
HiPPO-KAN: Efficient KAN model for Time Series Analysis
SangJong Lee

XaaH Corp
Seoul, Korea

sangjong@xaah.xyz

Jin-Kwang Kim
XaaH Corp
Seoul, Korea

jinkwang@xaah.xyz

JunHo Kim
XaaH Corp
Seoul, Korea

demyank@xaah.xyz

TaeHan Kim
XaaH Corp
Seoul, Korea

taehankim@xaah.xyz

James Lee
XaaH Corp
Seoul, Korea

jaminyx@xaah.xyz

Figure 1: Overview of the HiPPO-KAN model architecture. The time series data is encoded using the HiPPO framework,
transformed by the Kolmogorov-Arnold Network (KAN), and decoded back to the time domain, effectively serving as an
auto-encoder.

Abstract
In this study, we introduce a parameter-efficient model that out-
performs traditional models in time series forecasting, by integrat-
ing High-order Polynomial Projection (HiPPO) theory into the
Kolmogorov-Arnold network (KAN) framework. This HiPPO-KAN
model achieves superior performance on long sequence data with-
out increasing parameter count. Experimental results demonstrate
that HiPPO-KAN maintains a constant parameter count while vary-
ing window sizes, in contrast to KAN, whose parameter count
increases linearly with window size. Surprisingly, although the
HiPPO-KAN model keeps a constant parameter count as increas-
ing window size, it significantly outperforms KAN model at larger
window sizes. These results indicate that HiPPO-KAN offers sig-
nificant parameter efficiency and scalability advantages for time
series forecasting. Additionally, we address the lagging problem
commonly encountered in time series forecasting models, where
predictions fail to promptly capture sudden changes in the data. By
modifying the loss function to compute the Mean Squared Error
(MSE) directly on the coefficient vectors in the HiPPO domain, we
effectively resolve the lagging problem, resulting in predictions
that closely follow the actual time series data. By incorporating
HiPPO theory into KAN, this study showcases an efficient approach
for handling long sequences with improved predictive accuracy,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

offering practical contributions for applications in large-scale time
series data.

CCS Concepts
• Information systems→Temporal data; •Computingmethod-
ologies → Neural networks; • Mathematics of computing →
Nonlinear equations.

Keywords
Time Series Forecasting, Kolmogorov-Arnold Network (KAN), Pa-
rameter Efficiency, Long-Term Dependencies, Coefficient-Based
Loss Function, Lagging Problem, Financial Time Series Analysis,
Nonlinear Dynamics
ACM Reference Format:
SangJong Lee, Jin-Kwang Kim, JunHoKim, TaeHanKim, and James Lee. 2018.
HiPPO-KAN: Efficient KAN model for Time Series Analysis. In Proceedings
of From Prototype to Production: Deploying Real-World AI / ML Models in the
Financial Industry (ACM ICAIF P2P Workshop 2024). ACM, New York, NY,
USA, 8 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Deep learning aims to approximate complex functions, particularly
those involving non-linearity or high dimensionality. Multilayer
Perceptrons (MLPs) have been foundational in this area, with their
ability to represent non-linear functions guaranteed by the uni-
versal approximation theorem [2, 6]. Recently, the Kolmogorov-
Arnold Network (KAN) has emerged as a promising alternative
to MLPs [17, 18]. Unlike MLPs, KAN learns activation functions
rather than edge weights, drawing upon the Kolmogorov-Arnold
Theorem (KAT) by assuming smooth activation functions. This
approach allows KAN to outperform MLPs with better scaling laws,
offering new avenues for modeling complex functions.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA Lee et al.

Various models based on MLPs, Recurrent Neural Networks
(RNNs), and Long Short-Term Memory networks (LSTMs) have
been developed for time-series analysis, aiming to capture complex
patterns and non-linearities [5, 11, 13, 16, 23]. Additionally, deep
state space models have gained prominence in time-series forecast-
ing [19]. These models combine the strengths of traditional state
space models with deep learning to capture complex temporal dy-
namics more effectively [12, 15, 19]. However, these methods often
struggle with capturing complex patterns and, especially, learning
long-term dependencies [1].

Long-term dependencies are particularly important in time-series
analysis, as real-world datasets in finance, weather forecasting, and
energy consumption involve patterns that evolve over extended
periods. Capturing these dependencies enables models to make
more accurate predictions by considering broader trends and de-
layed effects. To address these challenges, Gu et al. introduced the
High-order Polynomial Projection Operator (HiPPO) theory and
the Structured State Space (S4) model [7–10], effectively capturing
long-range dependencies by performing online function approxi-
mation with special initial conditions in the state space transition
equation.

Building upon the HiPPO theory, we enhance the capabilities
of the Kolmogorov-Arnold Network for time-series analysis. The
HiPPO framework uses a special combination of matrices 𝐴 and
𝐵 in the state space model’s transition equation to map sequen-
tial data into a finite-dimensional space expanded by well-defined
polynomial bases. This representation allows time-series data to be
encapsulated as a coefficient vector whose dimension is indepen-
dent of the sequence length.

Leveraging this property, we propose the HiPPO-KAN model,
which effectively forecasts future time series with fewer parameters.
The model encodes time-series data into a fixed-dimensional coef-
ficient vector using the HiPPO framework, transforms this vector
within the same dimensional space using KAN as a function approx-
imator, and decodes the transformed coefficient vector back into
the time domain using the inverse HiPPO function. This process
is analogous to an autoencoder, where the encoder and decoder
are defined by the HiPPO transformations, and the latent space
manipulation is handled by KAN.

Our contributions demonstrate that HiPPO-KAN achieves supe-
rior parameter efficiency in univariate time-series prediction tasks,
with the coefficient vector’s dimension remaining fixed regardless
of input sequence length. This scalability is crucial for practical ap-
plications involving large datasets. We show that HiPPO-KAN out-
performs traditional KAN and other models specialized in handling
sequential data, such as RNNs and LSTMs, particularly in long-
range forecasting scenarios. By effectively capturing long-term
dependencies through the HiPPO framework, our model provides
more accurate predictions compared to KAN alone. Furthermore,
the integration of HiPPO coefficients offers a concise and inter-
pretable state representation of the time-series system. Combined
with KAN’s transparent architecture, this allows for better under-
standing and interpretability of the model’s internal workings.

By incorporating HiPPO theory into the KAN framework, we
introduce an efficient approach for handling long sequences with
improved predictive accuracy, offering practical contributions for
applications in large-scale time-series data.

2 Backgrounds
2.1 State Space Model
State space model can be written as

d
d𝑡

x(𝑡) = Ax(𝑡) + Bu(𝑡), (1)

y(𝑡) = Cx(𝑡) + Du(𝑡), (2)

where u(𝑡) ∈ R𝑙 is an input vector, x(𝑡) ∈ R𝑁 is a hidden state
vector, and y(𝑡) ∈ R𝑘 is an output vector. Eq.(1) describes the state
dynamics, showing how the state x(𝑡) evolves over time based on its
current value and the input u(𝑡). The matrix A ∈ R𝑁×𝑁 defines the
influence of the current state on its rate of change, while B ∈ R𝑁×𝑙

defines how the input affects the state dynamics. Eq.(2) represents
the output equation, illustrating how the current state and input
produce the output y(𝑡). The matrix C ∈ R𝑘×𝑁 maps the state to
the output, and D ∈ R𝑘×𝑙 maps the input directly to the output.

In many cases, especially when implementing skip connections
akin to those in deep learning architectures, we can set D = 0. This
simplifies the output equation to

y(𝑡) = Cx(𝑡) . (3)

By doing so, the output depends solely on the internal state, al-
lowing the model to focus on the learned representations within
x(𝑡) without direct influence from the immediate input u(𝑡). Gu
et al. showed that when the system is linear time-invariant (LTI),
the SSM reduces to a sequence-to-sequence mapping by defining a
convolution mapping

𝐾 (𝑡) = C𝑒𝑡AB, y(𝑡) = (K ∗ u) (𝑡) . (4)

Gu et al.[7] also showed that, by selecting specific initial conditions
for the parameters (A,B), 𝑒𝑡AB becomes a vector of 𝑁 basis func-
tions. This result enables the state-space model to perform online
function approximation using the HiPPO theory.

2.2 HiPPO Theory
In the context of continuous time series, the Legendre Memory
Unit (LMU) [21] exemplifies an approach that employs continu-
ous orthogonal functions—specifically, Legendre polynomials—to
maintain a compressed representation of the entire history of in-
put data. Building upon these principles, Gu et al. [7] established
a strong theoretical foundation by connecting memorization to
state-space models. Specifically, they demonstrated that a special
initialization of the transition equation in the state-space model
enables closed-form function approximation, effectively capturing
long-term dependencies in sequential data. The HiPPO framework
treats memorization as an online function approximation.

Suppose we have a univariate time series function:

𝑓 : R≥0 → R, 𝑡 ↦→ 𝑓 (𝑡) . (5)

Since we are considering online function approximation, we define:

𝑥𝑛 (𝑡) =
∫ 𝑡

0
d𝑠 𝜔 (𝑡, 𝑠)𝑝𝑛 (𝑡, 𝑠)𝑢 (𝑠), (6)

⟨𝑝𝑛, 𝑝𝑚⟩𝜔 ≡
∫ 𝑡

0
d𝑠 𝜔 (𝑡, 𝑠)𝑝𝑛 (𝑡, 𝑠)𝑝𝑚 (𝑡, 𝑠) = 𝛿𝑛,𝑚, (7)



HiPPO-KAN: Efficient KAN model for Time Series Analysis ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA

which states that for every fixed 𝑡 , the function 𝑝𝑛 belong to a
Hilbert spaceH and form an orthonormal basis with respect to the
measure 𝜔 (𝑡, 𝑠). Rewriting Eq.(6), we have:

𝑥𝑛 (𝑡) =
∫ 𝑡

0
d𝑠𝜔 (𝑡, 𝑠) 𝑝𝑛 (𝑡, 𝑠)𝑢 (𝑠) = ⟨𝑢, 𝑝𝑛 (𝑡)⟩𝜔 , (8)

which indicates that the state vector x(𝑡) = [𝑥1 (𝑡), 𝑥2 (𝑡), . . . , 𝑥𝑁 (𝑡)]𝑇
represents the projection of 𝑢 (𝑠) for 𝑠 ≤ 𝑡 onto an orthonormal
basis with respect to weighted inner product defined by 𝜔 (𝑡, 𝑠).

If we assume completeness, we have:

𝑢 (𝑠) = lim
𝑁→∞

𝑁∑︁
𝑛=1

𝑥𝑛 (𝑡)𝑝𝑛 (𝑡, 𝑠) (9)

for all 𝑠 ≤ 𝑡 due to the completeness of the basis function. Since we
are dealing with a finite 𝑁 , by choosing an appropriate cutoff, we
obtain an approximate representation of the function 𝑢 (𝑠). Gu et al.
[10] defined this problem as online function approximation in the
HiPPO theory.

Figure 2: Comparison of S&P 500 data with approximated
data using HiPPO for different state space dimensions.

Figure 3: HiPPO approximation of S&P 500 data for state
space dimensions 𝑁 = 64, 128, 256.

From a physical standpoint, this is analogous to a multipole ex-
pansion, where each term has a specific physical interpretation. In

the case of a nonlinear function that takes the coefficients of a mul-
tipole expansion as inputs, each coefficient corresponds to a node
within the function. Ideally, during the process of learning this non-
linear function, deriving a closed-form solution or understanding
how each node operates would greatly aid in physical interpreta-
tion. This understanding can provide significant insights into the
underlying physics and how the model represents the system. To
further enhance this interpretability, we utilized KAN to model
the mapping from the coefficients of sequential data of length 𝑙 to
sequential data of length 𝑙 + 1.

2.3 KAN
2.3.1 Kolmogorov-Arnold Theorem. The Kolmogorov-Arnold Rep-
resentation Theorem states that any continuous multivariate func-
tion 𝑓 defined on a bounded domain 𝐼𝑛 , where 𝑛 is the number of
variables and 𝐼 = [0, 1], can be expressed as a finite sum of composi-
tions of continuous univariate functions and addition. Specifically,
for a smooth function 𝑓 :

𝑓 : 𝐼𝑛 → R, x ∈ 𝐼𝑛 ↦→
2𝑛+1∑︁
𝑞=1

Φ𝑞
©­«

𝑛∑︁
𝑝=1

𝜙𝑞,𝑝 (𝑥𝑝 )
ª®¬ , (10)

where each𝜙𝑞,𝑝 : 𝐼 → R andΦ𝑞 : R → R are continuous univariate
functions. This theorem reveals that any multivariate continuous
function can be constructed using only univariate continuous func-
tions and addition, significantly simplifying their analysis. This
decomposition reduces the complexity inherent in multivariate
functions, making them more tractable for approximation methods.

2.3.2 Kolmogorov-Arnold Network. Building upon the Kolmogorov-
Arnold representation theorem, the Kolmogorov-Arnold Network
(KAN) is designed to explicitly parametrize this representation for
practical function approximation in neural networks [17, 18]. Since
we have decomposed the multivariate function into univariate func-
tions, the problem reduces to parametrizing these univariate func-
tions. To achieve this, we can use B-splines due to their flexibility
and smoothness properties, which are advantageous for interpola-
tions. From the perspective of generalizing the Kolmogorov–Arnold
(KA) representation theorem and extending it to deeper networks,
the network architecture can be expressed as follows:

[𝑛0, 𝑛1, · · · , 𝑛𝐿], (11)

where 𝑛𝑙 is the number of nodes in the 𝑙-th layer. The pre-activation
values are given by:

𝑥𝑙+1, 𝑗 =
𝑛𝑙∑︁
𝑖=1

𝜙𝑙, 𝑗,𝑖 (𝑥𝑙,𝑖 ), 𝑙 = 0, . . . , 𝐿 − 1; 𝑗 = 1, . . . , 𝑛𝑙+1 (12)

where 𝜙𝑙, 𝑗,𝑖 are the univariate functions with learnable parameters
in the 𝑙-th layer.

In practice, the univariate functions𝜙𝑙, 𝑗,𝑖 in KAN are parametrized
using B-splines to capture complex nonlinearities while maintain-
ing smoothness and flexibility. To enhance the representational
capacity of the network and facilitate efficient training, KAN em-
ploys residual activation functions that combine a basis function
with a spline function. Specifically, the activation function at each
node is defined as

𝜙 (𝑥) = 𝑤𝑏 𝑏 (𝑥) +𝑤𝑠 spline(𝑥) (13)



ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA Lee et al.

where 𝑏 (𝑥) is a predefined basis function,𝑤𝑏 and𝑤𝑠 are learnable
weights, and spline(𝑥) is a spline function constructed from B-
spline basis functions. The basis function 𝑏 (𝑥) is typically chosen
as the SiLU (Sigmoid Linear Unit) activation function due to its
smoothness and nonlinearity.

The overall network function is then:

KAN(x) = (Φ𝐿−1 ◦ Φ𝐿−2 ◦ · · · ◦ Φ0) (x). (14)

In this expression, Φ𝑙 represents the vector of univariate functions
at layer 𝑙 , and the composition of these functions across layers forms
the basis of KAN’s ability to approximate multivariate functions.

In the context our work, we extend KAN by integrating with
the HiPPO framework to efficiently handle time series data. This
integration allows us to leverage KAN’s function approximation
capabilities while benefiting from HiPPO’s ability to represent se-
quential data in a fixed-dimensional space.

2.4 Time-series forecasting using KAN
Since its introduction, KAN have been proved to be a powerful
tool for time-series forecasting due to their effective approxima-
tion capabilities and training efficiency. It has been shown that
KAN models outperform MLP models in time-series forecasting,
both in terms of accuracy and computational efficiency [20, 22].
Furthermore, when KAN layers are incorporated within recurrent
neural networks (RNNs) and transformer architectures, they excel
in multi-horizon forecasting tasks with reduced overfitting issues
[3, 4].

While these approaches validate the effectiveness of KAN mod-
els in time-series prediction and outperforms traditional models
specialized in sequential data (e.g., RNN and GRU), they involve
integrating KAN into complex architectures, which can increases
model complexity and computational demands. In this study, how-
ever, we propose an alternative methodology that combines KAN
models with HiPPO transformation. By integrating KAN with the
HiPPO transformation, we construct a simpler model architecture
that retains high predictive performance without relying on com-
plex recurrent or transformer structures.

3 HiPPO-KAN
Building upon the HiPPO framework, we consider a univariate time
series 𝑢1:𝐿 ∈ R𝐿 . The HiPPO transformation maps this time series
into a coefficient vector c(𝐿) ∈ R𝑁 via the mapping

hippo𝐿 : R𝐿 → R𝑁 , 𝑢1:𝐿 ↦→ c(𝐿) = hippo𝐿 (𝑢1:𝐿), (15)

where 𝑁 is the dimension of the hidden state. In our proposed
method, the KAN is utilized to model the mapping between coef-
ficient vectors corresponding to time series of length 𝐿 and 𝐿 + 1.
Specifically, KAN transforms the coefficient vector c(𝐿) into a new
coefficient vector c(𝐿+1) :

KAN : R𝑁 → R𝑁 , c(𝐿) ↦→ c(𝐿+1) = KAN(c(𝐿) ) . (16)

The resultant coefficient vector c(𝐿+1) represents the encoded state
of the time series extended to length 𝐿 + 1. Given the coefficient
c(𝐿+1) , we can easily construct a time series data of length 𝐿 + 1.

Let this process be denoted as hippo−1:

hippo−1𝐿+1 : R
𝑁 → R𝐿+1, c(𝐿+1) ↦→ 𝑢′1:𝐿+1 = hippo−1𝐿+1 (c

(𝐿+1) ),
(17)

where 𝑢1:𝐿 and 𝑢′1:𝐿+1 are different time series. This process effec-
tively extends the original time series by one time step, generating
a prediction for the next value in the sequence. By operating within
the fixed-dimensional coefficient space R𝑁 , where 𝑁 is indepen-
dent of the sequence length 𝐿, our approach maintains parameter
efficiency and scalability. The use of KAN in this context allows
for the modeling of complex nonlinear relationships between the
coefficients, capturing the underlying dynamics of the time series.

3.1 Definition of HiPPO-KAN
Wedefine theHiPPO-KANmodel as a sequence-to-sequence (seq2seq)
mapping that integrates the HiPPO transformations with the KAN
mapping. Formally, the HiPPO-KAN model is defined as:

HiPPO-KAN ≡ hippo−1𝐿+1 ◦ KAN ◦ hippo𝐿 . (18)

This composite mapping takes the original time series {𝑢𝑡 }𝐿𝑡=1 as
input and produces an extended time series {𝑢𝑡 }𝐿+1𝑡=1 as output:

HiPPO-KAN : R𝐿 → R𝐿+1, {𝑢𝑡 }𝐿𝑡=1 ↦→ {𝑢′𝑡 }𝐿+1𝑡=1 . (19)

In other words, HiPPO-KAN maps a time series of length 𝐿 to a
different time series of length 𝐿 + 1, effectively predicting the next
value in the sequence while retaining the original sequence. By
integrating these components, HiPPO-KAN effectively captures
long-term dependencies and complex temporal patterns in time-
series data. Operating within the coefficient space R𝑁 ensures
that the model remains parameter-efficient and scalable, as the
dimensionality 𝑁 does not depend on the sequence length 𝐿.

Following the definition of the HiPPO-KAN model, we derive its
explicit output formulation by integrating the HiPPO transforma-
tions with the KAN mapping. Applying the hippo𝐿 transformation
to the input time series {𝑢𝑡 }𝐿𝑡=1, the function 𝑓 (𝑠) can be approxi-
mately represented in terms of orthogonal basis functions:

𝑓 (𝑠) ≈
𝑁∑︁
𝑛=1

𝑐𝑛 𝑝𝑛 (𝐿, 𝑠), (20)

where 𝑐𝑛 ∈ R are the coefficients, and 𝑝𝑛 (𝐿, 𝑠) are the HiPPO basis
functions evaluated at time 𝐿 for all 𝑠 ≤ 𝐿.

Utilizing the KAN mapping, we update the coefficients to incor-
porate the system dynamics:

𝑐′𝑛 =

𝑁∑︁
𝑚=1

Φ𝑛𝑚 (𝑐𝑚), (21)

where Φ𝑛𝑚 are the elements of the KAN matrix Φ ∈ R𝑁×𝑁 . We
defined hippo−1 as

𝑢′1:𝐿+1 =
𝑁∑︁
𝑛=1

(
𝑐′𝑛 + 𝐵𝑢𝐿

)
𝑝𝑛 (𝐿 + 1, 𝑠)

=

𝑁∑︁
𝑛=1

(
𝑁∑︁

𝑚=1
Φ𝑛𝑚 (𝑐𝑚) + 𝐵𝑢𝐿

)
𝑝𝑛 (𝐿 + 1, 𝑠), (22)



HiPPO-KAN: Efficient KAN model for Time Series Analysis ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA

where 𝐵 ∈ R𝑁 is learnable parameters. This is analogous to the
B𝑢 (𝑡) term in the state-space model’s state equation. Evaluating at
𝑠 = 𝐿 + 1, the final output for the next time step becomes:

𝑢′𝐿+1 =
𝑁∑︁
𝑛=1

(
𝑁∑︁

𝑚=1
Φ𝑛𝑚 (𝑐𝑚) + 𝐵𝑢𝐿

)
𝑝𝑛 (𝐿 + 1, 𝐿 + 1) . (23)

In the case of Leg-S, from the definition of the basis functions, we
have 𝑝𝑛 (𝐿 + 1, 𝐿 + 1) =

√
2𝑛 + 1 [7, 10]. Therefore, we obtain:

𝑢′𝐿+1 =
𝑁∑︁
𝑛=1

√
2𝑛 + 1

(
𝑁∑︁

𝑚=1
Φ𝑛𝑚 (𝑐𝑚) + 𝐵𝑢𝐿

)
. (24)

This methodology resembles an autoencoder architecture, where
the encoder (HiPPO transformation) compresses the input time
series into a latent coefficient vector c(𝐿) , whose dynamics are
modeled by the KAN layers in our HiPPO-KAN model. The decoder
(inverse HiPPO transformation) reconstructs the extended time
series from c(𝐿+1) . The fixed-dimensional latent space acts as a
bottleneck, promoting efficient learning.

3.2 Methodology
3.2.1 Task Definition. In this study, we address the problem of
time-series forecasting in the context of cryptocurrency markets,
specifically focusing on the BTC-USDT trading pair. The objective
is to predict the next price point given a historical sequence of
observed prices. Formally, let 𝑢𝑡 𝑡 = 1𝐿 denote a univariate time
series representing the BTC-USDT prices at discrete time steps
𝑡 = 1, 2, . . . , 𝐿, where 𝐿 is the window size. The forecasting task
aims to estimate the subsequent value 𝑢𝐿 + 1 based on the given
window of past observations.

Mathematically, the prediction function can be expressed as:

𝑢𝐿+1 = 𝑓 (𝑢1, 𝑢2, . . . , 𝑢𝐿), (25)

where 𝑓 : R𝐿 → R is a mapping from the past 𝐿 observations to
the predicted next value 𝑢𝐿+1. The challenges inherent in this task
include:

• Non-Stationarity:Cryptocurrency prices exhibit high volatil-
ity and non-stationary behavior, making it difficult to model
underlying patterns using traditional statistical methods.

• Long-Term Dependencies: Capturing long-term depen-
dencies is essential, as market trends and cycles can influence
future prices over extended periods.

• Computational Efficiency: Handling long sequences ef-
ficiently without a proportional increase in computational
complexity or model parameters is critical for scalability.

Our approach utilizes the HiPPO-KAN model to effectively tackle
these challenges by encoding the input time series into a fixed-
dimensional coefficient vector using the HiPPO transformation.
This allows the model to process long sequences while maintain-
ing a constant parameter count, facilitating efficient learning and
improved predictive accuracy.

3.2.2 Data Normalization. Weevaluated the performance of HiPPO-
KAN using BTC-USDT 1-minute futures data from January 1st to
February 1st, comprising univariate time-series data. Prior to train-
ing, we normalized the raw time-series data using the formula,
(𝑢𝑡 − 𝜇)/𝜇, where 𝜇 denotes the mean value of the data within

each window. This normalization serves several critical purposes
in the context of time-series modeling. First, it centers the data
around zero, which helps stabilize the training process and acceler-
ate convergence by mitigating biases introduced by varying data
scales. Second, scaling by the mean adjusts for fluctuations in the
magnitude of the data across different windows, ensuring that the
model’s learning is not skewed by windows with larger absolute
values.

By normalizing each window individually, we effectively address
the non-stationarity inherent in financial time-series data, where
statistical properties such as mean and variance can change over
time. This window-specific normalization allows the model to fo-
cus on learning the underlying patterns and dynamics within each
window without being influenced by shifts in the data scale. Con-
sequently, this approach enhances the robustness of the model and
improves its ability to generalize across different segments of the
time series.

3.2.3 Loss Function for Model Training. Training the HiPPO-KAN
model involves optimizing the network parameters to minimize the
discrepancy between the predicted values and the actual observed
values in the time-series data. We employ the Mean Squared Error
(MSE) as the loss function, a standard choice for regression tasks
in time-series forecasting due to its sensitivity to large errors.

The MSE loss function is defined as:

L(𝜃 ) = 1
𝐷

𝐷∑︁
𝑖=1

(
𝑢
(𝑖 )
𝐿+1 − 𝑢

(𝑖 )
𝐿+1

)2
, (26)

where 𝜃 represents the model parameters, 𝐷 is the number of sam-
ples in the training set, 𝑢 (𝑖 )𝐿 + 1 is the true next value in the time
series for the 𝑖-th sample, and 𝑢 (𝑖 )𝐿 + 1 is the corresponding pre-
diction made by the model.

Minimizing the MSE loss encourages the model to produce pre-
dictions that are, on average, as close as possible to the actual values,
with larger errors being penalized more heavily due to the squaring
operation. The choice of MSE as the loss function aligns with the
evaluation metrics used in our experiments—namely, the Mean
Squared Error (MSE) and Mean Absolute Error (MAE)—facilitating
a consistent assessment of the model’s performance during training
and testing.

3.2.4 Experimental Results. The experimental results are presented
in Tables 1 to facilitate a clear and concise comparison of model per-
formances. Table 1 summarizes the results for a prediction horizon
of 1. Each table includes the model name, window size, network
width (architecture), Mean Squared Error (MSE), Mean Absolute
Error (MAE), and the number of parameters used in the model.

By organizing the results in tabular form, we provide a straight-
forward means to compare the effectiveness of HiPPO-KAN against
baseline models such as HiPPO-MLP, KAN, LSTM, and RNN across
different configurations. This structured presentation highlights the
consistency and scalability of HiPPO-KAN, especially in terms of
parameter efficiency and predictive accuracy over varying window
sizes and prediction horizons. The tables clearly demonstrate that
HiPPO-KAN achieves superior performance with fewer parameters,
emphasizing the advantages of integrating HiPPO transformations
with KAN mappings in time series forecasting tasks.



ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA Lee et al.

Table 1: Performance comparison of models for prediction horizon 1. Best models are highlighted in bold.

Model Window Size Width MSE MAE Parameters

HiPPO-KAN 120 [16, 16] 3.40 × 10−7 4.14 × 10−4 4,384
HiPPO-KAN 500 [16, 16] 3.34 × 10−7 3.95 × 10−4 4,384
HiPPO-KAN 1200 [16, 16] 3.26 × 10−7 4.00 × 10−4 4,384
HiPPO-MLP 120 [32, 64, 64, 32, 32] 2.33 × 10−6 1.04 × 10−3 9,792
HiPPO-MLP 500 [32, 64, 64, 32, 32] 2.68 × 10−5 3.84 × 10−3 9,792
HiPPO-MLP 1200 [32, 64, 64, 32, 32] 5.87 × 10−6 1.96 × 10−3 9,792
KAN 120 [120, 1] 8.9 × 10−7 6.82 × 10−4 1,680
KAN 500 [500, 1] 1.66 × 10−6 9.62 × 10−4 7,000
KAN 1200 [1200, 1] 4.03 × 10−6 1.56 × 10−3 16,800
LSTM 120 – 4.69 × 10−7 4.99 × 10−4 4,513
LSTM 500 – 6.50 × 10−7 6.00 × 10−4 4,513
LSTM 1200 – 9.21 × 10−7 7.21 × 10−4 4,513
RNN 120 – 1.14 × 10−6 8.60 × 10−4 12,673
RNN 500 – 1.09 × 10−6 7.70 × 10−4 12,673
RNN 1200 – 1.18 × 10−6 7.79 × 10−4 12,673

Figure 4: MSE and MAE comparisons for various models
(HiPPO-KAN, KAN, LSTM, RNN) using different window
sizes (120, 500, 1200). The results show the performance of
each model in terms of error metrics as the window size in-
creases.

Figure 5: Lagging Effect in KAN, RNN, and LSTM Models.
These models exhibit a tendency to produce outputs that
closely mimic the preceding values, indicating an inability
to capture rapid changes in the data effectively.

3.3 Lagging problem
While the result presented above are impressive, we observed that
the model still suffers from the lagging problem when examining
the plots of the predictions. The lagging problem refers to the
phenomenon where the model’s predictions lag behind the actual
time series, failing to capture sudden changes promptly [14]. This
issue is particularly detrimental in time series forecasting, where
timely and accurate predictions are crucial.

To address this issue, we modified the loss function used during
training and put 𝐵 = 0. Instead of computing the MSE between
the inverse-HiPPO-transformed outputs 𝑢1:𝐿+1 = hippo−1

𝐿+1
(
ĉ(𝐿+1)

)
and the actual time series 𝑢1:𝐿+1, we computed the MSE directly on
the coefficient vectors in the HiPPO domain. Specificaly, the loss
function is defined as:

L(𝜃 ) = 1
𝐷

𝐷∑︁
𝑖=1

���c(𝐿+1) (𝑖 )true − ĉ(𝐿+1) (𝑖 )
���2 (27)

where 𝜃 represents the model parameters, 𝐷 is the number of sam-
ples in the training set. If the coefficient vector c has a ’true’ sub-
script, it represents the true value obtained by applying the HiPPO
transformation to the actual time series, whereas if the vector has
a hat, it represents the predicted value output by the KAN model.

By training the model using this modified loss function, we
aimed to align the learning process more closely with the under-
lying representation in the coefficient space, where the HiPPO
transformation captures the essential dynamics of the time series.
This approach emphasizes learning the progression of the coeffi-
cient directly, which may help the model respond more promptly
to changes in the input data.

3.3.1 Interpretation of the Coefficient-Based Loss Function. When
obtaining the coefficient vector c, it is important to recognize that
c does not correspond to a single, unique function. Instead, it en-
capsulates an approximation of the original time-series function
within a finite-dimensional subspace spanned by the first 𝑁 basis



HiPPO-KAN: Efficient KAN model for Time Series Analysis ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA

functions. The true function 𝑓true (𝑠) can be expressed as:

𝑓true (𝑠) =
𝑁∑︁
𝑖=1

𝑐𝑖𝑝𝑖 (𝑡, 𝑠) +
∞∑︁

𝑖=𝑁+1
𝑐𝑖𝑝𝑖 (𝑡, 𝑠)

= 𝑓 (𝑠) +
∞∑︁

𝑖=𝑁+1
𝑐𝑖𝑝𝑖 (𝑡, 𝑠) (28)

where 𝑝𝑖 (𝑡, 𝑠) are the orthogonal basis functions of the HiPPO
transformation, and 𝑐𝑖 are the corresponding coefficients. Here,
𝑓 (𝑠) = ∑𝑁

𝑖=1 𝑐𝑖𝑝𝑖 (𝑡, 𝑠) represents the finite-dimensional approxima-
tion of 𝑓true (𝑠). The finite sum over 𝑖 = 1 to 𝑁 captures the primary
components of the function, while the infinite sum over 𝑖 = 𝑁 + 1
to ∞ represents the residual components not captured due to trun-
cation at 𝑁 . This implies that c corresponds to a class of functions
sharing the same coefficients for the first 𝑁 basis functions but
potentially differing in higher-order terms. By working with this
finite-dimensional approximation, the model focuses on the most
significant features of the time series, enabling efficient learning
and generalization.

By minimizing the average loss across the batch, the model effec-
tively converges toward aligning the primary components (from 1
to 𝑁 ) of the coefficient vectors across different samples within each
batch. This convergence of the primary components means that
the model is effectively converging to a specific class of functions
within the function space defined by the finite-dimensional basis.
Each batch adjusts the model parameters to reduce discrepancies
in these primary components, reinforcing the shared underlying
dynamics among the batch samples.

This idea is the key to solving the lagging problem commonly
observed in time-series forecasting models. By focusing on the con-
vergence of the primary components, the model captures the essen-
tial dynamics of the time series more accurately and promptly. This
emphasis allows the model to respond quickly to sudden changes
in the data, effectively mitigating the lagging effect where models
fail to predict abrupt shifts in the time series.

The batch averaging acts as a mechanism to align the model’s
predictions with the shared features across different time-series
segments, guiding it toward a consensus representation. As a re-
sult, the model captures the dominant patterns and trends that
are consistent across the batch, enhancing its ability to generalize
and reducing the likelihood of overfitting to specific instances. The
averaging effect smooths out idiosyncratic variations in individual
samples, promoting the learning of robust features pertinent to
the forecasting task. This convergence toward a specific function
helps the model produce more accurate and reliable predictions,
particularly when dealing with complex and noisy time-series data.

4 Conclusion
In this study, we introduced HiPPO-KAN, a novel model that in-
tegrates the HiPPO framework with the KAN model to enhance
time series forecasting. By encoding time series data into a fixed-
dimensional coefficient vector using the HiPPO transformation,
and then modeling the progression of these coefficients with KAN,
HiPPO-KAN efficiently performed time-series prediction task.

Our experimental results, as presented in Table 1, demonstrate
that HiPPO-KAN consistently outperforms traditional KAN and

Figure 6: The modified loss function effectively resolves the
lagging problem, resulting in predictions that closely follow
the actual time series data. This result is based on a randomly
selected segment of BTC-USDT 1-minute interval data, using
a KAN architecture with a width of [16, 2, 16].

other baseline models such as HiPPO-MLP, LSTM, and RNN across
various window sizes and prediction horizons. Notably, HiPPO-
KAN maintains a constant parameter count regardless of sequence
length, highlighting its parameter efficiency and scalability. For
example, at a window size of 1,200 and a prediction horizon of
1, HiPPO-KAN achieved an MSE of 3.26 × 10−7 and an MAE of
4.00 × 10−4, compared to KAN’s MSE of 4.03 × 10−6 and MAE of
1.56 × 10−3, with fewer parameters.

The integration of HiPPO theory into the KAN framework pro-
vides a powerful approach for handling long sequences without
increasing the model size. By operating within a fixed-dimensional
latent space, HiPPO-KANnot only improves predictive accuracy but
also offers better interpretability of the model’s internal workings.
The use of KAN allows for modeling complex nonlinear relation-
ships between the HiPPO coefficients, capturing the underlying
dynamics of the time series more effectively than traditional meth-
ods. These promising results position HiPPO-KAN as a significant
advancement in time-series forecasting, offering a scalable and ef-
ficient solution that could potentially revolutionize applications
across various domains, from financial modeling to climate predic-
tion.

Additionally, we addressed the lagging problem commonly en-
countered in time series forecasting models. By modifying the loss
function to compute the MSE directly on the coefficient vectors in
the HiPPO domain, we significantly improved the model’s ability to
capture sudden changes in the data without delay. This adjustment
aligns the learning processmore closely with the underlying dynam-
ics of the time series, allowing HiPPO-KAN to produce predictions
that closely follow the actual data, as illustrated in Figure 6.

4.1 Future Work
4.1.1 Integration with Graph Neural Networks for Multivariate Time
Series. To extend the HiPPO-KAN model to handle multivariate
time-series data, we propose integrating it with Graph Neural Net-
works (GNNs) [2]. In this framework, each variable or time series
in the multivariate dataset is represented as a node within a graph
structure. At each node, the HiPPO transformation encodes the



ACM ICAIF P2P Workshop 2024, November 14, 2024, New York, USA Lee et al.

local time-series data into a fixed-dimensional coefficient vector,
serving as a localized representation of the temporal dynamics.

These coefficient vectors act as local embeddings of the time
series at each node. The edges of the graph define the interac-
tions between nodes, capturing the dependencies and relationships
among different variables in the dataset. By modeling these inter-
actions, we can define functions that operate on pairs or groups of
coefficient vectors, effectively allowing information to flow across
the graph and capturing the multivariate dependencies.

This integration leverages the strength of HiPPO-KAN in mod-
eling individual time series efficiently while utilizing the relational
modeling capabilities of GNNs to handle the interconnectedness
of multivariate data. Future work could focus on developing this
combined HiPPO-KAN-GNN architecture, investigating how the
interactions between nodes can be effectively modeled, and ex-
ploring the impact on forecasting accuracy and interpretability.
This approach has the potential to address complex systems where
variables are interdependent, such as in financial markets, climate
modeling, and social network analysis.

References
[1] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term

dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[2] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic. 2021. Geometric
Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv preprint
arXiv:2104.13478 (2021).

[3] Remi Genet and Hugo Inzirillo. 2024. A Temporal Kolmogorov-Arnold Trans-
former for Time Series Forecasting. arXiv preprint arXiv:2406.02486 (2024).

[4] Remi Genet and Hugo Inzirillo. 2024. Tkan: Temporal kolmogorov-arnold net-
works. arXiv preprint arXiv:2405.07344 (2024).

[5] F. A. Gers, J. Schmidhuber, and F. Cummnins. 2000. Learning to forget: Continual
prediction with LSTM. Neural Computation 12, 10 (2000), 2451–2471.

[6] I. Goodfellow, Y. Bengjo, and A. Courville. 2016. Deep Learning. The MIT Press.
[7] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré. 2020. HiPPO: Recurrent Memory

with Optimal Polynomial Projections. arXiv preprint arXiv:2008.07669 (2020).
[8] A. Gu, K. Goel, and C. Ré. 2022. Efficiently Modeling Long Sequences with

Structured State Spaces. arXiv preprint arXiv:2111.00396 (2022).
[9] A. Gu, A. Gupta, K. Goel, and C. Ré. 2022. On the Parametrization and Initialization

of Diagonal State Space Models. arXiv preprint arXiv:2206.11893 (2022).
[10] A. Gu, I. Johnson, A. Timalsina, A. Rudra, and C. Re. 2022. How to Train Your

HiPPO: State Space Models with Generalized Orthogonal Basis Projections. arXiv
preprint arXiv:2206.12037 (2022).

[11] H. S. Hippert, C. E. Pedreira, and R. C. Souza. 2001. Neural Networks for Short-
term Load Forecasting: A review and evaluation. IEEE Transactions on Power
Systems 16, 1 (2001), 44–55.

[12] H. Inzirillo. 2024. Deep State Space Recurrent Neural Networks for Time Series
Forecasting. arXiv preprint arXiv:2407.15236 (2024).

[13] Y. Kong, Z. Wang, Y. Nie, T. Zhou, S. Zohren, Y. Liang, P. Sun, and Q. Wen. 2024.
Unlocking the Power of LSTM for Long Term Time Series Forecasting. arXiv
preprint arXiv:2408:10006 (2024).

[14] J. Li, L. Song, D. Wu, J. Shui, and T. Wang. 2023. Lagging problem in financial time
series forecasting. Neural Computing and Applications 35 (2023), 20819–20839.

[15] L. Li, J. Yan, X. Yang, and Y. Jin. 2021. Learning Interpretable Deep State Space
Model for Probabilistic Time Series Forecasting. arXiv preprint arXiv:2102.00397
(2021).

[16] Z. C. Lipton, J. Berkowitz, and C. Elkan. 2015. A Critical Review of Recurrent
Neural Networks for Sequence Learning. arXiv preprint arXiv:1506.00019 (2015).

[17] Z. Liu, P. Ma, Y. Wang, W. Matusik, and M. Tegmark. 2024. KAN 2.0: Kolmogorov-
Arnold Networks Meet Science. arXiv preprint arXiv:2408.10205 (2024).

[18] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljiacic, T. Y. Hou,
and M. Tegmark. 2024. KAN: Kolmogorov-Arnold Networks. arXiv preprint
arXiv:2404.19756 (2024).

[19] S. S. Rangapuram, M. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski.
2018. Deep State Space Models for Time Series Forecasting. In Advances in Neural
Information Processing Systems. 7796–7805.

[20] Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Màrius Caus. 2024.
Kolmogorov-arnold networks (kans) for time series analysis. arXiv preprint
arXiv:2405.08790 (2024).

[21] A. R. Voelker, I. Kajic, and C. Eliasmith. 2019. Legendre Memory Units:
Continuous-Time Representation in Recurrent Neural Networks. In Advances in
Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada.

[22] Kunpeng Xu, Lifei Chen, and Shengrui Wang. 2024. Kolmogorov-Arnold Net-
works for Time Series: Bridging Predictive Power and Interpretability. arXiv
preprint arXiv:2406.02496 (2024).

[23] G. P. Zhang. 2001. An Investigation of Neural Networks for Linear Time-series
Forecasting. Computers & Operations Research 28, 12 (2001), 1183–1202.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009


	Abstract
	1 Introduction
	2 Backgrounds
	2.1 State Space Model
	2.2 HiPPO Theory
	2.3 KAN
	2.4 Time-series forecasting using KAN

	3 HiPPO-KAN
	3.1 Definition of HiPPO-KAN
	3.2 Methodology
	3.3 Lagging problem

	4 Conclusion
	4.1 Future Work

	References

