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ABSTRACT

Conventional image classifiers are trained by randomly sampling mini-batches of
images. To achieve state-of-the-art performance, sophisticated data augmentation
schemes are used to expand the amount of training data available for sampling.
In contrast, meta-learning algorithms sample not only images, but classes as well.
We investigate how data augmentation can be used not only to expand the number
of images available per class, but also to generate entirely new classes. We sys-
tematically dissect the meta-learning pipeline and investigate the distinct ways in
which data augmentation can be integrated at both the image and class levels. Our
proposed meta-specific data augmentation significantly improves the performance
of meta-learners on few-shot classification benchmarks.

1 INTRODUCTION

Data augmentation has become an essential part of the training pipeline for image classifiers and
related tasks, as it offers a simple and efficient way to significantly improve performance (Cubuk
et al.l 2018} Zhang et al.l |2017). In contrast, little work exists on data augmentation for meta-
learning. Existing frameworks for few-shot image classification use only horizontal flips, random
crops, and color jitter to augment images in a way that parallels augmentation for conventional
training (Bertinetto et al.| 2018 |Lee et al., | 2019). Meanwhile, meta-learning methods have received
increasing attention as they have reached the cutting edge of few-shot performance. While new
meta-learning algorithms emerge at a rapid rate, we show that, like image classifiers, meta-learners
can achieve significant performance boosts through carefully chosen data augmentation strategies
that are injected into the various stages of the meta-learning pipeline.

Meta-learning frameworks use data for multiple purposes during each gradient update, which creates
the possibility for a diverse range of data augmentations that are not possible within the standard
training pipeline. We explore these possibilities and discover combinations of augmentation types
that improve performance over existing methods. Our contributions can be summarized as follows:

e First, we break down the meta-learning pipeline and identify places in which data augmen-
tation can be inserted. We uncover four modes of augmentations for meta-learning: support
augmentation, query augmentation, task augmentation, and shot augmentation.

e Second, we test these four modes using a pool of image augmentations, and we find that
query augmentation is critical, while support augmentations often do not provide perfor-
mance benefits and may even degrade accuracy in some cases.

e Third, we combine augmentations and implement a MaxUp strategy, which we call Meta-
MaxUp, in order to maximize performance. We achieve significant performance boosts
with popular meta-learners on both mini-ImageNet and CIFAR-FS.

2 RELATED WORK

Meta-learners are known to be particularly vulnerable to overfitting (Rajendran et al.| [2020). One
recent work has developed a data augmentation method to overcome this problem (Liu et al.|[2020).
The latter method involves simply rotating all images in a class by a large amount and consider-
ing this new rotated class to be distinct from its parent class. This effectively increases the num-
ber of possible few-shot tasks that can be sampled during training. A feature-space augmentation,
MetaMix, has been proposed for averaging support features in few-shot learning (Yao et al., [2020).
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A different line of work has instead applied regularizers to prevent overfitting and improve few-shot
classification (Yin et al.} 2019; |Goldblum et al., 2020). Yet additional work has developed methods
for labeling and augmenting unlabeled data (Antoniou & Storkey, 2019; (Chen et al., 2019b), gen-
erative models for deforming images in one-shot metric learning (Chen et al.| [2019c), and feature
space data augmentation for adapting language models to new unseen intents (Kumar et al., 2019).

3 THE ANATOMY OF DATA AUGMENTATION FOR META-LEARNING

Adopting common terminology from the literature, the archetypal meta-learning algorithm contains
an inner loop and an outer loop in each parameter update of the training procedure. During an
episode of training, we sample a batch of tasks which may be, for example, five-way classification
problems. In the inner loop, a model is fine-tuned or adapted on support data. Then, in the outer
loop, the model is evaluated on guery data, and we compute the gradient of the loss on the query
data with respect to the model’s parameters before fine-tuning. Finally, we perform a descent step,
completing the episode. Intuitively, meta-learners are optimized to generalize well after fine-tuning
on very little data. At test time, the model is fine-tuned on a small set of data, which is analogous to
support data, and then inference is performed on other data, analogous to query data. The number
of support samples per class in a few-shot classification problem is called the shot.

3.1 DATA AUGMENTATION MODES

We describe four modes of data augmentation for meta-learning which may be employed individu-
ally or combined.

Support augmentation: Data augmentation may be applied to support data in the inner loop of
fine-tuning. This strategy enlarges the pool of fine-tuning data.

Query augmentation: Data augmentation alternatively may be applied to query data. This strat-
egy enlarges the pool of evaluation data to be sampled during training.

Task augmentation: We can increase the number of possible tasks by uniformly augmenting
whole classes to add new classes with which to train. For example, a vertical flip applied to all
car images yields a new upside-down car class which may be sampled during training.

Shot augmentation: At test time, we can artificially amplify the shot by adding additional copies
of each image using data augmentation. Shot augmentation can also be used during training by
adding copies of each support image via augmentation. Shot augmentation during training may
better prepare meta-learners for test-time shot augmentation.

Existing meta-learning algorithms for few-shot image classification typically use horizontal flips,
random crops, and color jitter on both support and query images. In Section 4 we test the four
modes of data augmentation enumerated above in isolation across a large array of specific aug-
mentations. We find that query augmentation is far more critical than support augmentation for
increasing performance. Additionally, we find that task augmentation, when combined with query
augmentation, can offer further boosts in performance when compared with existing frameworks.

3.2 DATA AUGMENTATION TECHNIQUES

For each of the data augmentation modes described above, we try a variety of specific data augmen-
tation techniques. Some techniques are only applicable to support, query, and shot modes or solely
to the task mode. We use an array of standard augmentation techniques as well as CutMix (Yun
et al.,[2019), MixUp (Zhang et al.,[2017)), and Self-Mix (Seo et al.,|2020). In the context of the task
augmentation mode, we apply these the same way to every image in a class in order to augment the
number of classes. For example, we use MixUp to create a half dog half truck class where every
image is the average of a dog image and a truck image. We also try combining multiple classes
into one class as a task augmentation mode. In general, techniques which greatly change the image
distribution are better suited for task augmentations while techniques that preserve the image distri-
bution are typically better suited for the support, query, and shot augmentation modes. The baseline
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models we compare to use horizontal flip, random crop, and color jitter augmentation techniques at
both the support and query levels since these techniques are prevalent in the literature. More details
on our pool of augmentation techniques can be found in Appendix

3.3 META-MAXUP AUGMENTATION FOR META-LEARNING

Recent work proposed MaxUp augmentation to alleviate overfitting during the training of classifiers
(Gong et al.,[2020). This strategy applies many augmentations to each image and chooses the aug-
mented image which yields the highest loss. MaxUp is conceptually similar to adversarial training
(Madry et al., 2019). Like adversarial training, MaxUp involves solving a saddlepoint problem in
which loss is minimized with respect to parameters while being maximized with respect to the input.
In the standard image classification setting, MaxUp, together with CutMix, improves generalization
and achieves state-of-the-art performance on ImageNet. Here, we extend MaxUp to the setting of
meta-learning. Before training, a set of the data augmentations, S, collected from the four modes,
as well as their combinations, is chosen. For example, S may contain horizontal flip shot augmenta-
tion, query CutMix, and the combination of both. During each iteration of training, we first sample a
batch of tasks, each containing support and query data, as is typical in the meta-learning framework.
For each element in the batch, we randomly select m augmentations from the set S, and we apply
these to the task, generating m augmented tasks with augmented support and query data. Then, for
each element of the batch of tasks originally sampled, we choose the augmented task that maxi-
mizes loss, and we perform a parameter update step to minimize training loss. Formally, we solve
the minimax optimization problem,

minEr | max £(Fy, M(T%))]. (1)

where 8 = A(0, M(T*)), A denotes fine-tuning, F is the base model with parameters 0, £ is the
loss function used in the outer loop of training, and 7 is a task with support and query data 7
and 7, respectively. Algorithm [I]contains a more thorough description of this pipeline in practice
(adapted from the standard meta-learning algorithm in|Goldblum et al.|(2019)).

Algorithm 1 Meta-MaxUp

Require: Base model, Fy, fine-tuning algorithm, A, learning rate, -y set of augmentations S, and
distribution over tasks, p(7T).
Initialize 6, the weights of F’;
while not done do
Sample batch of tasks, {7;}_,, where 7; ~ p(T) and 7; = (7.5, T.7).
fori=1,...,ndo
Sample m augmentations, {M;}7,, from S.
Compute k = arg max; L(Fp,, M;(T;")), where 0; = A(0, M;(T;*)).
Compute gradient g; = VoL (Fy, , My(T")).
end for
Update base model parameters: 6 < 6 — 1 %" g;.
end while

4 EXPERIMENTS

In this section, we empirically demonstrate the following:
1. Augmentations applied in the four distinct modes behave differently. In particular, query
and task augmentation are far more important than support augmentation. (Section[4.2)

2. Meta-specific data augmentation strategies can improve performance over the generic
strategies commonly used for meta-learning. (Section[4.3))

3. We can further boost performance by combining augmentations with Meta-MaxUp. (Sec-
tion 4.4))
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4.1 EXPERIMENTAL SETUP

We conduct experiments on four meta-learning algorithms: ProtoNet (Snell et al., 2017), R2-
D2 (Bertinetto et al., [2018), MetaOptNet (Lee et al., 2019), and MCT (Kye et al., [2020). ProtoNet
is a metric-learning method that uses a prototype learning head, which classifies samples by extract-
ing a feature vector and then performing a nearest-neighbor search for the closest class prototype.
R2-D2 and MetaOptNet instead use differentiable solvers with a ridge regression and SVM head, re-
spectively. These methods extract feature vectors and then apply a standard linear classifer to assign
class labels. MCT improves upon ProtoNet by meta-learning confidence scores. We experiment
with all of these different classifier head options, all using the ResNet-12 backbone proposed by
Oreshkin et al.| (2018)) as well as the four-layer convolutional architectures proposed by |Snell et al.
(2017) and [Bertinetto et al.| (2018)).

We perform our experiments on the mini-ImageNet and CIFAR-FS datasets (Vinyals et al., |2016;
Bertinetto et al., [2018). Mini-ImageNet is a few-shot learning dataset derived from the ImageNet
classification dataset (Deng et al., [2009), and CIFAR-FS is derived from CIFAR-100 (Krizhevsky
et al.,2009). Each of these datasets contains 64 training classes, 16 validation classes, and 20 classes
for testing. A description of training hyperparameters and computational complexity can be found
in Appendix We report confidence intervals with a radius of one standard error.

Few-shot learning may be done in either the inductive or transductive setting. Inductive learning
is a standard method in which each test image is evaluated separately and independently. In con-
trast, transduction is a mode of inference in which the few-shot learner has access to all unlabeled
testing data at once and therefore has the ability to perform semi-supervised learning by training
on the unlabelled data. For fair comparison, we only compare inductive methods to other inductive
methods.

4.2 AN EMPIRICAL COMPARISON OF AUGMENTATION MODES

We empirically evaluate the performance of all four different augmentation modes identified in Sec-
tion [3.1) on the CIFAR-FS dataset using an R2-D2 base-learner paired with both a 4-layer convolu-
tional network backbone (as used in the original work) and a ResNet-12 backbone. We report the
results of the most effective augmentations for each modes in Table |1} The full table of results can

be found in Appendix

Table 1: Few-shot classification accuracy (%) on the CIFAR-FS dataset with the most effective
data augmentations for each mode shown. Confidence intervals have radius equal to one standard
error. “CNN-4”" denotes a 4-layer convolutional network with 96, 192, 384, and 512 filters in each
layer (Bertinetto et al., 2018). Best performance in each category is bolded. Query CutMix is
consistently the most effective single augmentation for meta-learning.

CNN-4 ResNet-12

Mode Level 1-shot 5-shot 1-shot 5-shot

Baseline - 67.56 £0.35 82.39+0.26 73.01 £037 84.29+0.24
Random Erase ~ Support 67.71 £0.36 82.25+0.26 7230+ 0.37 84.50+£0.25
Self-Mix Support  69.61 £0.35 8343 +0.25 71.96+0.36 84.84 £0.25
CutMix Query  70.54 +0.33 84.69 +0.24 75.97 + 0.34 87.28 + 0.23
Random Erase Query 69.73+£0.34 84.04 £0.25 73.05+0.36 85.67+£0.25
Self-Mix Query 69.54+0.35 84.20+0.24 73.59+£0.35 86.14 +0.24
MixUp Task 6721 £035 82.72£0.26 72.05+0.37 8527 +0.25
Large Rotation Task  68.96 +£0.35 83.65+0.25 73.79+£0.36 85.81+0.24
Horizontal Flip Shot 68.13 £0.35 8295+0.25 73.254+0.36 85.06£0.25
Random Crop Shot 67.33 £0.36 83.04 +£0.25 70.56+0.37 83.87£0.25

Table [T]demonstrates that each mode of augmentation individually can improve performance. Aug-
mentation applied to query data is consistently more effective than the other augmentation modes.
In particular, simply applying CutMix to query samples improves accuracy by as much as 3% on
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both backbones. In contrast, most augmentations on support data actually damage performance. The
overarching conclusion of these experiments is that the four modes of data augmentation for meta-
learning behave differently. Existing meta-learning methods, which apply the same augmentations
to query and support data without using task and shot augmentation, may be achieving suboptimal
performance.

4.3 COMBINING AUGMENTATIONS

After studying each mode of data augmentation individually, we combine augmentations in order
to find out how augmentations interact with each other. We build on top of query CutMix since
this augmentation was the most effective in the previous section. We combine query CutMix with
other effective augmentations from Table |1} and we conduct experiments on the same backbones
and dataset. Results are reported in Table[2] Interestingly, when we use CutMix on both support and
query images, we observe worse performance than simply using CutMix on query data alone. Again,
this demonstrates that meta-learning demands a careful and meta-specific augmentation strategy.
In order to further boost performance, we will need an intelligent method for combining various
augmentations. We propose Meta-MaxUp as this method.

Table 2: Few-shot classification accuracy (%) on the CIFAR-FS dataset with combinations of aug-
mentations and query CutMix. “S”,“Q”,“T” denote “Support”, “Query”, and “Task” modes, respec-
tively. While adding augmentations can help, it can also hurt, so additional augmentations must be

chosen carefully.

CNN-4 ResNet-12

Mode 1-shot 5-shot 1-shot 5-shot

CutMix 70.54 = 0.33 84.69 +=0.24 7597 +£0.34 87.28 +£0.23
+ CutMix (S) 69.50 £0.35 82.644+026 7500+0.37 85.37+0.25
+ Random Erase (S) 70.12 035 8448 025 75.84 £0.34 87.19+0.24
+ Random Erase (Q) 69.68 +=0.34 84.36 =0.24 75.08 +0.35 87.14 +0.23
+ Self-Mix (S) 70.65 £ 0.34 84.68 =025 76.27 +£0.34 87.524+0.24
+ Self-Mix (Q) 69.94 +0.34 8438 £0.24 76.04 £0.34 87.45+0.24
+ MixUp (T) 70.33 £0.35 84.57+£0.25 7597 £0.34 86.66 +£0.24
+ Rotation (T) 70.35 +£0.34 84.73+024 7574 +£0.34 87.68 & 0.24
+ Horizontal Flip (Shot) 70.90 + 0.33 84.87 + 0.24 7623 +£0.34 87.36 £0.24

4.4 META-MAXUP FURTHER IMPROVES PERFORMANCE

In this section, we evaluate our proposed Meta-MaxUp strategy in the same experimental setting
as above for various values of m and different data augmentation pool sizes. Results are reported
in Table [3] and a detailed description of the augmentation pools can be found in Appendix [A.4]
Rows beginning with “CutMix” denote experiments in which the pool of augmentations simply
includes many CutMix samples. “Single” denotes experiments in which each augmentation in S
is of a single type, while “Medium” and “Large” denote experiments in which each element of S
is a combination of augmentations, for example CutMix+rotation. Combinations greatly expand
the number of augmentations in the pool. Rows with m = 1 denote experiments where we do not
maximize loss in the inner loop and thus simply apply randomly sampled data augmentation for
each task. As we increase m and include a large number of augmentations in the pool, we observe
performance boosts as high as 4% over the baseline, which uses horizontal flip, random crop, and
color jitter data augmentations from the original work corresponding to the R2-D2 meta-learner
used (Bertinetto et al., [2018)).

We explore the training benefits of these meta-specific training schemes by examining saturation
during training. To this end, we plot the training and validation accuracy over time for R2-D2
meta-learners with ResNet-12 backbones using baseline augmentations, query Self-Mix, and Meta-
MaxUp with a medium sized pool and m = 4. See Figure [I] for training and validation accuracy
curves. With only baseline augmentations, validation accuracy stops increasing immediately af-
ter the first learning rate decay. This suggests that baseline augmentations do not prevent overfit-
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Table 3: Few-shot classification accuracy (%) on the CIFAR-FS dataset for Meta-MaxUp over dif-
ferent sizes of augmentation pools and numbers of samples. As m and the pool size increase, so
does performance. Meta-MaxUp is able to pick effective augmentations from a large pool.

CNN-4 ResNet-12

Pool m 1-shot 5-shot 1-shot 5-shot

Baseline - 67.56 036 8239+0.26 73.01 £037 84.29+0.24
CutMix 1 7054 +£034 84.69+024 7597 +034 87.28+0.23
Single 1 7076 £0.35 84.704+0.25 7571 +035 87.44+0.43
Medium 1 70.504+0.34 84.59+0.24 75.60+0.34 87.354+0.23
Large 1 7084 £0.34 85.04+024 75444+034 87.47+£0.23
CutMix 2 7056 +034 8478 +024 7493+036 87.14+0.24
Single 2 70.86+0.34 85.06+0.25 7581+034 87.33+0.23
Medium 2 70.75+0.34 85.02+024 7649 +0.33 88.20+0.22
Large 2 7063 +034 85.07+£024 76594+034 88.11+0.23
CutMix 4 7048 £0.34 84764+024 7508 +0.23 87.60+0.24
Single 4 71.10+0.34 85.50+0.24 76.82+0.24 88.14+0.23
Medium 4 70.58 £0.34 8532 +0.24 7630+ 0.24 88.294+0.22
Large 4 7071 £0.34 85.044+023 76.99 +0.24 88.35 £+ 0.22
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Figure 1: Training and validation accuracy for R2-D2 meta-learner with ResNet-12 backbone on the
CIFAR-FS dataset. (a) Baseline model (b) query Self-Mix (c) Meta-MaxUp. Better data augmenta-
tion strategies, such as MaxUp, narrow the generalization gap and prevent overfitting.

ting during meta-training. In contrast, we observe that models trained with Meta-MaxUp do not
quickly overfit and continue improving validation performance for a greater number of epochs.
Meta-MaxUp visibly reduces the generalization gap.

4.5 SHOT AUGMENTATION FOR PRE-TRAINED MODELS

In the typical meta-learning framework, data augmentations are used during meta-training but not
during test time. On the other hand, in some transfer learning work, data augmentations, such as
horizontal flips, random crops, and color jitter, are used during fine-tuning at test time (Chen et al.,
2019a). These techniques enable the network to see more data samples during few-shot testing,
leading to enhanced performance. We propose shot augmentation (see Section [3) to enlarge the
number of few-shot samples during testing, and we also propose a variant in which we additionally
train using the same augmentations on support data in order to prepare the meta-learner for this test
time scenario. Figure [2]shows the effect of shot augmentation (using only horizontal flips) on per-
formance for MetaOptNet with ResNet-12 backbone trained with Meta-MaxUp. Shot augmentation
consistently improves results across datasets, especially on 1-shot classification (~ 2%). To be clear,
in this figure, we are not using shot augmentation during the training stage. Rather, we are using
conventional low-shot training, and then deploying our models with shot augmentation at test time.
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These post-training performance gains can be achieved by directly applying shot augmentation on
pre-trained models during testing. For additional experiments, see Appendix
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Figure 2: Performance on shot augmentation using MetaOptNet trained with the proposed Meta-
MaxUp. (a) 1-shot and 5-shot on CIFAR-FS (b) 1-shot and 5-shot on mini-ImageNet.

4.6 IMPROVING EXISTING META-LEARNERS WITH BETTER DATA AUGMENTATION

In this section, we improve the performance of four different popular meta-learning methods includ-
ing ProtoNet (Snell et al.,|[2017), R2-D2 (Bertinetto et al.,2018), MetaOptNet (Lee et al.,|2019)), and
MCT (Kye et al.| [2020). We compare their baseline performance to query CutMix with task-level
rotation as well as Meta-MaxUp data augmentation strategies on both the CIFAR-FS and mini-
ImageNet datasets. See Table [] for the results of these experiments. In all cases, we are able to
improve the performance of existing methods, sometimes by over 5%. Even without Meta-MaxUp,
we improve performance over the baseline by a large margin. The superiority of meta-learners
that use these augmentation strategies suggests that data augmentation is critical for these popular
algorithms and has largely been overlooked.

In addition, we compare our results with augmentation by Large Rotations at the task level — the
only competing work to our knowledge — in Table [5] Note, augmentation with Large Rotations
to create new classes is referred to as “Task Augmentation” in (Liu et al. 2020); we refer to it
here as “Large Rotations” to avoid confusion since we study a myriad of augmentations at the task
level. We observe that with the same training algorithm (MetaOptNet with SVM) and the ResNet-12
backbone, our method outperforms the Large Rotations augmentation strategy by a large margin on
both the CIFAR-FS and mini-ImageNet datasets. Together with the same ensemble method as used
in Large Rotations, marked by “+ens”, we further boost performance consistently above the MCT
baseline, the current highest performing meta-learning method on these benchmarks, despite using
an older meta-learner previously thought to perform worse than MCT.

5 DISCUSSION

In this work, we break down data augmentation in the context of meta-learning. In doing so, we
uncover possibilities that do not exist in the classical image classification setting. We identify four
modes of augmentation: query, support, task, and shot. These modes behave differently and are of
varying importance. Specifically, we find that it is particularly important to augment query data. Af-
ter adapting various data augmentations to meta-learning, we propose Meta-MaxUp for combining
various meta-specific data augmentations. We demonstrate that Meta-MaxUp significantly improves
the performance of popular meta-learning algorithms. As shown by the recent popularity of frame-
works like AutoAugment and MaxUp, data augmentation for standard classification is still an active
area of research. We hope that this work opens up possibilities for further work on meta-specific
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data augmentation and that emerging methods for data augmentation will boost the performance of
meta-learning on progressively larger models with more complex backbones.

Table 4: Few-shot classification accuracy (%) on CIFAR-FS and mini-ImageNet. “+ DA” denotes
training with CutMix (Q) + Rotation (T), and “+ MM” denotes training with Meta-MaxUp. “64-64-
64-64" denotes the 4-layer CNN backbone from [Snell et al.|(2017).

CIFAR-FS mini-ImageNet
Method Backbone 1-shot 5-shot 1-shot 5-shot
R2-D2 CNN-4 67.56 £0.35 82394+026 56.15+0.31 72.46+0.26
+ DA CNN-4 70.54 £ 0.33 84.69 +0.24 57.60+£0.32 74.69 4+ 0.25
+ MM CNN-4 71.10 £ 0.34 85.50 =0.24 58.18 +=0.32 75.35 +0.25
R2-D2 ResNet-12  73.01 =037 84294+ 024 60.46 +0.32 76.88 & 0.24
+ DA ResNet-12  76.17 =034 8774 +0.24 65.54 +£0.32 81.52 +0.23
+ MM ResNet-12  76.65 - 0.33 88.57 +0.24 65.15+0.32 81.76 &= 0.24
ProtoNet 64-64-64-64 6091 £035 79.73 +£0.27 47.97+£0.32 70.13+0.27
+ DA 64-64-64-64 62.21 £0.36 80.70 £0.27 50.38 +£0.32 71.44 + 0.26
+ MM 64-64-64-64 63.01 --0.36 80.85 + 0.25 50.06 =0.32 71.134+0.26
ProtoNet ResNet-12  70.21 2036 8426 +0.25 57.34 £0.34 75.81 £0.25
+ DA ResNet-12 74304+ 036 86.24 +0.24 60.82 +£0.34 78.23 +0.25
+ MM ResNet-12  76.05 - 0.34 87.84 +0.23 62.81 +0.34 79.38 & 0.24
MetaOptNet  ResNet-12  70.99 £0.37 84.00 £ 0.25 60.01 £0.32 77.42 +0.23
+ DA ResNet-12  74.56 034 87.61 023 6494 +0.33 82.104+0.23
+ MM ResNet-12  75.67 - 0.34 88.37 +0.23 65.02 + 0.32 82.42 + 0.23
MCT ResNet-12  75.80 +=0.33 89.10 = 0.42 64.84 +0.33 81.45 +0.23
+ MM ResNet-12  76.00 == 0.33 89.54 + 0.33 66.37 + 0.32 83.11 & 0.22

Table 5: Few-shot classification accuracy (%) on CIFAR-FS and mini-ImageNet with ResNet-12
backbone. “M-SVM” denotes MetaOptNet with the SVM head. “+ens” denotes testing with ensem-
ble methods as in|Liu et al.| (2020). “LargeRot” denotes task-level augmentation by Large Rotations
as described in|Liu et al.| (2020).

CIFAR-FS mini-ImageNet
Method 1-shot 5-shot 1-shot 5-shot
M-SVM + LargeRot 7295 +024 8591 +£0.18 62.12+0.22 7890 +0.17
M-SVM + LargeRot + ens 75.85+024 8773 £0.17 6456022 81.35+£0.16
M-SVM + MM (ours) 75.67 £0.34 88.37 023 65.02+0.32 82.424+0.23
M-SVM + MM + ens (ours) 76.38 +0.33 89.16 + 0.22 66.42 +0.32 83.69 + 0.21
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A APPENDIX

A.1 DETAILS ABOUT DATA AUGMENTATION TECHNIQUES

In this section, we provide more details about the different data augmentation techniques we use in
this work. We employ the following pool of data augmentation techniques:

CutMix: |Yun et al|(2019) introduced the CutMix augmentation strategy where patches are cut
and pasted among training images, and the ground truth labels are also mixed proportionally to the
area of the patches.

MixUp: [Zhang et al|(2017) proposed mixup, a simple learning principle to alleviate memorization
and sensitivity to adversarial examples. Mixup trains a neural network on convex combinations of
pairs of examples and their labels. By doing so, mixup regularizes the neural network to favor simple
linear behavior in between training examples.

Self-Mix: [Seo et al.|(2020) introduced the self-mix augmentation strategy in which a patch of an
image is substituted into other values in the same image to improve the generalization ability of
few-shot image classification models.

In addition, we use some standard and simple data augmentation techniques:
Rotation: augments the data by rotating the images.
Horizontal Flip: augments the data by horizontally flipping images.

Random Erase: augments the data by randomly erasing patches from the image.

Finally, we also experimented with the following data augmentation techniques:

Combining Labels: augments the data by combining two different labels into a single class. For
instance, we combine may combine the “dog” and “cat” labels to create a new “dog or cat” class.

Feature Mixup: similar to the “Mixup” augmentation technique we describe above, however we
perform the mixup strategy on the feature representation for the image.

Drop Channel: augments the data by dropping color channels in the image.

Solarize: inverts all pixels above a threshold value of magnitude.
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A.2 RESULTS FOR ALL DATA AUGMENTATION TECHNIQUES

Table 6: Few-shot classification accuracy (%) on the CIFAR-FS dataset for all data augmentations.
Confidence intervals have radius equal to one standard error. “CNN-4" denotes a 4-layer convo-
lutional network with 96, 192, 384, and 512 filters in each layer (Bertinetto et al.| 2018)). Best
performance in each category is bolded.

CNN-4 ResNet-12

Mode Level 1-shot 5-shot 1-shot 5-shot

Baseline - 67.56 +0.35 8239+0.26 73.01£037 84.29+0.24
Random Erase Support  67.71 £ 0.36 8225 +0.26 72.30 £0.37 84.50 + 0.25
Self-Mix Support  69.61 + 0.35 83.43 £0.25 71.96 +=0.36 84.84 + 0.25
CutMix Support  66.09 +£0.36  80.34 +£ 0.27 70.50 +0.39 81.30 + 0.28
MixUp Support  66.13 £0.37 79.49+£0.27 69.65+0.38 82.02 £0.26
Feature Mixup Support 67.88 £0.35 8240+£0.25 71.21 £0.37 83.38+0.25
Rotation Support  68.65 +£0.35 82.86 +£0.25 71.13+0.37 83.84 £0.25
Combining labels  Support 68.27 £0.36 82.53 +0.26 71.00 £0.38 83.12 £ 0.25
Drop Channel Support 6821 £0.35 8276 £0.25 69.65+0.73 83.15+0.25
Solarize Support  68.65 +£0.35 82.68 +£0.26 70.88 +0.37 83.45+0.25
Random Erase Query 69.73 £0.34 84.04 £0.25 73.05+0.36 85.67+0.25
Self-Mix Query 69.61 £0.35 83434+0.25 71.96+0.36 84.84+0.25
CutMix Query  70.54 +0.33 84.69 + 0.24 75.97 +0.34 87.28 + 0.23
MixUp Query 67.70+0.34 83.134+0.25 7293+0.35 86.13+0.24
Feature Mixup Query 70.16 +£0.35 83.80+£0.28 73.38 £0.35 85.87+0.23
Rotation Query 68.17 +0.35 83.01 £0.25 72.02+0.36 84.42+0.25
Combining labels  Query  66.01 +0.34 81.99+0.26 69.77 £0.37 82.99 £0.26
Drop Channel Query 68.34 £0.35 83.254+0.25 69.60+0.37 83.01 £0.26
Solarize Query 67.51+0.35 82.65+025 7245+036 84.97+0.24
MixUp Task 67.21 £0.35 82.72+0.26 72.05+0.37 85.27+0.25
Large Rotation Task 68.96 + 0.35 83.65+0.25 73.79+0.36 85.81 +0.24
CutMix Task 68.78 £0.36  82.99 +0.50 72.72+0.37 84.62 £0.25
Combining labels Task 68.08 +0.35 8233+0.26 69.64+0.37 83.79+0.26
Random Erase Task 68.39 £ 0.36 8326 +0.25 71.09 +£0.37 84.49+0.25
Drop Channel Task 67.54 £0.36 81.97+0.25 70.24+0.37 83.52+£0.26
Horizontal Flip Shot 68.13 +0.35 8295+0.25 73.25+0.36 85.06 £ 0.25
Random Crop Shot 67.33 £0.36 83.04 +0.25 70.56 +0.37 83.87 £0.25
Random Rotation Shot 67.57+0.35 83.00+£0.25 7032+037 83.75+£0.25

A.3 TRAINING DETAILS

For MetOptNet, we use the same training procedure as (Lee et al.,[2019) including SGD with Nes-
terov momentum of 0.9 and weight decay coefficient 0.0005. The model was meta-trained for 60
epochs, with an initial learning rate 0.1, then changed to 0.006, 0.0012, and 0.00024 at epochs 20,
40 and 50, respectively. In each epoch, we train on 8000 episodes and use mini-batches of size 8.
Following (Lee et al.,|2019)), we use a larger shot number (15) to train mini-ImageNet for both 1-shot
and 5-shot classification. For MCT, we use the same optimizer but with batch size 1 and maximum
iterations 50000. Following (Kye et al2020), we enlarge the training classification ways to 15 for
a 5-way testing. We use instance-wise metric for all inductive learning.

A.4 AUGMENTATION POOL FOR META-MAXUP

For all the benchmark results of Meta-MaxUp training, we use a medium-size data augmentation
pool with m = 4, including CutMix (Q), Random Erase (Q), Self-Mix (S), Rotation (T), CutMix
(Q) + Rotation (T), and Random Erase (Q) + Rotation (T). For the large-size pool, we add more
techniques and combinations of the mentioned techniques into the pool, including Random Erase
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(Q) + Random Erase (S), CutMix (Q) + Random Erase (S), CutMix (Q) + Random Erase (Q), and

CutMix (Q) + Self-Mix (S).

A.5 BARPLOTS FOR SHOT AUGMENTATION
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Figure 3: Performance for shot augmentation for different backbone works and training strategies
on CIFAR-FS. (a) 1-shot classification for CNN-4 (b) 5-shot classification for CNN-4 (¢) 1-shot
classification for ResNet-12 (d) 5-shot classification for ResNet-12
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