tamas Berghammer,998

Sebastian Bodenstein, David Silver, Oriol Vinyals, An-999

drew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and1000

Demis Hassabis. Highly accurate protein structure predic-1001

tion with AlphaFold. Nature, 596(7873):583–589, August1002

2021.1003

[Kobourov, 2012] Stephen G. Kobourov. Spring Embedders1004

and Force Directed Graph Drawing Algorithms. arXiv e-1005

prints, page arXiv:1201.3011, January 2012.1006

[McAlpine et al., 2016] S. McAlpine, J. C. Helly,1007

M. Schaller, J. W. Trayford, Y. Qu, M. Furlong,1008

R. G. Bower, R. A. Crain, J. Schaye, T. Theuns, C. Dalla1009

Vecchia, C. S. Frenk, I. G. McCarthy, A. Jenkins,1010

Y. Rosas-Guevara, S. D. M. White, M. Baes, P. Camps,1011

and G. Lemson. The EAGLE simulations of galaxy1012

formation: Public release of halo and galaxy catalogues.1013

Astronomy and Computing, 15:72–89, April 2016.1014

[Meijer et al., 2021] H. J. Meijer, J. Truong, and R. Karimi.1015

Document Embedding for Scientific Articles: Efficacy1016

of Word Embeddings vs TFIDF. arXiv e-prints, page1017

arXiv:2107.05151, July 2021.1018

[Nyheim et al., 2024] Bendik Nyheim, Signe Riemer-1019

Sørensen, Rodrigo Parra, and Claudia Cicone. Machine1020

Learning based Pointing Models for Radio/Sub-millimeter1021

Telescopes. arXiv e-prints, page arXiv:2402.08589,1022

February 2024.1023

[OpenAI et al., 2023] OpenAI, Josh Achiam, Steven Adler,1024

Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia1025

Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam1026

Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin,1027

Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-1028

ing Bao, Mohammad Bavarian, Jeff Belgum, Irwan1029

Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christo- 1030

pher Berner, Lenny Bogdonoff, Oleg Boiko, Made- 1031

laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim 1032

Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie 1033

Campbell, Andrew Cann, Brittany Carey, Chelsea Carl- 1034

son, Rory Carmichael, Brooke Chan, Che Chang, Fo- 1035

tis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Ja- 1036

son Chen, Mark Chen, Ben Chess, Chester Cho, Casey 1037

Chu, Hyung Won Chung, Dave Cummings, Jeremiah Cur- 1038

rier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah 1039

Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve 1040

Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna 1041

Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón 1042

Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, 1043

Elie Georges, Christian Gibson, Vik Goel, Tarun Gogi- 1044

neni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gor- 1045

don, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua 1046

Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, 1047

Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes 1048

Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Pe- 1049

ter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli 1050

Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 1051

Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, 1052

Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer 1053

Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, 1054

Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, 1055

Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hen- 1056

drik Kirchner, Jamie Kiros, Matt Knight, Daniel Koko- 1057

tajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 1058

stantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, 1059

Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade 1060

Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly 1061

Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, 1062

Ryan Lowe, Patricia Lue, Anna Makanju, Kim Mal- 1063

facini, Sam Manning, Todor Markov, Yaniv Markovski, 1064

Bianca Martin, Katie Mayer, Andrew Mayne, Bob Mc- 1065

Grew, Scott Mayer McKinney, Christine McLeavey, 1066

Paul McMillan, Jake McNeil, David Medina, Aalok 1067

Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, 1068

Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 1069

Mossing, Tong Mu, Mira Murati, Oleg Murk, David 1070
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